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ABSTRACT

Constraint programming (CP) has been used for several
decades in music composition and analysis. It has served
as the underlying technology of different tools that al-
low composers to compute with musical abstractions (e.g.,
notes, scores). However, the traditional domains used in
musical CP, namely finite domains (integers) and finite
sets (integer sets), are not well suited to represent and ex-
press properties on structured information such as a score
in a compact and efficient way. This paper introduces a
new domain for musical CP, namely relations, where a
relation is a set of integer n-tuples. It proposes new con-
straints on relations and shows how to use them for musi-
cal composition. A single relation variable can represent a
score of any size and any transformation between scores.
The result is a system that directly supports computing
with musical abstractions at a high abstraction level more
pleasant to composers. The relation domain and its con-
straints are implemented using Binary Decision Diagrams
and are provided as a library in the Gecode platform.

Keywords : Constraint programming, relation de-
cision variables, music, computer-aided composition,
binary decision diagrams, Gecode, OpenMusic, rela-
tional algebra.

1. INTRODUCTION

Constraint programming (CP) is a common approach to
tackle problems in music ([5, 3]). To avoid musicians
the effort of going to the low level of using integer and
set decision variables directly, modeling frameworks such
as Strasheela [4] have emerged. These frameworks pro-
vide musical abstractions for modeling the problems and
then translate that model into an equivalent one that can
be tackled by a constraint solver.

During the translation process the framework expresses
the problem as a CSP1. That is, in terms of decision vari-
ables, their possible values, and constraints on them. The
efficiency of the solution process depends on the kind of

1Constraint programming terminology for a Constraint Satisfaction
Problem.

variables and constraints supported by the solver, usu-
ally integer and integer set decision variables. This pa-
per presents relation decision variables, a new domain
in which the represented information consists of relations
rather than just integers or sets. The proposed domain
brings several advantages. First, it provides a new level of
abstraction for modeling which can lead to succinct and
more expressive models. Second, it offers a new set of
constraints that can be used to express high level proper-
ties on the variables. And third, it provides a new solver
that works directly at this high level, thus making it possi-
ble to achieve higher efficiency.

1.1. Motivating example for relation domains

Consider the problem of finding a round (also known as
simple canon), with a leader voice V0 and one follower
voice V1. V1 has to be played o onsets after V0. Addi-
tionally, when played together some given harmony rules
must be respected. The value o is called the offset between
the onsets of V1 and V0.

The solution of this problem is a score. From the prob-
lem, we need to consider at least the pitch and onset pa-
rameters for every note in it. We represent by RS the re-
sulting score. RS is a binary relation (e.g. set of pairs)
in which every element has the form 〈pitch,onset〉. The
same representation is used for V0 and V1.

The offset is represented by a unary relation Offset.
Any element in this relation will represent the offset per-
formed by a voice. So, for the particular case of one fol-
lower voice, Offset contains only one element. For the
harmony let us assume an input binary relation Consonant
with elements of the form 〈pitchi,pitch j〉. This relation
groups pitches that are accepted to be heard at the same
time2.

Expression (1) states the round property between the
two voices and (2) ensures that both voices get in the score
we need to find. Expression (3) links pitches of RS that are
played at the same onset. Those links are then forced to
belong to PP. The harmony constraint (4) is ensured by

2Therefore, the harmony constraint will be basic and simplified.

mailto:sascha.vancauwelaert@gmail.com
mailto:gustavo.ggutierrez@gmail.com
mailto:peter.vanroy@uclouvain.be


stating that all the pitch links are consonant.

(V0×Offset)^
2

Plus =V1 (1)

Rs =V0∪V1 (2)
Rs ^

1
Rs = PP (3)

PP⊆ Consonant (4)

The way of expressing the offset between the voices can
look intimidating at first sight. By doing V0×Offset we
compute a ternary relation with elements of the form 〈pitch,
onset,offset〉 that basically computes any note in V0 con-
catenated with any offset. By using the operation ^

2
(in-

troduced further in Section 3) we compute new notes of
the form 〈pitch,onset’〉 where onset’ is the new onset at
which the note has to be played. Expression (1) contains
the relation Plus. This is a ternary relation in which every
element 〈x,y,z〉 has the property x+y = z. In order to link
pitches played at a same offset, we use the operation ^

1
on

RS with itself, but with permuted components. That is, we
compose (see Section 3) tuples of the form 〈pitch,onset〉
with tuples of the form 〈onset,pitch〉.

Some strengths of using the introduced domain can
be appreciated in this model. The constraints are stated
in a high level way and over natural music concepts like
scores. A score as a set of notes is represented directly as a
single relation variable. The information used to represent
each note is kept together as a tuple inside a score. To
show these strengths clearly, we provide a second model
of the same problem using integer and integer sets which
are traditional domains in CP.

1.2. Traditional approach using integer domains

We now model the same problem using only decision vari-
ables over integers and sets. To model a score V we use
two arrays3, one that represents the pitches (5) and the
other one the onsets (6). The arrays must be big enough
to store all the notes in the largest possible score we con-
sider. The notes themselves are referenced by the indices
of the arrays. A note n in the voice V is then represented
by its pitch PitchesV (n) and its onset OnsetsV (n). As there
is no sense in having the same note (i.e. same pitch and
onset) inside a given voice we have to add the constraint
(7).

PitchesV = 〈p1, . . . , pl〉 (5)
OnsetsV = 〈o1, . . . ,ol〉 (6)

∀i, j∈{1,...,l} : i 6= j ∧ PitchesV (i) = PitchesV ( j) =⇒
OnsetsV (i) 6= OnsetsV ( j) (7)

We represent the two voices of the problem by the ar-
rays PitchesV 0, OnsetsV 0, PitchesV 1, and OnsetsV 1. Ex-
pressions (8) and (9) state the round property between the

3Actually we need an array per every feature of the score we want to
represent.

scores.

∀i∈{1,...,l} : OnsetsV 1(i) = OnsetsV 0(i)+o (8)

∀i∈{1,...,l} : PitchesV 1(i) = PitchesV 0(i) (9)

To enforce the harmony constraint, we use an array of sets
Consonant. A pitch pi is consonant with a pitch p j if
p j ∈ Consonant(i). This is stated by expression (10). No-
tice that similar constraints must be imposed for pitches
of notes of a given voice to be consonant.

∀i, j∈{1,...,l} : OnsetsV 0(i) = OnsetsV 1( j) =⇒
PitchesV 0(i) ∈ Consonant(PitchesV 1( j)) (10)

1.3. Comparison of the two approaches

Let us compare the relation-oriented modeling of the prob-
lem with the integer-oriented approach. The relational
model is simpler and it keeps together the notions of pitch
and onset that characterize a note. The model works for
scores of any length with no ad hoc size parameters. On
the other hand, the integer model uses two arrays of ad
hoc size and a constraint to represent the notion of a note.
Moreover, that constraint is translated to l × (l − 1) bi-
nary constraints on the solver. The properties represented
by (8) and (9) are translated into l constraints each. The
disadvantage of this translation is that it makes constraint
inference limited to two properties of the same note at a
time while ignoring useful information when the score it-
self is considered. This reduces the efficiency of the CP
solver in the integer model.

There are several additional advantages to use relation
domains. First, it can be seen that generalising the prob-
lem to n voices is easily done in the first model but not
in the second one. The only thing to do is to allow Off-
set to contain several elements. Notice that in that case
V1 will actually contain several follower voices. More-
over, if Offset is not fixed at modeling time, the number of
follower voices are not fixed either. Offset could also be
constrained in some way, e.g. all offsets are multiple of a
given value, for instance 4. Even more, as it will be shown
in Subsection 5.4, it is possible to offset several musical
parameters of a score, and then to constrain that general
“offset structure”. If we were working with integer and
sets, those generalisations would not be straightforward at
all (e.g. we have to use one array per parameter per voice
and use a special value for silences).

1.4. Contributions

This paper defines the relation constraint domain and ex-
plores ways to use it in the field of music. The notions of
relation and tuple allow to represent musical entities such
as score and note in a more concise and natural way than
traditional domains. General purpose constraints provide
the building blocks for representing new abstractions that
benefit final users such as composers. These constraints
complement other domains by allowing constraint infer-
ence at higher levels of abstraction.



