
Université catholique de Louvain

Peter Van Roy

June 5, 1998
Oz/Mozart Workshop

Donatien Grolaux

A Collaborative

Based on Transactions

Graphic Editor

�

Overview

Logical Architecture

Problem: Usable Editor over the Net

Solution: Speculative Edits with Transactions

Scenario with Two Clients

User Interface

Full Transaction Protocol

Physical Architecture and Initialization

Conclusions

●

●

●

●

●

●

●

●

�

Specification

●

●

All users manipulate the same drawing

All users have instantaneous response time

Problem:
Graphic Editor over the Net

Collaborative design over Internet:

User

User

UserUser

User

Network
with

performance

unpredictable

�

Speculative Edits with Transactions

Solution:

Transactions are a concept from databases
used to maintain consistency during multiple
concurrent updates

Transactions can also be used to bridge the

How can we design an editor that is based on
this principle with a user interface that
minimizes interference from other users and
from the network?

●

●

●

delay time of a network:

●

●

●

●

Each user instantly makes local modifications to
part of the drawing. These modifications are not
seen by the other users.

Concurrently, the editor requests global locks on
all the graphic objects modified.

If the locks are obtained, the modifications are
made global.

If the locks are refused, the modifications are
cancelled.

�

● Built as layers of (almost) independent functionality

create/modify/delete graphic object

Messages from server to client: lock given/refused,
broadcast create/modify/delete graphic object

●

●

Messages from client to server: lock request/release,

Logical Architecture

Client 1 Client 2

Locks and
transactions

Single-user
graphic editorLayer

Editor

Layer
Transaction

Server

Transaction
Layer

Editor
Layer

No editing ability!

state, broadcast updates
●

Graphic object: lock,
Client code (for init)
Add/remove client

●

●

●

�

Scenario with two Clients (1)

Client 1
(editor)

Client 1
(transaction)

Select
objects Lock request

 +save state

Lock given

Commit +
send modifs.

Broadcast
modifs.

Update state
Display

Modify
Remember
for commit

Modify
Send modifs.

Broadcast
modifs.

Unselect
objects Lock release

Lock released

Server

Select
black

Update state
Display

Client 2Client 2
(editor)(transaction)

�

Scenario with two Clients (2)

Client 1
(editor)

Client 1
(transaction)

Select
objects Lock request

 +save state

Lock given

Commit +
send modifs.

Broadcast
modifs.

Update state
Display

Modify
Remember
for commit

Modify
Send modifs.

Broadcast
modifs.

Update
saved state

Unselect
objects Lock release

Lock released

Select
objectsLock request

+ save state

Lock refused

Roll up +
restore state

Server

Unselect +
display

Select
black

Transaction 2
(aborted)

Transaction 1

(transaction) (editor)
Client 2 Client 2

�

Scenario with two Clients (3)

Client 1
(editor)

Client 1
(transaction)

Select
objects Lock request

 +save state

Lock given

Commit +
send modifs.

Broadcast
modifs.

Update state
Display

Modify
Remember
for commit

Modify
Send modifs.

Broadcast
modifs.

Update
saved state

Unselect
objects Lock release

Lock released

Server

Select
black

Transaction 2

Transaction 1

(committed)

Select
objectsLock request

+ save state

Commit +
send modifs. Select

black

Unselect
objectsLock release

Broadcast
modifs.

Lock given

Update state
Display

Lock released

(transaction)
Client 2

(editor)
Client 2

�

A

0

0

User Interface

Freeze state
(unfreeze button)

Selection state

Selection

Freeze

Drawing
tools

Selection
frame

●

Drawing tools: standard set (circle, rectangle, text,●

freehand, polyline, fill, thickness, color)

Selection tool: standard (click, shift-click, drag, handles)
with extensions:

Selection state:

Selection frame: black (committed) /

Freeze tool: like selection, but locks only (keeps other users

green (consistent view) / (otherwise)red

from modifying)

Unfreeze button: click to unfreeze everything

●

●

●

●

red (not committed)

�

Multiple transactions can be active at one client.
Oldest is committed first, abort rolls up all newer ones.

Undo is local to each client. The undo transaction is
possible if no other client has modified any relevant
object. Undo actions are logged for each modification.

Delete initially hides the object, and removes it at
commit. Undo recreates the object from scratch.

●

●

●

Grouping/ungrouping through a group object that
plays the role of client for its components.

●

Display order can be changed. Displayed order is local
order modified by active order-changing commands.
When these commit they become part of local order.

●

Full Transaction Protocol

�	

1. On startup, client obtains its functionality from the server

2. During operation, client and server exchange messages

Two phases:

Within Oz
address space

Outside Oz
address space

Physical Architecture
and Initialization

Server
object

Client
code

(classes,
files)

Client stub

Client

object

(3) Client stub asks server
object for client code
and creates client object

(4) Client object registers
with server object

(5) Client and server objects
exchange messages
(normal operation)

Server object(1)
publishes ticket

Client stub
obtains ticket and
gets reference to
server object

(2)

Client site

Server site

��

Release
Fall 98

Conclusions

User feedback, "steal" tool, functionality, fault tolerance

●

●

Evaluation of application:

Extend to make a usable collaborative tool:

Proof of concept: prototype exists and works well

●

Basis for a generic ’transactional application’ module

Allow to plug in any single-user application!●

●

●

Use of Distributed Oz:

-

+

+

+

+

-

-

-

Fully transparent distribution is major advantage

Large functionality with small amount of code

After learning period, development is rapid

Raw Tcl/Tk not completely hidden (need interface builder)

Debugging of concurrent dataflow language not easy

Prerelease system: small quirks, lack of documentation

High-level language requires learning period

Prototype is publicly available on the Web

+ Failure model allows building robust application

Graphic interface much better than raw Tcl/Tk

��

