
IMPROVING THE PEER-TO-PEER RING FOR BUILDING
FAULT-TOLERANT GRIDS

Boris Mejı́as and Donatien Grolaux and Peter Van Roy
Université catholique de Louvain, Belgium∗

{bmc|ned|pvr}@info.ucl.ac.be

Abstract
Peer-to-peer networks are gaining popularity in order to build Grid systems.

Among different approaches, structured overlay networks using ring topology
are the most preferred ones. However, one of the main problems of peer-to-peer
rings is to guarantee lookup consistency in presence of multiple joins, leaves
and failures nodes. Since lookup consistency and fault-tolerance are crucial
properties for building Grids or any application, these issues cannot be avoided.
We introduce a novel relaxed-ring architecture for fault-tolerant and cost-efficient
ring maintenance. Limitations related to failure handling are formally identified,
providing strong guarantees to develop applications on top of the relaxed-ring
architecture. Besides permanent failures, the paper analyses temporary failures
and broken links, which are often ignored.

Keywords: Peer-to-peer, relaxed-ring, fault-tolerance, lookup consistency, ring maintenance.

1. Introduction

Classical approaches for building Grid systems using resource and service
discovery are mainly centralised or hierarchical. Since centralised networks
present the weakness of having single point of failure, peer-to-peernetworks
are gaining popularity as an alternative decentralised choice. Building decen-
tralised applications requires several guarantees from the underlay peer-to-peer
network. Fault-tolerance and consistent lookup of resources are crucial proper-
ties that a peer-to-peer system must provide. Structured overlay network pro-
viding a Distributed Hash Table (DHT) using Chord-like ring topology [10]are a
popular choice to solve the requirements of efficient routing, lookup consistency
and accessibility of all resources. But all these properties are compromised in

∗This research is mainly funded by EVERGROW (contract number:001935) and SELFMAN (contract
number: 034084), with additional funding by CoreGRID (contract number: 004265).

2

presence of failure or high churn (multiple peers joining or leaving in very short
time).

The benefits of using peer-to-peer systems have been already stated in previ-
ous CoreGRID results [12, 11], but the problems related to fault-tolerance has
not been deeply addressed. A high level approach is proposed in [2], where
the failure detection and self-organisation of the network is entirely delegated
to the peer-to-peer system. Since this work addresses these issues precisely at
the low level, it can be seen as a complementary result.

Despite the self-organising nature of the ring architecture, its maintenance
presents several challenges in order to provide lookup consistency atany time.
Chord itself presents temporary inconsistency with massive peers joining the
network, even in fault-free systems. A stabilisation protocol must be run period-
ically to fix these inconsistencies. Existing analyses conclude that the problem
comes from the fact that joins and leaves are not atomic operations, and they
always need the synchronisation of three peers. Synchronising threepeers is
hard to guarantee with asynchronous communication, but this is inherent to
distributed programming.

Existing solutions [7–8]introduce a locking system in order to provide atom-
icity of join and leave operations. Locks are also hard to manage in asyn-
chronous systems, and that is why these solutions only work on fault-freesys-
tems, which is not realistic. A better solution is provided by DKS [5], simplify-
ing the locking mechanism and proving correctness of the algorithms in absent
of failures. Even when this approach offers strong guarantees, we consider locks
extremely restrictive for a dynamic network based on asynchronous communi-
cation. Every lookup request involving the locked peers must be suspended in
presence of join or leave in order to guarantee consistency. Leaving peers are
not allowed to leave the network until they are granted with the relevant locks.
Given that, peers crashing can be seen as peers just leaving the network without
respecting the protocol of the locking mechanism breaking the guaranteesof
the system. Another critical problem for performance is presented when apeer
crashes while some joining or leaving peer is holding its lock. Then, locks in a
distributed system can hardly present a fault-tolerant solution.

We have developed an algorithm that only needs the agreement of two nodes
at each stage, which is easier to guarantee given point-to-point communication.
This decision leads us to a relaxed-ring topology, simplifying the joining algo-
rithm and becoming fault tolerant to permanent or temporary failures of nodes,
and also to broken links, which are often ignored by existing approaches.

The following section describes the relaxed-ring architecture and its guar-
antees. We continue with further analysis of the topology and its fault tolerant
behaviour, ending with conclusions.

