Designing Robust and Adaptive Distributed Systems
with Weakly Interacting Feedback Structures

Peter Van Roy Seif Haridi Alexander Reinefeld
Univ. catholique de Louvain Royal Institute of Technology Zuse Institute Berlin
Place Sainte Barbe, 2 Box 1263 Takustr. 7
B-1348, Louvain-la-Neuve S-164 28 Kista D-14195 Berlin-Dahlem
peter.vanroy @uclouvain.be seif @it.kth.se ar@zib.de

Abstract—Scalable Internet services are distributed over mul-
tiple nodes, which may fail at any time. Events such as partial
failures, software errors, and attacks, as well as churn are
increasingly becoming normal events. As a result, the design of
Internet services is getting more complex and predicting their
behavior is daunting.

We address these problems by designing such systems as a
set of weakly interacting feedback structures. Each feedback
structure consists of a set of interacting feedback loops that
together maintain one desired system property. Depending on
the system’s operating conditions, different parts of the feedback
structure will be active, which enables it to adapt to a wide range
of operating conditions.

We motivate this approach with examples of robust systems
from biology and computing. We have used weakly interacting
feedback structures during the design of the Scalaris scalable
transaction store. Scalaris consists of five weakly interacting
feedback structures working together in a harmonious way with-
out undesired interactions like thrashing or oscillation. Scalaris
achieves high performance with strong consistency and horizontal
scalability both in tightly coupled settings (clusters and LLANs)
and loosely coupled settings (PlanetLab).

Index Terms—software design, complex systems, distributed
systems, feedback loops, self management, transactions, replica-
tion, peer-to-peer

I. INTRODUCTION

It is now possible to build Internet applications that are more
complex than ever before, because the Internet has reached a
higher level of availability and scale. But experience shows
that it is difficult to build applications that take advantage of
this complexity, because they are hard to design, predict, and
manage. They are subject to hostile environmental conditions
with frequent node failures and communication problems.
They are subject to global problems such as hotspots, attacks,
multicast storms, chaotic behavior, and cascading failures [5].

To address these problems, we propose to design applica-
tions as a set of weakly interacting feedback structures (WIFS).
Each feedback structure consists of a set of feedback loops that
together manage one system property. A feedback structure
is often organized as a hierarchy where each feedback loop
may control an inner loop and may be controlled by an outer
loop. Interaction between feedback structures is implicit via
monitoring system properties and reacting on system status
changes.

A system’s specification consists of a conjunction of prop-
erties, each implemented by one feedback structure. In a well-
designed system, no part exists outside of a feedback structure.

By designing with WIFS, it is practical to build large-scale
systems that are robust, adaptable, easy to understand, and
easy to maintain. We motivate this claim with examples of
real systems taken from biology and computing. We then sub-
stantiate the claim with the Scalaris system, a self-managing
transactional store based on a structured overlay network.

Overview of the article: This article presents our method-
ology in a condensed form, illustrated with practical examples.
Section II introduces the concept and notation of weakly
interacting feedback structures and it lists a few cases where
feedback structures are used today to ease the design of
complex systems. Section III gives a nontrivial example of a
feedback structure from biology, namely the human respiratory
system. We explain how it is able to adapt to a wide range
of operating conditions. We give its state diagram where each
state corresponds to a range of operating conditions handled
by the feedback structure. Section IV presents the open-source
Scalaris transactional storage library. We contrast two ways of
presenting the Scalaris architecture: a traditional presentation
as a layered system and a new presentation as a set of five
WIFS. Section V explains how to design such systems by
giving a set of guidelines for the design of one feedback
structure and for the decomposition and orchestration of
multiple feedback structures. Finally, Section VI recapitulates
the approach and explains why it is important to justify and
complete the methodology with formal techniques.

II. FEEDBACK LOOPS AND FEEDBACK STRUCTURES

A feedback loop in its general form consists of three parts, a
monitor, a corrector, and an actuator, attached to a subsystem.
We assume without loss of generality that the feedback loop
is completely inside the system (this is important because we
will later consider systems with many feedback loops) and
that the parts are concurrent components (agents) that interact
with each other asynchronously.

Figure 1 shows one feedback loop. Each part can perform
either a global or local action. For example, a global monitor
can use gossip-based aggregation to continuously calculate
global information and a global actuator can use a broadcast

System
Correcting agent
‘ Actuating agent ‘ ‘ Monitoring agent ‘
l |
Subsystem
Fig. 1. A feedback loop inside a system

or publish/subscribe mechanism. The corrector contains an
abstract model of the subsystem and a goal. The feedback loop
runs continuously, monitoring the subsystem and applying
corrections in order to approach the goal. The abstract model
should be correct in a formal sense (e.g., according to the
semantics of abstract interpretation [10]) but there is no need
for it to be complete.

Existing software already contains a surprising number of
feedback loops in unlikely places. Two examples are garbage
collection and virtual memory management. A third exam-
ple is transaction management: it manages system resources
according to a goal, which can be optimistic or pessimistic
concurrency control. The monitor accepts lock requests and
the actuator gives the response according to the concurrency
control algorithm. The transaction manager contains a model
of the system: it knows at all times which parts of the system
have exclusive access to which resources.

A feedback structure is a set of interacting feedback loops
that together maintain one global system property. The feed-
back loops are typically organized to use both hierarchy and
stigmergy, the two basic mechanisms of loop interaction.
Through stigmergy, loops act on a shared subsystem, and
through hierarchy, one loop directly controls another.

