I mplementing Self-Adaptability in
Context-Aware Systems

Boris Mejias' and Jorge Vallejos

1 Universié catholique de Louvain, Louvain-la-Neuve, Belgium
bori s. nej i as@icl ouvai n. be
2 Vrije Universiteit Brussel, Brussels, Belgium
jvall ej o@ub. ac. be

1 Introduction

Context-awareness is the property that defines the ability computing system to
dynamically adapt to its context of use [1]. Systems thatufeathis property should
be able to monitor their context, to reason about the chaimg#ss context and to
perform a corresponding adaptation. Programming these thctivities can become
cumbersome as they are tangled and scattered all over iggtensprograms.

We propose to model context-aware systems using feedbapk [@]. A feedback
loop is an element of system theory that has been previousjyoged for modelling
self-managing systems. A context-aware system modelledfesdback loop ensures
that the activities of monitoring, reasoning and adaptmthe context are modularised
in independent components. In this work, we take advanthgeah modularisation to
explore different programming paradigms for each compbogthe loop. We believe
that this model can be applied to other kind of applicatiohgre the use of different
programming paradigms in one system is a straight forwaktdisa.

The paper is organised as follows. Section 2 gives a briebdiiction to feed-
back loops. Section 3 uses feedback loops to model our cadg a$ a self-adaptable
context-aware system. Our case study corresponds to antesexdting with a intelligent
house through her/his mobile device. Details about thetaathire and implementation
of a first prototype are given in section 4. Conclusions aes@nmted in section 5.

2 Feedback Loopsfor Self-Managing Systems

The use ofeedback |loopsfor modelling self-managing software is the result of adotr
ing observations taken from existing self-managing syst&uch systems can be found
in automated systems and also in nature, as it is shown iwf&jre feedback loops are
introduced for modeling software. A very related exampletafrom industrial con-
trol systems ar@roportional-integrated-derivative controllers (PID-controller), which
also work as a feedback loop. Such mechanism can be usedrftvolling tempera-
ture, pressure and other parameters. For instance, a diésimperature (setpoint) is
set for a room. There are thermometers that constantly me#seitemperature giving
this information to the PID-controller, which computes #reor between the desired
temperature and the current one. According to the errorctiarais triggered to cool



down or heat up the room. After the action is triggered, a n@asarement is taken in
order to observe if the feedback was positive or negativeedative feedback makes
the parameter closer to the setpoint, because it reacte mpjhosite direction of the er-
ror. These kind of systems present a continuous evolutidheomonitored parameter,
oscillating around the setpoint until it converges to it.

Calculate corrective action

Actuating agent Monitoring agent

Subsystem

Fig. 1. Basic structure of a feedback loop (taken from [2])

The idea of a feedback loop can be applied to the construdfi@elf-managing
software taking into the account the differences with respe hardware-based auto-
mated systems. First of all, the evolution of a running safenis discrete, having every
loop triggered by events. It is also not evident to define carameter to monitor. In-
stead, it is possible to define a setpoint of stability of thistem, identifying which
events perturb such stability. Another issue is that comgutystems nowadays are
hardly isolated, and they interact with other systems imgja distributed systems with
different feedback loops interacting.

Figure 1 depicts the components that form part of a feedlmagk land how they in-
teract. Every component is a concurrent one and has a speddin the system. From
the picture we can see that the subsytem is constantly mieditd his information
is given to another component in charge of analysing the tm@d information, and
deciding a corrective action. This action is performed tigtoanother concurrent com-
ponent known as the actuator. Since every component rurtsigently, the interaction
between them can be implemented using message passingsbaged communica-
tion, remote method invocation or other mechanisms froncament programming.
As a rule for using feedback loops in the design of a systetuagmrs and monitors
appear as verbs, while the subsystem and the computing cempappear as substan-
tives, as it will be shown in the following section. The reasehy it is not like this in
Figure 1, is because that is a description of the model, ahtheanodel applied to a
system.

3 Feedback Loopsfor Self-Adaptable Context-Awar e Systems

Modelling software systems using feedback loops impliesttie developers to iden-
tify which kind of information needs to be monitored, dediicg particular agents for
this task. Once the monitored information is collected thaocomponent is in charge



of deciding correcting actions, using an actuator agenpfiyathe corrections to the
system.

