Reading Suggestions

- Chapter 3
 - Sections 3.1 – 3.4 [careful]
 but skip or browse [3.4.4,3.4.7,3.4.8]
 - Sections 3.6, 3.7 [careful]

- And of course the handouts!
Organizational

- Assignment 3 deadline is extended (again) to October 13 (Monday)
- Consultation at October 11 (Saturday) from 11:00 – 13:00 at PC Lab2
- Check your marks for Assignment 1

Content

- Higher Order Programming
- Abstract Data Types
Higher-Order Programming

Remember

- Functions are procedures
 - Special Syntax, nested syntax, expression syntax
 - They are procedures with one argument as the result arguments
- \[
\text{fun } \{F \ X\} \\
\quad \text{fun } \{Y\} \ X+Y \ \text{end} \\
\text{end}
\]
- A function that returns a function that is specialized on X
Remember II

- Successive transformations
 1. `fun {F X}
 fun {Y} X+Y end
 end
 2. `proc {F X ?R}
 R = fun {Y} X+Y end
 end
 3. `proc {F X ?R}
 R = proc {Y ?R1} R1=X+Y end
 end

Remember III

3. `proc {F X ?R}
 R = proc {Y ?R1} R1=X+Y end
 end

- F is a procedure value
- When F is called its 2nd argument returns a procedure value
- ‘?’ is comment indicating output argument
1. fun \{F X\}
 fun \{$ Y\} X+Y end
end

- You should think directly in terms of functions
- \(F\) is a function of one argument
- When \(F\) is called it returns a function (Call it \(G\)), e.g. the call \(\{F \, 1\}\)
- This function \(G\) when called, \(\{G \, Y\}\), it returns \(1+Y\)

\[\lambda\] The type of \(F\)
\[\lambda\] \(\langle\text{fun} \{F \, \langle\text{Num}\rangle\}:\langle\text{fun} \{\$ \, \langle\text{Num}\rangle\}: \langle\text{Num}\rangle\}\rangle\)
Higher-Order Programming

- **Higher-order programming** = the set of programming techniques that are possible with procedure values (lexically-scoped closures)
- higher-order programming is the foundation of secure data abstraction component-based programming and object-oriented programming

Higher-Order Programming

- Basic operations
 - **Procedural abstraction**: the ability to convert any statement into a procedure value
 - **Genericity**: the ability to pass procedure values as arguments to a procedure call
 - **Instantiation**: the ability to return procedure values as results from a procedure call
 - **Embedding**: the ability to put procedure values in data structures
Higher-order programming

- Control abstractions
 - The ability to define control constructs
 - Integer and list loops, accumulator loops, folding a list (left and right)

Genericity

- To make a function generic is to let any specific entity (i.e., any operation or value) in the function body become an argument of the function.
- The entity is abstracted out of the function body.
Genericity

- Replace specific entities (zero 0 and addition +) by function arguments

```haskell
fun {SumList Ls}
    case Ls
    of nil then 0
    [] X|Lr then X+{SumList Lr}
end
end
```

```haskell
fun {FoldR L F S}
    case L
    of nil then S
    [] X|L2 then {F X {FoldR L2 F S}}
end
end
```
Genericity SumList

```plaintext
fun {SumList Ls}
  {FoldR L
    fun {X Y} X+Y end 0}
end
```

Genericity ProductList

```plaintext
fun {ProductList Ls}
  {FoldR L
    fun {X Y} X*Y end 1}
end
```
Genericity Some

fun {Some Ls}
{FoldR L
 fun {X Y} Y {orelse Y end
 false}
end

List Mapping

- Mapping
 - each element recursively
 - calling function for each element
 - Constructs an output list

- Separate function calling by passing a function as argument
Other generic functions: Map

fun {Map Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 {F X}!{Map Xr F}
 end
end
{Browse {Map [1 2 3]
 fun {$ X} X*X end}}
Instantiation

- **Instantiation**: the ability to return procedure values as results from a procedure call
- A factory of specialized functions

```plaintext
fun {Add X}
  fun {$ Y} X+Y end
end

Inc = {Add 1}
{Browse {Inc 5}} % shows 6
```

Instantiation: An application (protected values)

- Given a value (e.g. [1 2 3]) we would like to seal it for any other client except for a person that has a key
- A procedure that has the key can access the list
- No other procedures can access the value
Instantiation: An application (protected values)

New basic data type is names
A name is unforgeable atom:
• Cannot be displayed
• The only possible operation is comparison
• This a fundamental addition to the model
• No longer declarative

X = \{NewName\}
Y = \{NewName\}
• X and Y are different
Wrappers

- proc {NewWrapper Wrap Unwrap}
 Key={NewName}
 in
 fun {Wrap X} ... end
 fun {Unwrap W} {W Key} end
end

- proc {NewWrapper ?Wrap ?Unwrap}
 Key={NewName}
 in
 fun {Wrap X} ... end
 fun {Unwrap W} {W Key} end
end

- ? Indicate that Wrap and UnWrap is output arguments (just a comment)
Wrappers

- **declare** `W UW`
 `{NewWrapper W UW}`
 `RL = {W [1 2 3]}`
 `{Browse RL} % cannot see`
 `{Browse {UW RL}} % shows [1 2 3]`