The constraint domain is implemented on top of the
Gecode [12] constraint library, its sources are freely avail-
able [9] and an interface for integrating it with OpenMusic
[1] is in development4.

1.5. Document structure

Section 2 shows how relations can express key concepts
in music. Section 3 introduces CP with relations and de-
fines the new constraints of this domain. Section 4 ex-
plains how CP with relations can be used to model musical
CSPs. Section 5 gives modeling examples that target mu-
sic composition and Section 6 shows how to solve a larger
example. Section 7 briefly presents our implementation
in Gecode. Conclusions and future work are presented in
Section 8.

2. MUSICAL CONCEPTS AS RELATIONS

Current music constraint systems5 all share the same prob-
lem internally6, highlighted by the composer J. Kretz in
[10] : a lack of structure in the music representation that
forces to handle musical parameters independently, mak-
ing them difficult to interact. J. Kretz proposed then to use
an (hypothetical) “organized structure for notes (a bundle
of information containing many parameters like pitch, du-
ration, [...])” in order to define “more ‘intelligent’ rules”
[10]. In a sense, this is what we are proposing in this work.
This section defines the concepts needed to link this gen-
eral idea with constraint programming on relations.

We define the two concepts of Musical Bundle (MB)
and Musical Bundle Sets (MBS) as a way of representing
musical concepts in terms of tuples and relations, which
are the basic concepts of our new constraint system.

Musical bundle. Is a set of pairs where each pair
combines a musical parameter with an integer value. An
example of a MB is a note defined by several musical pa-
rameters, such as the following tuple:

tuple = 〈pitch,duration,onset, instrument, . . .〉 (11)

Musical bundle set. Is a set of musical bundles. Ex-
amples of MBSs are a chord, a bar, or a score. But an
MBS can express more abstract musical concepts as well,
for example a transformation between two scores can also
be represented as an MBS. When modeling musical prob-
lems, we will use the terms MBS and relation variable
interchangeably. 

!!! "!!!!!#$ !!!!! !!!
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Figure 1. Score represented by a MBS (relation). Every
note is represented by a MB (tuple).

4https://github.com/svancauw/GeLiSo
5Term introduced in [3, 4].
6Some provide abstractions to hide this problem to the user.

In figure 1, the note C played on the first beat and
the note F played on the second beat can be respectively
represented by the tuple 〈60,1〉 and the tuple 〈65,2〉 (if
we use MIDI values for the pitch parameter). The score
represented by figure 1 is then represented by the set of
all the tuples (i.e., a relation) that represents the different
notes played on the score.

3. CONSTRAINTS ON RELATIONS

Constraint programming on relations is about using rela-
tion decision variables along with constraints that enforce
properties on these variables. It also provides search ab-
stractions and predefined generic heuristic strategies for
solving models with this kind of variables.

A relation decision variable (relation variable for short)
represents a relation out of a set of possible relations. A
relation is a set of tuples of the same arity. A tuple is an
element of the cartesian product of the finite set of inte-
gers7: U = {x : 0 ≤ x ≤ k}. The arity of a tuple is the
number of elements that belongs to it. For instance, tuples
of arity n are elements of the set: U × . . .×U︸ ︷︷ ︸

n times

. This set

is also represented as U n.
The domain of a relation variable X , denoted DX , is

the set of possible relations that X can be assigned to. A
constraint C on a set of relation variables {X1, . . . ,Xn}will
ensure that the domain of every variable Xi only contains
relations that satisfy it. This is also called constraint in-
ference. A variable is considered determined or assigned
when its domain contains one and only one relation.

The constraints that can be used on relation variables
come from two fields: set theory and relational algebra [7].
As a relation variable represents a relation it does make
sense to express properties like: X ∩Y = Z and X = Ȳ ;
where X , Y and Z are relation variables. Properties from
the relational algebra include for instance: X ./

C
Y = Z,

which states that the join of the two relations X and Y on
the components in C must be the relation Z.

The notion of tuple concatenation is used for the defi-
nitions of the constraints. Given two tuples r = 〈r1, . . . ,rn〉
and s = 〈s1, . . . ,sm〉, we represent its concatenation by
r++s = 〈r1, . . . ,rn,s1, . . . ,sm〉. The arity of the resulting
tuple |r++s|= n+m.

