
Declarative, Sliding Window Aggregations for
Computations at the Edge

Christopher Meiklejohn
Machine Zone, Inc.

Palo Alto, CA
Email: cmeiklejohn@machinezone.com

Seyed H. Haeri (Hossein), Peter Van Roy
Université catholique de Louvain

Louvain-la-Neuve, Belgium
Email: {hossein.haeri, peter.vanroy}@uclouvain.be

Abstract—We present a work in progress report on a new pro-
gramming model that supports declarative, functional style ag-
gregation operations over devices at the edge. This programming
model bridges the gap between the two competing approaches
for large-scale aggregations, streaming all data back to a central
coordinator versus designing an optimized, distributed algorithm,
by leveraging convergent data structures, dynamic scoping, and
a declarative functional semantics implemented by a distributed
runtime. We motivate our design with an industrial application
susceptible to message reordering and arbitrary message delays
on an unreliable network.

I. INTRODUCTION

Large-scale computation continues to increase in impor-
tance as the reach of mobile Internet applications grows
and more devices become connected to the Internet. This is
especially true with the growth in popularity of “Internet of
Things”-style applications, specifically large-scale sensor net-
works that are widely deployed, with both limited connectivity
and limited power.

Supporting these types of applications highlights two
challenges: a technique for reliably distributing computations
across these devices, and a technique for reliably collecting
the results of these computations at an aggregation point.

We motivate our work with the following industrial exam-
ple [1], as depicted in Figure 1. We assume a sensor network,
composed of sensors that record events at a given interval.
The sensors are sufficiently powerful: each contains persistent
storage with a processor and working memory capable of
running a programming language runtime system.

Now, consider the case where the operator of this sensor
network wants to compute the network-wide aggregate over
a sliding window. Historically, solving this problem has been
done in two ways, in both academia and industry.

A. Previous Approaches

The first approach relies on the central aggregation of edge-
generated data, typically performed at a data center of an
application service provider (ASP) [2]. This allows existing
off-the-shelf stream processing systems to be used to operate
over the data, at any time after the data has been collected [3].

This approach makes three assumptions that may not
necessarily to hold with the growth of edge-generated data.
First, this approach assumes that ASP’s will have the ability
to store all edge-generated data. Second, this approach assumes

that clients will have enough available storage to buffer events
during periods without connectivity. Finally, this approach
assumes that clients have enough power on their devices to
support the transmission of this data.

The second approach typically involves choosing a dis-
tributed algorithm for data aggregation and adapting an arbi-
trary computation to fit this algorithm. One example of this
approach is digest diffusion [4]. This algorithm combines the
efficient directed diffusion distribution model with an approach
to computing monotonic aggregates. The major drawback with
this approach is that the author must ensure that the original
safety and liveness guarantees of each algorithm are preserved
under this composition.

Returning to our example in Section I, we have two
possible ways to approach the problem:

1) Stream all computation to a central data center while
sensors are online; this requires unbounded storage
for indefinite network partitions and enough energy
to continuously transmit samples on the network, but
provides the most generality in program design.

2) Design an efficient algorithm for aggregating infor-
mation throughout the network for the given compu-
tation being run; this requires designing an efficient
way of propagating results for the type of computa-
tion being performed, but limits program reuse.

Given this, it is desirable to design computations that can
do a majority of the processing at the edge, with an efficient
way of distributing the results of the computation, in a manner
where out-of-order delivery, and delayed messages do not
cause anomalies in the computation.

We depict the ideal design in Figure 1. In this example,
each sensor maintains a sliding window of events referred to
as its samples and a fold operation is used to fold the samples
into a local average using the binary operation “avg”1.

B. A New Hope

Is it possible to combine these approaches where develop-
ers can write applications that operate on the entire data stream,
but take advantage of the optimized, fault-tolerant algorithms
for aggregating the results of these computations?

1In this example, we focus on the binary relation “avg”, however, we believe
that our solution is generic enough for any binary operation that is associative,
commutative and invertible.

