IMPROVING THE PEER-TO-PEER RING FORBUILDING
FAULT-TOLERANT GRIDS

Boris Mejias and Donatien Grolaux and Peter Van Roy
Université catholique de Louvain, Belgiuim

{bmc|ned|pvr} @info.ucl.ac.be

Abstract

Peer-to-peer networks are gaining popularity in order to build Grid system
Among different approaches, structured overlay networks usirggtdpology
are the most preferred ones. However, one of the main probleneeotp-peer
rings is to guarantee lookup consistency in presence of multiple joins,sleave
and failures nodes. Since lookup consistency and fault-toleranceraialc
properties for building Grids or any application, these issues cannatdideal.
We introduce a novel relaxed-ring architecture for fault-tolerant asttefficient
ring maintenance. Limitations related to failure handling are formally identified
providing strong guarantees to develop applications on top of the retangd-
architecture. Besides permanent failures, the paper analyses tagnfaoiures
and broken links, which are often ignored.

Keywords: Peer-to-peer, relaxed-ring, fault-tolerance, lookup consisteingyjraintenance.

1. Introduction

Classical approaches for building Grid systems using resource avideser
discovery are mainly centralised or hierarchical. Since centralised Hetwor
present the weakness of having single point of failure, peer-to+perorks
are gaining popularity as an alternative decentralised choice. Buildirenedec
tralised applications requires several guarantees from the undedaygppeer
network. Fault-tolerance and consistent lookup of resources arljpuoper-
ties that a peer-to-peer system must provide. Structured overlay kg
viding a Distributed Hash Table (DHT) using Chord-like ring topology [16f&a
popular choice to solve the requirements of efficient routing, lookupstamsy
and accessibility of all resources. But all these properties are com@oiinis

*This research is mainly funded by EVERGROW (contract numfae85) and SELFMAN (contract
number: 034084), with additional funding by CoreGRID (cactmumber: 004265).

2

presence of failure or high churn (multiple peers joining or leaving in Vieoyts
time).

The benefits of using peer-to-peer systems have been already stated-in p
ous CoreGRID results [12, 11], but the problems related to fault-tolerhas
not been deeply addressed. A high level approach is proposed, iwtjgfe
the failure detection and self-organisation of the network is entirely dekkgate
to the peer-to-peer system. Since this work addresses these issusslyiEc
the low level, it can be seen as a complementary result.

Despite the self-organising nature of the ring architecture, its maintenance
presents several challenges in order to provide lookup consisteany &te.
Chord itself presents temporary inconsistency with massive peers joining the
network, even in fault-free systems. A stabilisation protocol must be nimdgse
ically to fix these inconsistencies. Existing analyses conclude that the proble
comes from the fact that joins and leaves are not atomic operations, and the
always need the synchronisation of three peers. Synchronisingphess is
hard to guarantee with asynchronous communication, but this is inherent to
distributed programming.

Existing solutions [7-8]Jintroduce a locking system in order to provide atom-
icity of join and leave operations. Locks are also hard to manage in asyn-
chronous systems, and that is why these solutions only work on faulsysee
tems, which is not realistic. A better solution is provided by DKS [5], simplify-
ing the locking mechanism and proving correctness of the algorithms intabsen
of failures. Even when this approach offers strong guaranteegywsgder locks
extremely restrictive for a dynamic network based on asynchronous commu
cation. Every lookup request involving the locked peers must be sdegden
presence of join or leave in order to guarantee consistency. Leavang pee
not allowed to leave the network until they are granted with the relevant.locks
Given that, peers crashing can be seen as peers just leaving thelnetthout
respecting the protocol of the locking mechanism breaking the guaraoftees
the system. Another critical problem for performance is presented wheera
crashes while some joining or leaving peer is holding its lock. Then, locks in a
distributed system can hardly present a fault-tolerant solution.

We have developed an algorithm that only needs the agreement of twe node
at each stage, which is easier to guarantee given point-to-point comrtiomnica
This decision leads us to a relaxed-ring topology, simplifying the joining algo-
rithm and becoming fault tolerant to permanent or temporary failures es)od
and also to broken links, which are often ignored by existing approaches

The following section describes the relaxed-ring architecture and its guar
antees. We continue with further analysis of the topology and its fault taleran
behaviour, ending with conclusions.