Projection. This is a binary constraint on variables X and
Y of different arities. It takes a constant i as an extra pa-
rameter, the number of components on the right of X that
are projected. Its semantics is:

∏
i

X = Y ≡ ∀t1, . . . , t|X | : (12)

〈t1, . . . , t|X |−(i−1), . . . , t|X |〉 ∈ X ⇐⇒
〈t|X |−(i−1), . . . , t|X |〉 ∈ Y

As a special case, this constraint creates a channel be-
tween a relation and a set decision variable, if i = 1.

7A fixed and large enough k ensures that U is finite.



Join. This is a ternary constraint on relations. It takes also
a constant i, which represents the number of components
on the right of X and on the left of Y that are considered
by the constraint. Its semantics is:

X ./
i

Y = Z ≡ ∀r,s : ∃u : |u|= i ∧ (13)

((r++u ∈ X ∧ u++s ∈ Y ) ⇐⇒ (r++u)++s ∈ Z)

Compose. This is a special form of the join constraint
where the joined components are removed from the result.
It matches the semantics of relation composition from the
relational algebra [7]. Its semantics is:

X ^
i

Y = Z ≡ ∀r,s : ∃u : |u|= i ∧ (14)

((r++u ∈ X ∧ u++s ∈ Y ) ⇐⇒ r++s ∈ Z)

Intuitively, a compose collects all paths that combine a
step in X and a step in Y , to form a step in Z. Join does the
same but additionally exposes the intermediate steps in Z.
Confluent join. This is a special case of join with an ad-
ditional confluence condition. The additional condition
ensures that it collects only those combined steps in Z for
which all possible first steps in X can always find a next
step in Y that continues to the same result.

X
∀
./
i

Y = Z ≡ ∀r,s : ∀u : |u|= i ∧ (15)

(((r++u ∈ X =⇒ u++s ∈ Y )∧
(∃t : |t|= i ∧ r++t ∈ X ∧ t++s ∈ Y )) ⇐⇒
(r++u)++s ∈ Z)

Confluent compose. This is a special case of compose
with an additional confluence condition.

X ∀
^

i
Y =Z ≡ ∀r,s : ∀u : |u|= i ∧ (16)

(((r++u ∈ X =⇒ u++s ∈ Y )∧
(∃t : |t|= i ∧ r++t ∈ X ∧ t++s ∈ Y )) ⇐⇒
r++s ∈ Z)

Permutation. This allows to impose that a relation is
equal to another one but with some components permuted.
Using it, we can apply projection, join, compose, conflu-
ent join and confluent compose constraints on components
of relations without regarding their position. We do not
define it here because we will not use it explicitly in the
presented models, in order to keep them more readable.

4. MODELING WITH MUSICAL BUNDLE SETS

This section presents some of the new possibilities that CP
on relations offers in the musical field. When we define
a new musical problem in terms of relation variables, we
need first to declare these variables. We declare them by
giving the minimum and maximum MBS that the variable
can assume. We then impose constraints on these relation
variables. The constraint solver then uses a combination
of propagation and heuristic search to find values of the

relation variables that satisfy the constraints. For example,
suppose that we are interested in finding a musical piece
M with some specific characteristics. The piece itself is
represented by the relation variable M with the following
minimum and maximum MBS:

M ∈ [ /0 . . .{{60, . . . ,72}×{0, . . . ,7}}] (17)

This notation says that the minimum MBS of M is
empty (i.e. 8 beats of silence) and the maximum MBS
of M is the musical piece that contains all the notes from
middle C to C one octave higher, occurring on the first
8 beats 8. The minimum and maximum MBS of M are
represented by the following scores :
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Additionally we want our score to respect some com-
position rules. This is done by imposing constraints such
as those given in Section 5. In some sense, this corre-
sponds to what a composer does when he wants to com-
pose a new musical piece. He starts from nothing and
can potentially add every note. From this provided “musi-
cal material”, he decides what he will use to construct his
piece by imposing some “properties” on it.

