Overview

- Organization
- Course overview
- Introduction to programming concepts
Organization

Organizational

- I need some feedback
 - Tutorials/exercises
 - Assignment 1

- How does the reading go
 - Chapter 1
Reading Suggestions

- Chapter 2
 - Sections 2.1 – 2.3 [careful]
 - Section 2.4 – 2.5 [browse]
 - Section 2.6 [careful]

- And of course the handouts!

Summary So Far

- We know about functions
 - recursive functions
 - how to compose them
 - touched on higher order functions

- We know about partial values
 - bound and unbound variables (single assignment, dataflow)
 - numbers and atoms
 - tuples, lists, records
 - unification

- We know (a bit) about a declarative programming model
 - functions of partial values
Questions?

- Now is the time to ask!

Overview

- We are finishing “Introduction to programming concepts”
 - procedures
 - local declarations
 - translating programs to kernel language

- We are starting with computation model of declarative programming
Towards the Model

This is the outlook section

Confusion

- By now you should feel uneasy and slightly embarrassed (maybe even confused)
- We haven’t explained how computation actually proceeds
- No, you are fine? Wait and see…
Another Length

\[
\text{fun } \{L \ Xs \ N\} \\
\text{ case } Xs \\
\text{ of } \text{nil} \text{ then } N \\
[\] \ X|Xr \text{ then } \{L \ Xr \ N+1\} \\
\text{ end} \\
\text{ end} \\
\text{fun } \{\text{Length } Xs\} \\
\{L \ Xs \ 0\} \\
\text{ end}
\]

Comparison

- This length is six-times faster then our first one!
 - hey, it has one argument more!
 - so what
 - what could be the difference
 - and what is more: it takes considerable less memory!
 - actually, it runs in constant memory!

- Our model will answer
 - intuition: even though recursive it executes like a loop
There Is No Free Lunch!

- Before we can answer the questions we have to make the language small
 - sort out what is primitive: kernel language
 - what can be expressed

- Kernel language
 - based on procedures
 - no functions

What Is a Procedure?

- It does not return a value
 - Java: methods with `void` as return type

- But how to return a value anyway?
 - Idea: use an unbound variable
 - Why: we can supply value later (before return)
 - Aha: so that's why we have been dwelling on this!
Our First Procedure: Sum

```
proc {Sum Xs N}
    case Xs
    of nil then N=0
        [] X|Xr then N=X+{Sum Xr}
    end
end
```

- Hey, we call `Sum` as if it was a function
 - that's okay. It is just syntax
 - we'll sort that out next week

Being More Primitive

```
proc {Sum Xs N}
    case Xs
    of nil then N=0
        [] X|Xr then
            local M in {Sum Xr M} N=X+M end
    end
end
```

- Local declaration of variables
- Needed to fully base kernel language on procedures
What is Computation Model

- Formal language
 - Syntax
- Semantics
 - How sentences of the language are executed on (an abstract) machine
- Precise model
 - Allows reasoning about program correctness
 - Allows reasoning program’s time complexity
 - Allows reasoning about program’s space complexity

Towards Computation Model

- Step One: Make the language small
 - Transform the language of function on partial values to a small kernel language

- Kernel language
 - procedures: no functions
 - records: no tuple syntax
 - local declarations: no nested calls

Statements and Expressions

- Expressions describe computations that return a value
- Statements just describe computations
 - Transforms the state of a store (single assignment)
- Kernel language
 - The only expressions allowed: value construction for primitive data types
 - Otherwise only statements

What Is a Procedure?

- It does not return a value
 - Java: methods with `void` as return type
- But how to return a value anyway?
 - Idea: use an unbound variable
 - Why: we can supply its value after we have computed it!
 - Aha: so that’s why we have been dwelling on this!
Our First Procedure: Sum

```plaintext
proc {Sum Xs N}
    case Xs
    of nil then N=0
    [] X|Xr then N=X+{Sum Xr}
    end
end

Hey, we call Sum as if it was a function
  that's okay. It is just syntax
```

Being More Primitive

```plaintext
proc {Sum Xs N}
    case Xs
    of nil then N=0
    [] X|Xr then
        local M in {Sum Xr M} N=X+M end
    end
end

Local declaration of variables
Needed to fully base kernel language on procedures
```
Local Declarations

\texttt{local X in ... end}

- Introduces the variable identifier \(X \)
 - visible between \texttt{in} and \texttt{end}
 - called scope of the variable
 - also scope of the declaration