It is important to distinguish between the system level
(feedback structures) and the building block level (feedback
loops). A feedback structure is built using feedback loops
as building blocks and maintains a global system property
by combining the goal-driven behaviors of its constituent
feedback loops.

A. Weakly interacting feedback structures (WIFS)

Very little systematic work exists on how to design with
interacting feedback loops. In real systems, however, interact-
ing feedback loops are the norm. But these feedback loops
do not interact haphazardly. As far as we can tell from
studying working complex systems, they are always organized
as weakly interacting feedback structures (WIFS). This is why
the study of feedback structures is invaluable for designing
and understanding real systems.

Because the interaction is weak, we can design feedback
structures separately from their interactions. We design each
feedback structure to adapt to different operating conditions,
and we design the interactions so that the feedback structures

collaborate. The system specification then consists of a con-
junction of system properties, each of which is implemented
by one feedback structure. We find that dividing system
functionality into feedback structures is a natural way to define
and to separate concerns in real systems.

B. System design with feedback loops

Using feedback loops for system design is an old idea that
dates back at least to Norbert Wiener’s work on cybernetics
[34]. It is being used successfully in many areas both inside
and outside of computing:

o Artificial intelligence. For example, Brooks’ subsumption
architecture implements intelligent systems by decompos-
ing complex behaviors into layers of simple behaviors,
each of which controls the layers below it [6].

e Management of computer systems. A popular example is
IBM’s Autonomic Computing initiative, which reduces
management costs by removing humans from low-level
management loops [17]. It is used primarily for clusters
and databases.

o Telecommunications. Armstrong et al. show how to build
reliable telecommunications software in Erlang using the
principle of supervisor trees [4]. Each internal node in
a supervisor tree corresponds to a feedback loop that
monitors part of the system. We used supervisor trees
in our Scalaris key/value store (Sec. IV).

e Control theory. Hellerstein et al. show how to design
computing systems with feedback control, to optimize
global behavior such as maximizing throughput [14].
Hellerstein gives two examples of adaptive systems with
interacting feedback loops: gain scheduling (with dy-
namic selection among multiple controllers) and self-
tuning regulation (where controller gain is continuously
adjusted).

e Distributed algorithms. These algorithms can be formu-
lated as feedback structures. For example, fault-tolerance
algorithms use a feedback loop based on a failure detector
[13]. The implementation of the failure detector itself
requires a feedback loop.

o Structured overlay networks, also called structured peer-
to-peer networks. They are inspired by previous gener-
ations of peer-to-peer networks with random neighbors
but provide guaranteed lookup and performance [25],
[30]. They use principles of self organization to guarantee
scalable and efficient storage, lookup, and routing despite
volatile computing nodes and networks. Our work in the
SELFMAN project is in this area.

e Social systems and biological systems. Senge et al. show
how to debug problems in human organizations by mod-
eling them as feedback structures [27]. Altshuller’s theory
of inventive problem solving uses feedback and recursion
as key parts [3]. Many biological systems use feedback
structures and do self organization [11], [8], [21].

We have taken ideas from many of these disciplines to
understand how to design with feedback structures [7]. Some
disciplines (e.g., control theory) are needed to design a single

Trigger unconsciousness
when O2 falls to threshold

Render unconscious
(and reduce CO2 threshold to base level)

Conscious control
of body and breathing

Other inputs.

Increase or decrease breathing rate
and change CO2 threshold
(maximum is breath—hold breakpoint) ¢

Trigger breathing reflex
when CO2 increases to threshold

Trigger laryngospasm temporarily
when sufficient obstruction in airways

Breathing Laryngospasm nbg‘:l:ec(iiton Mgg;r& Monitor Me(a;s;re
reflex (seal air tube) in airways in blood breathing in blood
Q Breathing apparatus __J J/
in human body
Actuating agents Monitoring agents

Fig. 2. The human respiratory system as a feedback structure

feedback loop’s core algorithm. Others (e.g., system dynam-
ics) are needed to understand design rules and patterns for
interacting feedback loops.

III. EXAMPLES OF FEEDBACK STRUCTURES

To gain insight in the construction and the properties of
feedback structures we study working systems. It is important
to understand the basic design rules and patterns before doing a
formal analysis. We have picked the human respiratory system
and the transmission control protocol (TCP) as two examples
to explain the issues involved. These examples have quite
different origins: the human respiratory system was designed
by evolutionary processes over billions of years and the TCP
protocol family was designed by human designers over several
decades in response to the exponentially growing Internet.
Despite this difference in origins, both examples must work
well in an environment that can be hostile and they both con-
sist of multiple interacting feedback loops. Other interesting
examples are given in [31] (subsumption architecture, fault
tolerance in Erlang) and [32] (human endocrine system, Hill
equations, collective intelligence).

A. The human respiratory system

Successful biological systems survive in natural environ-
ments, which can be particularly harsh. We study them to gain
insight in how to design robust software. Figure 2 shows the
parts of the human respiratory system and how they interact.
We derived this figure from a precise medical description
of the system’s behavior. The figure is slightly simplified
when compared to reality, but it is complete enough to give
many insights. There are four feedback loops: two inner loops
(breathing reflex and laryngospasm), a loop controlling the
breathing reflex (conscious control), and an outer loop control-
ling the conscious control (falling unconscious). Three loops
make a hierarchical tower which interacts using stigmergy
with the fourth loop. From this figure we can deduce what
happens in many realistic cases. For example, holding one’s
breath increases the CO4 threshold so that the breathing reflex
is delayed. Eventually the breath-hold threshold is reached
and the breathing reflex happens anyway. For a trained person

the O- threshold is reached first and they fall unconscious
without breathing. When unconscious the breathing reflex is
reestablished.