4.1. MBS as a transformation of MBSs

An MBS can be used to define a transformation between
two other MBSs. For instance, each note 〈pitch,onset〉 in
the original MBS can be transformed into 〈pitch’,onset’〉
in the new MBS. How the new values for the attributes are
computed depends on an MBS that represents the trans-
formation itself. As a particular example, let us consider a
score score like the one used in the introduction and a re-
lation T to represent the intended musical transformation.
Every element of T has the form:

〈pitchstart,onsetstart,pitchend,onsetend〉 (18)

To obtain the transformed score (represented by the bi-
nary relation scoretrans) resulting from the transformation
of score by T we impose the compose constraint

scoretrans = score ^
2

T (19)

In this way we ensure that any MB of score that can be
transformed by T has one (or several) respective(s) trans-
formed MB in scoretrans.

More generally, it is actually possible to link any two
relation variables with a third relation variable that rep-
resents the transformation, if we code the transformation
in terms of integers. All three relation variables in this
link will participate in the solution process. That is, the
CP solver can use the third variable to calculate the trans-
formed relation, but it can also use the two relation vari-
ables to calculate the third variable.

8We assume here a signature 4/4 and quarter notes. For this example
we only consider pitch and onset as the relevant parameters of the MBs.



4.2. MBS as an aggregation of MBSs

One way of linking a set of MBSs together is to aggregate
them into another MBS. This can be done easily by adding
a parameter to each MBS and assigning it a different value
for each MBS, i.e. all the MBs of a given MBS have the
same value for this new parameter. Formally, if S is the
set of MBSs to aggregate, we have

∀ si ∈ S, ∀ mb ∈ si : mb++i ∈ A (20)

where A is the MBS that aggregates the set of MBSs S,
and mb++i represents an MB constructed from the MB
mb in which a new parameter with value i has been added.
All this can be achieved using CP on relations. If RA and
Rsi are relations that represent respectively A and the ith

MBS of S, we have

RA =
⋃

i

Rsi ./0
{〈i〉} (21)

In this way, we can for instance aggregate two scores (e.g.,
the left and right hand parts of a piano score) to form a
new score. We can then constrain the resulting score in
some way, and this will be reflected in the parts of the
aggregation.

5. EXAMPLES OF MUSICAL CONSTRAINTS

This section presents several examples to show how to
use relation constraints to solve musical problems. Notice
that, as said in Section 3, we will ignore here the use of
permutation constraints, in order to clarify the text. Also,
we will use an MBS named score that contains MBs of
the form 〈pitch,onset,duration〉 to represent a score and
an MBS named Chords in which every MB has the form
〈pitch,ChordIndex〉 in order to represent a set of chords.
In each MB, ChordIndex is an index identifying a chord
(i.e. a set of pitches) and pitch is one of the pitches of the
chord indexed by ChordIndex. By chord, we mean here
any set of pitches (e.g. C major, beginning from middle
C, in its fundamental position).

5.1. Forbid simultaneous chords

We propose here a constraint that is hard to express with-
out relation variables. The constraint is the following : in
a given score, we want to forbid to hear chords of some
sets of complete chords altogether, even if the different
notes constituting the chords do not begin to be played at
the same time. The constraint takes three musical param-
eters into account : pitch, onset and duration. We need
an MBS FSChordSets that will be the set of forbidden-
simultaneous-chords sets. Every MB in FSChordSets has
the form 〈SetIndex,ChordIndex〉, where ChordIndex is an
index identifying a chord and SetIndex is an index identi-
fying a set of chords that cannot all be heard completely9

simultaneously. The first thing to do to apply the con-
straint is to transform the original score score into a score

9I.e. all the notes of the chord are heard.

for which all the notes with a duration n become n consec-
utive notes of duration 1. To do this, we need the transfor-
mation MBS represented by the relation

Tduration = {〈X ,Y,Z〉 : Z ∈ [X ,X +Y −1]∧Y > 0} (22)

To get the transformed score (represented by the relation
variable scoredur=1), we only apply the constraint

scoredur=1 = score ^
2

Tduration (23)

After that, we need to get all the complete chords heard
at a given time in score, that is, all the complete chords
played at a given onset in scoredur=1. This can be done
using the constraint :

IO =Chords ∀^
1

scoredur=1 (24)

where IO is a binary relation linking a given onset with
chords completely played at that onset. The last part needed
to express the constraint is to impose that on a given onset
(of scoredur=1), we cannot have all the chord indexes of a
given chord set index.