- Creates a new store variable
- Links identifier to store variable
 - also uses an environment
 - more on this later

Abbreviations for Declarations

- Kernel language
 - just one variable introduced
 - no direct assignment

- Programming language
 - several variables
 - variables can be also assigned (initialized) when introduced
Transforming Declarations

Multiple Variables

\[
\begin{align*}
\text{local } X, Y \text{ in} & \quad \text{local } X \text{ in} \\
\langle \text{statement} \rangle & \quad \langle \text{statement} \rangle \\
\text{end} & \quad \text{end}
\end{align*}
\]

Transforming Declarations

Direct Assignment

\[
\begin{align*}
\text{local } X = \langle \text{expression} \rangle \text{ in} & \quad \text{local } X \text{ in} \\
\langle \text{statement} \rangle & \quad \langle \text{statement} \rangle \\
\text{end} & \quad \text{end}
\end{align*}
\]
Transforming Expressions

- Unfold function calls to procedure calls
- Use local declaration for intermediate values
- Order of unfolding:
 - left to right
 - innermost first
 - watch out: different for record construction (later)

Function Call to Procedure Call

\[X = \{ F \ Y \} \quad \rightarrow \quad \{ F \ Y \ X \} \]
Unfolding Nested Calls

\[
\{ P \{ F \times Y \} Z \} \quad \Rightarrow \quad \begin{align*}
&\text{local } U_1 \text{ in } \\
&\quad \{ F \times Y U_1 \} \\
&\quad \{ P U_1 Z \} \\
&\text{end}
\end{align*}
\]

Unfolding Nested Calls

\[
\{ P \{ F \{ G \times X \} Y \} Z \} \quad \Rightarrow \quad \begin{align*}
&\text{local } U_2 \text{ in } \\
&\quad \text{local } U_1 \text{ in } \\
&\quad \{ G \times U_1 \} \\
&\quad \{ F U_1 Y U_2 \} \\
&\text{end} \\
&\quad \{ P U_2 Z \} \\
&\text{end}
\end{align*}
\]
Unfolding Conditionals

local B in
 if X>Y then
 ...
 else
 ...
end

if B then
 ...
else
 ...
end

Expressions to Statements

X = if B then
 ...
else
 ...
end

if B then
 X = ...
else
 X = ...
end
Length (0)

fun \{\text{Length Xs}\}

 case Xs
 of nil then 0
 [] X|Xr then 1+{\text{Length Xr}}
 end

end

Length (1)

proc \{\text{Length Xs N}\}

 N=case Xs
 of nil then 0
 [] X|Xr then 1+{\text{Length Xr}}
 end

end

- Make it a procedure
Length (2)

proc {Length Xs N}
 case Xs
 of nil then N=0
 [] X|Xr then N=1+{Length Xr}
 end
end

• Expressions to statements

Length (3)

proc {Length Xs N}
 case Xs
 of nil then N=0
 [] X|Xr then
 local U in
 {Length Xr U}
 N=1+U
 end
 end
end

• Unfold function call
Length (4)

\begin{verbatim}
proc {Length Xs N}
 case Xs
 of nil then N=0
 [] | Xr then
 local U in
 {Length Xr U}
 {Number.'+' I U N}
 end
end
end

- Replace operation (+, dot-access, <, >, ...): procedure!
\end{verbatim}

Summary

- Transform to kernel language
 - function definitions
 - function calls
 - expressions

- Kernel language
 - procedures
 - declarations
 - statements
Programming Model

- **Computation model**
 - describes a language and how sentences (expressions, statements) of the language are executed by an abstract machine

- **Set of programming techniques**
 - expresses solutions to problems you want to solve

- **Set of reasoning techniques**
 - reason about programs to increase confidence that they compute correctly and efficiently
Declarative Programming Model

- Guarantees that computations are evaluating functions on (partial) data structures
- Core of functional programming
 - LISP, Scheme, ML, Haskell
 - Functional part of Erlang
- Core of logic programming
 - Prolog, Mercury
 - Functional (non-relational) part
- Stateless programming
Description of a Language

- **Language = Syntax + Semantics**
- The *syntax* of a language is concerned with the *form* of a program: how expressions, commands, declarations etc. are put together to result in the final program.
- The *semantics* of a language is concerned with the *meaning* of a program: how the programs behave when executed on computers.