Improving the Peer-to-Peer Ring for Building Fault-Tolerant Grids 3

2. P2PS’s relaxed-ring

The relaxed-ring topology is part of the new version of P2PS [4], which is
designed as a modular architecture based on tiers. The whole system is imple-
mented using the Mozart-Oz programming system [9], where the lowest level
tier implements point-to-point communication between peers. Some layer up-
per to this one, we implement the maintenance of the relaxed-ring topology,
which is the focus of this paper. This layer can correctly route lookup re-
quests providing consistency. Other layers built on top of this one are in charge
of providing efficient routing, reliable message sending, broadcast/multicast
primitives and naming services. All these layers provide efficient support for
building decentralised systems such as grid based on services architectures like
P2PKit [6].

As any overlay network built using ring topology, in our system every peer
has a successor, predecessor, and fingers to jump to other parts of thering
providing efficient routing. Ring’s key-distribution is formed by integers from
0 to N growing clockwise. For the description of the algorithms we will use
event-driven notation. When a peer receives a message, the message istriggered
as an event in the ring maintenance tier.

Range between keys, such as(p, q] follows the key distribution clockwise, so
it is possible thatp > q, and then the range goes fromp to q passing through 0.
Parentheses ‘()’ excludes a key from the range and square brackets ‘[]’ includes
it.

2.1 The relaxed-ring

As we previously mentioned, one of the problem we have observed in existing
ring maintenance algorithms is the need for an agreement between three peers
to perform a join/leave action. We provide an algorithm where every step
only needs the agreement of two peers, which is guaranteed with a point-to-
point communication. In the specific case of a join, instead of having one step
involving 3 peers, we have two steps involving 2 peers. The lookup consistency
is guaranteed between every step and therefore, the network can still answer
lookup requests while simultaneous nodes are joining the network. Another
relevant difference is that we do not rely on graceful leaving of peers, because
anyway, we have to deal with leaves due to network failures.

Our first invariant is thatevery peer is in the same ring as its successor.
Therefore, it is enough for a peer to have connection with its successorto be
considered inside the network. Secondly, the responsibility of a peer starts with
the key of its predecessor plus 1, and it finishes with its own key. Therefore, a
peer does not need to have connection with its predecessor, but it must know its
key. These are two crucial properties that allow us to introduce the relaxation
of the ring. When a peer cannot connect to its predecessor, it forms a branch

4

from the“perfect ring” . Figure 1 shows a fraction of a relaxed ring where peer
k is the root of a branch, and where the connection between peersh andi is
broken.

Having the relaxed-ring architecture, we in-

Figure 1. The relaxed-ring archi-
tecture

troduce a new principle that modifies the rout-
ing mechanism. The principle is thata peer
can never indicate another peer as responsi-
ble for a key. This implies that even when the
successor of a peer seems to be the responsi-
ble of a key, the request must be forwarded to
the successor. Considering the example in fig-
ure 1,h may think thatk is the responsible for
keys in the interval(h, k], but in fact there are three other nodes involved in this
range. Note that the forwarding of a lookup request can be directed forward
of backward with respect to the key distribution. It has been proved thatthis
modification to the usual routing mechanism does not creates cycles and always
converge.

Before starting the description of the algorithms that maintain the relaxed-
ring topology, we first define what do we mean by lookup consistency.

Def. Lookup consistency implies that at any time there is only one respon-
sible for a particular keyk, or the responsible is temporary not available.

When a new peer wants to join the ring, first, it gets its own identifier from a
random key-generator. At this starting point, the node does not have a successor
(succ), then, it does not belong to any ring, and it does not know its predecessor
(pred), so obviously, it does not have responsibilities. Having an access point,
that can be any peer of the ring, the new peer triggers a lookup requestfor
its own key in order to find its best successor candidate. This is quite usual
procedure for several Chord-alike systems. When the responsible ofthe key
contacts the new peer, it begins the join algorithm that will be discussed in the
next section.

2.2 The join algorithm

As we have previously mentioned, the relaxed-ring join algorithm is divided
in two steps involving two peers each, instead of one step involving three peers
as in existing solutions. The whole process is depicted in figure 2, where node
q joins in between peersp andr. When peerr replies the lookup request toq,
andq send thejoin message tor triggering the joining process.

