
Loquat: A Framework for Large-Scale Actor
Communication on Edge Networks

Christopher S. Meiklejohn, Peter Van Roy
Université catholique de Louvain

Louvain-la-Neuve, Belgium
Email: {christopher.meiklejohn, peter.vanroy}@uclouvain.be

Abstract—We provide a lightweight decentralized publish-
subscribe framework for supporting large-scale actor commu-
nication on edge networks. Our framework, called Loquat, does
not depend on any reliable central nodes (e.g., data centers),
provides reliability in the face of massive node failures and
network partitioning, and provides scalability as the number
of nodes increases. We consider that high reliability, i.e., that
send operations reach close to 100% of live destination nodes,
is a critical property for communication frameworks on edge
networks. But reliability is difficult to achieve in a scalable way on
edge networks because of the network’s dynamicity, i.e., frequent
node failures and partitioning. For example, both Internet of
Things networks and mobile phone networks consist of devices
that are often offline. To achieve reliability, our framework
is based on two hybrid gossip algorithms, namely HyParView
and Plumtree. Hybrid gossip algorithms combine gossip with
other distributed algorithms to achieve both efficiency and high
resilience. Our current implementation is written in Erlang and
has demonstrated scalability up to 1024 nodes in Amazon’s cloud
computing environment.

I. INTRODUCTION

Edge networks are growing in importance, as exemplified
by the rapid growth of the number of connected devices in
the Internet of Things (IoT) (50 billion by 2020 according
to [13]). But the majority of today’s Internet applications
do the bulk of their computing at the logical center of the
network, i.e., in data centers or other large nodes. Our goal
is to provide a communication framework as a prerequisite
for doing computations directly at the edge. A major problem
that such a framework faces is the high dynamicity of an edge
network, i.e., frequent node failures and network partitioning.
The framework introduced in this paper is designed specifi-
cally to provide reliable FIFO communication at large scales
on highly dynamic networks.

Actor-based systems define computations as a set of actors,
each of which does a single sequential computation, and that
communicate through asynchronous message passing. In this
paper we single out three systems, SD Erlang [8], Akka
Cluster [1], and Orleans [7], [5], as representing the state
of the art of actor-based systems. All three of these systems
are decentralized, i.e., they have no inherent dependency on
the logical center of the network. However, as the number of
nodes in the system increases, all three of the above-mentioned
systems break down. Three abilities needed for distributed
computing are membership (knowing the set of all nodes in the
system), failure detection (knowing which nodes have failed),

and name-based routing (the name of a destination actor is
sufficient to route the message). All three systems break down
in one or more of these abilities when the number of nodes
increases in a network subject to massive failures.

Loquat provides a decentralized publish/subscribe frame-
work that maintains all three abilities as its scale increases. Ac-
tors do not communicate directly, but indirectly through topics:
they send to a topic and receive from a topic. Communication
through a topic is implemented by a broadcast tree that is
repaired by a gossip algorithm. The broadcast tree provides
efficiency and the gossip algorithm provides resilience in the
face of failure. The combination of an efficient tree-based
algorithm and a resilient gossip algorithm is an example of
hybrid gossip. It is well-known that gossip algorithms can
be extremely resilient. However, they are often inefficient.
Hybrid gossip algorithms combine the resilience of gossip
algorithms with the efficiency of other distributed algorithms.
Loquat is built on top of two hybrid gossip algorithms, namely
HyParView for membership and failure detection [19] and
Plumtree for broadcast [18]. In this way, Loquat is able to
provide all three abilities as the number of nodes in the system
increases.

A. Contributions

This paper has three main contributions:
• Survey of large-scale actor systems: We survey state-of-

the-art actor systems and analyze how well they support
building large-scale distributed systems on dynamic net-
works.

• Loquat publish/subscribe protocol: We define the Loquat
protocol for lightweight publish/subscribe that is decen-
tralized, scalable, reliable, and works well on dynamic
networks. In particular, because Loquat is built on top of
hybrid gossip algorithms, it supports dynamic networks
with massive failures and frequent offline operation such
as commonly occur in edge networks.