Programming Language Definition

- **Syntax**: grammatical structure
 - lexical: how words are formed
 - phrasal: how sentences are formed from words
- **Semantics**: meaning of programs
 - Informal: English documents (e.g. Reference manuals, language tutorials and FAQs etc.)
 - Formal:
 - Operational Semantics (execution on an abstract machine)
 - Denotational Semantics (each construct defines a function)
 - Axiomatic Semantics (each construct is defined by pre and post conditions)
Language Syntax

- Defines *legal* programs
 - programs that can be executed by machine
- Defined by *grammar rules*
 - define how to make ‘sentences’ out of ‘words’
- For programming languages
 - sentences are called statements (commands, expressions)
 - words are called tokens
 - grammar rules describe both tokens and statements

Language Syntax

- *Statement* is sequence of tokens
- *Token* is sequence of characters
- *Lexical analyzer* is a program
 - recognizes character sequence
 - produces token sequence
- *Parser* is a program
 - recognizes token sequence
 - produces statement representation
- Statements are represented as *parse trees*
Backus-Naur Form

- BNF (Backus-Naur Form) is a common notation to define grammars for programming languages
- A BNF grammar is set of grammar (rewriting) rules Ω
- A set of terminal symbols T (tokens)
- A set of Non-terminal symbols N
- One start symbol σ
- A grammar rule
 \[
 \langle \text{nonterminal} \rangle ::= \langle \text{sequence of terminal and nonterminal} \rangle
 \]

Examples of BNF

(A) BNF rules for robot commands
- A robot arm only accepts a command from
 \{up, down, left, right\}
- \langle move \rangle ::= \langle cmd \rangle
- \langle move \rangle ::= \langle cmd \rangle \langle move \rangle
- \langle cmd \rangle ::= up
- \langle cmd \rangle ::= down
- \langle cmd \rangle ::= left
- \langle cmd \rangle ::= right
Grammar Rules

- \(\text{digit}\) is defined to represent one of the ten tokens 0, 1, ..., 9

 \[
 \text{digit} ::= 0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9
 \]

- The symbol ‘\(|\)’ is read as ‘or’

- Another reading is that \(\text{digit}\) describes the set of tokens \{0,1,..., 9\}

Examples of BNF

(A) BNF rules for robot commands

- A robot arm only accepts a command from \{up, down, left, right\}

 \[
 \text{move} ::= \text{cmd} | \text{cmd} \text{move}
 \]

 \[
 \text{cmd} ::= \text{up} | \text{down} | \text{left} | \text{right}
 \]

- Examples of command sequences:

 - up
 - down left
 - up down down right left
Examples of BNF

- Integers
 \[\langle \text{integer} \rangle ::= \langle \text{digit} \rangle | \langle \text{digit} \rangle \langle \text{integer} \rangle \]
 \[\langle \text{digit} \rangle ::= 0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 \]

- \langle \text{integer} \rangle is defined as the sequence of a \langle \text{digit} \rangle followed by zero or more \langle \text{digit} \rangle's

Extended Backus-Naur Form

- EBNF (Extended Backus-Naur Form) is a common notation to define grammars for programming languages
- Terminal symbols and non-terminal symbols
 - \textit{Terminal symbol} is a token
 - \textit{Nonterminal symbol} is a sequence of tokens, and is represented by a grammar rule
 \[\langle \text{nonterminal} \rangle ::= \langle \text{rule body} \rangle \]
Grammar Rules

- Grammar rules may refer to other nonterminals

 \[\langle \text{integer} \rangle ::= \langle \text{digit} \rangle \{ \langle \text{digit} \rangle \} \]

- \(\langle \text{integer} \rangle \) is defined as the sequence of a \(\langle \text{digit} \rangle \) followed by zero or more \(\langle \text{digit} \rangle \)'s

Grammar Rules Constructs

- \(\langle x \rangle \) nonterminal \(x \)
- \(\langle x \rangle ::= \text{Body} \) \(\langle x \rangle \) is defined by \text{Body}
- \(\langle x \rangle | \langle y \rangle \) either \(\langle x \rangle \) or \(\langle y \rangle \) (choice)
- \(\langle x \rangle \langle y \rangle \) the sequence \(\langle x \rangle \) followed by \(\langle y \rangle \)
- \(\{ \langle x \rangle \} \) sequence of zero or more occurrences of \(\langle x \rangle \)
- \(\{ \langle x \rangle \}^+ \) sequence of one or more occurrences of \(\langle x \rangle \)
- \([\langle x \rangle] \) zero or one occurrence of \(\langle x \rangle \)
How to Read Grammar Rules