B. Inferring design rules

We can infer some plausible design rules from this system.
The innermost loops (breathing reflex and laryngospasm)
and the outermost loop (falling unconscious) are based on
negative feedback using a monotonic parameter. This gives
them stability. The middle loop (conscious control) is by far
the most complex and unpredictable of all. It is not stable: it
is highly nonmonotonic and may run with both negative or
positive feedback. For example, if a person falls into a lake,
conscious control may devise a plan to reach safety where
breathing is part of a swimming movement to get to the
shore. We can justify why conscious control is sandwiched
in between two simpler loops. On the inner side, conscious
control manages the breathing reflex, but it does not have
to understand the details of how this reflex is implemented.
This is an example of using nesting to implement abstraction.
On the outer side, the outermost loop overrides the conscious
control (a fail safe) so that it is less likely to bring the body’s
survival in danger. Conscious control seems to be the body’s
all-purpose general problem solver : it appears in many of
the body’s feedback structures. This very power means that it
needs a check.

Conscious
|laryngospasm

obstructio

conscious
decision

Conscious
breathing

decision

conscious
decision or

breath—hold
breakpoint

time out oxygen low time out

Unconscious
breathing

Unconscious
|laryngospasm

breathing

obstruction obstruction

wake up

Fig. 3.

State diagram of the human respiratory system

C. State diagram and phase behavior

A feedback structure’s purpose is to maintain a global
system property. A consequence of this purpose is that not
all feedback loops need be active at all times. The behavior
at any given time is determined by the subset of feedback
loops that is necessary to maintain the system property. Which
subset depends on the operating conditions of the feedback
structure. If the feedback structure is properly designed, this
gives it a built-in ability to adapt to widely different operating
conditions. For example, a common behavior of the human
respiratory system is determined by a single loop, namely the
breathing reflex. In this situation the other loops are inactive, in
the sense that the behavior would not change if they would be

removed. If the operating conditions change, then a different
subset of the loops will become active and the behavior will
adapt. This happens if there is an obstruction in the airways,
a drop in the blood’s oxygen level, or a conscious decision to
control breathing.

The set of possible behaviors with the transitions between
them can be modeled by a state diagram. Figure 3 shows a
state diagram that gives the most common states of the human
respiratory system and their transitions. Each state corresponds
to a specific set of active feedback loops that can handle a well-
defined range of operating conditions. Conscious breathing is
consciously controlled, whereas normal breathing is automatic
(although it may be observed by the conscious control, it is
not influenced by it).

The human respiratory system has a single feedback struc-
ture and therefore a single global state at any time. In dis-
tributed systems (such as the TCP system of the next section or
the Scalaris system of Section IV), there can be many copies
(instances) of a feedback structure existing on many nodes.
These feedback structures can be in different states because the
operating conditions are not identical at each node. The global
state is then a combination of the local states of each feedback
structure. In a structured overlay network like Scalaris, there
is redundancy between the nodes so that the overall behavior
can be correct even if some of the nodes fail.

However, the overall behavior of a distributed system can
be more complicated than just being correct or failing. It is
possible for different parts of the system to have different
degrees of correctness: some nodes may provide the complete
functionality of the system, some nodes may provide partial
functionality, and some nodes may provide none at all. This is
a completely normal situation for a distributed system. It can
be proved that this situation cannot be avoided in general for
asynchronous distributed systems (it is a consequence of the
CAP theorem [12]).! For example, if the network is unreliable,
then it is possible for Scalaris to provide full transactional
functionality at the majority of nodes, only join and leave
functionality at some other nodes, and no functionality at all
at yet other nodes.

We can model this situation, in which the system is divided
into parts each providing different functionality, by introducing
the concept of phase. We define a phase as a set of feedback
structures whose states provide the same functionality. Differ-
ent parts of the system can be in different phases. There can
be phase transitions, i.e., large parts of the system can change
phase, when the operating conditions at the nodes change.
These transitions do not require global synchronization, but
are a natural consequence of the local change at each node.

D. Transmission Control Protocol (TCP)

The TCP family of network protocols has been carefully
tailored over many years to work adequately for the Internet.

The CAP theorem states that for an asynchronous network, it is impossible
to guarantee that the following three properties hold simultaneously in all fair
executions: (1) consistency (all operations are atomic, i.e., there is a total order
between them), (2) availability (every request eventually returns a result), and
(3) partition tolerance (any messages may be lost).

Send Send
stream acknowledgement

Outer loop

(congestion control)

Calculate policy modification
(modify throughput)

Inner loop

(reliable transfer)

Calculate bytes to send

f_/ (sliding window protocol) ’—j

Actuator Monitor
(send packet) (receive ack)

\
\

Monitor
throughput

!

L.

Subsystem
(network that sends packet to
destination and receives ack)

Fig. 4. TCP as a feedback structure

We consider therefore that its design merits close study. We
explain the heart of TCP as two feedback loops that interact
hierarchically to implement a reliable byte stream transfer
protocol with congestion control [15]. The protocol sends a
byte stream from a source to a destination node.

