
Speeding up constrained path solvers with a

reachability propagator

Luis Quesada, Peter Van Roy, and Yves Deville

Université catholique de Louvain
Place Sainte Barbe, 2, B-1348 Louvain-la-Neuve, Belgium

{luque, pvr, yde}@info.ucl.ac.be

Abstract. Constrained path problems have to do with finding paths in
graphs subject to constraints. One way of constraining the graph is by
enforcing reachability on nodes. For instance, it may be required that
a node reaches a particular set of nodes by respecting some restrictions
like visiting a particular set of nodes or edges and using less than a
certain amount of resources. The reachability constraints of this paper
were suggested by a practical problem regarding mission planning in the
context of an industrial project.

We deal with this problem by using concurrent constraint programming
where the problem is solved by interleaving Propagation and Distribu-
tion. In this paper, we define a propagator which we call Reachability
that implements a generalized reachability constraint on a graph. The
Reachability constraint has two parts. First, it implements a relation be-
tween each node of g (the graph that is being constrained) and the set of
nodes that it reaches. Second, given a source node source in g, Reacha-
bility associates each pair of nodes 〈source, i〉 with the set of nodes and
the set of edges that are included in all paths going from source to i.

We show the effectiveness of our Reachability propagator by applying
it to the Hamiltonian Path problem. We do an experimental evaluation
of Reachability that shows that it provides strong pruning, obtaining
solutions with very little search. Furthermore, we show that Reachabil-
ity is also useful for defining a good distribution strategy and dealing
with ordering constraints among mandatory nodes. These experimental
results give evidence that Reachability is a useful primitive for solving
constrained path problems over graphs.

1 Introduction

Constrained path problems have to do with finding paths in graphs subject
to constraints. One way of constraining the graph is by enforcing reachabil-
ity on nodes. For instance, it may be required that a node reaches a par-
ticular set of nodes by respecting some restrictions like visiting a particular
set of nodes or edges and using less than a certain amount of resources. We
have instances of this problem in Vehicle routing [PGPR96][CL97] [FLM99] and
Bioinformatics[DDD04].



2 Luis Quesada et al.

An approach to solve this problem is by using Concurrent Constraint Pro-
gramming (CCP) [Sch00],[M0̈1]. In CCP, we solve the problem by interleaving
two processes: propagation and distribution. In Propagation, we are interested
in filtering the domains of a set of finite domain variables according to the se-
mantics of the constraints that have to be respected. In Distribution, we are
interested in specifying which alternative should be selected when searching for
the solution.

Our goal is to implement so-called Constrained Path Propagators (CPPs) for
achieving global consistency[Dec03]. In this paper, we define a propagator which
we call Reachability that implements a generalized reachability constraint on a
graph. The Reachability constraint has two parts. First, it implements a relation
between each node of g (the graph that is being constrained) and the set of nodes
that it reaches. Second, given a source node source in g, Reachability associates
each pair of nodes 〈source, i〉 with the set of nodes and the set of edges that are
included in all paths going from source to i.

Our contribution is a propagator that is suitable for solving Hamiltonian
Path with optional nodes (i.e., we are not forced to visit all the nodes of the
graph but a subset of them). Certainly, this problem can be trivially solved
if the graph has no cycles since in that case there is only one order in which
we can visit the mandatory nodes [Sel02]. However, if the graph has cycles the
problem becomes NP complete since we can easily reduce the standard version
of Hamiltonian Path [GJ79][CLR90] to this problem.

From our experimental measurements in Section 4, we observe that the suit-
ability of Reachability for dealing with Hamiltonian Path with optional nodes is
based on the following aspects:

– The strong pruning that Reachability performs. Due to the computation
of cut nodes and bridges (i.e., nodes and edges that are present in all the
paths going from a given node to another), Reachability is able to discover
non-viable successors early on. It is important to remark that Reachability
is a complete propagator (i.e., it prunes all the non-valid values that it is
supposed to prune under a given partial instantiation of its arguments).