Improving the Peer-to-Peer Ring for Building Fault-TolataGrids 3

2. P2PSsrelaxed-ring

The relaxed-ring topology is part of the new version of P2PS [4], which is
designed as a modular architecture based on tiers. The whole system is imple-
mented using the Mozart-Oz programming system [9], where the lowest level
tier implements point-to-point communication between peers. Some layer up-
per to this one, we implement the maintenance of the relaxed-ring topology,
which is the focus of this paper. This layer can correctly route lookup re-
guests providing consistency. Other layers built on top of this one araingeh
of providing efficient routing, reliable message sending, broadcast/msiltica
primitives and naming services. All these layers provide efficient stifipor
building decentralised systems such as grid based on services arcbieibiir
P2PKit [6].

As any overlay network built using ring topology, in our system every pee
has a successor, predecessor, and fingers to jump to other partsrofgthe
providing efficient routing. Ring’s key-distribution is formed by integeri
0 to IV growing clockwise. For the description of the algorithms we will use
event-driven notation. When a peer receives a message, the messggeiied
as an event in the ring maintenance tier.

Range between keys, such(asg| follows the key distribution clockwise, so
it is possible thap > ¢, and then the range goes frgnto ¢ passing through O.
Parentheseg)’ excludes a key from the range and square bracketac¢ludes
it.

21 Thereaxed-ring

As we previously mentioned, one of the problem we have observed in gxistin
ring maintenance algorithms is the need for an agreement between three peer
to perform a join/leave action. We provide an algorithm where every step
only needs the agreement of two peers, which is guaranteed with a point-to-
point communication. In the specific case of a join, instead of having one step
involving 3 peers, we have two steps involving 2 peers. The lookup densig
is guaranteed between every step and therefore, the network can stittran
lookup requests while simultaneous nodes are joining the network. Another
relevant difference is that we do not rely on graceful leaving of pdmrcause
anyway, we have to deal with leaves due to network failures.

Our first invariant is thakvery peer is in the same ring as its successor
Therefore, it is enough for a peer to have connection with its succeser
considered inside the network. Secondly, the responsibility of a pets it
the key of its predecessor plus 1, and it finishes with its own key. Thesedo
peer does not need to have connection with its predecessor, but it nousttk
key. These are two crucial properties that allow us to introduce the relaxatio
of the ring. When a peer cannot connect to its predecessor, it formanatb

4

from the“perfectring”. Figure 1 shows a fraction of a relaxed ring where peer
k is the root of a branch, and where the connection between pemndi is
broken.

Having the relaxed-ring architecture, we in-
troduce a new principle that modifies the rout- i
ing mechanism. The principle is thatpeer ;
can never indicate another peer as responsi-ny h—>k
ble for a key This implies that even when the he—i
successor of a peer seems to be the responsi- >k
ble of a key, the request must be forwarded t]ggure 1
the successor. Considering the example in figscyre
ure 1,h may think thatt is the responsible for
keys in the intervalh, k], but in fact there are three other nodes involved in this
range. Note that the forwarding of a lookup request can be directadid
of backward with respect to the key distribution. It has been provedthisat
modification to the usual routing mechanism does not creates cycles amgalw
converge.

Before starting the description of the algorithms that maintain the relaxed-
ring topology, we first define what do we mean by lookup consistency.

Def. Lookup consistency implies that at any time there is only one respon-
sible for a particular keyt, or the responsible is temporary not available.

When a new peer wants to join the ring, first, it gets its own identifier from a
random key-generator. At this starting point, the node does not hanveassor
(succ), then, it does not belong to any ring, and it does not know its predeces
(pred), so obviously, it does not have responsibilities. Having an access poin
that can be any peer of the ring, the new peer triggers a lookup refuiest
its own key in order to find its best successor candidate. This is quite usual
procedure for several Chord-alike systems. When the responsiltie éky
contacts the new peer, it begins the join algorithm that will be discussed in the
next section.

The relaxed-ring archi-

2.2 Thejoin algorithm

As we have previously mentioned, the relaxed-ring join algorithm is divided
in two steps involving two peers each, instead of one step involving thres pee
as in existing solutions. The whole process is depicted in figure 2, wheee no
g joins in between peegsandr. When peer replies the lookup request to
andgq send thejoin message te triggering the joining process.