- From left to right

- Gives the following sequence
 - each terminal symbol is added to the sequence
 - each nonterminal is replaced by its definition
 - for each \(\langle x \rangle \mid \langle y \rangle \) pick any of the alternatives
 - for each \(\langle x \rangle \langle y \rangle \) is the sequence \(\langle x \rangle \) followed by the sequence \(\langle y \rangle \)

Examples

- \(\langle \text{statement} \rangle ::= \text{skip} \mid \langle \text{expression} \rangle \text{‘=}\langle \text{expression} \rangle \mid \ldots \)
- \(\langle \text{expression} \rangle ::= \langle \text{variable} \rangle \mid \langle \text{integer} \rangle \mid \ldots \)

- \(\langle \text{statement} \rangle ::= \text{if} \langle \text{expression} \rangle \text{then} \langle \text{statement} \rangle \)
 \{ \text{elseif} \langle \text{expression} \rangle \text{then} \langle \text{statement} \rangle \}
 \{ \text{else} \langle \text{statement} \rangle \} \text{end} \mid \ldots \)
Context-free Grammars

- Grammar rules can be used to
 - verify that a statement is legal
 - generate all possible statements
- The set of all possible statements generated from a grammar and one nonterminal symbol is called a (formal) language
- EBNF notation defines essentially a class of grammars called context-free grammars
- Expansion of a nonterminal is always the same regardless of where it is used

2. Context Free Grammar

Example 1:
- Let $N = \{\langle a \rangle\}$, $T = \{0,1\}$
 \[\Omega = \{\langle a \rangle ::= 11a0, \langle a \rangle ::= 110\}, \quad \sigma = \langle a \rangle \]

<table>
<thead>
<tr>
<th>$110 \in L(G)$</th>
<th>$11100 \in L(G)$</th>
<th>But $011 \notin L(G)$</th>
</tr>
</thead>
</table>

These trees are called parse trees or syntax trees
4. More Examples of EBNF

(C) BNF rules for Real Numbers:

\[
\begin{align*}
\text{<real-#>} &::= \text{<int-part>} \cdot \text{<fraction>} \\
\text{<int-part>} &::= \text{<digit>} | \text{<int-part>} \text{<digit>} \\
\text{<fraction>} &::= \text{<digit>} | \text{<digit>} \text{<fraction>} \\
\text{<digit>} &::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
\end{align*}
\]

```
137.91
```

Ambiguity

- A grammar is ambiguous if there exists a string which gives rise to more than one parse tree.
- Most common cause is due to infix binary operation

\[
\langle \text{expr} \rangle ::= \langle \text{num} \rangle | \langle \text{expr} \rangle - \langle \text{expr} \rangle
\]

Parse: 1-2-3
Ambiguity

\[\langle \text{expr} \rangle ::= \langle \text{num} \rangle | \langle \text{expr} \rangle '-' \langle \text{expr} \rangle \]

Parse: \((1-2)-3\)

Which parse tree?
Ambiguity resolution for binary operators

- (A) Associative Rules
 Given a binary operator ‘op’ and a string
 \[a_1 \ 'op' \ a_2 \ 'op' \ a_3 \]
 - If \[a_1 \ 'op' \ a_2 \ 'op' \ a_3 \] is interpreted as \((a_1 \ 'op' \ a_2) \ 'op' \ a_3\),
 then ‘op’ is **left associative**.
 - If \[a_1 \ 'op' \ a_2 \ 'op' \ a_3 \] is interpreted as \(a_1 \ 'op' \ (a_2 \ 'op' \ a_3)\),
 then ‘op’ is **right associative**.
 - It is possible that ‘op’ is neither left nor right associative. In which case \(a_1 \ 'op' \ a_2 \ 'op' \ a_3\) will be treated as a syntax error.

Ambiguity resolution for binary operators

- Example: We have seen that this BNF is ambiguous:
 \[
 \langle \text{expr} \rangle ::= \langle \text{num} \rangle | \langle \text{expr} \rangle - \langle \text{expr} \rangle
 \]
 To make it unambiguous, I want the ‘-’ to be...
 - Left associative:
 \[
 \langle \text{expr} \rangle ::= \langle \text{num} \rangle | \langle \text{expr} \rangle - \langle \text{num} \rangle
 \]
 - Right Associative:
 \[
 \langle \text{expr} \rangle ::= \langle \text{num} \rangle | \langle \text{num} \rangle - \langle \text{expr} \rangle
 \]
Ambiguity rules for binary operators

- (B) Precedence Rules
 Given two different binary operators ‘op₁’ and ‘op₂’
 \[a₁ \text{ `op₁` } a₂ \text{ `op₂` } a₃ \]

 - If \(a₁ \text{ `op₁` } a₂ \text{ `op₂` } a₃ \) is interpreted as \((a₁ \text{ `op₁` } a₂) \text{ `op₂` } a₃ \), then \(\text{op₁} \) has a higher precedence than \(\text{op₂} \).