– The information that Reachability provides for implementing smart distri-
bution strategies. By distribution strategy we mean the way the search tree
is created, i.e., which constraint is used to for branching. Reachability asso-
ciates each node with the set of nodes that reaches. This information can be
used to guide the search in a smart way. For instance, one of our observations
is that, when choosing first the node that reaches the most nodes (i) and
selecting as a successor of i first a node that i reaches, we obtain paths that
minimize the use of optional nodes.

An additional feature of Reachability is its suitability for imposing ordering
constraints among mandatory nodes (which is a common issue in routing prob-
lems). In fact, it might be the case that we have to visit the nodes of the graph in
a particular (partial) order. We force a node i to be visited first than a node j by
imposing that i reaches j and j reaches i. We have performed experiments that



Lecture Notes in Computer Science 3

show that Reachability takes the most advantage of this information to avoid
branches in the search tree with no solution.

The structure of the paper is as follows: first, we introduce Reachability by
presenting its semantics and deriving pruning rules in a systematic way. Then,
we show how we can model Hamiltonian Path with optional nodes in terms of
Reachability. Finally, we show examples that demonstrate the suitability and the
performance of Reachability for this type of problem, and we also elaborate on
some alternatives that could radically improve the performance of Reachability.

2 Reachability propagator

Reachability is an example of a constrained path propagator. On the one hand,
Reachability establishes a relation between each node of g and the set of nodes
that it reaches. On the other hand, given a source node source in g, Reachability
associates each pair of nodes 〈source, i〉 with the set of nodes and the set of
edges that are included in all paths going from source to i.

2.1 Reachability Constraint

The Reachability Constraint is the following:

Reachability(g, source, rn, cn, be) ≡

∀i∈N .Reach(g, i) = rn(i)∧
∀i∈rn(source).

cn(i) = CutNodes(g, source, i)∧
be(i) = Bridges(g, source, i)

(1)

Where:

– g is a graph whose set of nodes is a subset of N .
– source is a node of g.
– rn(i) is the set of nodes that i reaches.
– cn(i) is the set of nodes appearing in all paths going from source to i.
– be(i) is the set of edges appearing in all paths going from source to i.
– Reach, Paths, CutNodes and Bridges are functions that can be formally de-

fined as follows:

j ∈ Reach(g, i) ↔ ∃p.p ∈ Paths(g, i, j) (2)

p ∈ Paths(g, i, j) ↔























if i = j then i ∈ nodes(g) ∧ p = ε

if i 6= j then ∃k,p′ .

〈i, k〉 ∈ edges(g)∧
p = 〈i, k〉#p′∧
p′ ∈ Paths(g, k, j)

(3)



4 Luis Quesada et al.

k ∈ CutNodes(g, i, j) ↔ ∀p∈Paths(g,i,j).k ∈ nodes(p) (4)

e ∈ Bridges(g, i, j) ↔ ∀p∈Paths(g,i,j).e ∈ edges(p) (5)

The above definition of Reachability implies the following properties which
are crucial for the pruning that Reachability perform:

1. If 〈i, j〉 is an edge of g, then i reaches j.

∀〈i,j〉∈edges(g) .j ∈ rn(i) (6)

2. If i reaches j, i reaches all the nodes that j reaches.

∀i,j,k∈N .j ∈ rn(i) ∧ k ∈ rn(j) → k ∈ rn(i) (7)

3. If i reaches j and k is a cut node between i to j in g, then k is reached from
i and k reaches j:

∀i,j∈N .i ∈ rn(source) ∧ j ∈ cn(i) → j ∈ rn(source) ∧ i ∈ rn(j) (8)

4. Reached nodes, cut nodes and bridges are nodes and edges of g:

∀i∈N .rn(i) ⊆ nodes(g) (9)

∀i∈N .cn(i) ⊆ nodes(g) (10)

∀i∈N .be(i) ⊆ edges(g) (11)

2.2 Pruning rules

We implement the constraint in Equation 1 with the propagator

Reachability(G, Source, RN, CN, BE) (12)

In this propagator we have that:

– G is a graph variable[DDD04] whose upper bound (max(G)) is the greatest
graph to which G can be instantiated, and lower bound (min(G)) is the
smallest graph to which G can be instantiated. So, i ∈ nodes(G) means
i ∈ nodes(min(G)) and i 6∈ nodes(G) means i 6∈ nodes(max(G)) (the same
applies for edges). In what follows, {〈N1, E1〉#〈N2, E2〉} will denote a graph
variable whose lower bound is 〈N1, E1〉 and upper bound is 〈N2, E2〉.