Sensor1

Samples

Local
Avg

Fold Global
Avg

SensorN

Samples

Local
Avg

Fold

Lasp Operation

Input
User-Maintained CRDT

Output
Lasp-Maintained CRDT

… Global
Avg

FoldFold

Figure 1: Simplified diagram of the code presented in Figure 3.
This application computes both local and global averages from
a set of samples recorded by sensors in a sensor network.

We believe so. We propose a system where distributed com-
putations can be written using functional programming tech-
niques, but using conflict-free replicated data types (CRDTs)
that ensure that computations converge to the correct result;
this happens regardless of delays in propagation, out-of-order
message delivery, and limited connectivity.

In our previous work, we proposed a solution to the
problem of large-scale distributed programming without co-
ordination, named Lasp [5]. Lasp uses functional program-
ming techniques to deterministically compose conflict-free
replicated data types (CRDTs), which model sequential data
structures that when distributed, guarantee convergence under
concurrent mutations. This gives applications developed in
Lasp a strong convergence property: given replicated state that
is concurrently edited and eventually communicated to every
node in a distributed system, regardless of ordering, distributed
applications will converge to the correct result.

We subsequently extended Lasp by introducing a dis-
tributed, epidemic-based distribution model, named Selective
Hearing [6]. This distribution model uses an efficient epidemic
broadcast protocol [7] to support a large number of nodes, with
out-of-order message delivery and pairwise repair between
nodes. Lasp exploits this distribution model for all application
state, given that its use of CRDTs guarantees convergence
under message replay and reordering, fundamental properties
of unreliable, asynchronous networks.

However, the initial version of this model introduced in [6]
needs to be extended: it assumes that all application state will
be used by, and should be shared by, all nodes in the system.
This is inefficient in our example application for two reasons.

● Given that all state is shared by all nodes in the system,
any intermediate state or computations performed at
nodes that does not need to be shared, will be.

● Given that state created at each node is considered
unique, we require a mechanism for explicitly identi-
fying state that should be merged across replicas.

C. Contributions

We propose a programming model and implementation
for aggregate computations on a dynamic edge network that
supports out-of-order delivery, network churn, and limited
connectivity, all while looking to the programmer like a
declarative functional language that supports the programming
and reasoning techniques of functional programming.

The specific contributions of this paper are as follows:

● We introduce a “dynamic” declare operation. This
version of the declare operation creates a dynamically
scoped variable that is globally known, but has an
independent value per node.

● We introduce a “dynamic” fold operation. This fold
operation reduces the independent, per node values of
a dynamically scoped variable into a global variable.

● We introduce a “by-identifier” declare operation that
allows a Lasp variable to be declared with a globally
unique identifier that can be referenced by several
applications. This allows different applications in a
Lasp cluster to operate with the same data.

● We introduce the “Bounded-LWW-Set” CRDT and
provide its formal semantics. This set supports the
addition of arbitrary items at a given time, and ensures
that a bound is enforced when new items are added,
or pairwise merge operations occur due to replica-to-
replica communication.

II. BACKGROUND

In this section we review Conflict-free Replicated Data
Types, and Lasp.

A. Conflict-free Replicated Data Types (CRDTs)

CRDTs are data structures designed for use in replicated,
distributed computations. They come in a variety of flavors,
such as maps, sets, counters, registers, and flags, and they pro-
vide a programming interface that is similar to their sequential
counterparts. They are designed to capture concurrency prop-
erly: for example, by guaranteeing deterministic convergence
after concurrent additions of the same element at two different
replicas of a replicated set.

One variant of these data structures is formalized in terms
of bounded join-semilattices. Regardless of the type of muta-
tion performed on these data structures and whether that func-
tion results in a change that is externally non-monotonic, state
is always monotonically increasing and two states are always
join-able via a binary operation that computes a supremum, or
least upper bound. To provide an example, adding to a set is
always monotonic, but removing an element from a set is non-
monotonic. CRDT-based sets, such as the Observed-Remove
Set used in our example, model non-monotonic operations,
such as the removal of an item from a set, in a monotonic
manner. To properly capture concurrent operations that occur
at different replicas of the same objet, individual operations,
as well as the actors that generate those operations, must be
uniquely identified in the state.