The first step is described in algorithm 1, and following the example, it
involves peerq and r. This step consists of two events,join and join ok.
Since this event may happen simultaneously with other joins or failures,r must

Improving the Peer-to-Peer Ring for Building Fault-Tolerant Grids 5

verify that it has a successor, respecting the invariant that every peer is in the
same ring as its successor. If it is not the case,q will be requested to retry later.

If it is possible to perform the join, peerr

Figure 2. The join algorithm.

verifies that peerq is a better predecessor.
FunctionbetterPredecessor just checks
if the key of the joining peer is in the range
of responsibility of the current peer in the
case of a regular join. If that is the case,p

becomes the old predecessor and is added
to thepredlist for resilient purposes. The
pred pointer is set to the joining peer, and
the messagejoin ok is send to it.

It is possible that the responsibility ofr

has change between eventsreply lookup

and join. In that case,q will be redi-
rected to the corresponding peer with the
goto message, eventually converging to the
responsible of its key.

When the eventjoin ok is triggered in
the joining peerq, thesucc pointer is set to
r andsucclist is initialised. Then,q must

set itspred pointer top acquiring its range of responsibility. At this point the
joining peer has a valid successor and a range of responsibility, and then, it is
considered to be part of the ring, even ifp is not yet notified about the existence
of q. This is different than all other ring networks we have studied.

Note that before updating the predecessor pointer, peerq must verify that its
predecessor pointer isnil, or that it belongs to its range of responsibility. This
second condition is only used in case of failure recovery and it will be described
in section 3. In a regular join,pred pointer at this stage is alwaysnil.

Onceq setpred top, it notifiesp about its existence with messagenew succ,
triggering the second step of the algorithm.

The second step of the join algorithm basically involves peersp andq, closing
the ring as in a regular ring topology. The step is described in algorithm 2. The
idea is that whenp is notified about the join ofq, it updates its successor pointer
to q (after verifying that is a correct join), and it updates its successor list with
the new information. Functionally, this is enough for closing the ring. An extra
event has been added for completeness. Peerp acknowledges its old successor
r, about the join ofq. Whenjoin ack is triggered at peerr, this one can remove
p from the resilientpredlist.

If there is a communication problem betweenp andq, the eventnew succ

will never be triggered. In that case, the ring ends up having a branch,but it
is still able to resolve queries concerning any key in the range(p, r]. This is

6

Algorithm 1 Join step 1 - adding a new node
1: upon event 〈 join | i 〉 do
2: if succ == nilthen
3: send 〈 try later | self 〉 to i

4: else
5: if betterPredecessor(i)then
6: oldp := pred
7: pred := i
8: predlist :={oldp} ∪ {predlist}
9: send 〈 join ok | oldp, self, succlist〉 to i

10: else if (i < pred) then
11: send 〈 goto | pred〉 to i

12: else
13: send 〈 goto | succ〉 to i

14: end if
15: end if
16: end event

17: upon event 〈 join ok | p, s, sl〉 do
18: succ := s
19: succlist :={s} ∪ sl \ getLast(sl)
20: if (pred == nil) ∨ (p ∈ (pred, self)) then
21: pred := p
22: send 〈 new succ | self, succ, succlist〉 to pred

23: end if
24: end event

25: upon event 〈 goto | j 〉 do
26: send 〈 join | self 〉 to j

27: end event

Improving the Peer-to-Peer Ring for Building Fault-Tolerant Grids 7

becauseq has a valid successor and its responsibility is not shared with any
other peer. It is important to remark the fact that branches are only introduced
in case of communication problems. Ifq can talk top andr, the algorithm
provides a perfect ring.

Algorithm 2 Join step 2 - Closing the ring
1: upon event 〈 new succ | s, olds, sl〉 do
2: if (succ == olds) then
3: oldsucc := succ
4: succ := s
5: succlist :={s} ∪ sl \ getLast(sl)
6: send 〈 join ack | self 〉 to oldsucc

7: send 〈 upd succlist | self, succlist〉 to pred

8: end if
9: end event

10: upon event 〈 join ack | op 〉 do
11: if (op ∈ predlist) then
12: predlist := predlist\ {op}
13: end if
14: end event

No distinction is made concerning the special case of a ring consisting in only
one node. In such a case,succ andpred will point to self and the algorithm
works identically. The algorithm works with simultaneous joins, generating
temporary or permanent branches, but never introducing inconsistencies. Fail-
ures are discussed in section 3. Note that messageupdsucclist is for resilient
purposes. It updates the list of successors that will be used for the recovery of a
failure detected in the successor. The following theorem states the guarantees
of the relaxed ring concerning the join algorithm.