– Source is an integer representing the source in the graph.
– RN(i) is a Finite Integer Set (FS) [DKH+99] variable associated with the

set of nodes that can be reached from node i. The upper bound of this
variable (max(RN(i))) is the set of nodes that could be reached from node
i (i.e., nodes that are not in the upper bound are nodes that are known to
be unreachable from i). The lower bound (min(RN(i))) is the set of nodes
that are known to be reachable from node i. In what follows {S1#S2} will
denote a FS variable whose lower bound is S1 and upper bound S2.



Lecture Notes in Computer Science 5

– CN(i) is a FS variable associated with the set of nodes that are included in
every path going from Source to i.

– BE(i) is a FS variable associated with the set of edges that are included in
every path going from Source to i.

The definition of Reachability and its derived properties give place to a set of
propagation rules. The pruning rules are obtained by considering the following
rewriting rules:

P1 ∧ P2 ∧ ... ∧ Pn → R

¬R ∧ P1 ∧ ... ∧ Pi−1 ∧ Pi+1... ∧ Pn → ¬Pi

(13)

P → Q1 ∧ Q2 ∧ ... ∧ Qi ∧ ... ∧ Qn

P → Qi

(14)

i ∈ S

i ∈ min(S)
(15)

i 6∈ S

i 6∈ max(S)
(16)

S1 = S2

min(S1) = min(S2)
max(S1) = max(S2)

(17)
S1 ⊆ S2

min(S1) ⊆ min(S2)
max(S1) ⊆ max(S2)

(18)

The pruning rules are the following:

– From (6) ∀〈i,j〉∈edges(g) .j ∈ rn(i) we obtain:

〈i, j〉 ∈ edges(min(G))

j ∈ min(RN(i))
(19)

j 6∈ max(RN(i))

〈i, j〉 6∈ edges(max(G))
(20)

– From (7) ∀i,j,k∈N .j ∈ rn(i) ∧ k ∈ rn(j) → k ∈ rn(i) we obtain:

j ∈ min(RN(i)) ∧ k ∈ min(RN(j))

k ∈ min(RN(i))
(21)

k 6∈ max(RN(i)) ∧ j ∈ min(RN(i))

k 6∈ max(RN(j))
(22)

k 6∈ max(RN(i)) ∧ k ∈ min(RN(j))

j 6∈ max(RN(i))
(23)

– From (8)∀i,j∈N .i ∈ rn(source) ∧ j ∈ cn(i) → j ∈ rn(source) ∧ i ∈ rn(j) we
obtain:

i ∈ min(RN(Source)) ∧ j ∈ min(CN(i))

j ∈ min(RN(Source))
(24)

j 6∈ max(RN(Source)) ∧ j ∈ min(CN(i))

i 6∈ max(RN(Source))
(25)



6 Luis Quesada et al.

j 6∈ max(RN(Source)) ∧ i ∈ min(RN(Source))

j 6∈ max(CN(i))
(26)

i ∈ min(RN(Source)) ∧ j ∈ min(CN(i))

i ∈ min(RN(j))
(27)

i 6∈ max(RN(j)) ∧ j ∈ min(CN(i))

i 6∈ max(RN(Source))
(28)

i 6∈ max(RN(j)) ∧ i ∈ min(RN(Source))

j 6∈ max(CN(i))
(29)

– From (1)∀i∈N .Reach(g, i) = rn(i) we obtain:

j 6∈ Reach(max(G), i)

j 6∈ max(RN(i))
(30)

– From (1)∀i∈rn(source).cn(i) = CutNodes(g, source, i) we obtain:

j ∈ CutNodes(max(G), Source, i)

j ∈ min(CN(i))
(31)

j 6∈ CutNodes(min(G), Source, i)

j 6∈ max(CN(i))
(32)

– From (1)∀i∈rn(source).be(i) = Bridges(g, source, i) we obtain:

e ∈ Bridges(max(G), Source, i)

e ∈ min(BE(i))
(33)

e 6∈ Bridges(min(G), Source, i)

e 6∈ max(BE(i))
(34)