- NewWrapper is a factory that creates two related procedures

Instantiation: An application (protected values)

- `{Wrap [1 2 3]} → [1 2 3]`
- `{UnWrap [1 2 3]} → [1 2 3]`
Wrappers

- proc {NewWrapper ?Wrap ?Unwrap}
 Key={NewName}
 in
 fun {Wrap X}
 fun{$ K} if K==Key then X end end
 fun {Unwrap W} {W Key} end
end

Instantiation: An application (protected values)

[1 2 3] Wrap → [1 2 3]

[1 2 3] UnWrap → [1 2 3]
Embedding

- Embedding is when procedure values are put in data structures
- Embedding has many uses:
 - Modules: a module is a record that groups together a set of related operations
 - Software components: a software component is a generic function that takes a set of modules as input (imported modules) and returns a new module. It can be seen as specifying a module in terms of the modules it needs.

Control Abstractions

```plaintext
proc {For I J P}
  if I > J then skip
  else {P I} {For I+1 J P}
  end
end
end

{For 1 10 Browse}

for I in 1..10 do {Browse I} end
```
Control Abstractions

proc \{\text{ForAll Xs P}\}
 case Xs
 of nil then skip
 [] X|Xr then
 \{P X\} \{\text{ForAll Xr P}\}
 end
end

\{\text{ForAll } [a \ b \ c \ d]\}
proc\{I\}
 \{\text{System.showInfo "the item is: " } \# I\}
end
Left-Folding

- Two values define "folding"
 - initial value S
 - binary function F

- Left-folding

$$\{\text{FoldL} \ [x_1 \ldots x_n] \ F \ S\}$$

$$\{F \ldots \{F \{F \ S \ x_1\} \ x_2\} \ldots \ x_n\}$$

or

$$(... ((S \otimes_F x_1) \otimes_F x_2) \ldots \otimes_F x_n)$$

Left-Folding

- Left-folding

$$\{\text{FoldL} \ [x_1 \ldots x_n] \ F \ S\}$$

![Diagram showing left-folding process]
Left-Folding

- Two values define “folding”
 - initial value \(S \)
 - binary function \(F \)

- Left-folding \(\{ \text{FoldL} \} \)

\[
\{ F \ldots \{ F \{ F S \} x_1 \} x_2 \ldots x_n \}
\]

or

\[
(... ((S \otimes_F x_1) \otimes_F x_2) \ldots \otimes_F x_n)
\]

FoldL

\[
\text{fun } \{ \text{FoldL} \ Xs \ F \ S \}
\]

\[
\begin{align*}
\text{case } Xs \\
\text{of } \text{nil} & \text{ then } S \\
[] & X|Xr \text{ then } \{ \text{FoldL} \ Xr \ F \{ F S X \} \}
\end{align*}
\]

end
Properties of FoldL

- Tail recursive (iterative computation)
- First element of list if folded first…

Right-Folding

- Two values define “folding”
 - initial value S
 - binary function F

 $\text{Right-folding } \{ \text{FoldR } \left[x_1 \ldots x_n \right] F S \} \rightarrow \{ F \ x_1 \ \{ F \ x_2 \ \ldots \ \{ F \ x_n \ S \} \ldots \} \}$

 or

 $x_1 \odot_F (x_2 \odot_F (\ldots (x_n \odot_F S) \ldots))$
Right-Folding

- Two values define “folding”
 - initial value S
 - binary function F

\[
\begin{array}{c}
X_n \\
\downarrow \\
F \\
\downarrow \quad F \\
S \\
\end{array} \\
\begin{array}{c}
X_{n-1} \\
\downarrow \\
F \\
\downarrow \quad F \\
X_1 \\
\end{array}
\]

or

\[
X_1 \otimes_F (X_2 \otimes_F (\ldots (X_n \otimes_F S) \ldots))
\]
FoldR

```plaintext
fun {FoldR Xs F S}
  case Xs
  of nil  then S
      [] X|Xr then {F X {FoldR Xr F S}}
  end
end
```

Properties of FoldR

- Not tail-recursive (recursive computation)
- Elements folded in order
FoldL or FoldR?

- FoldL and FoldR compute same value if:
 - \(\{ F \ S \ x_i \} = \{ F \ x_i \ S \} \), for all \(i, (1 \leq i \leq n) \)
 - \(\lambda x \{ F \ x_i \ x_j \} x_k = \{ F \ x_i \ \{ F \ x_j \ x_k \} \} \)

- If the condition holds use FoldL
 - FoldL tail-recursive
 - Not always true (see next example)

- Otherwise: choose FoldL or FoldR
 - depending on required order of result

Example: Appending Lists

- Given: list of lists
 - \([[[a \ b]] [1 \ 2] \ [e] \ [g]]\)
- Task: compute all elements in one list in order
- We can use Fold* with (* is either L or R)
 - Append as F
 - nil as S
Example:Appending Lists

- Given: list of lists

 \[\text{[[a b] [1 2] [e] [g]]} \]

- We can use Fold* with
 - Append as F
 - nil as S

\[\{\text{Append nil L}\} = \{\text{Append L nil}\} \]

\[\{\text{Append L1} \{\text{Append L2 L3}\}\} = \{\text{Append } \{\text{Append L1 L2}\} L3\} \]

Example:Appending Lists

- Given: list of lists

 \[\text{[[a b] [1 2] [e] [g]]} \]

- Task: compute all elements in one list in order

- Solution:

 \[
 \text{fun}\ \{\text{AppAll Xs}\} \\
 \{\text{FoldR Xs Append nil}\}
 \]

- Question: What would happen with FoldL?
Tuples and Records...