• Loquat publish/subscribe programming model: We define
the Loquat programming model, which generalizes the
Erlang programming model. Whereas in Erlang, actors
communicate directly with each other, in Loquat, actors
communicate through topics. This decouples the actors
in similar fashion to coordination languages. The pro-
gramming model defines an API that smoothly extends
Erlang’s actor communication API.



II. SURVEY OF LARGE-SCALE ACTOR SYSTEMS

We present a survey of existing actor systems and analyze
their support for distributed programming at large scales.

A. SD Erlang

SD Erlang (Scalable Distributed Erlang) conservatively ex-
tends the distribution support in Erlang [10], [23]. Chechina
et al. [8] identify two main problems with the scalability of
SD Erlang: (1) quadratic space growth in management of the
global process registry, a global naming service for associating
names with process identifiers, through transitive connection
sharing and full replication, and (2) explicit placement, or
how to determine where actors should be spawned as cluster
size grows. The authors propose two solutions to solve the
identified problems:

• Reducing transitive connection sharing: By subdividing
nodes into smaller groups and only supporting full con-
nectivity within each group and not across groups, nodes
limit the number of nodes that they have to connect
to, perform failure detection on, and replicate the global
process registry of. In this model, each node can become
a member of multiple groups and can explicitly request
a connection with another node in the system, without
transitive connection sharing.

• Semi-explicit process placement: When spawning a new
process, per-node attributes can be used to filter the list
of available nodes to choose from for hosting that pro-
cess. This allows application developers to target nodes
by available memory, CPU size, or other user-defined
attributes.

While these changes enable SD Erlang to break through
the 100 node scalability bottleneck previously identified by
the authors [15], these solutions still assume that explicit
process naming through the global registry is desirable, from
an application developer point of view. Additionally, a node
that participates in too many process groups also will fall
into the same trap of replicating too much information. Both
techniques are unscalable.

B. Akka Cluster

Akka Cluster provides a clustering facility for the Akka
actor system [1], which is heavily inspired by the Erlang actor
model, however implemented on top of the JVM in Scala.
Cluster membership in Akka is performed through a gossip-
based membership service [11], similar to the gossip-based
membership service implemented by the Riak Core distributed
systems framework [17] for Distributed Erlang.

Akka has demonstrated scalability up to 2400 nodes, de-
ployed slowly over the course of 4 hours to ensure membership
convergence. Akka additionally provides a routing facility
based on node-level attributes for routing to actors or nodes
that can perform a particular task: these roles are statically
assigned at deployment time.

The nodes in Akka Cluster establish themselves in a ring
and failure detection is performed by deterministically se-
lecting f nodes adjacent on the ring to transmit heartbeat

messages [16] to every interval. The f parameter is user-
specified, so the cluster does not attempt to maintain an
average time to detect failures, and the user must configure f
appropriately for ideal coverage of the cluster. This structure
works well for low failure rates but is not designed for
resilience at high failure rates.

C. Orleans

Microsoft’s Orleans [5] is another actor system, but through
the use of an abstraction called “virtual actors”, removes the
need for explicit placement, explicit binding, and the manual
setup and teardown of actors. Instead, Orleans automatically
launches what are referred to as grain activations which are
actors that are registered into a one-hop distributed hash table
(DHT). When a message is sent to one of these actors, they
are created if they do not exist, and they are shut down when
they are no longer needed.

Virtual actors can be transparently migrated, as the one-
hop DHT provides a directory service for all of the currently
running activations of a grain. Virtual actors can come as
stateless workers, where multiple activations can exist, or as
single activation workers, where only a single activation is
allowed. Each Orleans silo, or server where grain activations
are executing, maintains a single TCP connection to other
nodes in the cluster, and a similar model is used to Akka to
perform failure detection: membership information is hashed
into a virtual ring and peers periodically heartbeat a fixed
amount of their neighbors on the ring. Orleans provides no
FIFO ordering on messages, with at-least-once messaging
through timeout/retries, and requires a persistent backing store
for storing membership information about who is currently
participating in the cluster.

The membership information requires that the entire DHT
be available to service requests. Therefore, this information is
heavily cached on each of the silos. Compared to Distributed
Erlang, the one-hop DHT is partitioned across the node of the
system with membership stored in a central persistent store
whereas Distributed Erlang fully replicates this information to
every node in the cluster. Orleans has been run at 200 nodes
with low failure rates.