– From (9) ∀i∈N .rn(i) ⊆ nodes(g), (10)∀i∈N .cn(i) ⊆ nodes(g) and (11)∀i∈N .be(i) ⊆
edges(g) we obtain:

k ∈ min(RN(i))

k ∈ nodes(min(G))
(35)

k 6∈ nodes(max(G))

k 6∈ max(RN(i))
(36)

k ∈ min(CN(i))

k ∈ nodes(min(G))
(37)

k 6∈ nodes(max(G))

k 6∈ max(CN(i))
(38)

e ∈ min(BE(i))

e ∈ edges(min(G))
(39)

e 6∈ edges(max(G))

e 6∈ max(BE(i))
(40)



Lecture Notes in Computer Science 7

2.3 Complexity and Level of Consistency

In our pruning rules we have three functions:

– Reach that is O(V + E) since it is basically a call to DFS [CLR90].
– CutNodes whose algorithm is based on the following definition:

k ∈ CutNodes(g, i, j) ↔ j 6∈ Reach(RemoveNode(g, k), i) (41)

So, checking whether a node is a cut node is O(V + E). Notice that we
assume that RemoveNode returns the same graph when k 6∈ nodes(g).

– Bridges whose algorithm is based on the following definition:

e ∈ Bridges(g, i, j) ↔ j 6∈ Reach(RemoveEdge(g, e), i) (42)

So, checking whether an edge is a bridge is O(V +E). Notice that we assume
that RemoveEdge returns the same graph when e 6∈ edges(g).

Notice that Reachability is a complete propagator. This affirmation is based
on the following facts:

– If i reaches j in min(G) the presence of j in the lower bound of RN is
ensured by the pruning rules derived from Property 7 and 8.

– If i does not reach j in max(G) the removal of j from the upper bound of
RN is ensured by Rule 34

– If i is a cut node, Rule 31 ensures the presence of it in the lower bound of
CN .

– If i is not a cut node, Rule 32 ensures the removal of it from the upper bound
of CN .

– If e is a bridge, Rule 33 ensures the presence of it in the lower bound of BE.
– If e is not a bridge, Rule 34 ensures the removal of it from the upper bound

of BE.

3 Solving Hamiltonian Path with Reachability

In this section we will elaborate on the important role that Reachability can
play in solving Hamiltonian Path (i.e., finding a path in a directed graph where
all the nodes are visited [GJ79][CLR90]). The contribution of Reachability con-
sists in discovering nodes/edges that are part of the Hamiltonian path early on.
This information is obtained by computing the cut nodes and bridges in each
distribution step. Let us consider the following two cases:

– Consider the graph variable on the left of Figure 1. Assume that node 1
reaches node 9. This information is enough to infer that:
• 5 belongs to the graph.
• 1 reaches 5
• 5 reaches 9



8 Luis Quesada et al.

Fig. 1. Discovering cut nodes

– Consider the graph variable on the left of Figure 2. Assume that node
1 reaches node 5. This information is enough to infer that edges 〈1, 2〉,
〈2, 3〉,〈3, 4〉 and 〈4, 5〉 are in the graph, which implies that:
• node 1 reaches nodes 1,2,3,4,5.
• node 2 at least reaches nodes 2,3,4,5.
• node 3 at least reaches nodes 3,4,5.
• node 4 at least reaches nodes 4,5.

Fig. 2. Discovering bridges

Consider the following definition of Hamiltonian Path with optional nodes:
given a directed graph g, a source node source, a destination node dest, and a
set of mandatory nodes mandnodes, find a path in g that goes from source to
dest, going through mandnodes and visiting each node only once.

Notice that the standard Hamiltonian Path (i.e., the one where we have to
visit all the nodes) can be reduced to this problem by defining mandnodes as
nodes(g) − {source, dest}.

