
Implementing Self-Adaptability in
Context-Aware Systems

Boris Mej́ıas1 and Jorge Vallejos2

1 Universit́e catholique de Louvain, Louvain-la-Neuve, Belgium
boris.mejias@uclouvain.be

2 Vrije Universiteit Brussel, Brussels, Belgium
jvallejo@vub.ac.be

1 Introduction

Context-awareness is the property that defines the ability of a computing system to
dynamically adapt to its context of use [1]. Systems that feature this property should
be able to monitor their context, to reason about the changesin this context and to
perform a corresponding adaptation. Programming these three activities can become
cumbersome as they are tangled and scattered all over in the system programs.

We propose to model context-aware systems using feedback loops [2]. A feedback
loop is an element of system theory that has been previously proposed for modelling
self-managing systems. A context-aware system modelled asa feedback loop ensures
that the activities of monitoring, reasoning and adapting to the context are modularised
in independent components. In this work, we take advantage of such modularisation to
explore different programming paradigms for each component of the loop. We believe
that this model can be applied to other kind of applications where the use of different
programming paradigms in one system is a straight forward solution.

The paper is organised as follows. Section 2 gives a brief introduction to feed-
back loops. Section 3 uses feedback loops to model our case study as a self-adaptable
context-aware system. Our case study corresponds to a user interacting with a intelligent
house through her/his mobile device. Details about the architecture and implementation
of a first prototype are given in section 4. Conclusions are presented in section 5.

2 Feedback Loops for Self-Managing Systems

The use offeedback loops for modelling self-managing software is the result of abstract-
ing observations taken from existing self-managing systems. Such systems can be found
in automated systems and also in nature, as it is shown in [2],where feedback loops are
introduced for modeling software. A very related example taken from industrial con-
trol systems areproportional-integrated-derivative controllers (PID-controller), which
also work as a feedback loop. Such mechanism can be used for controlling tempera-
ture, pressure and other parameters. For instance, a desired temperature (setpoint) is
set for a room. There are thermometers that constantly measure the temperature giving
this information to the PID-controller, which computes theerror between the desired
temperature and the current one. According to the error, an action is triggered to cool



2

down or heat up the room. After the action is triggered, a new measurement is taken in
order to observe if the feedback was positive or negative. A negative feedback makes
the parameter closer to the setpoint, because it reacts in the opposite direction of the er-
ror. These kind of systems present a continuous evolution ofthe monitored parameter,
oscillating around the setpoint until it converges to it.

Fig. 1. Basic structure of a feedback loop (taken from [2])

The idea of a feedback loop can be applied to the constructionof self-managing
software taking into the account the differences with respect to hardware-based auto-
mated systems. First of all, the evolution of a running software is discrete, having every
loop triggered by events. It is also not evident to define one parameter to monitor. In-
stead, it is possible to define a setpoint of stability of the system, identifying which
events perturb such stability. Another issue is that computing systems nowadays are
hardly isolated, and they interact with other systems building a distributed systems with
different feedback loops interacting.

Figure 1 depicts the components that form part of a feedback loop, and how they in-
teract. Every component is a concurrent one and has a specificrole in the system. From
the picture we can see that the subsytem is constantly monitored. This information
is given to another component in charge of analysing the monitored information, and
deciding a corrective action. This action is performed through another concurrent com-
ponent known as the actuator. Since every component runs concurrently, the interaction
between them can be implemented using message passing, event-based communica-
tion, remote method invocation or other mechanisms from concurrent programming.
As a rule for using feedback loops in the design of a system, actuators and monitors
appear as verbs, while the subsystem and the computing component appear as substan-
tives, as it will be shown in the following section. The reason why it is not like this in
Figure 1, is because that is a description of the model, and not the model applied to a
system.