/0 = FSChordSets ∀^
1

IO (25)

Notice that if the constraint is not respected, we know be-
cause of which chords, by using the operation confluent
compose. This information can help to lead the search.

5.2. Score harmonization

Another constraint that can be easily expressed is the har-
monization of a score during the search to determine that
score. So, this information can be used to lead the search
in some way. One more time, we use here several musi-
cal parameters together in order to express what we want.
Here, we will only use a part of a score (for instance, a
bar), and look for one chord harmonizing that part. More-
over, in some cases, we can propose several chord alter-
natives. The first step to express the constraint is to get all
the notes of the given part and to keep the expected consti-
tutive notes of the chord. In our case, we simply keep the
notes with a minimal duration value. To get the relevant
notes, we create a new MBS (represented by the relation
variable score’) that contains only those notes. To do this,
we impose the constraint

score’ = score ./
2
(Onsets×Durationmin) (26)

where Onsets and Durationmin are respectively the set (unary
relation) of onsets of the part10 and the set (unary relation)
of all possible durations, with a minimum lower bound.
After that, we just need to identify the chord indexes of
chords that can be used to harmonize the given part of the
score. To do this, we use the constraint

harmScore = score’ ∀^
1

Chords (27)

10Generally this set does not contain “holes” but it could.



where harmScore is a relation linking onsets (and possi-
bly other musical parameters different from the pitch) and
chord indexes. The harmonization is then done.
The interesting thing with this constraint is that it is possi-
ble to use partial information inferred from that constraint.
For instance, if at some time during the search we know
that a majority of chords of a given tonality has been used
to harmonize the score, we will first try to impose the use
of pitches of that tonality in the score.

5.3. Simplified orchestration

Suppose we want to distribute a piece of music score on
two instruments i1 and i2 (it could be generalized to n in-
struments easily). Scores of these instruments can also be
represented by two relation variables scorei1 and scorei2 ,
whose components have the same semantics as those of
score. The only thing we have to impose are :

score = scorei1 ∪ scorei2 (28)

and

scorei1 ∩ scorei2 = /0 (29)

There are of course lots of solutions to this problem. But
it becomes interesting when we begin to add other con-
straints on scorei1 and scorei2 , for instance one is the trans-
formation of the other by some transform relation.

5.4. Score made of musical patterns

We present here a constraint that is in some way an ex-
tension of a constraint used for Michael Jarrell’s “Con-
gruences” (presented by Serge Lemouton in [11]). The
constraint that will be expressed here states that a score
is made only of a given set of musical patterns, i.e. sub-
scores in which notes are represented by several parame-
ters. Let this set be represented by the relation Patterns.
Every tuple of Patterns has the form

〈indexPattern,pitch,onset,duration, . . . ,

scoreparami , . . . ,scoreparamn〉

Patterns is a relation of arity n+ 1 to be used to create
a relation that represents a score with n parameters. The
component indexPattern is used to identify one pattern in
the set of patterns.

We would like to impose that a given score is made
from some patterns of this set of patterns, and nothing
else. In order to do this, we will simply get the used pat-
terns from the current score (found during the search), and
recreate a new score from those used patterns. If the recre-
ated score is equal to the initial one, only patterns of Pat-
terns have been used, that is, the constraint is satisfied11.

11Of course at least one pattern must be used or the score is empty,
which is a trivial solution for this constraint.

The possibility to shift the patterns in some compo-
nents should exist. To allow this, we use a relation vari-
able Shift that will represent all the shifts applied to pat-
terns. Every tuple of Shift has the form

〈indexPattern,offsetparam1
, . . . ,

offsetparami
, . . . ,offsetparamn

〉

Using Shift, we can get a relation variable that represents
the set of all possible shifted patterns. We explain in the
following how, but we must first introduce the relation
Plus3.n :

t ∈ Plus3.n⇐⇒∀i ∈ [0, . . . ,n−1] :
t(i)+ t(i+n) = t(i+2n) (30)

Plus3.n can be defined in terms of Plus (defined in Section
1):