 - If \(a₁ \text{ `op` } a₂ \text{ `op` } a₃ \) is interpreted as \(a₁ \text{ `op₁` } (a₂ \text{ `op₂` } a₃) \), then \(\text{op₂} \) has a higher precedence than \(\text{op₁} \).

Ambiguity (precedence rules)

- Example: This BNF is ambiguous:
 \[<expr> ::= <num> | <expr> + <expr> | <expr> * <expr> \]

```
1 + 2 * 3
1 + (2 * 3)
```

Which One?
Ambiguity resolution (precedence)

Example: This BNF is ambiguous:

\[
<\text{expr}> ::= <\text{num}> \mid <\text{expr}> + <\text{expr}> \mid <\text{expr}> * <\text{expr}>
\]

To make it unambiguous, I want…

(Case 1) + to be of a higher precedence than *

\[
<\text{expr}> ::= <\text{expr2}> \mid <\text{expr2}> + <\text{expr}>
\]

\[
<\text{expr2}> ::= <\text{num}> \mid <\text{num}> + <\text{expr2}>
\]

1+2*3

(1+2)*3

Ambiguity resolution (precedence)

Example: This BNF is ambiguous:

\[
<\text{expr}> ::= <\text{num}> \mid <\text{expr}> + <\text{expr}> \mid <\text{expr}> * <\text{expr}>
\]

To make it unambiguous, I want…

(Case 2) * to be of a higher precedence than +

\[
<\text{expr}> ::= <\text{expr2}> \mid <\text{expr2}> + <\text{expr}>
\]

\[
<\text{expr2}> ::= <\text{num}> \mid <\text{num}> * <\text{expr2}>
\]

1+2*3

1+(2*3)
Ambiguity of operators

- For binary operators, we have to specify
 - the associativity of the operators, and
 - The precedence of the operators
- Alternatively, rewrite the grammar rules to get rid of ambiguity

Ambiguity of operators

- Version #1 of BNF:
 \[
 \begin{align*}
 \langle E \rangle & ::= \langle E \rangle + \langle E \rangle \\
 & \quad \mid \langle E \rangle - \langle E \rangle \\
 & \quad \mid \langle E \rangle \ast \langle E \rangle \\
 & \quad \mid \langle E \rangle / \langle E \rangle \\
 & \quad \mid \langle \text{num} \rangle \\
 & \quad \mid \langle \text{var} \rangle \\
 & \quad \mid (\langle E \rangle)
 \end{align*}
 \]

- Is the grammar ambiguous? Yes
- Version #2 of BNF:

 \[
 \begin{align*}
 \langle E \rangle & ::= \langle E \rangle + \langle T \rangle \\
 & \quad \mid \langle E \rangle - \langle T \rangle \\
 & \quad \mid \langle T \rangle \\
 \langle T \rangle & ::= \langle T \rangle \ast \langle F \rangle \\
 & \quad \mid \langle T \rangle / \langle F \rangle \\
 \langle F \rangle & ::= \langle \text{num} \rangle \\
 & \quad \mid \langle \text{var} \rangle \\
 & \quad \mid (\langle E \rangle)
 \end{align*}
 \]
Ambiguity (Dangling-else Ambiguity)

- 6.2.2 Ambiguity in general
 - Ambiguous grammar is **NOT** restricted to just binary operations:
 - Example:
 \[
 <S> ::= \begin{cases}
 & \text{if } <E> \text{ then } <S> \\
 & \text{if } <E> \text{ then } <S> \text{ else } <S>
 \end{cases}
 \]
 - String: \text{if } <E_1> \text{ then } <E_2> \text{ then } <S_1> \text{ else } <S_2>
 - Parse Tree???