The first step is described in algorithm 1, and following the example, it
involves peerg andr. This step consists of two eventgin and join_ok.
Since this event may happen simultaneously with other joins or failuragst

Improving the Peer-to-Peer Ring for Building Fault-TolataGrids 5

verify that it has a successor, respecting the invariant that evenjigpiethe
same ring as its successor. Ifitis not the cgseill be requested to retry later.
Ifitis possible to perform the join, peer

join q verifies that peey is a better predecessor.
a—>r Functionbetter Predecessor just checks
p r if the key of the joining peer is in the range

of responsibility of the current peer in the
case of a regular join. If that is the cage,
becomes the old predecessor and is added
rjoin_ok{pc}I q to thepredlist for resilient purposes. The
5 pred pointer is set to the joining peer, and
the messaggoin_ok is send to it.

It is possible that the responsibility of
has change between evemtly_lookup
and join. In that caseg will be redi-
rected to the corresponding peer with the
goto message, eventually converging to the
P r responsible of its key.

When the evenjoin_ok is triggered in
the joining peer, thesucc pointer is set to
r andsucclist is initialised. Theng must
set itspred pointer top acquiring its range of responsibility. At this point the
joining peer has a valid successor and a range of responsibility, andttien
considered to be part of the ring, evep i not yet notified about the existence
of ¢. This is different than all other ring networks we have studied.

Note that before updating the predecessor pointer,perrst verify that its
predecessor pointerigi, or that it belongs to its range of responsibility. This
second condition is only used in case of failure recovery and it will berted
in section 3. In a regular joimred pointer at this stage is always!.

Onceyq setpred top, it notifiesp about its existence with messagav_suce,
triggering the second step of the algorithm.

The second step of the join algorithm basically involves pgarglg, closing
the ring as in a regular ring topology. The step is described in algorithme. Th
idea is that whep is notified about the join of, it updates its successor pointer
to ¢ (after verifying that is a correct join), and it updates its successor iibt w
the new information. Functionally, this is enough for closing the ring. An extra
event has been added for completeness. pPaeknowledges its old successor
r, about the join off. Whenjoin_ack is triggered at peer, this one can remove
p from the resilienpredlist.

If there is a communication problem betwegeandq, the eventew_succ
will never be triggered. In that case, the ring ends up having a brdnuctiit,
is still able to resolve queries concerning any key in the ramge]. This is

P

new_succ q

Figure 2. The join algorithm.

Algorithm 1 Join step 1 - adding a new node

1

10:
11:
12:
13:
14:
15:
16:

17

25:
26:
27:

2
3
4:
5:
6
7
8
9

upon event (join | i) do
if succ == nilthen
send (trylater | self) toi
else
if betterPredecessor(fen
oldp := pred
pred =i
predlist :={oldp} U {predlist
send (join_ok | oldp, self, succlis} to i
elseif (i < pred) then
send (goto | pred) to
else
send (goto | succ) toi
end if
end if
end event

: upon event (join_ok | p, s, sl) do
18:
19:
20:
21:
22:
23:
24:

succ:=s
succlist :={s} U sl'\ getLast(sl)
if (pred ==nil) vV (p € (pred, self)) then
pred:=p
send (new_succ | self, succ, succlistto pred
end if
end event
upon event (goto | j) do

send (join | self) to j
end event

Improving the Peer-to-Peer Ring for Building Fault-TolataGrids 7

because; has a valid successor and its responsibility is not shared with any
other peer. It is important to remark the fact that branches are only utead

in case of communication problems. dfcan talk top andr, the algorithm
provides a perfect ring.

Algorithm 2 Join step 2 - Closing the ring
1: upon event (new_succ | S, olds, sl do

2. if (succ == olds) then

3 oldsucc := succ

4: Succ :=s

5: succlist :={s} U sl \ getLast(sl)

6 send (join_ack | self) to oldsucc

7 send (upd_succlist | self, succlist to pred
g endif

9: end event

10: upon event (join.ack | op) do
11: if (op € predlist) then

12: predlist := predlist, {op}
13: end if
14: end event

No distinction is made concerning the special case of aring consisting in only
one node. In such a casacc andpred will point to sel f and the algorithm
works identically. The algorithm works with simultaneous joins, generating
temporary or permanent branches, but never introducing incondistef@il-
ures are discussed in section 3. Note that messagdg.cclist is for resilient
purposes. It updates the list of successors that will be used forabeary of a
failure detected in the successor. The following theorem states the tpesan
of the relaxed ring concerning the join algorithm.