Figure 4 shows the two feedback loops as they appear at the
source node. The inner loop does reliable transfer of a stream
of packets: it sends packets and monitors the acknowledge-
ments of the packets that have arrived successfully. The inner
loop implements a sliding window: the actuator sends packets
so that the sliding window can advance. The sliding window
can be seen as a case of negative feedback using monotonic
control. The outer loop does congestion control: it monitors
the throughput of the system and acts either by changing the
policy of the inner loop or by changing the inner loop itself.
If the rate of acknowledgements decreases, then it modifies
the inner loop by reducing the size of the sliding window. If
the rate becomes zero then the outer loop may terminate the
inner loop and abort the transfer.

These two loops form a feedback structure that is part of a
much larger system, in which n individual TCP connections all
share a common network. Congestion is felt by all congestion
control loops, which will all reduce their window sizes. This
is an example of n WIFS that interact using stigmergy. The
interaction is designed to increase overall throughput, since the
network no longer wastes its resources transmitting packets
that will be dropped before reaching their destination.

IV. SCALARIS KEY/VALUE STORE

To show the applicability of our methodology in realistic
situations, we have built the Scalaris key/value store [23].
Scalaris is an open-source library providing a self-organizing
data management service for Web 2.0 applications [22], [23],
[24], [26]. It implements a key/value store with transactions
at high performance and strong consistency. Scalaris does not
attempt to replace current database management systems with
their general, full-fledged SQL interfaces. Instead our target
is to support transactional Web 2.0 services like those needed

Web 2.0 Application Layer

(e.g. Wikipedia Backend) {3 strong data consistency

atomicity, consistency,

Transaction Layer N . o
ansaction Laye isolation, durability

<=3 availability

’ Replication Layer

Peer-to-Peer Layer <:| scalability

Many standard Internet nodes for data storage
JL JL JL JL JL JL

Fig. 5. Scalaris’ layered system architecture.

for Internet shopping, banking, or multiplayer online games.
We measured transaction performance (read-modify-write) at
4000/second on one node rising to 14000/second on 15 nodes,
on a cluster where each node has two dual-core Intel Xeons
(4 cores per node) running at 2.66 GHz with 8 GB of main
memory, interconnected through GigE [24]. For the IEEE
Scalable Computing Challenge 2008, we built a Distributed
Wikipedia application on Scalaris and demonstrated it on
two platforms: a cluster with 160 cores (tightly coupled) and
PlanetLab with 150 peers (loosely coupled) [26].

Figure 5 shows Scalaris in the traditional layered system
architecture view:

1) At the bottom, an enhanced structured peer-to-peer net-
work, with logarithmic routing performance, provides
the basis for storing and retrieving keys and their cor-
responding values. In contrast to many other overlays,
our implementation stores the keys in lexicographical
order [25]. Lexicographical ordering instead of random
hashing enables control of data placement which is
necessary for low latency access in multi data center
environments.

2) The middle layer implements data replication. It en-
hances the availability of data even under harsh condi-
tions such as node crashes and physical network failures.
We use symmetric replication, in which the data is
replicated symmetrically around the ring.

3) The top layer provides transactional support for strong
data consistency in the face of concurrent data op-
erations. It uses a fast consensus protocol with low
communication overhead [24] that has been optimally
embedded into the peer-to-peer network.

A bird’s-eye view shows that Scalaris is built along these
layers: each was designed, implemented and tested separately.
But a closer look shows that each layer is made up of weakly
interacting feedback structures. The weak interaction through
monitoring and actuation allowed us to design the components
separately without the need to define explicit interfaces. Thus
the WIFS approach does not only link the three layers together,
but is also used for orchestration within the layers. It reduced
the design complexity and lowered the implementation and
testing effort.

A. Feedback structures in Scalaris

As a complement to the layered presentation of the previous
section, we present the architecture of Scalaris as a set of five
feedback structures and their interactions:

1) Connectivity management. This feedback structure main-
tains the connectivity of the ring topology using periodic
successor list stabilization.

2) Routing management. This feedback structure maintains
efficient routing tables using periodic finger stabiliza-
tion.

3) Load balancing. This feedback structure balances load
by monitoring each node and moving nodes when nec-
essary to distribute load evenly.

4) Replica management. This feedback structure maintains
the invariant that there will always eventually be f
replicas of each data item. Whenever there is a potential
new replica, it uses consensus to propose a new replica
set.

5) Transaction management. This feedback structure uses
consensus among replicated transaction managers and
storage nodes to perform atomic commit. If the transac-
tion manager fails, then one of the replicated transaction
managers takes over. Multiple takeovers are tolerated by
consensus.

The Scalaris system specification consists of the conjunction

of the five properties implemented by these feedback structures
together with the functionality of the key-value store:

SScalam's Skey/value A Sconnectimty A Srouting A

Sload A Sreplica A Stransaction

Interactions between the feedback structures are possible when
the perceived set of correct nodes changes, due to nodes
joining, leaving, failing, or suspected of failing. This gives
a dependency graph between feedback structures:

Sconnectivity — Orouting
Sconnecti'uity — Oreplica
Sroutin — Oreplica

g P
S’r'outing — Sload
Sreplica - St'ransaction

General techniques for handling interactions are explained
in Section V-B. For Scalaris we handle the interactions as
follows:

o Connectivity management, routing management, and
replica management interact when the set of nodes
changes. This does not affect correctness because each
manager always converges towards its ideal solution.
Oscillations do not occur because there are no cyclic
dependencies (connectivity management is not affected
by the other two). We choose the time delays of the
different managers to improve efficiency.