Context-sensitive Grammars

- For practical languages context-free grammar is not enough

- A condition on context is sometimes added
 - for example: identifier must be declared before use
Context-free and Context-sensitive Grammars

- Easy to read and understand
- Defines superset of language
- Expresses restrictions imposed by language
- Renders grammar rules context sensitive

Context-free grammar (e.g. with EBNF) + Set of extra conditions

Language Semantics
Language Semantics

- Defines what a program does when executed
- Goals
 - simple
 - allow programmer to reason about program (correctness, execution time, and memory use)
- How to achieve for a practical language used to build complex systems (millions lines of code)?
- The kernel language approach

Kernel Language Approach

- Define simple language (kernel language)
- Define its computation model
 - how language constructs (statements) manipulate (create and transform) data structures
- Define mapping scheme (translation) of full programming language into kernel language
- Two kinds of translations
 - linguistic abstractions
 - syntactic sugar
Kernel Language Approach

- Provides useful abstractions for programmer
- Can be extended with linguistic abstractions

```
fun \{Sqr X\} X*X end
B = \{Sqr \{Sqr A\}\}
```

```
proc \{Sqr X Y\}
    \{* X X Y\}
end
local T in
    \{Sqr A T\}
    \{Sqr T B\}
end
```

- Easy to understand and reason with
- Has a precise (formal) semantics

Linguistic Abstractions ↔ Syntactic Sugar

- Linguistic abstractions provide higher level concepts
 - programmer uses to model and reason about programs (systems)
 - examples: functions (fun), iterations (for), classes and objects (class)
- Functions (calls) are translated to procedures (calls)
- Translation answers questions about functions: \{F1 \{F2 X\} \{F3 X\}\}
Linguistic Abstractions ↔ Syntactic Sugar

- Linguistic abstractions: provide higher level concepts
- Syntactic sugar: short cuts and conveniences to improve readability

Approaches to Semantics

- Operational model
- Programming Language
 - Kernel Language
 - Formal calculus
 - Abstract machine

Aid programmer in reasoning and understanding
Mathematical study of programming (languages)
λ-calculus, predicate calculus, π-calculus
Aid implementer
Efficient execution on a real machine
Sequential Declarative Computation Model

- **Single assignment store**
 - declarative (dataflow) variables and values (together called entities)
 - values and their types
- **Kernel language syntax**
- **Environment**
 - maps textual variable names (variable identifiers) into entities in the store
- **Execution of kernel language statements**
 - execution stack of statements (defines control)
 - store
 - transforms store by sequence of steps

Our Roadmap

- Single assignment store
- Kernel language syntax
- Values and types
- Environments
- Execution
Single Assignment Store

- Single assignment store is a set of variables.
- Initially variables are unbound.
- Example: store with three variables, \(x_1 \), \(x_2 \), and \(x_3 \).
Single Assignment Store (2)

- Variables in store may be bound to values
- Example: assume we allow as values integers and lists of integers

```
  Store
  x₁ unbound
  x₂ unbound
  x₃ unbound
```

Single Assignment Store (3)

- Variables in store may be bound to values
- Assume we allow as values, integers and lists of integers
- Example:
 - x₁ is bound to integer 314
 - x₂ is bound to list [1 2 3]
 - x₃ is still unbound

```
  Store
  x₁ 314
  x₂ 1 | 2 | 3 | nil
  x₃ unbound
```
Declarative (Single-Assignment) Variables

- Created as being *unbound*
- Can be *bound* to exactly one value
- Once bound, stays bound
 - indistinguishable from its value

Value Store

- Store where all variables bound to values is called *value store*
- Example
 - x_1 bound to integer 314
 - x_2 to list [1 2 3]
 - x_3 to record
 - person(name: george
 - age: 25)
- Functional programming computes functions on values
Store Operations: Single Assignment

\[\langle x \rangle = \langle v \rangle \]
- \(x_1 = 314 \)
- \(x_2 = [1 \ 2 \ 3] \)
- Assumes that \(\langle x \rangle \) is unbound

Single Assignment

\[\langle x \rangle = \langle \text{value} \rangle \]
- \(x_1 = 314 \)
- \(x_2 = [1 \ 2 \ 3] \)
Single Assignment

\[\langle x \rangle = \langle v \rangle \]
- \(x_1 = 314 \)
- \(x_2 = [1 \ 2 \ 3] \)
- **Single assignment operation** (\('=' \))
 - constructs \(\langle v \rangle \) in store
 - binds variable \(\langle x \rangle \) to this value
- If variable already bound, operation tests compatibility of values
 - if test fails an error is raised

```
314
x_1

x_2 = [1 | 2 | 3 | nil]

x_3 = unbound
```