The combination of monotonically advancing state, in
addition to ensuring that replicas can converge via a determin-
istic merge operation, provides a strong convergence property:
with a deterministic replica-to-replica communication protocol
that guarantees that all updates are eventually seen by all
replicas, multiple replicas of the same object are guaranteed
to deterministically converge to the same value. Shapiro et al.
have formalized this property as Strong Eventual Consistency
in [8].

To demonstrate, we look at an example. In this example,
a small circle represents an operation at a given replica and a
dotted line represents a message sharing that state with another
replica, where it is merged in with its current state.

RA

RB

RC

{1}

(1, {a}, {})

{1}

(1, {b}, {})

{}

(1, {b}, {b})

{1}

{1}

{1}

(1, {a, b}, {b})

(1, {a, b}, {b})

(1, {a, b}, {b})

add(1)

add(1) remove(1)

Figure 2: Example of resolving concurrent operations with an
Observed-Remove Set. In this example, concurrent operations
are represented via unique identifiers at each replica.

Figure 2 is an example of the Observed-Remove Set CRDT.
This set uses unique identifiers derived at each replica and
represents state at each replica as a triple of values, a set
of unique identifiers for each element addition and a set of
unique identifiers for each element removal. When removing
an element, removals remove all of the “observed” additions,
so under concurrent additions and removals, the set biases
towards additions.

B. Lasp

Lasp is a programming model that uses CRDTs as its
primary data type [5]. Lasp allows programmers to build
applications using CRDTs while ensuring that the composition
of the CRDTs also observes the same strong convergence
properties as the individual objects do. Lasp provides this by
ensuring that the monotonic state of each object maintains a
homomorphism with the program state.2

The relevant contribution of the Lasp programming model
is the process. In Lasp, processes are used to connect two or
more instances of CRDTs. One example of a Lasp process
is the filter operation over sets: as the input set is mutated,
the filter function is reevaluated, resulting in a new value for
the output. Lasp processes ensure this transformation is both
monotonic and deterministic.

III. EXAMPLE CODE

We present a walkthrough the example code in Figure 3.
This code illustrates a declarative approach to defining ef-

2For more information about how this transformation is performed and
maintained, the reader is referred to [5].

ficient, correct data transformations across distributed data
through a familiar functional programming approach.

1 %% Define a pair of counters to store the global
2 %% average.
3 GlobalAverage = lasp:declare(
4 {counter, counter}, global_average),
5

6 %% Declare a dynamic variable.
7 Samples = lasp:declare_dynamic(
8 {bounded_lww_set, 100}),
9

10 %% Define a local average; this will be
11 %% computed from the local Bounded-LWW set.
12 LocalAverage = lasp:declare_dynamic(
13 {counter, counter}),
14

15 %% Register an event handler with the sensor
16 %% that is triggered each time an event X is
17 %% triggered at a given timestamp T.
18 EventHandler = fun({X, T} ->
19 lasp:update(Samples, {add, x, t}, Actor)
20 end,
21 register_event_handler(EventHandler),
22

23 %% Fold the samples using the binary function
24 %% ‘avg’ into a local average.
25 lasp:fold(Samples, fun avg/2, LocalAverage)
26

27 %% Fold the local average using the binary
28 %% function ‘avg’ into a global average.
29 lasp:fold_dynamic(LocalAverage,
30 fun sum_pairs/2,
31 GlobalAverage)

Figure 3: Example application that computes both the local
and global average from a sliding set of samples recorded by
sensors in a sensor network.

1) We begin by declaring a pair of counters to store the
result of the global average computation. The average
is a pair of CRDT counters: sum and count.

2) We declare a local bounded “Last-Writer-Wins” set.
Each node executing this code will have its own local
set that it will operate on and this set will not be
replicated. We specify that this instance should be
bounded at 100 elements.