« Routing management can influence the load balancing.
This has an effect on the efficiency of the load balancing
algorithm.

Local Node

— Repair

modify yes yes
Inform

Neighbors

New successor
joined?

Successor

Local state
crashed?

> Rest of the Subsystem

Fig. 6. Scalaris connectivity protocol.

« Replica management can influence the transaction man-
agement because the number of replicas can change
temporarily. This can cause data inconsistency if there
are temporarily more than f replicas, which can occur
if there is a false failure suspicion. This is tricky to
handle correctly. One solution is to require more than
a simple majority in the consensus algorithm of the
transaction management. This reduces the probability of
inconsistency. But it is not satisfactory because it reduces
overall performance just to handle a rare situation. An-
other solution, which we are working on [24], is to use
consensus in the replica management itself to ensure that
all nodes agree on the f replicas. The transaction manager
then takes a majority only from an agreed set of replicas.

o Covert stigmergy between feedback structures may occur
because the network is a shared resource. Connectivity
management is the most important property and so it
must be done faster than the other managers. Otherwise
the overlay network may become disconnected at high
loads. To minimize other bad effects due to stigmergy,
the management load on the network should be kept as
constant as possible. If connectivity management does
less work, then routing management takes up the slack.

Because these five feedback structures act at all layers
of the system, we can say that the Scalaris implementation
is self managing in depth. This has important consequences
for system administration. For many Web 2.0 services, the
total cost-of-ownership is dominated by the costs needed for
personnel to maintain and optimize the service. In traditional
database systems, changing system size and tuning require
human interference which is error prone and costly. In both
these situations, the same number of administrators in Scalaris
can operate much larger installations.

B. Connectivity management

To show how the system design is facilitated using the WIFS
approach, we briefly explain the connectivity protocol. Scalaris
maintains a unidirectional ring as its basic communication
topology. A ring has the property that key ranges can be
unambiguously mapped to the nodes in the ring. Each node in
the ring maintains a list of successors to its 15¢, 274 . kth
successor, where k is chosen large enough so that the ring is

Fig. 7. The Scalaris transaction protocol with replication degree f = 4 and
two transaction participants A and B

maintained even when some pointers are lost due to churn.
The first successor is used for key lookup while the others are
needed to recover from node failures.

Figure 6 shows the connectivity management protocol from
the perspective of a single node. Each node continuously
monitors its successor node. If the successor can no longer be
reached (e.g. it does not react to a ‘ping’), the node repairs the
successor by using the second entry from its successor list. It
changes its local state accordingly and may notify other nodes
in the system (but this is not strictly necessary).

Each node n also periodically checks whether a new node
has joined between itself and its successor. It does so by
checking whether pred(succ(n)) = n. If this is not the case,
a new node was inserted between n and suce(n). The original
node then updates its successor list by changing its internal
state. Again, it may contact other nodes so that they can update
their routing tables, but this is not part of the protocol.

Note that the described interactions are performed indepen-
dently of all others. The use of WIFS facilitates the design,
because the feedback loops can be implemented and tested
separately. The protocols for the routing table maintenance,
the work-load balancing, and the replica management can be
derived analogously.

C. Transaction protocol

The transaction protocol in Scalaris is slightly more compli-
cated, because it involves the determination and stable storage
of a consensus among distributed nodes. But again, the use of
WIFS greatly facilitates the design process.

Figure 7 shows an example of a transaction on a structured
peer-to-peer network that has 16 nodes. A client initiates
a transaction by asking its nearest node, which becomes a
transaction manager (TM). Other nodes that store data are
transaction participants (TPs A;, B;). Given symmetric repli-
cation with degree f (4 in the figure), we have f transaction
managers (TM and rTM in the figure) and f replicas for the
other participating nodes. A modified version of Lamport’s
Paxos [20], [13] uniform consensus algorithm is used for node

agreement [24]: each replicated transaction manager (rTM)
collects votes from a majority of participants and locally
decides on abort or commit. The transaction manager (TM)
then collects a majority from the replicated transaction man-
agers and sends its decision to all participants. This algorithm
achieves commitment if more than f/2 nodes of each replica
group are alive.

The algorithm’s operation seems simple; things are actually
more subtle because it is correct even if nodes can at any time
be falsely suspected of having failed. All we know is that after
some unknown finite time, the failure suspicions are correct
(eventually perfect failure detection [13]). In our experience,
this failure detector is adequate for an Internet setting, where
nodes may crash and communication may be interrupted.

We found the WIFS design method especially powerful
in the implementation of the described transaction protocol
[24], because it helps to tame the high degree of concurrency.
Each rTM collects the decisions of all involved TPs in a
feedback structure and informs the TM. In a separate feedback
structure, the TM awaits the answer of a majority of the
TMs and computes a decision. In case the TM crashes during
this process, the rTMs vote for a substitute TM — thereby
incarnating up to f — 1 separate feedback structures. Note that
all feedback structures may be in different (local) states: the
self-organization (orchestration) is done via weak interaction.