The above definition of Hamiltonian Path with optional nodes can be for-
mally defined as follows:

Ham(g, source, dest, mandnodes, p) ↔
p ∈ Paths(g, source, dest)



Lecture Notes in Computer Science 9

NoCycle(p)
mandnodes ⊂ nodes(p)

Where:

NoCycle(p) ↔ NoCycle′(p, ∅)

NoCycle′(p, ns) ↔































p = ε

p = 〈i, j〉#p′∧
ns′ = {i} ∪ ns∧
j 6∈ ns′∧
NoCycle′(p′, ns′)

(43)

Hamiltonian Path can be solved by using AllDiff [Rég94] and NoCycle[CL97].
It is however possible to state redundant constraints inducing a better pruning.
We can easily show that:

Ham(g, source, dest, mandnodes, p) →
Reachability(p, source, rn, cn, be)∧
dest ∈ rn(source)∧
cn(dest) ⊇ mandnodes

(44)
since the destination is reached by the source and the path contains the

mandatory nodes.
The two algorithms are summarized in Table 1 and compared in the next

section. Notice that, even though the computation of bridges plays a crucial role
in the pruning that Reachability performs, we do not use the be argument in the
second algorithm. In fact be can play an important role in solving Constrained
Euler Path problems (i.e., problems where the objective is to find a path visiting
a set of edges by respecting some additional constraints).

Algorithm 1 Algorithm 2

Ham(g, source, dest, mandnodes, p) Ham(g, source, dest,mandnodes, p)
Reachability(p, source, rn, cn, be)
dest ∈ rn(source)
cn(dest) ⊇ mandnodes

Table 1. Two approaches for solving Hamiltonian Path

4 Experimental Results

In this section we present a set of experiments that show that Reachability is
suitable for Hamiltonian Path with optional nodes. I.e., in our experiments Algo-



10 Luis Quesada et al.

rithm 2 (in Table 1) outperforms Algorithm 1. These experiments also show that
Hamiltonian Path with optional nodes tends to be harder when the number of
optional nodes increases if they are uniformly distributed in the graph. We have
also observed that the distribution strategy that we implement with Reachability
tends to minimize the use of optional nodes (which is a common need when the
resources are limited).

In Table 2, we define the instances on which we made the tests of Table 3.
The column Order is true for the instances whose mandatory nodes are visited
in the order given. The time, in Table 2 is measured in seconds. The number of
failures means the number of failed alternatives tried before getting the solution.

Name Figure Source Destination Mand. Nodes Order

Ham 22 3 1 22 4 7 10 16 18 21 false

Ham 22full 4 1 22 all false

Ham 52a 5 1 52 11 13 24 39 45 false

Ham 52b 5 1 52 4 5 7 13 16 19 22 false
24 29 33 36 39 44 45 49

Ham 52full 6 1 52 all false

Ham 52Order a 5 1 52 45 39 24 13 11 true

Ham 52Order b 5 1 52 11 13 24 39 45 true

Table 2. Hamiltonian Path instances

Fig. 3. Ham 22:A path from 1 to 22 visiting 4 7 10 16 18 21

Table 3 is a summary of the tests that we have performed. Notice that
Ham 52Order b has no solution. In our experiments, we have made five types of
tests:



Lecture Notes in Computer Science 11

Fig. 4. Ham 22full:A path from 1 to 22 visiting all the nodes

Fig. 5. Ham 52b:A path from 1 to 52 visiting 11 13 24 39 45

Problem Ham Ham+R+CN Ham+R+BE Ham+R Ham+R+CN+BE

Instance Figure Failures Time Failures Time Failures Time Failures Time Failures Time

Ham 22 3 +130000 +1800 40 6.55 70 13.76 91 6.81 13 4.45

Ham 22full 4 213 1.44 0 0.42 19 2.76 19 0.95 0 1.22

Ham 52b +700 +1800 +1000 +1800 +900 +1800 100 402

Ham 52full 6 3012 143 3 8.51 +700 1800 774 765 3 45.03

Ham 52Order a 5 +12000 +1800 55 81 27 97 51 46.33 16 57.07

Ham 52Order b +12000 +1800 81 157 +400 +1800 +1500 +1800 41 117

Table 3. Hamiltonian Path tests

– Using Ham without Reachability (column “Ham”).

– Using Ham and Reachability but without computing bridges (column “Ham+R+CN”).



12 Luis Quesada et al.

Fig. 6. Ham 52full:A path from 1 to 52 visiting all the nodes

– Using Ham and Reachability but without computing cut nodes (column
“Ham+R+BE”).