3) We declare a local pair of counters to store the result
of the local average computation.

4) We declare an event handler that is used to register
events into the Lasp system.

5) We use the fold3 operation with the binary function
avg/2 to compute the local average from the samples.

6) We use the fold dynamic operation with the binary
function sum pairs/2 to compute the global average
from the local averages.

IV. SYSTEM MODEL

We assume a dynamic set of nodes running the Lasp
runtime with the Selective Hearing distribution model [5], [6].
We assume reliable broadcast implemented by an epidemic
broadcast protocol. We assume nodes fail by crashing and each
node can be uniquely identified in the network. We assume that

3Fold is a process that does not terminate and continues to update the local
average as the samples change. See [5] for more information on how this
transformation is performed.

the Lasp runtime has a way to register a function with the edge
device: this function will be used to ingest events into the Lasp
system from the device as events are generated. We assume
that the device executes sequentially, and events arrive to the
Lasp runtime in order.

V. SEMANTICS

We give the formal semantics of our contributions to the
Lasp programming model.

A. Preliminaries

This section develops a number of definitions to set up the
stage for the next sections. We begin by the definition of all
the n-sized subsets of an arbitrary set.

Definition 5.1. For a set S and a natural number n such that
n ≤ ∣S∣, define ℘n(S) = {S′ ∈ ℘(S) ∣ ∣S′∣ = n}.

Next, we show how to lift a total order on elements to an
induced total order on the subsets of a totally ordered set.

Definition 5.2. Let (T,≤) be a total order. For S,S′ ∈ ℘(T),
write S ≤ S′ when ∃a′ ∈ S′∀a ∈ S. a ≤ a′.

Armed with those definitions, one can get to a smallest
n-sized subsets of a totally ordered set:

Definition 5.3. Let (T,≤) be a total order. For a natural
number n, fix Fn(T) = min ℘n(T).

Note that the notation “min” above denotes minimal rather
than minimum. As such, Fn(T) is not a unique set. It can
well be more than one set – depending on whether the original
element-level ≤ has a unique minimum or multiple minimals.
Note also that the above “min” functions using the induced ≤,
i.e., at the level of subsets of the totally ordered set.

B. Lasp

We refer to our previous notation for CRDTs, lattices,
processes, and variables in Lasp. [5]

A replicated triple (S,M,Q) where S is a bounded join-
semilattice representing the state of each replica, M is a set
of functions for mutating the state, and Q is a set of functions
for querying the state, is one type of CRDT.

A stream s is an infinite sequence of states of which only
a finite prefix of length n is known at any given time.

s = [si ∣ i ∈ N] (1)

The execution of one CRDT is represented by a stream of
states si, each of which is an element of the lattice S. Each
subsequent value of a stream performs a join with the previous
value to compute the next value.

A Lasp process tracks the monotonic growth of the internal
state of each CRDT and maintains a functional semantics
between the state of the input and output instances. Each
process correctly transforms the internal metadata of the input
CRDTs to compute the correct mapping of value and metadata
for the output CRDT.

C. Bounded LWW-Set

We define the bounded “Last-Writer-Wins” set. The
Bounded LWW-Set, given a bound b, is a state-based CRDT
whose bounded join-semilattice is defined by a list of triples,
each representing a value at a unique timestamp and whether
or not that value has been deleted.

si = {(t0, v0, r0), . . . , (tn, vn, rn)} (2)

We induce a total order over t.

≤t = t0 ≤ t1 ≤ . . . ≤ tn−1 ≤ tn (3)

We induce a total order over si, ordered by t.

≤si = (t0, v0, r0) ≤ . . . ≤ (tn, vn, rn) (4)

We define a function α that returns the list of elements that
have not been marked as removed.