THEOREM 2.1 The relaxed-ring join algorithm guarantees consistent lookup
at any time in presence of multiple joining peers.

Proor 1 Letusassume the contrary. There are two ppensdq responsible
forkeyk. In order to have this situatiom,andg must have the same predecessor
Jj,» sharing the same range of responsibility. This means that (5, p] and

k € (j,q]. The join algorithm updates the predecessor pointer upon events
join and join_ok. In the evengoin, the predecessor is set to a new joining
peerj. This means that no other peer was havjrag predecessor because itis

a new peer. Therefore, this update does not introduce any inconsistdpon
eventjoin_ok, the joining peer; initiates its responsibility having a member

8

of the ring as predecessor, sayThe only other peer that hacdas predecessor
before is the successor gfsayp, which is the peer that triggered thein_ok
event. This message is sent only afidras updated its predecessor pointer
to j, and thus, modifying its responsibility frofh p] to (j, p], which does not
overlap withj’s responsibility(i, j]. Therefore, it is impossible that two peers
has the same predecessor.

3. Failure Recovery

In order to provide a robust system that can be used on the Internemits
alistic to assume a fault-free environment or perfect failure detectorsiingea
complete and accurate. We assume that every faulty peer will eventually be
detected (strongly complete), and that a broken link of communication does
not implies that the other peer has crashed (inaccurate). To terminate failur
recovery algorithms we assume that eventually any inaccuracy will diaappe
(eventually strongly accurate). This kind of failure detectors are feagib
implement on the Internet.

Every node monitors the communi-
cation with every peer itis connected to. join
Ifafailure is detected, therash eventis LT

. . : . . ~
triggered as it is described in algorithm ,_,.,_M,
3. The detected node is removed from
the resilient setsucclist andpredlist, join
and added to arashed set. If the de- T T
tected peer is the successor, the recov- .._%_}
ery mechanism is triggered. Thecc A
pointer is set tavi/ to avoid other peers “’.‘
joining while recovering from the fail-
ure, and the successor candidate is taken
from the successors list. The function
getFlirst returns the peer with the first key found clockwise, and removes it
from the set. It returngil if the set is empty. Functioget Last is analogue.
Note that as every crashed peer is immediately removed from the resilient sets
these two functions always return a peer that appears to be alive atiaitpes s
The successor candidate is contacted usingj#tie message, triggering the
same algorithm as for joining. If the successor candidate also fails, a new
candidate will be chosen. This is verified in thecondition.

When the detected peeris the predecessor, no recovery mechanism is
triggered becausgs predecessor will contact the current peer. The algorithm
decides a predecessor candidate frompthellist to recover from the case
when the tail of a branch is the crashed peer. We will not explore this case
further in this paper because it does not violate our definition of consisten

Figure 3. Simple crashes.

Improving the Peer-to-Peer Ring for Building Fault-TolataGrids 9

lookup. To solve it, it is necessary to set up a time-out to replace the faulty
predecessor by the predecessor candidate.

Thealive event is triggered when a link recovers from a temporary failure.
This can be implemented by using watchers or a fault stream per distributed
entity [3]. If the peer is alive, it is enough to remove it from theshed set.

This will terminate any pending recovery algorithm.

Algorithm 3 Failure recovery

1: upon event (crash | p) do

2. succlist := succlist {p}

3. predlist := predlist {p}

4. crashed :Hp} U crashed

5. if (p == succ) V (p == succ.candidate) then
6

7

8

9

succ := nil
succcandidate := getFirst(succlist)
send (join | self) to succ.candidate
. dseif (p == pred) then
10: if (predlist # () then

11 predcandidate := getLast(predlist)
12 end if

13 endif

14: end event

15: upon event (alive | p) do
16: crashed := crashed{p}
17: end event

Figure 3 shows the recovery mechanism triggered by a peer when itgdetec
that its successor has a failure. The figure depicts two equivalent sitsatio
Using thecrashed set, functionbetter Predecessor can check fault status.
Since thejoin event is used both for a regular join and for failure recovery, the
function will decides if a predecessor candidate is better than the comerift
it belongs to its range of responsibility, or if the curremtd is detected as a
faulty peer.