Variable Identifiers

- Refer to store entities
- Environment maps variable identifiers to variables
 - declare X
 - local X in ...
- "X" is variable identifier
- Corresponds to 'environment' \{"X" \(\rightarrow \) \(x_1 \)\}

```
"X"  X_1 = Unbound
```

2003-08-29 S. Haridi, CS2104, L03 (slides: C. Schulte, S. Haridi) 91

2003-08-29 S. Haridi, CS2104, L03 (slides: C. Schulte, S. Haridi) 92
Variable-Value Binding Revisited

- \(X = [1 \ 2 \ 3] \)
- Once bound, variable indistinguishable from its value
- Traversing variable cell to get value: dereferencing
 - automatic
 - invisible

Partial Values

- Data structure that may contain unbound variables
- The store contains the partial value:
 - person(name: george age: \(x_2 \))
- \(\text{declare} \ Y \ X \)
 - \(X = \text{person(name: george age: } Y) \)
- The identifier 'Y' refers to \(x_2 \).
Partial Values

- may be complete

 \[\text{declare } Y \ X \]

 \[X = \text{person(name: george age: } Y) \]

 \[Y = 25 \]

Variable-variable Binding

\[\langle x_1 \rangle = \langle x_2 \rangle \]

- Performs bind operation between variables

- Example:

 \[X = Y \]

 \[X = [1 \ 2 \ 3] \]

- Operation equates (merges) the two variables
Variable-variable Binding

\[\langle x_1 \rangle = \langle x_2 \rangle \]

- Performs bind operation between variables
- Example:
 \[X = Y \]
 \[X = [1 \ 2 \ 3] \]
- Operation equates the two variables: forming an equivalence class

Variable-variable Binding

\[\langle x_1 \rangle = \langle x_2 \rangle \]

- Performs bind operation between variables
- Example:
 \[X = Y \]
 \[X = [1 \ 2 \ 3] \]
- All variables (X and Y) are bound to [1 2 3]
Summary: Variables and Partial Values

- Declarative variable
 - resides in single-assignment store
 - is initially unbound
 - can be bound to exactly one (partial) value
 - can be bound to several (partial) values as long as they are compatible with each other

- Partial value
 - data-structure that may contain unbound variables
 - when one of the variables is bound, it is replaced by the (partial) value it is bound to
 - a complete value, or value for short is a data-structure that does not contain any unbound variable
Kernel Language Syntax

\(\langle s \rangle \) denotes a statement

\[
\langle s \rangle ::= \text{skip} \quad \text{empty statement} \\
| \langle x \rangle = \langle y \rangle \quad \text{variable-variable binding} \\
| \langle x \rangle = \langle v \rangle \quad \text{variable-value binding} \\
| \langle s_1 \rangle \langle s_2 \rangle \quad \text{sequential composition} \\
| \text{local} \langle x \rangle \text{in} \langle s_1 \rangle \text{end} \quad \text{declaration} \\
| \text{if} \langle x \rangle \text{then} \langle s_1 \rangle \text{else} \langle s_2 \rangle \text{end} \quad \text{conditional} \\
| \{ \langle x \rangle, \langle y_1 \rangle, \ldots, \langle y_n \rangle \} \quad \text{procedural application} \\
| \text{case} \langle x \rangle \text{of} \langle \text{pattern} \rangle \text{then} \langle s_1 \rangle \text{else} \langle s_2 \rangle \text{end} \quad \text{pattern matching}
\]

\(\langle v \rangle \) ::= ...

\(\langle \text{pattern} \rangle \) ::= ...

Variable Identifiers

- \(\langle x \rangle, \langle y \rangle, \langle z \rangle \) stand for variables
- Concrete kernel language variables
 - begin with upper-case letter
 - followed by (possibly empty) sequence of alphanumeric characters or underscore
- Any sequence of characters within backquote
- Examples:
 - X, Y1
 - Hello_World
 - “hello this is a $5 bill” (backquote)
Values and Types

- **Data type**
 - set of values
 - set of associated operations
- **Example:** Int is data type "Integer"
 - set of all integer values
 - 1 is *of type* Int
 - has set of operations including +, -, *, div, etc
- Model comes with a set of basic types
- Programs can define other types
 - for example: abstract data types ADT

Data Types

- Value
 - Number
 - Int
 - Float
 - Char
 - Record
 - Procedure
 - Tuple
 - Literal
 - Atom
 - Boolean
 - True
 - False
 - List
 - String
Primitive Data Types