α(si) = {(t, v,�) ∣ ∀(t, v,�) ∈ si} (5)

We define one mutation on the Bounded LWW-Set, add.
Add inserts a new element v, observed at timestamp t. If the
bound is exceeded during the add, the oldest element as defined
by ≤si is marked as removed.

add(t, v) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

si ∪ {(t, v,�)} if ∣α(si)∣ < b,
si ∪ {(t, v,�)} ∪

{(t, v,⊺) ∣ otherwise
(t, v,�) =m} ∖ {m}

(6)

where m =min si.

With all that, one can get to a first n active triples of an
Bounded LWW-Set. Note that not necessarily there is a unique
first n active triples. The definition below simply picks one
possible first n. Of course, the definition works just as fine
when there is indeed a unique first n.

Definition 5.4. Let si be the ith state of an LWW-Set. For
a bound b such that b < ∣si∣, define rα(si, b) = f , for some
f ∈ Fb(α(Si)).

For the ith state of an Bounded LWW-Set, define the
following shorthand for the tombstoned triples:

τ(si) = si ∖ α(si). (7)

We define the merge process for the Bounded LWW-Set
as a two phase process: first, we compute the merge of two
objects, then we enforce that the number of elements present
in the set are within the bound b.
m(si, s

′

i) = {(t, v, r ⊔ r′) ∣ (t, v, r) ∈ si ∧ (t, v, r′) ∈ s′i} ∪

{(t, v, r) ∣ (t, v, r) ∈ si ∧ (t, v,) ∉ s′i} ∪

{(t, v, r) ∣ (t, v, r) ∈ s′i ∧ (t, v,) ∉ si}
(8)

merge(si, s
′

i, b) = α(m) ∖

r ∪ {(ts, v,⊺) ∣ (ts, v,) ∈ r ∪ τ(m)}
(9)

where m =m(si, s
′

i) and r = rα(m,b).

We define the fold operation over the Bounded-LWW-
Set. The fold function defines a process that never termi-
nates, which reads elements of the input stream s and cre-
ates elements in the output stream t. Given query(si) =

V = {v0, ..., vn−1} and an operation op of t’s type
with neutral element e, this should return the state ti =

e op v0 op v1 ⋯ op vn−1. If remove(vk) is done on si,
then vk is removed from V , so vk must be removed from this
expression in order to calculate ti+1. The difficulty is that this
must be done through a monotonic update of ti’s metadata. We
present a correct but inefficient solution below. This solution
assumes that op is associative, commutative, and has an inverse
denoted by op′.

fold ′(si,op) = Op
(t,v,r)∈si {

Op v op Op′ v if r = ⊺
Op v otherwise.

fold(s,op) = t = [fold ′(si, f) ∣ si ∈ s]
(10)

The dynamically scoped fold, as seen in Figure 4, defines
a process that reads two input streams s and t, and creates
elements in the output stream t. As both the input stream s
and the accumulator stream t grow monotonically, the fold
operation is re-executed with the accumulator and the input
stream s until a fixed point is reached4.

Global
Avg

Local
Avg

Fold

1.) “bind” message
 received

2.) fold operation
 re-executed
 with new value

3.) “bind” broadcast
 to peers

Figure 4: Example of the dynamically scoped fold. As the the
value of the accumulator changes, the fold operation is re-
executed with the local average and the result broadcast until
a fixed point is computed in the network.

D. Lasp API

We extend the Lasp gossip-based distribution model, as
presented in [6]. We present the extended API below:

● i = declare(t, u): Given type information t and an
unique constant u, declare a new identifier i that con-
tains the type information and broadcast this identifier
to all nodes.

● i = declare dynamic(t, u): Given type information t,
return and a unique constant u, declare a new identifier
i that contains the type information and broadcast this
identifier to all nodes. This variable is “dynamically
scoped” per node; that is, its value is node specific
and not replicated across nodes.

4It is important to note that the bind operation always performs a merge
with the current state when received, so a fold over partial state still guarantees
monotonicity.

● fold dynamic(s, op, t): Fold values from s into t
using op. This is dynamically scoped: values of s
across all nodes in the cluster will be folded into t.