3 Feedback Loops for Self-Adaptable Context-Aware Systems

Modelling software systems using feedback loops implies for the developers to iden-
tify which kind of information needs to be monitored, dedicating particular agents for
this task. Once the monitored information is collected, another component is in charge



3

of deciding correcting actions, using an actuator agent to apply the corrections to the
system.

Consider the case of a computer-assisted system for managing the lights of a so
calledintelligent house. This system consists of a set of lights and sensors that detect the
presence of people in the house. The information related to motion detection is passed
by the sensor to the light controller, which is a specialisedcomponent that decides
whether to turn on or off the lights, or simply modify their intensity. Such systems can
already be found in the market providing only that specific behaviour. The inner loop
of Figure 2 describes this behaviour.

More advanced systems [3, 4] provide pre-configured settings to adapt the behaviour
of the systems to different predefinedcontexts. For the automated house, we consider
context as a situation that is happening in the house, such as watching a film, arriving
home, sleeping, etc. Adaptation to the context can be for instance, if nobody is at home,
motion detection triggers an alarm. We can model this by enriching the light controller
system with a context reasoner. The context reasoner can decide to adapt the behaviour
resulting in a different modification of the light intensitydepending on the context.
To adapt the context, we also make the controlling componentable to receive messages
from the user. The outer loop is not independent of the inner loop in Figure 2. A message
received from a user arriving home adapts the context, and modifies light intensity as
actuating action.

Fig. 2. Feedback loops modelling an automated light system enriched with a contextreasoner

Since the use of mobile devices such as phones, PDAs, media players or GPSs are
becoming very common, we can expect that users will use her/his mobile device to com-
municate with the house. We also expect that these devices can adapt their behaviour
according to their context. The concept ofcontext can be different for mobile devices.
The context can represent locality, CPU use, battery load, or a particular situation such
as being busy, being in a meeting, etc. Events representing context are constantly mon-
itored giving the information to acontext reasoner, which decides the behaviour of the
device in order to react to other external events or messages. The actuating action can
also be to trigger certain events to communicate with other devices. The feedback loop
modelling a self-adaptable context aware device is depicted in Figure 3.

These simple loops already provide self-adaptability to the house lights system and
to the user’s mobile device. The former adapts light’s intensity according to the de-
tection of users, and the later adapts its behaviour depending on the context. Consider



4

Fig. 3. Feedback loops modelling a self-adaptable and context-aware mobile device.

now both models collaborating as a self-organising system.Here is where the context
reasoner of the light controller systems makes more sense, because the intensity of the
lights can be adapted accordingly to particular context-dependent scenarios. For in-
stance, you do not want to turn on the lights and wake up the kids when they are in the
sleeping context.

Fig. 4. Communicating two feedback loops.

Figure 4 depicts the interaction between both loops. The twoloops of the mobile
device have been compressed in one in order to make the globalloop more readable.
The loop depicts that user’s device monitors the intensity of the lights while still handle
events and receives messages. As we already mentioned, being in the context ofarriving
home triggers an event to turn on the lights. Since the house lights system is enriched
with a context reasoner, some events triggered from user’s device may not have always
the same result. For instance, turning on the lights when arriving home may not work as
expected if kids are in the sleeping context. Like this, two users communicate through
the lights systems as stigmergy. We can also observe that sensors and lights serve as
stigmergy for the communication of user’s device, and the controller of the house, be-



5

cause both of them monitor the system, and trigger events to modify the intensity of
lights.

4 Implementing Feedback Loops

We have started to implement a prototype of the system using Mozart [5], a multi-
paradigm programming system implementing the Oz language [6]. We have identified
several ways of communicating components of a loop, which can be done using an
event-driven approach, or stream communication, which canachieve by pulling or push-
ing information (lazy or eager execution). To communicate distributed components,
message passing seems to be the most appropriated paradigm.

Fig. 5. Context-actor architecture with indications about the different paradigmsused for each
part of the system.