- Techniques for lists explored here of course applicable...
 - ...see tutorial

Abstract Data Types
Data Types

- Data type
 - set of values
 - operations on these values

- Primitive data types
 - records
 - numbers
 - …

- Abstract data types
 - completely defined by its operations (interface)
 - implementation can be changed without changing use

Example: Lab Assignment 3

- Abstract data type for Huffman-trees

- Different implementations

- Same interface
Motivation

- Sufficient to understand interface only
- Software components can be developed independent of use
 - as long as only interface is used
- Developers need not to know implementation details

Outlook

- How to define abstract data types
- How to organize abstract data types
- How to use abstract data types
Abstract data types (ADTs)

- ADTs: it is possible to change the implementation of an ADT without changing its use
- The ADT is described by a set of procedures
 - Including how to create a value of the ADT
- These operations are the only thing that a user of the abstraction can assume

Example: stack

- Assume we want to define a new data type \(\langle\text{stack } T\rangle\) whose elements are of any type \(T\)
- We define the following operations (with type definitions)

\[
\begin{align*}
\langle\text{fun } \{\text{NewStack}\} : \langle\text{stack } T\rangle\rangle \\
\langle\text{fun } \{\text{Push } \langle\text{stack } T\rangle \langle T\rangle : \langle\text{stack } T\rangle\rangle \\
\langle\text{proc } \{\text{Pop } \langle\text{stack } T\rangle \langle T\rangle \langle\text{stack } T\rangle\rangle \\
\langle\text{fun } \{\text{isEmpty } \langle\text{stack } T\rangle : \langle\text{Bool}\rangle\rangle
\end{align*}
\]
Example: stack (algebraic properties)

- Algebraic properties are logical relations between ADT’s operations
- These operations normally satisfy certain laws (properties)
- \(\{\text{IsEmpty } \{\text{NewStack}\}\} = \text{true} \)
- For any stack \(S \), \(\{\text{IsEmpty } \{\text{Push } S\}\} = \text{false} \)
- For any \(E \) and \(T \), \(\{\text{Pop } \{\text{Push } S E \} E S\} \) holds
- For any stack \(S \), \(\{\text{Pop } \{\text{NewStack}\} S\} \) raises error

Stack (implementation I) using lists

```
fun \{NewStack\} nil end
fun \{Push S E\} E|S end
proc
  \{Pop E|S ?E1 ?S1\} E1 = E S1 = S
end
fun \{IsEmpty S\} S==nil end
```
Stack (implementation II)
using tuples

fun {NewStack} emptyStack end
fun {Push S E} stack(E S) end
proc {Pop stack(E S) E1 S1}
 E1 = E
 S1 = S
end
fun {IsEmpty S} S==emptyStack end

Example: Dictionaries

- Designing the interface

 \{MakeDict\}
 \{DictMember D F\}
 \{DictAccess D F\}
 \{DictAdjoin D F X\}

- Interface depends on purpose, could be richer (for example, DictCondSelect)
Using the Dict ADT

- Now we can write programs using the ADT without even having an implementation for it
- Implementation can be provided later
- Eases software development in large teams

Implementing the Dict ADT

- Now we can decide on a possible implementation for the Dict ADT
 - based on pairlists
 - based on records

- Regardless on what we decide, programs using the ADT will work!
 - the interface is a contract between use and implementation
Dict: Pairlists

fun {MakeDict}
 nil
end
fun {DictMember D F}
 case D
 of nil then false
 [] G#X|Dr then
 if G==F then true
 else {DictMember Dr F}
 end
end
...

Dict: Records

fun {MakeDict}
 mt
end
fun {DictMember D F}
 {HasFeature D F}
end
fun {DictAccess D F}
 D.F
end
fun {DictAdjoin D F X}
 {AdjoinAt D F X}
end
Example Frequency Counting

local
 fun {Inc D X}
 if {DictMember D X} then
 {DictAdjoin D X {DictAccess D X}+1}
 else {DictAdjoin D X 1}
 end
 end
in
 fun {Cnt Xs}
 % returns dictionary
 {FoldL Xs Inc {MakeDict}}
 end
end

homework: understand and try this example!
Evolution of ADTs

- Important aspect of developing ADTs
 - start with simple (possibly inefficient) implementation
 - refine to better (more efficient) implementation
 - refine to carefully chosen implementation
 - hash table
 - search tree

- All of evolution is local to ADT
 - no change of programs using ADT is needed!

Have a Nice Weekend