E. Node State

The system consists of a set of nodes, where the state of
each node is a four-tuple (σ, δi, δv, δl). Here, σ is the known
variables set, δi is the interest set, and δv is the known values
set. δd is the dynamic variable set. The execution of each node
is a sequence of states:

(σ(0), δ
(0)
i , δ(0)v , δ

(0)
d) =

({},{},{},{})→ ⋯→ (σ(k), δ
(k)
i , δ(k)v , δ

(k)
d)→ ⋯

(11)

The sets are initially empty; the k-th state is denoted by
superscript (k). We now define the content of each set.

The known variables set σ contains the unique variable iden-
tifiers known at the node:

σ = {i0, i1, . . .} (12)

The interest set δi contains information about the variables
that the node is interested in, i.e., for which a read operation
has been invoked but not yet resolved by the arrival of a new
value that satisfies the read predicate. For each variable, the
set contains the variable identifier i and a set of pairs of a one-
argument predicate p and a one-argument continuation c. When
the node receives a new value, then each predicate is evaluated,
and for those that succeed the continuation is invoked.

δi = {(i0,{(p0, c0), . . .}), (i1,{(p1, c1), . . .}), . . .} (13)

The known values set δv contains a set of pairs (i, v) of
variable identifiers i and their highest values v observed on
the node:

δv = {(i0, v0), (i1, v1), . . .} (14)

The dynamic variables set δd contains the unique variable
identifiers declared at the node:

δd = {i0, i1, . . .} (15)

F. Operations

All Lasp operations are initiated on one node and may
have effects on all nodes; we denote the initiating node
by a subscript k. We specify what each operation does on
a node state (σ, δi, δv, δd) to compute the subsequent state
(σ′, δ′i, δ

′

v, δ
′

d); any set that is not mentioned does not change
value. In addition to local operations, some operations do a
broadcast using the gossip layer; we assume the broadcast
message is delivered to all nodes including the sending node.

We redefine the local semantics of bind as presented in [6]
to use the dynamic variable set (δd), and introduce the new
declare, declare dynamic and fold dynamic operations.

bind The operation bind(i, v) updates the current value stored
in δv by doing a join with v.

bindk(i , v) ∶ true (16)

The operation is then only broadcast from k to all nodes j if
the variable is not contained by the dynamic variable set δd. If
it is contained, bind the variables locally. When this message

is broadcast, the message follows the semantics as presented
in [6].

(∄i ∈ δi ∧ ∃i ∈ δv)⇒ ∀j. bindjk(i, v) ; bindkk(i, v) (17)

declare The operation i = declare(t, u) returns the variable
identifier i.

i = declarek(t ,u) ∶ i = (u, t) (18)

The variable identifier is a pair of a unique constant u and type
information t. The operation then broadcasts the variable iden-
tifier with the following specification (the notation declarejk(i)
means that node k broadcasts to node j). This adds the variable
identifier to the known variables σ.

declarejk(i) ∶ σ
′
= σ ∪ {i} (19)

declare dynamic The operation i = declare dynamic(t, u)
returns the variable identifier i and adds the variable identifier
to the known variable set σ.

i = declare dynamick(t ,u) ∶ i = (u, t) (20)

The variable identifier is a pair of a unique constant u
and type information t. The operation then broadcasts the
variable identifier with the following specification (the notation
declare dynamicjk(i) means that node k broadcasts to node
j). This adds the variable identifier to the known variables σ.

declare dynamicjk(i) ∶ ∧ i = (u, t) ∧ σ′ = σ ∪ {i}

∧ δ′d = δd ∪ {i}
(21)

fold dynamic The operation fold dynamic(s, op, t) defines
a process that never terminates, which reads elements from
input streams s and t and produces elements in the output
stream t when either stream increases. fold dynamic(s, op, t)
operates similarly to the fold operation defined in [5], with
one exception, detailed below.