Figure 5 describes the architecture to implement acontext-actor, which is a context-
aware object, running on its own execution thread as in the actor model. User’s de-
vices follow naturally the actor model [7], but inside the actor we can introduce other
paradigms as well. For instance, the context reasoner applies a set of rules to the moni-
tor information in order to determine the correspondent rule. This component fits better
logic or declarative programming. To implement adaptive behaviour, we have chosen a
model representing roles [8], where split objects [9] are used as the general architecture.

Communication between context-actors is implemented using asynchronous mes-
sage passing, which can also be seen as event-based communication. Since messages
are asynchronous, it is easier to handle network failures, because actors do not have
to wait for other actors as it would happen using RMI. The actor model also allows



6

us to easily encapsulate the state avoiding problems of shared-state concurrency which
would involved sophisticated locking mechanisms. This scheme makes communica-
tion between actors quite independent of the middleware used for distribution support.
Mozart is moving towards the Distribution SubSystem (DSS) [10] as its middleware for
distribution, and we are also working with AmbientTalk [11]in the specific case study
of the intelligent house.

Let us have a look at some parts of the code of the prototype implemented using
Mozart. As depicted in Figure 5, the context-actor is one of the main entities. To im-
plement it, we need to run its code in its own execution thread, and we need a way of
communicating with it. The following functionNewContextActor returns a port to
communicate with the actor, which is created with three arguments: the attributes of
the actor, the roles and the rules. Line 2 shows how a split object is created with the
attributes and the roles. The list of rules is used for creating a context reasoner. The
variableStr is associated with the port that is created and return in line15. Every mes-
sage that is sent to the port will appear in the streamStr. The thread is launched in line
14, applying the procedureLoop, which is defined from line 5 to 12.

Loop is a very important procedure. It keeps the current context as one of its ar-
guments, and it reads every message that arrives in the stream via the port. To read the
stream, it uses a pattern matching obtaining the messageMsg and the new stream. In
Line 8, it gives the message and the current context to the context reasoner, which re-
turns a new context and the role that will handle in the message inside the split object.
In line 9, the split object is called with the message and the correspondent role.

1: fun {NewContextActor Attrs Roles Rules}
2: Obj = {NewSplitObject Attrs Roles}
3: CtxR = {NewContextReasoner Rules}
4: Str
5: proc {Loop Context Stream}
6: case Stream
7: of Msg|NewStr then Role NewCtx in
8: pair(NewCtx Role) = {CtxR Msg Context}
9: {Obj Msg Role}

10: {Loop NewCtx NewStr}
11: end
12: end
13: in
14: thread {Loop init Str} end
15: {NewPort Str}
16: end

The code ofNewContextActor already shows the integration of some program-
ming paradigms, and shows a possible implementation of feedback loops. With respect
to the programming paradigms, as a general view we can say that we are using high-
order functional programming.NewSplitObject andNewContextReasoner are
functions returning functions that are invoked in lines 8 and 9. The procedureLoop is
completely declarative and running in its own thread. The synchronization is done with
the pattern matching with thecase statement. If the variableStream does not con-
tain any new message, it is an unbound variable that does not match any pattern yet.



7

Once the message arrive, the procedure continues with the loop. It is a fully declarative
procedure because there is no explicit state inLoop.

As implementation of the feedback loop, the receiving of themessage in the stream
corresponds to the monitoring action. As soon as a new message arrive, it is given to
the context reasoner. The context reasoner can be implemented in whatever paradigm.
The only constraint that must respect is that it must return acontext and a role to handle
the message. The rules will determine the context and the role to be used, adapting the
behaviour of the context actor according to the informationthat has been monitored.