V. GUIDELINES FOR DESIGNING WITH WIFS

Because interactions between the feedback structures are
weak, the design process divides naturally into designing
single feedback structures and combining them to form the
complete system. We first decompose the system specification
into separate properties, each of which is assigned to one
feedback structure. We then design each feedback structure
separately. Finally, we combine these feedback structures to
form the complete system. The complete design may need
several iterations because it may be necessary to change or
simplify feedback structures to avoid undesirable interactions.
Section V-A explains how to design one feedback structure
and Section V-B explains how to design systems with several
feedback structures. More examples and design rules are given
in [33].

A. Design of one feedback structure

A feedback structure consists of a set of feedback loops
that work together to maintain a global system property. An
important design rule is that each feedback loop should target
a separate part of this maintenance. In the human respiratory
system, the breathing reflex loop implements normal breathing
independently of the laryngospasm loop. In the TCP example,
the inner loop implements the sliding window and the outer
loop does congestion control by changing a parameter of the
inner loop. Each feedback loop can then be designed and
optimized separately using control theory [14] or discrete
systems theory [9]. This works well when the feedback loops
are mostly independent.

It often happens that the feedback loops have a tighter
interaction. For example, in the case of resource exhaustion,
a common behavior is exponential growth at the beginning
when resource usage is small, followed by a slowing of the
growth toward a finite limit as resources are exhausted. The
S-shaped curve that results is called the logistic curve.

The simplest feedback structure that exhibits this behavior
consists of two interacting feedback loops: a positive feedback
loop that causes the initial exponential growth and a negative
feedback loop that causes the slowdown and finite limit. In
cases such as this, the global behavior can only be determined
by analyzing the loops together. Many such feedback loop
patterns have been analyzed in the literature (a survey is given
in [7]). Studies of feedback loop patterns have been done
independently in widely different disciplines, such as business
management [27], biology [8], [21], and computer science
[14]. A complete classification of all useful patterns and their
behaviors does not yet exist as far as we know.

A feedback loop often needs a nontrivial algorithm to
achieve its goal. For example, in the case of a large number
of agents that collaborate, to achieve the overall goal the best
approach is to use a distributed algorithm [13] or a multi-
agent system [29]. For Scalaris we needed an algorithm to
perform atomic commit for distributed transactions, in the
face of possible node failures and communication interruptions
(imperfect failure detection). We found that a modified version
of the Paxos uniform consensus protocol was an essential part
of the solution. This is a complex algorithm whose correctness
is not trivial to prove [13], [24].

B. Design of the complete system

The complete system is designed in two steps, decomposi-
tion and orchestration [2]. Decomposition divides the overall
management into separate feedback structures. Orchestration
handles the interactions between feedback structures.

In decomposition, each task focuses on a single property of
the system and is performed by a single feedback structure.
For example, in Scalaris we distinguish connectivity, efficient
routing, load balance, replicated storage, and transactions.
Each of these is done by a different feedback structure.
Connectivity is done by ring maintenance. Efficient routing is
done by finger table maintenance. Load balancing is done by
a load distribution algorithm. Replicated storage is done by a
symmetric replication algorithm. Transactions are done by the
replicated transaction managers with the consensus algorithm.

For a successful orchestration, it is crucial to perform the
right decomposition. The managers should be independent or
interact only in a simple way. The interactions between feed-
back structures form a dependency graph, which is a directed
graph where each node is a feedback structure and each edge
indicates an interaction. Because interactions can be subtle
(see Section IV-A), it is important to simplify them as much
as possible at design time. Section V-B1 below gives design
rules to achieve this for the different kinds of interactions. We
enumerate all possible interactions and modify the system so
they do not result in undesirable behavior. Section V-B2 then

explains how to build the system in the right order, following
the dependency graph.

1) Handling interactions: We identify three ways in which
managers can interact and we explain how to handle them [1]:

o Stigmergy. This occurs when managers make changes to a
shared subsystem. Each change made by a manager may
be sensed by another manager. This is the most common
and is often hard to control. It is a powerful way to
communicate for managers that otherwise have no direct
communication channel, such as the TCP congestion
control loops. Since stigmergic communication tends to
be noisy, the managers must be designed to tolerate this.

e Hierarchy. This occurs when one manager directly con-
trols another. This situation often occurs inside a single
feedback structure, when an outer loop controls an inner
loop. For example, it occurs inside the TCP structure
and in the human respiratory system. To handle this, we
choose the control parameter to be a natural parameter of
the system being controlled.

e Direct interaction. This occurs when two managers inter-
act as peers, giving a cycle in the dependency graph. It
does not mean that one manager controls the other, but
one manager may interact with another. Direct interaction
is sometimes needed since two independent managers af-
fecting the same resource may cause undesired behavior,
such as races or oscillation. It must be handled carefully
to avoid replacing one kind of undesired behavior by
another. Problems can often be avoided by designing each
manager around a monotonic function with a limiting
value that corresponds to perfect behavior. Each manager
then increases its own function in discrete steps.