In this example, s is assumed to be a dynamically scoped
variable and t is assumed to be a global variable. Because
of this, si represents a single element in a collection existing
across nodes. The fold dynamic operation executes with the
singleton set of si and the result of the computation ti is then
broadcast to all nodes. Upon receipt of a new element of t, or
a change in s, the operation is re-executed until a fixed point
is reached.

f ′(si,op) = Op
(v,a,r)∈si(Opu∈av op Op′u∈rv)

fold dynamic(s,op, t) = t = [f ′({si}, f) ∣ si ∈ s]
(22)

The operation then follows the broadcast specification for the
bind operation as described in Equation 17.

VI. RELATED WORK

Digest diffusion [4], building on directed diffusion [9],
presents a energy-efficient model of distributed computation
through the use of function decomposition on monotonic
functions that compute aggregate values. Digest diffusion can
produce incorrect results if functions are not idempotent, given
the state dissemination mechanism used does not guarantee at-
most or exactly-once delivery.

Tiny AGgregation (TAG) [10] provides a declarative in-
terface for data collection and aggregation across sensor net-
works, inspired by modern database query languages. TAG
performs aggregations as data is propagated through the a
routing tree defined by the network. TAG does not provide
a general programming model: aggregations are performed
against a sensor table over user-defined epochs.

Finally, *Lisp, developed for the Connection Machine [11]
presented the idea of PVARS: parallel variables that had a
different value per virtual processor. Parallel operations are
used to modify the values for all instances of a variable across
processors with a single operation, or combine the values
across different parallel variables.

VII. CONCLUSION

This paper presents a work in progress report on a declar-
ative method for performing aggregations over devices at the
edge by extending the Lasp programming model with the
notion of dynamic scoping. We plan to continue this work
by implementing these extensions and evaluating how general
our approach is for computing aggregates.

ACKNOWLEDGMENT

This work was partially funded by the SyncFree project
in the European Seventh Framework Programme (FP7/2007-
2013) under Grant Agreement no 609551.

REFERENCES

[1] M. Nijdam, private communication, 2015.
[2] S. Khare, K. An, A. Gokhale, and S. Tambe, “Functional Reactive

Stream Processing for Data-centric Publish/Subscribe Systems.”
[3] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized

streams: an efficient and fault-tolerant model for stream processing on
large clusters,” in Proceedings of the 4th USENIX conference on Hot
Topics in Cloud Ccomputing. USENIX Association, 2012, pp. 10–10.

[4] J. Zhao, R. Govindan, and D. Estrin, “Computing aggregates for
monitoring wireless sensor networks,” in Sensor Network Protocols
and Applications, 2003. Proceedings of the First IEEE. 2003 IEEE
International Workshop on. IEEE, 2003, pp. 139–148.

[5] C. Meiklejohn and P. Van Roy, “Lasp: A Language for Distributed,
Coordination-Free Programming,” in Proceedings of the 17th Interna-
tional Symposium on Principles and Practice of Declarative Program-
ming. ACM, 2015, pp. 184–195.

[6] ——, “Selective Hearing: An Approach to Distributed, Eventually Con-
sistent Edge Computation,” in Workshop on Planetary-Scale Distributed
Systems collocated with SRDS 2015. IEEE, 2015.

[7] J. Leitao, J. Pereira, and L. Rodrigues, “Epidemic broadcast trees,” in
26th IEEE International Symposium on Reliable Distributed Systems
(SRDS 2007). IEEE, 2007, pp. 301–310.

[8] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A compre-
hensive study of convergent and commutative replicated data types,”
INRIA, Tech. Rep. RR-7506, 01 2011.

[9] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
a scalable and robust communication paradigm for sensor networks,”
in Proceedings of the 6th annual international conference on Mobile
computing and networking. ACM, 2000, pp. 56–67.

[10] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: A
tiny aggregation service for ad-hoc sensor networks,” ACM SIGOPS
Operating Systems Review, vol. 36, no. SI, pp. 131–146, 2002.

[11] N. H. Brown Jr, “Neural network implementation approaches for the
connection machine,” in Neural Information Processing Systems, 1988,
pp. 127–136.