III. HYBRID GOSSIP

Hybrid gossip is a recent development in gossip algorithms
where a gossip protocol is combined with another distributed
algorithm, in order to achieve the good qualities of both.
Typically, a gossip protocol will be highly resilient but less
efficient, and the other distributed algorithm will be very
efficient but less resilient than the gossip protocol. The hybrid
algorithm is as resilient as the first and as efficient as the sec-
ond. Loquat takes advantage of two hybrid gossip protocols,
namely HyParView and Plumtree. To understand Loquat, it is
important to understand the principles of these two algorithms.

A. HyParView

HyParView [19] is a hybrid gossip algorithm that provides
a resilient membership protocol by using partial views to



provide global system connectivity in a scalable way. Using
partial views ensures scalability; however since each node only
sees part of the system, it is possible that failures of other
nodes break connectivity or greatly increase routing length.
To overcome these problems, HyParView uses two different
partial views that are maintained with different strategies.

The challenge is to ensure that the combination of all partial
views at all nodes form a single connected component. To
achieve this, HyParView maintains at each node both an active
view and a passive view. There is a single TCP connection
from each node to each member of its active view. This
connection is used for both data dissemination and failure
detection. No connections are maintained for the members of
the passive view.1

The active and passive views are managed using different
strategies. The active view contains fanout + 1 members and
is used to flood information through the network and perform
failure detection. The active view is managed using a reactive
strategy: when a node in the active view is suspected to have
failed, it is replaced by a node in the passive view. The passive
view has a maximum of log(n) members (where n is the
number of nodes in the system) and is used to maintain a
backup set of members used to replace failing members in the
active view. The passive view is managed using a proactive
strategy: periodically each node performs a shuffle operation
between its passive view and the passive view of a neighbor
in the active view.

B. Plumtree

Plumtree [18] is a hybrid gossip algorithm that provides
reliable broadcast by combining a deterministic tree-based
broadcast protocol with a gossip protocol. The tree-based pro-
tocol constructs and uses a spanning tree to achieve efficient
broadcast. However, it is not resilient to node failures. The
gossip protocol is able to repair the tree when node failures
occur. Thus the Plumtree protocol combines the efficiency of
spanning trees with the resilience of gossip.

The Plumtree protocol is implemented as two phases. Given
a message with a unique identifier, first push the identifier
and payload to the nodes at the leaves of the broadcast tree.
This is known as the eager push phase. Second, push only the
message identifier to a random sampling of other nodes known
by a standard gossip-based peer service.2 This is known as the
lazy push phase. If a node does not receive a message it has
learned about through the lazy push phase within a designated
timeout period, then it requests the message from a randomly
selected peer.

Plumtree starts with a random sampling of nodes selected
from the peer service. As the execution continues, nodes are
removed from this set as duplicate messages are received. This
prunes the set and computes the spanning tree that will be used
for the eager phase of message broadcast.

1In practice, connections are maintained to a random subset of the passive
view to speed up repair of the active view.

2In our case, the Loquat membership protocol, based on HyParView,
presented in Section IV.

IV. LOQUAT

Loquat is a communication framework that generalizes
Erlang’s actor framework: actors communicate through topics
instead of directly. An actor sends a message to a topic, and
an actor can receive messages from a topic by subscribing to
that topic. By using HyParView and Plumtree, Loquat’s com-
munication reliability stays close to 100% even for massive
node failures in the network. Loquat’s base protocol provides
reliable broadcast with weak ordering. By weak ordering we
mean that the order of message delivery is close to the send
order, and all differences can be explained due to the varying
latencies of message routing. To achieve the node-to-node
FIFO ordering of Erlang’s model, we extend the base protocol
with per-node monotonic counters to ensure FIFO delivery.

We explain separately the Loquat protocol, its programming
model, and the current status of our implementation.

1

2

4

3

1

2

4

3
2

4

3

1

2

4

3

1

Figure 1: Superposition of topic-specific overlay graphs (left)
and trees (right), rooted at node 1, that are constructed on
top of the metadata tree. Overlay graphs are seeded using the
membership information in the metadata tree and optimized
by the broadcast tree protocol.