- **Value**
 - **Number**
 - **Int**
 - **Float**
 - **Record**
 - **Tuple**
 - **Procedure**
 - **Literal**
 - **Atom**
 - **Boolean**
 - **True**
 - **False**
 - **List**
 - **String**

Value Expressions

\[
\langle v \rangle ::= \langle \text{procedure} \rangle \mid \langle \text{record} \rangle \mid \langle \text{number} \rangle
\]

\[
\langle \text{procedure} \rangle ::= \text{proc} \langle y_1 \rangle \ldots \langle y_n \rangle \langle s \rangle \text{ end}
\]

\[
\langle \text{record} \rangle, \langle \text{pattern} \rangle ::= \langle \text{literal} \rangle \mid \langle \text{feature}_1 \rangle : \langle x_1 \rangle \ldots \langle \text{feature}_n \rangle : \langle x_n \rangle
\]

\[
\langle \text{litera}l \rangle ::= \langle \text{atom} \rangle \mid \langle \text{bool} \rangle
\]

\[
\langle \text{feature} \rangle ::= \langle \text{int} \rangle \mid \langle \text{atom} \rangle \mid \langle \text{bool} \rangle
\]

\[
\langle \text{bool} \rangle ::= \text{true} \mid \text{false}
\]

\[
\langle \text{number} \rangle ::= \langle \text{int} \rangle \mid \langle \text{float} \rangle
\]
Numbers

- Integers
 - 314, 0
 - ~10 (minus 10)
- Floats
 - 1.0, 3.4, 2.0e2, 2.0E2 (2×10²)
- Number: either Integer or Float

Atoms and Booleans

- A sequence starting with a lower-case character followed by characters or digits, ...
 - person, peter
 - ‘Seif Haridi’
- Booleans
 - true
 - false
- Literal: atom or boolean
Records

- Compound representation (data-structures)
 - $\langle l \langle f_1 : x_1 \rangle \ldots \langle f_n : x_n \rangle \rangle$
 - $\langle l \rangle$ is a literal

- Examples
 - person(age:X1 name:X2)
 - person(1:X1 2:X2)
 - '1'(1:H 2:T)
 - nil
 - person

Syntactic Sugar

- Tuples
 - $\langle l \langle x_1 \rangle \ldots \langle x_n \rangle \rangle$ (tuple)
 - equivalent to record
 - $\langle l \langle 1 : \langle x_1 \rangle \ldots n : \langle x_n \rangle \rangle \rangle$

- Lists
Strings

- Is list of character codes enclosed with double quotes
 - example "E=mc^2"
 - same as [69 61 109 99 94 50]

Procedure Declarations

- Kernel language
 \[
 \langle x \rangle = \text{proc}\{\langle y_1 \rangle \ldots \langle y_n \rangle\} \langle s \rangle \text{ end}
 \]
 is a legal statement
 - binds \langle x \rangle to procedure value
 - declares (introduces a procedure)

- Familiar Syntactic variant
 \[
 \text{proc}\{\langle x \rangle \langle y_1 \rangle \ldots \langle y_n \rangle\} \langle s \rangle \text{ end}
 \]
 introduces (declares) the procedure \langle x \rangle
Operations on Basic Types

- **Numbers**
 - floats: +,-,*, /
 - integers: +,-,*, div, mod

- **Records**
 - Arity, Label, Width, and "."
 - \(X = \text{person(name:"George" age:25)} \)
 - \(\{\text{Arity } X\} = \{\text{age name}\} \)
 - \(\{\text{Label } X\} = \text{person, X.age = 25} \)

- **Comparisons**
 - equality: \(=, \neq \)
 - order: \(\leq, <, >, \geq \)

Value expressions

\[
\langle V \rangle ::= \langle \text{procedure} \rangle \mid \langle \text{record} \rangle \mid \langle \text{number} \rangle \mid \langle \text{basicExpr} \rangle
\]

\[
\langle \text{basicExpr} \rangle ::= \ldots \mid \langle \text{numberExpr} \rangle \mid \ldots
\]

\[
\langle \text{numberExpr} \rangle ::= \langle X \rangle_1 + \langle X \rangle_2 \mid \ldots
\]

.....
Summary: Values and Types

- For kernel language
 - numbers
 - literals
 - records
 - procedures

Outlook

- How do statements compute
 - describe for each statement
 - how environment is affected
 - how store is affected
 - how statements change
Have a Nice Weekend!