1: fun {NewHouseLights}
2: Controller
3: Lights = lights(room1:{NewLight off}

room2:{NewLight off}
room3:{NewLight off})

4: Sensors=sensors(room1:{NewSensor init Controller}
room2:{NewSensor init Controller}
room3:{NewSensor init Controller})

5: General = {Object
6: meths(switchOn: proc{$ Id}

{Lights.Id on}
end

7: switchOff:proc{$ Id}
{Lights.Id off}

end)}

8: Sleep = {Extends General
9: meths(switchOn: proc{$ Id}

skip
end)}

10: Roles = roles(general:General
sleep:Sleep)

11: Rules = use(role:sleep
12: iff:fun{$ Msg Context}

Msg.id == room3 andthen {GetTime} > 10pm
end)

13: in
14: Controller = {NewContextActor attrs(Lights Sensors)

Roles Rules}
15: Controller
16: end

The code ofNewHouseLights represents the implementation of the part of the
system described in section 3.NewContextActor already implements the feedback
loop. The behaviour is what is given inNewHouseLights. Looking at line 14, we
can see that the Controller is created a feedback loop using the set ofLights and
Sensors as attributes. Lines 3 and 4 show that all lights start off, and that the sen-
sors know theController in order to transmit motion detection. Line 10 composes



8

General andSleep as the roles that the split object can have. From line 5 to 7 we can
see thatGeneral is an object having methodsswitchOn andswitchOff. Sleep
extends this behaviour by overriding methodswitchOn with a procedure that does
nothing, i.e., do not turn the lights on.

To know when to use thegeneral or thesleep role, line 11 and 12 define the
rule that has to be applied by the context reasoner. The rule says to use rolesleep if
and only if we are inroom3 and it is later than 10 o’clock in the evening. The context
reasoner will decide for thegeneral role otherwise.

5 Conclusions and Future Work

Building context-aware systems is a complex problem that can be divided in different
component targeting a particular task. Every task can be solved using the most appro-
priate programming paradigm, and therefore, we see the advantage of multiparadigm
languages. In order to also provide self-adaptability, we have decided to use feedback
loops to model the system. Feedback loops allow us not only tomodularise the system
but also to integrate the different paradigms. The system isable to monitor and adapt
itself according to the context in which events are handled.

The implementation of split objects is not straight forwardand we realise that a
better syntax support is needed. This is part of our future work, where we must continue
with the implementation of the prototype. We also identify some limitations in the way
of expressing rules, and we are studying alternatives paradigms.

Acknowledgement This work has been partially funded by the European projectsEV-
ERGROW and SELFMAN, and by the flemish project of Context-Driven Adaptation
of Mobile Services (CoDAMoS).

References

1. Group, I.A.: Ambient intelligence: from vision to reality (2003)
2. Van Roy, P.: Self management and the future of software design. In: Formal Aspects of

Component Software (FACS ’06). (2006)
3. Dynalite: Dynalite control systems (2003)
4. Crestron: Crestron electronics, inc. (2003)
5. Mozart Community: The Mozart-Oz programming system. http://www.mozart-oz.org

(2007)
6. Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Programming. MIT

Press (2004)
7. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor formalism for artificial intelli-

gence. In: Proc. of the 3rd IJCAI, Stanford, MA (1973) 235–245
8. Vallejos, J., Ebraert, P., Desmet, B., Cutsem, T.V., Mostinckx, S., Costanza, P.: The context-

dependent role model. In Indulska, J., Raymond, K., eds.: 7th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS ’07). Lecture Notes in Com-
puter Science, Springer-Verlag (2007) 277–299



9

9. Bardou, D., Dony, C.: Split Objects: a Disciplined Use of Delegation within Objects. In:
Proceedings of the 11th Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’96), San Jose, California, USA (1996) 122–137 Publíe en tant
que ACM SIGPLAN Notices 31(10).

10. Klintskog, E., El Banna, Z., Brand, P., Haridi, S.: The design and evaluation of a middleware
library for distribution of language entities. In Saraswat, V., ed.: ASIAN’03, Springer Verlag
(2003)

11. Dedecker, J., Van Cutsem, T., Mostinckx, S., D’hondt, T., De Meuter, W.: Ambient-Oriented
Programming in AmbientTalk. (2006)