Consider the case of a computer-assisted system for man#ggnights of a so
calledintelligent house. This system consists of a set of lights and sensors thattdbte
presence of people in the house. The information relatedotiomdetection is passed
by the sensor to the light controller, which is a specialisethponent that decides
whether to turn on or off the lights, or simply modify theitémsity. Such systems can
already be found in the market providing only that specifinaygour. The inner loop
of Figure 2 describes this behaviour.

More advanced systems [3, 4] provide pre-configured settmgdapt the behaviour
of the systems to different predefineohtexts. For the automated house, we consider
context as a situation that is happening in the house, such as wgteHhifm, arriving
home, sleeping, etc. Adaptation to the context can be ftaum®, if nobody is at home,
motion detection triggers an alarm. We can model this bycéirrg the light controller
system with a context reasoner. The context reasoner cétedecadapt the behaviour
resulting in a different modification of the light intensitiepending on the context.
To adapt the context, we also make the controlling compoalgletto receive messages
from the user. The outer loop is not independent of the irowy In Figure 2. A message
received from a user arriving home adapts the context, ardifies light intensity as
actuating action.

Lights Controller
~ (— + Context Reasoner (—j

Adapt context Adjust light Detect Receive
and behaviour intensity motion message

L_) Room i _J /
in the house

Fig. 2. Feedback loops modelling an automated light system enriched with a coegsginer

Since the use of mobile devices such as phones, PDAs, mediarplor GPSs are
becoming very common, we can expect that users will useisentbile device to com-
municate with the house. We also expect that these deviceadzpt their behaviour
according to their context. The conceptaohtext can be different for mobile devices.
The context can represent locality, CPU use, battery load particular situation such
as being busy, being in a meeting, etc. Events representimgxt are constantly mon-
itored giving the information to eontext reasoner, which decides the behaviour of the
device in order to react to other external events or messagesactuating action can
also be to trigger certain events to communicate with otkeiogs. The feedback loop
modelling a self-adaptable context aware device is depict&igure 3.

These simple loops already provide self-adaptability eohthuse lights system and
to the user’s mobile device. The former adapts light's iatignaccording to the de-
tection of users, and the later adapts its behaviour depgrafi the context. Consider



Event handler +

— r— Context reasoner (__\ ~

Adapt Trigger Detect Receive
behaviour event event message

_J

Fig. 3. Feedback loops modelling a self-adaptable and context-aware mobite dev

now both models collaborating as a self-organising systéene is where the context
reasoner of the light controller systems makes more sepsaube the intensity of the
lights can be adapted accordingly to particular contextedeent scenarios. For in-
stance, you do not want to turn on the lights and wake up thewfien they are in the
sleeping context.

Lights Controller +
~ f— Context Reasoner (—j

Adapt context Adjust light Detect Receive
and behaviour intensity motion message

L_S %J
F =)

Modify Event handler + Monitor

light intensity r_ Context reasoner f\ light intensity

Trigger event / Detect event /
Adapt behaviour Receive message

User's device

Fig. 4. Communicating two feedback loops.

Figure 4 depicts the interaction between both loops. Thelbops of the mobile
device have been compressed in one in order to make the démpamore readable.
The loop depicts that user’s device monitors the intendith@lights while still handle
events and receives messages. As we already mentioneglji#ie context oérriving
home triggers an event to turn on the lights. Since the housedigistem is enriched
with a context reasoner, some events triggered from useviee may not have always
the same result. For instance, turning on the lights whevisgrhome may not work as
expected if kids are in the sleeping context. Like this, twers communicate through
the lights systems as stigmergy. We can also observe thatiseand lights serve as
stigmergy for the communication of user’s device, and thetradler of the house, be-



cause both of them monitor the system, and trigger eventsottifynthe intensity of
lights.

4 Implementing Feedback L oops

We have started to implement a prototype of the system usiogal [5], a multi-

paradigm programming system implementing the Oz langudlg&\le have identified
several ways of communicating components of a loop, which e done using an
event-driven approach, or stream communication, whictachreve by pulling or push-
ing information (lazy or eager execution). To communicaridbuted components,
message passing seems to be the most appropriated paradigm.