– Using Ham and Reachability but without computing cut nodes nor bridges
(column “Ham+R”).

– Using Ham and Reachability (column “Ham+R+CN+BE”).

As it can be observed in Table 3, we were not able to get a solution for
Ham 22 in less than 30 minutes without using Reachability. In fact, we did not
even try to solve Ham 52b without it. However, even though the number of
failures is still inferior, the use of Reachability does not save too much time
when dealing with mandatory nodes only. This is due to the fact that we are
basing our implementation of Ham on two things:

– The use AllDiff [Rég94] that lets us efficiently remove branches when there
is no possibility of associating different successors to the nodes.

– The use NoCycle [CL97] that avoids re-visiting nodes.

The reason why Ham does not perform well with optional nodes is because
we are no longer able to impose the global AllDiff constrain on the successors
of the nodes since we do not know a priori which nodes are going to be used.
In fact, one thing that we observed is that the problem tends to be harder to
solve when the number of optional nodes increases. In Table 4, all the tests were
performed using Reachability on the graph of the 52 nodes.

Even though, in Ham 22, the benefit caused by the computation of bridges
is not that significant, we were not able to obtain a solution for Ham 52b in
less than 30 minutes, while we obtained a solution in 402 seconds by computing
bridges. So, even though the computation of bridges is extremely costly (one
order higher than the computation of cut nodes), that computation pays off in
most of the cases.



Lecture Notes in Computer Science 13

Opt. Nodes Failures Time

5 30 89
10 42 129
15 158 514
20 210 693
25 330 1152
32 101 399
37 100 402
42 731 3518
47 598 3046

Table 4. Performance when dealing with optional nodes with Reachability

4.1 Implementation of Reachability

Reachability has been implemented using a message passing approach on top
of the multi-paradigm programming language Oz [Moz04]. I.e., Reachability is
a multi-agent system where agents interchange synchronous and asynchronous
messages and their transition state functions rely on data flow and constraint
programming primitives [VH03]. In fact, we have already found this approach
quite appropriate for implementing global constraints [QGV03].

An important aspect of our implementation is the utilization of a batch ap-
proach for the computation of cut nodes and bridges. I.e., we do not compute cut
nodes and bridges each time an edge is added/removed from the the lower/upper
bound of the graph variable. Instead, we wait until having a certain amount of
changes in the lower/upper bound for computing the cut nodes and bridges.

4.2 Distribution Strategy

Reachability provides interesting information for implementing smart distribu-
tion strategies due to that fact that it associates each node with the set of nodes
that it reaches. This information can be used to guide the search in a smart way.
For instance, we observed that, when choosing first the node that reaches the
most nodes, we obtain paths that minimize the use of optional nodes (as it can
be observed in Figure 5).

4.3 Imposing order on nodes

An additional feature of Reachability is the suitability for imposing dependencies
on nodes (which is a common issue in routing problems). In fact, it might be the
case that we have to visit the nodes of the graph in a particular (partial) order.

Our way of forcing a node i to be visited first than a node j is by imposing that
i reaches j and j does not reach i. The tests on the instances Ham 52Order a
and Ham 52Order b show that Reachability takes the most advantage of this
information to avoid branches in the search tree with no solution. Notice that



14 Luis Quesada et al.

we are able to solve Ham 52Order a (which is an extension of Ham 52a) in 57.07
seconds. We are also able to detect the inconsistency of Ham 52Order b in 117
seconds.

Our implementation of NoCycle maintains, for each node, a FS variable for
keeping track of the reached nodes. I.e., NoCycle has its own RN because when-
ever it is known that i reaches j NoCycle imposes the constraint that i is not
in the nodes that j reaches. So, we can use the same approach for dealing with
orderings since the reached nodes sets are computed anyway.

The reason why Reachability does so well is because of the fact explained
in figures 1 and 2. In particular, the reason why the computation of bridges
is important is because it can infer orders on the nodes in cases where the
computation of cut nodes can not (as shown in Figure 2).

5 Conclusion and Future Work

We presented Reachability : a constrained path propagator that can be used for
speeding up constrained path solver. After introducing its semantics and pruning
rules, we showed how the use of Reachability can speed up a standard approach
for dealing with Hamiltonian Path.