A. Protocol Design

The Loquat protocol combines three ideas: efficient mem-
bership, efficient broadcast, and multiple spanning trees.

1) Efficient membership: Efficient membership provides
guaranteed connectivity with high probability despite partial
knowledge at each node and frequent node failures. This
protocol is based on HyParView [19], which ensures reliable
communication even in the presence of massive network
failures. HyParView is designed with two partial views at each
node: a small active view of open connections and a larger
passive view of known nodes but without open connections.
The passive view contains candidates to replace failed nodes
in the active view. Evaluation of HyParView shows that
this offers high resilience to massive failures: compared to
competing protocols Scamp and Cyclon, HyParView maintains
higher reliability (where reliability is defined as the fraction of
nodes actually reached by a send operation to a topic compared
to the nodes that are alive and subscribed to the topic): close
to 100% even for failure of up to 95% of nodes [25], [14].



1

2

3

1

2

3

1

2

3

1
1

2

3

1

3

1

2

3

1

3

1

2

3

1

3

2

1

2

3

1

3

2

Figure 2: Construction of a tree for a particular topic, starting with metadata tree construction (left) to optimization of a
topic-specific broadcast tree (right).

2) Efficient broadcast: Efficient broadcast, the second idea,
leverages a spanning tree to reduce redundant communication
between the participating nodes. When the network changes
because of dynamicity, parts of the spanning tree may become
defunct. Plumtree uses gossip to repair these parts, while
keeping the spanning tree where the network is stable. This
approach combines both efficiency and resilience: efficiency is
generally very high and it will decrease locally and temporarily
only for parts of the network that are unstable. We use a known
extension to the Plumtree protocol to ensure reliable delivery,
which is not guaranteed by the original protocol. In Plumtree,
messages may be permanently lost if node failures exceed
70%. We therefore leverage a periodic anti-entropy process
that will select nodes for pairwise reconciliation of dropped
messages [26].

3) Multiple spanning trees: To support multiple topics, we
construct multiple overlapping spanning trees, namely one
spanning tree per topic. There is one spanning tree that covers
all nodes, which we call the metadata tree. The metadata
tree is used for topic management, for example to create
new topics. Figure 1 shows an example of a metadata tree
with superimposed topic-specific spanning trees (left) and
their optimized versions (right) after being optimized by the
broadcast protocol. Figure 2 shows the construction of a topic-
specific tree from the gossip network: (1) an overlay network
is computed, (2) the metadata tree is constructed, (3) node 1
creates an initial graph for topic X, (4) node 3 joins the graph,
(5) the graph is optimized into a broadcast tree, (6) node 2
joins the graph, and (7) the graph is optimized into a broadcast
tree and the redundant edge from node 3 to node 2 is removed.

In the general case when each topic is dense, i.e., covers a
significant fraction of the system’s nodes, one spanning tree
per topic is not scalable [4]. However, if the number of nodes
subscribed to each topic follows a power law similar to the
popularity of Web pages (where popularity of a page is defined
as the fraction of pages with k in-links, which on the Web is
observed to be proportional to 1/k2), then the total size of
all spanning trees for the whole system is proportional to the
number of nodes, which ensures scalability. We are confident

that some such law will hold, since it holds for almost all
real-world network structures [12]. For the occasional network
that has different properties, there exist several optimizations
to improve scalability (see Section V).

B. Programming Model

Loquat is an upward-compatible extension of the Erlang
actor framework. Loquat runs on a set of compute nodes,
each of which hosts a set of actor processes. The usual Erlang
primitives for creating and using process IDs remain valid
and are not affected by Loquat. We provide a set of new
primitives for Loquat to handle creation and deletion of topics
and sending and receiving from topics. Loquat introduces
topic identifiers, which are new atoms3 in Erlang that identify
topics, and topic epochs, which are nonnegative integers. The
management of topic identifiers and epochs is not done by
Loquat but is left to higher layers of the system.

• Create a new topic and its identifier:
spawn_topic(TopicId, Epoch)

Topic creation is an explicit operation, just like Erlang’s
process creation. If the topic already exists, this is equiv-
alent to subscribing to a topic. To facilitate resource
management of the topic’s spanning tree, each topic is
given an epoch number.