Actor

Message
passing

Logic or Roles as a
declarative split object

Fig.5. Context-actor architecture with indications about the different paradigsed for each
part of the system.

Figure 5 describes the architecture to implemertraext-actor, which is a context-
aware object, running on its own execution thread as in tier anodel. User’s de-
vices follow naturally the actor model [7], but inside theaove can introduce other
paradigms as well. For instance, the context reasonerespplset of rules to the moni-
tor information in order to determine the corresponderd.rihis component fits better
logic or declarative programming. To implement adaptiviedwéour, we have chosen a
model representing roles [8], where split objects [9] aexles the general architecture.

Communication between context-actors is implementedguasynchronous mes-
sage passing, which can also be seen as event-based coratimmiSince messages
are asynchronous, it is easier to handle network failuresabse actors do not have
to wait for other actors as it would happen using RMI. The raotodel also allows



us to easily encapsulate the state avoiding problems oédkstate concurrency which
would involved sophisticated locking mechanisms. Thisesth makes communica-
tion between actors quite independent of the middleward foedistribution support.
Mozart is moving towards the Distribution SubSystem (D8] s its middleware for
distribution, and we are also working with AmbientTalk [ld]the specific case study
of the intelligent house.

Let us have a look at some parts of the code of the prototypéeimgnted using
Mozart. As depicted in Figure 5, the context-actor is onehefihain entities. To im-
plement it, we need to run its code in its own execution thraad we need a way of
communicating with it. The following functioNewCont ext Act or returns a port to
communicate with the actor, which is created with three @ugpis: the attributes of
the actor, the roles and the rules. Line 2 shows how a spléobli$ created with the
attributes and the roles. The list of rules is used for cngati context reasoner. The
variableSt r is associated with the port that is created and return inllhévery mes-
sage that is sent to the port will appear in the str&m. The thread is launched in line
14, applying the proceduteoop, which is defined from line 5 to 12.

Loop is a very important procedure. It keeps the current contexiree of its ar-
guments, and it reads every message that arrives in thersttieghe port. To read the
stream, it uses a pattern matching obtaining the medglgeand the new stream. In
Line 8, it gives the message and the current context to theexbreasoner, which re-
turns a new context and the role that will handle in the mesgagjde the split object.
In line 9, the split object is called with the message and treespondent role.

1: fun {NewContextActor Attrs Rol es Rul es}

2: j = {NewSplitObject Attrs Rol es}
3: Ct xR = { NewCont ext Reasoner Rul es}

4: Str

5: proc {Loop Context Streant

6: case Stream

7 of Msg| NewStr then Role NewCtx in
8: pair(NewCtx Role) = {C xR Msg Context}
9: {Obj Msg Rol e}

10: {Loop NewCtx NewStr}

11: end

12: end

13: in

14: thread {Loop init Str} end

15: {NewPort Str}

16: end

The code ofNewCont ext Act or already shows the integration of some program-
ming paradigms, and shows a possible implementation obBssdloops. With respect
to the programming paradigms, as a general view we can sawthare using high-
order functional programmingNewSpl i t Obj ect andNewCont ext Reasoner are
functions returning functions that are invoked in lines 8 & The procedurkoop is
completely declarative and running in its own thread. Thechyonization is done with
the pattern matching with thease statement. If the variabl8t r eamdoes not con-
tain any new message, it is an unbound variable that does amhnany pattern yet.



Once the message arrive, the procedure continues withdipe lids a fully declarative
procedure because there is no explicit statedop.

As implementation of the feedback loop, the receiving ofrtfessage in the stream
corresponds to the monitoring action. As soon as a hew message, it is given to
the context reasoner. The context reasoner can be implethantvhatever paradigm.
The only constraint that must respect is that it must retwwordext and a role to handle
the message. The rules will determine the context and tegodbe used, adapting the
behaviour of the context actor according to the informatiat has been monitored.