Our experiments show that the gain is increased with the presence of optional
nodes. This is basically because we are no longer able to apply the global AllDiff
since we do not know a priori which nodes participate in the path.

From our observations, we infer that the suitability of Reachability is based
on the strong pruning that it performs and the information that it provides for
implementing smart distribution strategies. We also found that Reachability is
appropriate for imposing dependencies on nodes. Certainly, we still have to see
whether our conclusions apply to other types of graphs.

It is important to remark that both the computation of cut nodes and the
computation of bridges play an essential role in the performance of Reachability.
The reason is that each one is able to prune when the other can not. Notice
that Figure 1 is a context where the computation of bridges cannot infer any-
thing since there is no bridge. Similarly, Figure 2 represents a context where the
computation of bridges discover more information than the computation of cut
nodes.

A drawback of our approach is that each time we compute cut nodes and
bridges from scratch, so one of our next tasks is to overcome this limitation. I.e.,
given a graph g, how can we use the fact that the set of cut nodes between i and
j is s for recomputing the set of cut nodes between i and j after the removal of
some edges?. So far, we have not been able to find a satisfactory answer to this
question. But we believe that a dynamic algorithm for computing cut nodes and
bridges will improve our performance in a radical way.

As mentioned before, the implementation of Reachability was suggested by
a practical problem regarding mission planning in the context of an industrial
project. Our future work will concentrate on making propagators like Reacha-
bility suitable for non-monotonic environments (i.e., environments where con-



Lecture Notes in Computer Science 15

straints can be removed). Instead of starting from scratch when such changes
take place, what we want is to use the pruning previously performed in order to
repair the pruning.

References

[CL97] Yves Caseau and Francois Laburthe. Solving small TSPs with constraints.
In International Conference on Logic Programming, pages 316–330, 1997.

[CLR90] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The
MIT Press, 1990.

[DDD04] G. Dooms, Y. Deville, and P. Dupont. Constrained path finding in bio-
chemical networks. In 5èmes Journées Ouvertes Biologie Informatique
Mathématiques, 2004.

[Dec03] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[DKH+99] Denys Duchier, Leif Kornstaedt, Martin Homik, Tobias Müller, Christian

Schulte, and Peter Van Roy. Finite Set Constraints. December 1999. Avail-
able at http://www.mozart-oz.org/.

[FLM99] F. Focacci, A. Lodi, and M. Milano. Solving tsp with time windows with
constraints. In CLP’99 International Conference on Logic Programming
Proceedings, 1999.

[GJ79] Michael Garey and David Johnson. Computers and Intractability: A Guide
to the The Theory of NP-Completeness. W. H. Freeman and Company,
1979.

[M0̈1] Tobias Müller. Constraint Propagation in Mozart. Doctoral dissertation,
Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät I,
Fachrichtung Informatik, Saarbrücken, Germany, 2001.

[Moz04] Mozart Consortium. The Mozart Programming System, version 1.3.0, 2004.
Available at http://www.mozart-oz.org/.

[PGPR96] G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau. An exact constraint
logic programming algorithm for the travelling salesman with time windows,
1996.

[QGV03] L. Quesada, S. Gualandi, and P. Van Roy. Implementing a distributed short-
est path propagator with message passing. In 2nd International Workshop
on Multiparadigm Constraint Programming Languages (MultiCPL 2003), at
the 9th International Conference on Principles and Practice of Constraint
Programming (CP2003), 2003.

[Rég94] Jean Charles Régin. A filtering algorithm for constraints of difference in
csps. In In Proceedings of the Twelfth National Conference on Artificial
Intelligence, pages 362–367, 1994.

[Sch00] Christian Schulte. Programming Constraint Services. Doctoral disserta-
tion, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät
I, Fachrichtung Informatik, Saarbrücken, Germany, 2000.

[Sel02] Meinolf Sellmann. Reduction Techniques in Constraint Programming and
Combinatorial Optimization. Doctoral dissertation, University of Pader-
born, Paderborn, Germany, 2002.

[VH03] P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer
Programming. The MIT Press, 2003.