Theorem 2.1 The relaxed-ring join algorithm guarantees consistent lookup
at any time in presence of multiple joining peers.

Proof 1 Let us assume the contrary. There are two peersp andq responsible
for keyk. In order to have this situation,p andq must have the same predecessor
j, sharing the same range of responsibility. This means thatk ∈ (j, p] and
k ∈ (j, q]. The join algorithm updates the predecessor pointer upon events
join and join ok. In the eventjoin, the predecessor is set to a new joining
peerj. This means that no other peer was havingj as predecessor because it is
a new peer. Therefore, this update does not introduce any inconsistency. Upon
eventjoin ok, the joining peerj initiates its responsibility having a member

8

of the ring as predecessor, sayi. The only other peer that hadi as predecessor
before is the successor ofj, sayp, which is the peer that triggered thejoin ok

event. This message is sent only afterp has updated its predecessor pointer
to j, and thus, modifying its responsibility from(i, p] to (j, p], which does not
overlap withj’s responsibility(i, j]. Therefore, it is impossible that two peers
has the same predecessor.

3. Failure Recovery

In order to provide a robust system that can be used on the Internet, it isunre-
alistic to assume a fault-free environment or perfect failure detectors, meaning
complete and accurate. We assume that every faulty peer will eventually be
detected (strongly complete), and that a broken link of communication does
not implies that the other peer has crashed (inaccurate). To terminate failure
recovery algorithms we assume that eventually any inaccuracy will disappear
(eventually strongly accurate). This kind of failure detectors are feasible to
implement on the Internet.

Every node monitors the communi-

Figure 3. Simple crashes.

cation with every peer it is connected to.
If a failure is detected, thecrashevent is
triggered as it is described in algorithm
3. The detected node is removed from
the resilient setssucclist andpredlist,
and added to acrashed set. If the de-
tected peer is the successor, the recov-
ery mechanism is triggered. Thesucc

pointer is set tonil to avoid other peers
joining while recovering from the fail-
ure, and the successor candidate is taken
from the successors list. The function
getF irst returns the peer with the first key found clockwise, and removes it
from the set. It returnsnil if the set is empty. FunctiongetLast is analogue.
Note that as every crashed peer is immediately removed from the resilient sets,
these two functions always return a peer that appears to be alive at this stage.
The successor candidate is contacted using thejoin message, triggering the
same algorithm as for joining. If the successor candidate also fails, a new
candidate will be chosen. This is verified in theif condition.

When the detected peerp is the predecessor, no recovery mechanism is
triggered becausep’s predecessor will contact the current peer. The algorithm
decides a predecessor candidate from thepredlist to recover from the case
when the tail of a branch is the crashed peer. We will not explore this case
further in this paper because it does not violate our definition of consistent

Improving the Peer-to-Peer Ring for Building Fault-Tolerant Grids 9

lookup. To solve it, it is necessary to set up a time-out to replace the faulty
predecessor by the predecessor candidate.

Thealive event is triggered when a link recovers from a temporary failure.
This can be implemented by using watchers or a fault stream per distributed
entity [3]. If the peer is alive, it is enough to remove it from thecrashed set.
This will terminate any pending recovery algorithm.

Algorithm 3 Failure recovery
1: upon event 〈 crash | p 〉 do
2: succlist := succlist\ {p}
3: predlist := predlist\ {p}
4: crashed :={p} ∪ crashed
5: if (p == succ) ∨ (p == succ candidate) then
6: succ := nil
7: succcandidate := getFirst(succlist)
8: send 〈 join | self 〉 to succ candidate

9: else if (p == pred) then
10: if (predlist 6= ∅) then
11: predcandidate := getLast(predlist)
12: end if
13: end if
14: end event

15: upon event 〈 alive | p 〉 do
16: crashed := crashed\ {p}
17: end event

Figure 3 shows the recovery mechanism triggered by a peer when it detects
that its successor has a failure. The figure depicts two equivalent situations.
Using thecrashed set, functionbetterPredecessor can check fault status.
Since thejoin event is used both for a regular join and for failure recovery, the
function will decides if a predecessor candidate is better than the currentone if
it belongs to its range of responsibility, or if the currentpred is detected as a
faulty peer.