1: fun {NewHouseli ghts}

2: Controller

3: Lights = |ights(roontl: {NewLi ght off}
roon?: { NewLi ght off}
roonB: { NewLi ght off})

4: Sensor s=sensor s(rooml: { NewSensor init Controller}
roonR: {NewSensor init Controller}
roonB: { NewSensor init Controller})

5: General = {hj ect
6: net hs(switchOn: proc{$ |d}
{Lights.Id on}
end
7 switchOif:proc{$ Id}
{Lights.Ild off}
end) }
8: Sl eep = {Extends Cenera
9: nmet hs(swi tchOn: proc{$ Id}
skip
end) }
10: Rol es = rol es(general : Genera
sl eep: Sl eep)
11: Rul es = use(role:sleep
12: iff:fun{$ Msg Context}
Msg.id == roonB andthen {GetTi ne} > 10pm
end)
13: in
14: Controll er = {NewContext Actor attrs(Lights Sensors)
Rol es Rul es}
15: Controller
16: end

The code oNewHouseLi ght s represents the implementation of the part of the
system described in sectionl@ewCont ext Act or already implements the feedback
loop. The behaviour is what is given MewHouseLi ght s. Looking at line 14, we
can see that the Controller is created a feedback loop ubmgdt ofLi ght s and
Sensor s as attributes. Lines 3 and 4 show that all lights start off] Hrat the sen-
sors know theCont r ol | er in order to transmit motion detection. Line 10 composes



Gener al andSl eep as the roles that the split object can have. From line 5 to 7ame ¢
see thaGener al is an object having methodsv t chOn andswi t chOfF f . Sl eep
extends this behaviour by overriding methedi t chOn with a procedure that does
nothing, i.e., do not turn the lights on.

To know when to use thgener al or thesl eep role, line 11 and 12 define the
rule that has to be applied by the context reasoner. The aykete use rolsl eep if
and only if we are ir oonB and it is later than 10 o’clock in the evening. The context
reasoner will decide for thgener al role otherwise.

5 Conclusionsand Future Work

Building context-aware systems is a complex problem thatbmadivided in different
component targeting a particular task. Every task can badalsing the most appro-
priate programming paradigm, and therefore, we see thengaya of multiparadigm
languages. In order to also provide self-adaptability, weehdecided to use feedback
loops to model the system. Feedback loops allow us not ontyaularise the system
but also to integrate the different paradigms. The systeatlis to monitor and adapt
itself according to the context in which events are handled.

The implementation of split objects is not straight forwamt we realise that a
better syntax support is needed. This is part of our futun&kywehere we must continue
with the implementation of the prototype. We also identifyre limitations in the way
of expressing rules, and we are studying alternatives jaresd

Acknowledgement This work has been partially funded by the European projevts
ERGROW and SELFMAN, and by the flemish project of ContextvBini Adaptation
of Mobile Services (CoDAMOoS).

References

1. Group, I.A.: Ambient intelligence: from vision to reality (2003)

2. Van Roy, P.: Self management and the future of software designFofrmal Aspects of
Component Software (FACS '06). (2006)

3. Dynalite: Dynalite control systems (2003)

4. Crestron: Crestron electronics, inc. (2003)

5. Mozart Community: The Mozart-Oz programming system. http://wwwaneoz.org
(2007)

6. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models ofgfDtanProgramming. MIT
Press (2004)

7. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor &dism for artificial intelli-
gence. In: Proc. of the 3rd IJCAI, Stanford, MA (1973) 235-245

8. Vallejos, J., Ebraert, P., Desmet, B., Cutsem, T.V., MostinckxC8stanza, P.: The context-
dependent role model. In Indulska, J., Raymond, K., eds.: 7&liiernational Conference
on Distributed Applications and Interoperable Systems (DAIS '07). Lrediotes in Com-
puter Science, Springer-Verlag (2007) 277-299



9.

10.

11.

Bardou, D., Dony, C.: Split Objects: a Disciplined Use of Delegationiwi@®bjects. In:
Proceedings of the 11th Conference on Object-Oriented Programydégnss, Languages,
and Applications (OOPSLA'96), San Jose, California, USA (1996)-137 Publé en tant
que ACM SIGPLAN Notices 31(10).

Klintskog, E., El Banna, Z., Brand, P., Haridi, S.: The desighamluation of a middleware
library for distribution of language entities. In Saraswat, V., ed.: ASB8\Springer Verlag
(2003)

Dedecker, J., Van Cutsem, T., Mostinckx, S., D’hondt, T., aitdr, W.: Ambient-Oriented
Programming in AmbientTalk. (2006)