• Remove a topic from the system:
kill_topic(TopicId, Epoch)

This operation will force all subscribed actors to even-
tually unsubscribe from the topic. This is important for
resource management since a topic with zero subscribers
has a zero size spanning tree. In case of concurrent spawn
and kill operations, the highest epoch number will win.

The use of epoch numbers is the mechanism that allows a
system built on top of Loquat to manage the resource usage
of a topic.

• Send a message to a topic:
TopicId ! Message

3An atom in Erlang is an immutable symbolic value.



As in Erlang, sends are asynchronous and FIFO-ordered
between sending and receiving actors. Sending a message
to a topic with zero subscribers is a null operation.

• Subscribe to a topic and receive a message from the topic:
receive(TopicId)

[same as Erlang receive]
end

Subscribing to a topic is an idempotent operation. Each
subscriber receives all messages sent to the topic.

• Unsubscribe from a topic:
unsubscribe(TopicId)

The receiving actor unsubscribes from a topic, which
means it no longer receives messages from the topic from
that point onwards. If zero actors on a given node are
subscribed to the topic then the node is removed from
the topic’s spanning tree.

C. Implementation Status

Our work on Loquat is part of a larger project on general-
purpose edge computing that started in the SyncFree EU
project [3] and is continuing in the LightKone EU project [2].
In previous work, we have designed and implemented Lasp,
a programming language for large-scale synchronization-free
programming [21], [6], on top of Selective Hearing, a run-time
system that uses Plumtree for communication [22], [20].

Our current Loquat prototype, written in Erlang, provides
the communication layer for Lasp’s runtime system. It fa-
cilitates internode communication, on a single topic, using a
single spanning tree, and has demonstrated scalability up to
1024 nodes in Amazon’s cloud computing environment while
preserving FIFO ordering of messages and reliable delivery
in the face of high node churn. Our plans are to extract the
current implementation from the Lasp runtime system and
build a standalone Loquat prototype that supports the full
programming model with support for multiple topics. This
will allow us to evaluate Loquat as a full replacement for
large-scale actor programming with Erlang, eschewing the
traditional approach using Distributed Erlang. At that point,
we will perform quantitative evaluations at scale.

Extensions to HyParView for high churn: The extremely
high resilience of HyParView is essential for the correct
operation of Loquat. The HyParView protocol defined in [19]
was originally implemented and evaluated on the PeerSim
simulator. Our real (non-simulated) environment has much
higher churn than this simulated environment, in part because
we deploy our system very quickly to reduce cost. We have
made three changes to the original HyParView protocol in
order to take high churn into account:

• Isolation prevention: When bootstrapping the cluster
quickly, a node can trivially be isolated if there are too
many joins in succession. This happens because a node
accepting a join will drop a random node from its active
view to make space for the joining node. This causes
isolation if churn is very high, which is not handled by
the original protocol. We remedy this situation by adding

a mechanism to enforce a minimum allowed size for the
active view.

• Epochs to ensure FIFO: The original protocol assumes
FIFO delivery of messages between any two nodes in
the cluster and uses TCP to guarantee this. However, at
high churn a node may be connected and disconnected
from the same node in rapid succession, which gives
multiple TCP connections, and messages may arrive out
of order. We remedy this situation by implementing a
counter-based epoch (similar to Apache Cassandra) that
ensures FIFO is guaranteed across connections.

• Reactive shuffle: The original protocol periodically does
a shuffle between the passive view of a node and the
passive view of one of the neighbors in its active view.
At high churn this proactive shuffle is not sufficient: we
extended the protocol to do a reactive shuffle between
passive views whenever the node updates the active view.

We also made a fourth change to improve scalability:
• Active view management: The original protocol manages

the active view using a reactive strategy, when it suspects
that a node in the active view has failed. To keep the
active view as full as possible, we supplement this with
a proactive strategy that periodically attempts to promote
nodes from the passive view to the active view.

With these changes, our implementation of HyParView main-
tains all the good properties of [19] and in addition is able to
handle extremely high churn. In future work we will make a
quantitative evaluation of these changes.