Plus3.n = Permutei↔(i%n)∗3+i/n(Plus×·· ·×Plus︸ ︷︷ ︸
n

) (31)

where Permutei↔(i%n)∗3+i/n is a function that permutes all
the components i of a relation with the component (i%n)∗
3+ i/n, respectively. Using the relation Plus3.n, we can
work with a variable set of shifted patterns

Patternsshifted = Patterns ./
1

Shift ^
2.n

Plus3.n (32)

With Patternsshifted, we are able to retrieve all the patterns
used in the score score, even if they have been shifted in
the score.

usedPatternsInScore = score
∀
./
n

Patternsshifted (33)

Having used confluent join instead of confluent compose
allows us to keep the information about the score. The
relation variable usedPatternsInScore gives us the infor-
mation about how and which patterns have been used in
score. The only thing that remains to be done is to check
if the used (shifted) patterns construct exactly the score
score. We only need to remove the pattern indexes from
usedPatternsInScore and check (impose) equality with
score :

score = ∏
n

usedPatternsInScore (34)

Adding some constraints on Shift can help to have more
control on the solution. For instance, we can avoid to have
the exact same shifts for different patterns. Moreover, we
can notice that this constraint can be used incrementally.
Indeed, we can first use some patterns in a given search,
and afterwards use patterns that contain some of those pat-
terns as subpatterns, and so on. Eventually, we are here
more general than specified because the definition of con-
fluent join contains only an implication and not a double
implication : this allows to use only parts of the patterns,
i.e. subpatterns. In order to force the use of complete pat-
terns, we simply need to modify the definition of confluent
join with a double implication instead of the implication.



6. A COMPLETE EXAMPLE

This section presents a practical problem solved in the
OpenMusic environment using constraint programming on
relations. To work with Gecode inside OpenMusic we use
GeLiSo (“Gecode in common Lisp using Sockets”). The
musical CSP is the one presented in Section 1 with some
additional constraints:

V0∩V1 = /0 (35)
V0part1 =V0 ./

1
Onsetspart1 (36)

V0part2 =V0 ./
1

Onsetspart2 (37)

(V0part1 ×OffsetPart)^
2

Plus =V0shi f ted (38)

V0shi f ted ∩V0part2 = /0 (39)

Expression (35) states that the two voices do not have
any note in common. Expressions (36) and (37) allow
to get some note subsets of the voice V0. With expression
(38), we are able to shift the MBS V0part1 on 8 onsets later.
Eventually, thanks to expression (39), we impose that the
shifted part of V0 does not have any common note with
V0part2 .

Here are two solutions to the musical constraint satis-
faction problem presented above. In both cases, we only
allow to use the MIDI pitch values 60, 67 and 72 and they
can all be heard together. In the first case, we impose that
the parts of V0 that cannot be the same are the first 4 beats
and the beats from 8 to 12. In the second case, the con-
straint is applied on the first 5 beats and on the beats from
8 to 13. Experimentally, we noticed that from 6 beats, no
solution can be found in a reasonable time (in this case
less than 2 minutes). But no special heuristic is used for
now.

7. IMPLEMENTATION

We now explain how the new relation constraints are im-
plemented. The implementation is available as an exten-
sion of the Gecode constraint library [12]. A modified ver-
sion of the BDD library CUDD [13] is used internally for
the domain representation. The source code of the com-
plete extension is available [9] under the terms of the MIT
license.

7.1. Domain approximation

As the domain DX of a variable X can be a consider-
ably large set of relations we require an approximation

of it that can be practically stored. The goal of this ap-
proximation is to provide a good trade off between the
complexities of representing the data of the domain and
the basic operation on this data that supports the opera-
tions in the domain. DX is approximated by the pair of
relations 〈glb, lub〉. The set of represented relations is
{R : glb ⊆ R ⊆ lub}. glb stands for greatest lower bound
and lub for least upper bound. In the following we use
glb(X) (resp. lub(X)) when referring to the relation glb
(resp. lub) of DX . This representation of the domain was
proposed in [8] to represent the domain of integer sets.