2) Build the system in the right order: To reduce the
interaction of feedback structures it is important to add them in
the right order. If done correctly, each new feedback structure
can be added in (almost) orthogonal fashion to the system.
The acyclic part of the dependency graph can be ordered
according to a topological sort. Cycles are handled separately
as explained in the previous section. For Scalaris we propose
the following order:

o The first property is self healing (connectivity): the struc-
tured peer-to-peer network is based on a ring structure
and uses feedback loops to repair the ring if a node
joins, leaves, or fails, or to repair the system after a
temporary network partition. Scalaris will repair this in
some cases by using T-Man together with a “dead node
cache” maintained at each node [16]. If a dead node
reappears, then T-Man will deliver the node to the ring
maintenance which then merges the separate rings using
a merge algorithm [28].

o We then add self tuning (routing and load balancing). The
first step is to add extra routing links to the nodes (called
“fingers” in the literature) to make the routing efficient.
This is done through a feedback structure that contin-
uously corrects the fingers depending on the changing
structure of the ring. The second step is to update the ring

dynamically to remove hotspots. This is done through
a feedback structure that periodically collects node load
information and performs balancing operations in which
an unloaded node leaves the ring and rejoins near a loaded
node to take over part of its load.

o We add self configuration. Components use the efficient
routing to communicate, in particular to inform nodes
when to add or remove new components. This is used
for applications built on top of Scalaris, such as the
Distributed Wikipedia [26].

o We can also add self protection to the system. This is not
implemented in Scalaris. We are currently investigating
the best approach to do it. It requires several changes,
depending on the threats addressed. For example, to cope
with certain kinds of collusion we can extend the ring’s
topology to approach that of a social network, which is
resistant to this kind of attack. We can add an observer
of node behavior that can eject bad nodes from the ring.
We can use an end-to-end protocol to detect malicious
nodes during the routing.

VI. CONCLUSIONS AND PROSPECTS

To tame the complexity of Internet applications, we propose
to build them using weakly interacting feedback structures.
Each feedback structure consists of a set of interacting feed-
back loops that together monitor and correct one global system
property. A feedback structure is able to manage a wide variety
of operating conditions by activating the appropriate subset
of its feedback loops. When correctly designed, feedback
structures interact weakly and in a well-defined way. Since a
feedback structure only ensures that the system property holds
for the subsystem it watches over, it is important that no part
of the system exist outside of a feedback structure.

We find that many existing systems can be seen as a
collection of WIFS. We give examples from biology and
from computing, namely the human respiratory system and
TCP. In our own work in the SELFMAN project [23], [32],
we have built structured peer-to-peer networks that survive
in realistically harsh environments (with imperfect failure
detection and network partitioning). The Scalaris architecture
consists of five feedback structures whose interactions are
carefully controlled.

A. A complete and justified methodology

We have motivated why it is useful to design systems using
WIFS and we have presented our own techniques in this area.
It is important to justify the methodology formally so that
there is no unexpected behavior. Systems can show unexpected
behavior that becomes clear only through formal analysis.
For example, techniques from theoretical physics have been
used to show that structured overlay networks exhibit phase
transitions when the network becomes slow [18], [19].

To our knowledge, there exists no formally justified method-
ology for designing with feedback structures. We consider this
justification as one of the most important tasks for software
development as the Internet continues to grow in complexity.

We propose a research agenda to create such a methodology.
The first step is to study existing feedback loop systems
to build a library of patterns and rules. One goal of this
research is a complete classification of all possible patterns
and their behaviors. The second step is to translate the patterns
and rules into a process calculus. The translation should
correctly cover the intuitive behavior of the pattern, e.g., it
can respect the conditions of abstract interpretation [10]. The
third step is to prove the relevant properties of the patterns and
rules. Important properties include global correctness, stability,
compositionality, and phase behavior. (We note that the phase
behavior is predictable and can be exposed to the application
as an APL) In the final step, we use the formal treatment to
justify the original patterns and rules and to characterize the
situations in which they can be used. A software developer
can then rely on the proofs without using them explicitly.

VII. ACKNOWLEDGMENTS

This work is funded by the European Union in the SELF-
MAN project (contract 34084) and in the CoreGRID network
of excellence (contract 004265). We thank Thorsten Schiitt for
technical discussions on Scalaris.

REFERENCES

[1] Ahmad Al-Shishtawy, Joel Hoglund, Konstantin Popov, Nikos Parla-
vantzas, Vladimir Vlassov, and Per Brand. Distributed Control Loop
Patterns for Managing Distributed Applications. Workshop on Decen-
tralized Self Management for Grids, P2P, and User Communities (part
of SASO 2008), Oct. 21, 2008, pp. 260-265.

[2] Ahmad Al-Shishtawy, Vladimir Vlassov, Per Brand, and Seif Haridi. A
Design Methodology for Self-Management in Distributed Environments.
Proceedings of the 12th IEEE International Conference on Computa-
tional Science and Engineering, Aug. 29-31, 2009, pp. 430-436.

[3] Genrich Altshuller. “The Innovation Algorithm: TRIZ, Systematic Inno-
vation, and Technical Creativity”. Translated from the Russian by Lev
Shulyak and Steven Rodman. Technical Innovation Center, Inc. 1999.

[4] Joe Armstrong. “Making reliable distributed systems in the presence
of software errors”. Ph.D. dissertation, Royal Institute of Technology
(KTH), Kista, Sweden, Nov. 2003.

[5] Ken Birman, Gregory Chockler, and Robbert van Renesse. Toward a
Cloud Computing Research Agenda. ACM SIGACT News 40(2), June
2009, pp. 68-80.

[6] Rodney A. Brooks. A Robust Layered Control System for a Mobile
Robot. 1EEE Journal of Robotics and Automation, RA-2, April 1986,
pp. 14-23.

[7] Alexandre Bultot. “A Survey of Systems With Multiple Interacting
Feedback Loops and Their Application to Programming”. Master’s
report, Université catholique de Louvain, Aug. 2009.