V. RELATED WORK

We compare Loquat to other approaches to achieve scalable
publish/subscribe. The main problem tackled in the other
approaches is how to achieve scalability in the presence of a
large number of dense topics. For Loquat on the other hand, we
focus on reliability in the presence of massive node failures.
Compared to the systems mentioned below, Loquat’s use of
HyParView gives it an increased reliability.

The publish-subscribe model for distributed computing was
originally introduced through the virtual synchrony concept.
It initially tried to deliver reliable atomic broadcast, which is
difficult to provide on large-scale edge networks with high
churn and network partitioning. In subsequent developments
this guarantee was weakened to causal order.

More recently, approaches for maintaining scalable publish-
subscribe systems have investigated two opposing approaches:
either a gossip-based approach which is very resilient but leads
to the delivery of messages to subscribers about topics that
are not relevant (parasite messages) or maintaining a spanning
tree per topic, which does not exhibit the problem of parasite
messages, but relies on maintaining state for each topic’s tree
and is prone to problems under network partitioning.

Neither approach is scalable as the number of dense topics
increases, and several proposals have been introduced to
support numerous dense topics. The daMulticast protocol [4]
improves scalability by modifying the gossip approach to



organize topics in hierarchical fashion. The approach of [24]
improves scalability by organizing subscribers according to
their QoS requirements for delay and bandwidth. The Spi-
derCast protocol [9] combines partial views with a coverage-
optimizing heuristic to construct and maintain an overlay
network where each topic (specifically, the induced subgraph
for the topic) remains, with high probability, connected under
both churn and dynamic membership to solve both the parasite
message and connection maintenance problems. The hierar-
chical and QoS-aware approaches are both complementary to
Loquat and could be combined with it. This is still unclear for
SpiderCast, because Loquat relies on reliable broadcast.

VI. CONCLUSION

This paper presents the design of Loquat, a lightweight pub-
lish/subscribe framework for large-scale actor communication.
In Loquat, actor processes communicate indirectly through
topics instead of directly through actor names. Loquat is built
using hybrid gossip algorithms HyParView and Plumtree and
is designed specifically to have extremely high resilience, as
part of its requirement to run on edge networks. Loquat is part
of a long-term project to build a platform for general-purpose
edge computation using synchronization-free programming
techniques, which is mainly being done in the EU projects
SyncFree [3] and LightKone [2]. Both HyParView, which
implements a membership protocol, and Plumtree, which
implements reliable broadcast, use hybrid gossip techniques
to achieve extremely high resilience. HyParView is able to
reach close to 100% of remaining nodes even in the face of
failure of up to 95% of nodes.

We have built a prototype implementation of Loquat that
demonstrates scalability up to 1024 nodes in Amazon’s cloud
computing environment. We present a programming model
(including API) for this implementation and we discuss the
problems we had to overcome to achieve scalability. Specifi-
cally, we had to modify the HyParView protocol to support
high churn. In future work we will perform a quantitative
evaluation of Loquat’s resilience at scale.

ACKNOWLEDGEMENTS

We would like to thank Vitor Enes Duarte and Junghun
Yoo for their help with the initial implementation of our
prototype and Manuel Bravo for his comments on the pa-
per. The research leading to these results has been partially
funded by the SyncFree Project [3] in the European Union
Seventh Framework Programme (FP7/2007-2013) under grant
agreement no 609551. Christopher S. Meiklejohn is partially
supported by the Erasmus Mundus Doctorate Programme
under Grant Agreement No. 2012-0030.

REFERENCES

[1] Akka Cluster. http://akka.io. Accessed: 2016-11-09.
[2] LightKone: Lightweight computation for networks at the edge. European

H2020 project to start in January 2017.
[3] SyncFree: Large-scale computation without synchronisation. https:

//syncfree.lip6.fr. European FP7 project 2013–2016.
[4] S. Baehni, P. T. Eugster, and R. Guerraoui. Data-aware multicast. In

International Conference on Dependable Systems and Networks, 2004.

[5] P. Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin. Orleans: Dis-
tributed Virtual Actors for Programmability and Scalability. Technical
report, March 2014.