Knowing the recovery mechanism of the relaxed-ring, let us come back to
our joining example and check what happens in cases of failures. Ifq crashes
after the eventjoin, peerr still hasp in its predlist for recovery. Ifq crashes
after sendingnew succ to p, p still has r in its succlist for recovery. Ifp
crashes before eventnew succ, p’s predecessor will contactr for recovery,
and r will inform this peer aboutq. If r crashes beforenew succ, peersp
andq will contact simultaneouslyr’s successor for recovery. Ifq arrives first,
everything is in order with respect to the ranges. Ifp arrives first, there will be

10

two responsible for the ranges(p, q], but one of them,q, is not known by any
other peer in the network, and it fact, it does not have a successor, and then, it
does not belong to the ring. Then, no inconsistency is introduced in any case
of failure.

Since failures are not detected by all peers at the same time, redirection
during recovery of failures may end up in a faulty node. Then, thegoto event
must be modified such that if a peer is redirected to a faulty node, it must insist
with its successor candidate. Since failure detectors are strongly complete,the
algorithm will eventually converge to the correct peer.

Cases hard to handle are broken links

Figure 4. The failure of the root of a
branch triggers two recovery events

and crashes at the tail of a branch. In the
case of the broken link (inaccuracy), the
failure recovery mechanism is triggered,
but the successor of the suspected node will
not accept the join message. The described
algorithm will eventually recover from this
situation when the failure detector reaches
accuracy. In the case of the crash of the
node at the tail of a branch, there is no pre-
decessor to trigger the recovery mechanism. In this case, the successorcould
use one of its nodes in the predecessor list to trigger recovery, but thatcould
introduce inconsistencies if the suspected node has not really failed. If the tail
of the branch has not really failed but it has a broken link with its successor,
then, it becomes temporary isolated and unreachable to the rest of the network.
Having unreachable nodes means that we are in presence of network partition-
ing. The following theorem describes the guarantees of the relaxed-ringin case
of temporary failures with no network partitioning.

Theorem 3.1 Simultaneous failures of nodes never introduce inconsistent
lookup as long as there is no network partition.

Proof 2 Every failure of a node is eventually detected by its successor, pre-
decessor and other peers in the ring having a connection with the faulty node.
The successor and other peers register the failure in thecrashed set, and re-
move the faulty peer from the resilient setspredlist andsucclist, but they do
not trigger any recovery mechanism. Only the predecessor triggers failure re-
covery when the failure of its successor is detected, contacting only one peer
from the successor list at the time. Then, there is only one possible candidate
to replace each faulty peer, and then, it is impossible to have two responsible
for the same range of keys.

With respect to network partitions, there are two important cases we want to
analyse. The crash of a branch’s root, and the isolation of a set of nodes from

Improving the Peer-to-Peer Ring for Building Fault-Tolerant Grids 11

the rest of the ring. The isolation problem can occur in any system using ring
topology, and it can involve consecutive peers or peers distributed all over the
ring. Network partitioning introducing temporary uncertainty has been proved
by Ghodsi [5], and it is related to the proof provided in [1]about limitations of
web services in presence of network partitioning.

Figure 4 depicts a network partition that can occur in the relaxed-ring topol-
ogy. The proof of theorem 3.1 is based on the fact that per every failure detected,
there is only one peer that triggers the recovery mechanism. In the case ofthe
failure of the root of a branch, peerr in the example, there are two recovery
messages triggered by peersp andq. If message from peerq arrives first to peer
t, the algorithm handle the situation without problems. If message from peerp

arrives first, the branch will be temporary isolated, behaving as a network parti-
tion introducing a temporary inconsistency. This limitation of the relaxed-ring
is well defined in the following theorem.

Theorem 3.2 Let r be the root of a branch,succ its successor,pred its
predecessor, andpredlist the set of peers havingr as successor. Letp be any
peer in the set, so thatp ∈ predlist . Then, the crash of peerr may introduce
temporary inconsistent lookup ifp contactssucc for recovery beforepred. The
inconsistency will involve the range (p, pred], and it will be corrected as soon
aspred contactssucc for recovery.