Knowing the recovery mechanism of the relaxed-ring, let us come back to
our joining example and check what happens in cases of failurgscréshes
after the evenjoin, peerr still hasp in its predlist for recovery. Ifq crashes
after sendingnew_succ to p, p still hasr in its succlist for recovery. Ifp
crashes before eventtw_suce, p's predecessor will contaat for recovery,
andr will inform this peer abouy. If r crashes beforeew_succ, peersp
andq will contact simultaneously’s successor for recovery. dfarrives first,
everything is in order with respect to the ranges #rrives first, there will be

10

two responsible for the rangég, ¢|, but one of themg, is not known by any
other peer in the network, and it fact, it does not have a successbiham, it
does not belong to the ring. Then, no inconsistency is introduced in ary cas
of failure.

Since failures are not detected by all peers at the same time, redirection
during recovery of failures may end up in a faulty node. Thengtite event
must be modified such that if a peer is redirected to a faulty node, it must insist
with its successor candidate. Since failure detectors are strongly contpéete,
algorithm will eventually converge to the correct peer.

Cases hard to handle are broken links
and crashes at the tail of a branch. In the q join
case of the broken link (inaccuracy), the A T
failure recovery mechanism is triggered, p_a’
but the successor of the suspected node wi
not accept the join message. The described B TN
algorithm will eventually recover from this join
situation when the failure detector reaches _
accuracy. In the case of the crash of thg'r%‘;']fh‘:ﬁggz;: tm”rfcgflg:eésg;g a
node at the tail of a branch, there is no pre- y
decessor to trigger the recovery mechanism. In this case, the succeskbr
use one of its nodes in the predecessor list to trigger recovery, butahht
introduce inconsistencies if the suspected node has not really failea tith
of the branch has not really failed but it has a broken link with its successo
then, it becomes temporary isolated and unreachable to the rest of thelnetwo
Having unreachable nodes means that we are in presence of netwiitikipa
ing. The following theorem describes the guarantees of the relaxedirtage
of temporary failures with no network partitioning.

THEOREM 3.1 Simultaneous failures of nodes never introduce inconsistent
lookup as long as there is no network partition.

Proor 2 Every failure of a node is eventually detected by its successor, pre-
decessor and other peers in the ring having a connection with the faulty node
The successor and other peers register the failure inctlaghed set, and re-
move the faulty peer from the resilient sptedlist and succlist, but they do

not trigger any recovery mechanism. Only the predecessor triggiuse ae-
covery when the failure of its successor is detected, contacting only @ne pe
from the successor list at the time. Then, there is only one possible cémdida
to replace each faulty peer, and then, it is impossible to have two responsible
for the same range of keys.

With respect to network partitions, there are two important cases we want to
analyse. The crash of a branch’s root, and the isolation of a set ekrfoain

Improving the Peer-to-Peer Ring for Building Fault-TolataGrids 11

the rest of the ring. The isolation problem can occur in any system usigg rin
topology, and it can involve consecutive peers or peers distributedgelitioe
ring. Network partitioning introducing temporary uncertainty has beengatov
by Ghodsi [5], and it is related to the proof provided in [1]about limitatiohs o
web services in presence of network partitioning.

Figure 4 depicts a network partition that can occur in the relaxed-ring topol-
ogy. The proof of theorem 3.1 is based on the fact that per everydalktected,
there is only one peer that triggers the recovery mechanism. In the ctse of
failure of the root of a branch, peerin the example, there are two recovery
messages triggered by peg@ndq. If message from peerarrives first to peer
t, the algorithm handle the situation without problems. If message fromppeer
arrives first, the branch will be temporary isolated, behaving as a rietvaoti-
tion introducing a temporary inconsistency. This limitation of the relaxed-ring
is well defined in the following theorem.

THEOREM 3.2 Letr be the root of a branchsucc its successorpred its
predecessor, angredlist the set of peers havingas successor. Letbe any
peer in the set, so that € predlist . Then, the crash of peermay introduce
temporary inconsistent lookupifcontactssucc for recovery beforgred. The
inconsistency will involve the rangg,pred], and it will be corrected as soon
aspred contactssucc for recovery.