7.2. Domain and bound consistency

With the formalization of the relation domain as presented
in Section 3 it is possible to have constraints that enforce
domain consistency12. Let us consider a constraint C with
scope X = {X1, ..,Xn}. C is domain consistent if for every
variable Xi: ∀r ∈ DXi , ∀ j 6= i,∃s ∈ DX j : C. That is, for
every relation in the domain of every variable there are
relations in the domains of the other variables that, con-
sidered together, satisfy C.

Achieving domain consistency is not possible for all
the constraints under the bound approximation. By en-
forcing constraints like projection, permutation, inclusion
and exclusion on the bounds of the domain it is possible
to still achieve domain consistency. As an example of this
consider exclusion, after enforcing it on the upper bound
all the values in the domain respect the constraint.

Under this representation, the notion of bound con-
sistency is more common: a constraint C with scope X =
{X1, ..,Xn} enforces bound consistency13. C is bound con-
sistent if for every variable Xi, ∀ri ∈ {glb(DXi), lub(DXi)},
∀ j 6= i,∃s ∈ DX j ,C(X1,X2, . . . ,glb(DXi), . . . ,Xn)∧
C(X1,X2, . . . , lub(DXi), . . . ,Xn).

7.3. Binary decision diagrams

The data structures used to represent the domain of rela-
tion variables are binary decision diagrams (BDDs), first
introduced by [2] and improved later by [6]. BDDs turn
out to be a very good data structure for this domain repre-
sentation. The complexity of basic operations (e.g. union,
intersection, quantification, etc.) are defined in terms of
the variables of a function and not on the amount of data
it represents. Features such as canonicity bring constant
complexities to common operations like equality testing.
Shared BDDs improve the space complexity of the do-
main representations of the variables in a CSP. Comple-
mented edges make possible to complement a relation at
almost no cost.

There are other variants of decision diagrams such as
algebraic, zero suppressed or even interval decision dia-
grams. Our choice of use just binary decision diagrams
is supported by the common use of the complement oper-
ation internally and the advantages that we got from the
sharing of nodes at the implementation level. However, a

12Also called generalized arc consistency.
13Also called interval consistency.



careful study and comparison of the other variants has to
be done as a future work.

8. CONCLUSION

This paper defines the relation domain in CP to model and
solve problems in the musical field. We presented some
examples of its application in music composition. For this
application we introduced basic notions such as musical
bundle and musical bundle sets as structured ways of rep-
resenting different musical concepts while keeping a con-
nection with the constraint domain.

The domain is introduced along with general purpose
constraints that allow to state properties on decision vari-
ables. These constraints are then used to model musical
properties on musical entities in a way that is not possible
to do directly in finite domains or finite set domains. For
instance, we can reason directly with concepts like scores
and transformations between scores. The constraint infer-
encing performed by the CP solver can use this informa-
tion to improve efficiency.

We do not claim that the problems presented in this
paper cannot be tackled by using other domains. How-
ever, the models of these problems will involve more rep-
resentation effort and will likely lead to bigger, less clear
and possibly less efficient models. An example of this can
be seen in the differences between the two models for the
problem of finding a harmonic round presented in Sec-
tion 1.

An implementation of the domain on top of the Gecode
[12] library is available [9]. This allows to start using
the domain and constraints in musical applications us-
ing C++. An interface to use Gecode (including the re-
lational domain) from OpenMusic [1] is currently work in
progress14.

8.1. Future work

The work we have presented is just the beginning of a
wider set of applications of CP on relations in the musical
field. We recognize that we can target other areas like or-
chestration where we are already working. New abstrac-
tions in forms of constraints that address particular prop-
erties on music are also under consideration. For instance,
using musical transformations, we could model theme and
variation problems. Moreover, using the subset constraint
we can consider modeling leitmotiv constraints.

The MBSs we used are generally scores but we could
consider to work with other types of MBSs, such as set
of sounds, where a sound is represented in terms of phys-
ical parameters. In the future, we also plan to develop
a visual framework inside OpenMusic [1] for composers.
This framework should contain built-in constructs such as
scores, bars, and other MBSs, some predefined constraints
that can be applied on them and some search heuristics.
Moreover, it should allow the possibility to be extended
with new constraints, constructs and search heuristics. All

14https://github.com/svancauw/GeLiSo

those concepts should be represented visually, using vi-
sual components such as patches.
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