Proof 3 There are only two possible cases. First,pred contactssucc before
p does it. In that case,succ will considerpred as its predecessor. Whenp
contactssucc, it will redirect it to pred without introducing inconsistency. The
second possible case is thatp contactssucc first. At this stage, the range of
responsibility ofsucc is(p, succ], and ofpred is(p′, pred], wherep′ ∈ [p, pred].
This implies thatsucc andpred are responsible for the range(p′, pred], where
in the worse casep′ = p. As soon aspred contactssucc it will become the
predecessor becausepred > p, and the inconsistency will disappear.

Theorem 3.2 clearly states the limitation of branches in the systems, helping
developers to identify the scenarios requiring special failure recoverymecha-
nisms. Since the problem is related to network partitioning, there seems to be
no easy solution for it. An advantage of the relaxed-ring topology is that the
issue is well defined and easy to detect, improving the guarantees providedby
the system in order to build fault-tolerant applications on top of it.

4. Conclusion

The amount of Grid systems built on top of peer-to-peer networks is increas-
ing. Since Grid users design their application at a higher level, it is reasonable
to assume that failure handling will the delegated to the peer-to-peer system.
This is why its crucial to provide a robust fault-tolerant network.

12

In this paper we have presented a novel relaxed-ring topology for fault-
tolerant and self-organising peer-to-peer networks. The topology is derived
from the simplification of the join algorithm requiring the synchronisation of
only two peers at each stage. As a result, the algorithm introduces branches
to the ring. These branches can only be observed in presence of connectivity
problems between peers, allowing the system to work in realistic scenarios,
providing fault-tolerant ring maintenance.

The guarantees and limitations of the system are clearly identified and for-
mally stated providing helpful indications in order to build fault-tolerant ap-
plications on top of this structured overlay network. Having these guarantees,
solving issues related to network partitioning become more addressable.

References

[1] Eric A. Brewer. Towards robust distributed systems (abstract). In PODC âŁ™00: Proceed-
ings of the nineteenth annual ACM symposium on Principles of distributed computing,
page 7, New York, NY, USA, 2000. ACM Press.

[2] Denis Caromel, Alexandre di Costanzo, and Christian Delbé . Peer-to-peer and fault- e
tolerance: Towards deployment-based technical services. Future Generation Computer
Systems, 2007. To appear.

[3] Raphaël Collet and Peter Van Roy. Failure handling in a network-transparent distributed
e programming language. In Advanced Topics in Exception Handling Techniques, pages
121-140, 2006.

[4] DistOz Group. P2PS: A peer-to-peer networking library for Mozart-Oz.
http://gforge.info.ucl.ac.be/projects/p2ps, 2007.

[5] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables. PhD dis-
sertation, KTH - Royal Institute of Technology, Stockholm, Sweden, December 2006.

[6] Kevin Glynn. P2PKit: A services based architecture for deploying robust peer-to-peer
applications. http://p2pkit.info.ucl.ac.be/index.html, 2007.

[7] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Active and concurrent topology main-
tenance. In DISC, pages 320-334, 2004.

[8] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Concurrent maintenance of rings.
Distributed Computing, 19(2):126-148, 2006.

[9] Mozart Community. The Mozart-Oz programming system. http://www.mozart-oz.org.

[10] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrishnan. Chord:
A scalable Peer-To-Peer lookup service for internet applications. In Proceedings of the
2001 ACM SIGCOMM Conference, pages 149-160, 2001.

[11] Domenico Talia, Paolo Trunfio, Jingdi Zeng, and Mikael Heqvist. Apeer-to-peer frame-
work for resource discovery in large-scale grids. In Proc. of the 2nd CoreGRID Integration
Workshop, pages 249-260, Krakow, Poland, October 2006.

[12] Paolo Trunfio, Domenico Talia, Paraskevi Fragopoulou, CharisPapadakis, Matteo Mor-
dacchini, Mika Pennanen, Konstantin Popov, Vladimir Vlassov, and Seif Haridi. Peer-to-
peer models for resource discovery on grids. In Proc. of the 2nd CoreGRID Workshop on
Grid and Peer to Peer Systems Architecture, Paris, France, January 2006.