Proor 3 There are only two possible cases. Figsted contactssucc before

p does it. In that casesucc will considerpred as its predecessor. When
contactssuce, it will redirect it to pred without introducing inconsistency. The
second possible case is thatontactssucc first. At this stage, the range of
responsibility okuccis (p, succ], and ofpredis (p', pred], wherep’ € [p, pred].
This implies thatucc andpred are responsible for the randge’, pred], where
in the worse cas@’ = p. As soon agred contactssucc it will become the
predecessor becaugeed > p, and the inconsistency will disappear.

Theorem 3.2 clearly states the limitation of branches in the systems, helping
developers to identify the scenarios requiring special failure recavegha-
nisms. Since the problem is related to network partitioning, there seems to be
no easy solution for it. An advantage of the relaxed-ring topology is that the
issue is well defined and easy to detect, improving the guarantees prdwided
the system in order to build fault-tolerant applications on top of it.

4. Conclusion

The amount of Grid systems built on top of peer-to-peer networks is iscrea
ing. Since Grid users design their application at a higher level, it is reakona
to assume that failure handling will the delegated to the peer-to-peer system.
This is why its crucial to provide a robust fault-tolerant network.

12

In this paper we have presented a novel relaxed-ring topology for fault-
tolerant and self-organising peer-to-peer networks. The topologyrigede
from the simplification of the join algorithm requiring the synchronisation of
only two peers at each stage. As a result, the algorithm introduces ksanch
to the ring. These branches can only be observed in presence aativity
problems between peers, allowing the system to work in realistic scenarios,
providing fault-tolerant ring maintenance.

The guarantees and limitations of the system are clearly identified and for-
mally stated providing helpful indications in order to build fault-tolerant ap-
plications on top of this structured overlay network. Having these guasnte
solving issues related to network partitioning become more addressable.

References

[1] Eric A. Brewer. Towards robust distributed systems (abstracBODC &t ™00: Proceed-
ings of the nineteenth annual ACM symposium on Principles of distributeghating,
page 7, New York, NY, USA, 2000. ACM Press.

[2] Denis Caromel, Alexandre di Costanzo, and Christian Delbé -feegeer and fault- e
tolerance: Towards deployment-based technical services. Futurer&ien Computer
Systems, 2007. To appear.

[3] Raphaél Collet and Peter Van Roy. Failure handling in a networsprarent distributed
e programming language. In Advanced Topics in Exception Handlingriigaes, pages
121-140, 2006.

[4] DistOz Group. P2PS: A peer-to-peer networking library for MoZaz.
http://gforge.info.ucl.ac.be/projects/p2ps, 2007.

[5] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hastbles. PhD dis-
sertation, KTH - Royal Institute of Technology, Stockholm, Sweden gbdier 2006.

[6] Kevin Glynn. P2PKit: A services based architecture for deployinousb peer-to-peer
applications. http://p2pkit.info.ucl.ac.be/index.html, 2007.

[7] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Active and narenit topology main-
tenance. In DISC, pages 320-334, 2004.

[8] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Concurrennteaance of rings.
Distributed Computing, 19(2):126-148, 2006.

[9] Mozart Community. The Mozart-Oz programming system. http://wwezart-0z.org.

[10] lon Stoica, Robert Morris, David Karger, Frans Kaashoe#,tari Balakrishnan. Chord:
A scalable Peer-To-Peer lookup service for internet applicationstdoeRdings of the
2001 ACM SIGCOMM Conference, pages 149-160, 2001.

[11] Domenico Talia, Paolo Trunfio, Jingdi Zeng, and Mikael Heqvispekr-to-peer frame-
work for resource discovery in large-scale grids. In Proc. of tiieQoreGRID Integration
Workshop, pages 249-260, Krakow, Poland, October 2006.

[12] Paolo Trunfio, Domenico Talia, Paraskevi Fragopoulou, CHzajsadakis, Matteo Mor-
dacchini, Mika Pennanen, Konstantin Popov, Vladimir Vlassov, and SwifiH Peer-to-
peer models for resource discovery on grids. In Proc. of the 2me@RID Workshop on
Grid and Peer to Peer Systems Architecture, Paris, France, JaflQ4y 2