[6] M. Bravo, Z. Li, P. Van Roy, and C. Meiklejohn. Derflow: Distributed
Deterministic Dataflow Programming for Erlang. In Proceedings of the
13th ACM SIGPLAN Erlang Workshop. ACM, 2014.

[7] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin.
Orleans: cloud computing for everyone. In Proceedings of the 2nd ACM
Symposium on Cloud Computing, page 16. ACM, 2011.

[8] N. Chechina, P. Trinder, A. Ghaffari, R. Green, K. Lundin, and R. Vird-
ing. The Design of Scalable Distributed Erlang. In Proceedings
of the Symposium on Implementation and Application of Functional
Languages, Oxford, UK, 2012.

[9] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. SpiderCast: A
Scalable Interest-Aware Overlay for Topic-Based Pub/Sub Communica-
tion. In International Conference on Distributed Event-Based Systems
(DEBS ’07). ACM, 2007.

[10] K. Claessen and H. Svensson. A semantics for distributed Erlang. In
Proceedings of the 2005 ACM SIGPLAN Erlang Workshop, pages 78–
87. ACM, 2005.

[11] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry. Epidemic algorithms for
replicated database maintenance. In Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing, pages 1–12.
ACM, 1987.

[12] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning
about a Highly Connected World. Cambridge University Press, 2010.

[13] D. Evans. The Internet of Things: How the next evolution of the Internet
is changing everything. Cisco IBSG White Paper, Apr. 2011.

[14] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie. Peer-to-peer
membership management for gossip-based protocols. IEEE Transactions
on Computers, 52(2):139–149, 2003.

[15] A. Ghaffari. Investigating the scalability limits of distributed Erlang. In
Proceedings of the 13th ACM SIGPLAN Erlang Workshop, pages 43–49.
ACM, 2014.

[16] N. Hayashibara, X. Defago, R. Yared, and T. Katayama. The ϕ accrual
failure detector. In Reliable Distributed Systems, 2004. Proceedings of
the 23rd IEEE International Symposium on, pages 66–78. IEEE, 2004.

[17] R. Klophaus. Riak Core: building distributed applications without shared
state. In ACM SIGPLAN Commercial Users of Functional Programming,
page 14. ACM, 2010.

[18] J. Leitao, J. Pereira, and L. Rodrigues. Epidemic broadcast trees. In
Reliable Distributed Systems, 2007. SRDS 2007. 26th IEEE International
Symposium on, pages 301–310. IEEE, 2007.

[19] J. Leitao, J. Pereira, and L. Rodrigues. HyParView: A membership
protocol for reliable gossip-based broadcast. In 37th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks
(DSN’07), pages 419–429. IEEE, 2007.

[20] C. Meiklejohn, S. H. Haeri, and P. Van Roy. Declarative, Sliding Win-
dow Aggregations for Computations at the Edge. In First International
Workshop on Edge Computing (EdgeCom 2016), Jan. 2016.

[21] C. Meiklejohn and P. Van Roy. Lasp: A language for distributed,
coordination-free programming. In Proceedings of the 17th International
Symposium on Principles and Practice of Declarative Programming,
pages 184–195. ACM, 2015.

[22] C. Meiklejohn and P. Van Roy. Selective Hearing: An Approach to
Distributed, Eventually Consistent Edge Computation. In Workshop on
Planetary-Scale Distributed Systems (W-PSDS 2015), 2015.

[23] H. Svensson and L.-A. Fredlund. A more accurate semantics for
distributed Erlang. In Proceedings of the 2007 ACM SIGPLAN Erlang
Workshop, pages 43–54, 2007.

[24] M. A. Tariq, G. G. Koch, B. Koldehofe, I. Khan, and K. Rothermel. Dy-
namic publish/subscribe to meet subscriber-defined delay and bandwidth
constraints. pages 458–470, 2010.

[25] S. Voulgaris, D. Gavidia, and M. Van Steen. Cyclon: Inexpensive
membership management for unstructured p2p overlays. Journal of
Network and Systems Management, 13(2):197–217, 2005.

[26] J. West. Controlled Epidemics: Riak’s New Gossip Protocol and Meta-
data Store. https://www.youtube.com/watch?v=s4cCUTPU8GI. Ac-
cessed: 2016-02-06.