[8] Scott Camazine, Jean-Louis Deneubourg, Nigel R. Franks, James Sneyd,
Guy Theraulaz, and Eric Bonabeau. “Self-Organization in Biological
Systems”. Princeton University Press, 2001.

[9] Christos G. Cassandras and Stéphane Lafortune. “Introduction to Dis-

crete Event Systems”. Second Edition. Springer-Verlag, 2008.

Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified

Lattice Model for Static Analysis of Programs by Construction or

Approximation of Fixpoints. 4th ACM Symposium on Principles of

Programming Languages (POPL 1977), Jan. 1977, pp. 238-252.

Gary William Flake. “The Computational Beauty of Nature: Computer

Explorations of Fractals, Chaos, Complex Systems, and Adaptation”.

MIT Press, Cambridge, MA, 2001.

Seth Gilbert and Nancy Lynch. Brewer’s Conjecture and the Feasibility

of Consistent, Available, Partition-Tolerant Web Services. ACM SIGACT

News 33(2), June 2002, pp. 51-59.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

(32]

(33]

(34]

Rachid Guerraoui and Luis Rodrigues. “Introduction to Reliable Dis-
tributed Programming”. Springer-Verlag, 2006.

Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury.
“Feedback Control of Computing Systems”. Wiley-IEEE Press, Aug.
2004.

Information Sciences Institute. “RFC 793: Transmission Control Proto-
col Darpa Internet Program Protocol Specification”. Sep. 1981.

Mark Jelasity and Ozalp Babaoglu. T-Man: Gossip-based overlay
topology management. Proceedings of 3rd International Workshop on
Engineering Self-Organising Systems (ESOA 2005), Springer-Verlag
LNCS volume 3910, 2006, pp. 1-15.

Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic
Computing. IEEE Computer 36(1), Jan. 2003, pp. 41-50.

Supriya Krishnamurthy, Sameh El-Ansary, Erik Aurell, and Seif Haridi.
A statistical theory of Chord under churn. Proceedings of the 4th
International Workshop on Peer-to-Peer Systems (IPTPS’05), Ithaca,
New York, Feb. 2005, pp. 93-103.

Supriya Krishnamurthy and John Ardelius. “An Analytical Framework
for the Performance Evaluation of Proximity-Aware Overlay Networks”.
Tech. Report TR-2008-01, Swedish Institute of Computer Science, Feb.
2008.

Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.
16(2), 1998, pp. 133-169.

Gerhard Michal (ed.). “Biochemical Pathways: An Atlas of Biochemistry
and Molecular Biology”. John Wiley & Sons and Spektrum Akad.
Verlag, 1999.

Stefan Plantikow, Alexander Reinefeld, and Florian Schintke. Transac-
tions for Distributed Wikis on Structured Overlays. In A. Clemm, L.
Z. Granville, and R. Stadler, editors, DSOM, Springer-Verlag LNCS
volume 4785, 2007, pp. 256-267.

Scalaris open-source software library. Zuse Institute Berlin, 2008,
code.google.com/p/scalaris.

Florian Schintke, Alexander Reinefeld, Seif Haridi, and Thorsten Schiitt.
“Enhanced Paxos Commit for Transactions on DHTs”. 10th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
Grid 2010), May 17-20, 2010, Melbourne, Australia.

Thorsten Schiitt, Florian Schintke, and Alexander Reinefeld. “Range
Queries on Structured Overlay Networks”. Computer Communications
31(2), Feb. 2008, Elsevier, pp 280-291.

Thorsten Schiitt, Monika Moser, Stefan Plantikow, Florian Schintke, and
Alexander Reinefeld. “A Transactional Scalable Distributed Data Store:
Wikipedia on a DHT”. Ist prize at the IEEE International Scalable
Computing Challenge, SCALE 2008, Lyon, May 2008.

Peter M. Senge, Art Kleiner, Charlotte Roberts, Richard B. Ross, and
Bryan J. Smith. “The Fifth Discipline Fieldbook: Strategies and Tools
for Building a Learning Organization”. Nicholas Brealey Publishing,
1994.

Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. Dealing with Network
Partitions in Structured Overlay Networks. Journal of Peer-to-Peer
Networking and Applications (PPNA) 2(4), 2009, pp. 334-347.

Yoav Shoham and Kevin Leyton-Brown. “Multiagent Systems: Algorith-
mic, Game-Theoretic, and Logical Foundations”. Cambridge University
Press, 2009.

Ton Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications. SIGCOMM 2001, pp. 149-160.

Peter Van Roy. Self Management and the Future of Software Design.
Proceedings of Third International Workshop on Formal Aspects of
Component Software (FACS ’06), Sep. 2006. Springer-Verlag ENTCS
182, June 2007, pp. 201-217.

Peter Van Roy, Seif Haridi, Alexander Reinefeld, Jean-Bernard Stefani,
Roland Yap, and Thierry Coupaye. Self Management for Large-Scale
Distributed Systems: An Overview of the SELFMAN Project. Springer-
Verlag LNCS volume 5382, 2008, pp. 153—178. Revised postproceedings
of FMCO 2007, Amsterdam, The Netherlands, Oct. 2007.

Peter Van Roy. Guidelines for Building Self-Managing Appli-
cations. SELFMAN project deliverable D5.7, July 2009. See
www.lst-selfman.org.

Norbert Wiener. “Cybernetics, or Control and Communication in the
Animal and the Machine”. MIT Press, Cambridge, MA, 1948.

