
NSP
Peter Van Roy

THE CTM APPROACH FOR TEACHING
AND LEARNING PROGRAMMING

In: "Horizons in Computer Science Research. Volume 2"

Editor: Thomas S. Clary

ISBN: 978-1-61761-439-2 2011

400 Oser Avenue, Suite 1600
Hauppauge, N. Y. 11788-3619
Phone (631) 231-7269
Fax (631) 231-8175
E-mail: main@novapublishers.com
http://www.novapublishers.com

Science Publishers, Inc.

NOVA

In: Horizons in Computer Science Research. Volume 2
Editor: Thomas S. Clary, pp. 101-126

ISBN: 978-1-61761-439-2
c© 2011 Nova Science Publishers, Inc.

Chapter 5

THE CTM APPROACH FOR TEACHING

AND LEARNING PROGRAMMING

Peter Van Roy∗

Dept. of Computing Science and Engineering
Université catholique de Louvain (UCL), Belgium

Abstract

Since 2004 we have been teaching a second-year programming course to all engi-
neering students at UCL. The course uses a uniform framework and introduces pro-
gramming concepts, techniques, and models one by one, to overcome limitations in
expressiveness as they appear (hence the acronym “CTM”). The course gives a com-
plete formal semantics for the uniform framework in terms of a simple kernel language
and abstract machine. The semantics is important since it gives a precise understand-
ing of what the language does with no handwaving. For most students at UCL it is the
only programming language semantics they see in all their studies. We teach the three
main programming models or paradigms, namely functional, objected-oriented, and
dataflow concurrent programming. We explain how object orientation and dataflow
each extend functional programming with just one concept, respectively state and con-
currency. We give a thorough presentation of data abstraction that includes objects,
abstract data types, polymorphism, and inheritance. For the practical coding we use
the Oz multiparadigm language, which has a uniform syntax for programming in each
paradigm and for combining paradigms when needed. Oz has a high-quality open-
source implementation, the Mozart Programming System. The course is the second
part of the two-course sequence on programming in the UCL core engineering cur-
riculum, where the first course is an introduction to programming based on Java. We
find that this combination of two courses works well. This chapter gives our experi-
ence with this course: how it originated, what it contains, how we teach it and what
the learning objectives are, and how it has become accepted in the computing science
department and engineering school of UCL.

∗E-mail address: peter.vanroy@uclouvain.be

The exclusive license for this PDF is limited to personal website use only. No part of this digital document
may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means.
The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed
or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of information contained
herein. This digital document is sold with the clear understanding that the publisher is not engaged in
rendering legal, medical or any other professional services.

102 Peter Van Roy

1. Introduction

Computer programming is a unique mixture of practice and theory. A computer pro-
gram is a long narrative written in a notation that resembles a formalized subset of a natural
language and has a precise meaning in a clearly delimited domain. The main purpose of the
narrative is to create an artifact that performs a series of actions to realize a desired spec-
ification.1 Other purposes are that the artifact must be readable, maintainable, extensible,
sufficiently fast, and parsimonious in its use of resources. Writing a program requires a
mastery of algorithmic thinking, which is the ability to think fluently in terms of specifica-
tions and actions as two sides of the same coin. There is typically a large gap between the
specification of what is required and its implementation as a program, and an important part
of the art of programming is to bridge this gap by inventing abstractions.

Since the emergence of the programmable computer as a practical tool in the 1950s, half
a century of research and development has gone into designing programming languages.
These languages now support programs that can be quite complex, reaching sizes measured
in millions of lines of code, written by large teams of human programmers over many
years. Such languages are successful in part because they model some essential aspects of
how to construct large systems. The languages are not just arbitrary constructions of the
human mind, but they have a fundamental relationship to complex systems. This is why
it is important for a programming course to teach languages in a fundamental way, where
programming is seen as a way to construct complex systems.

These motivations underlie the CTM approach, which teaches programming by using
a uniform framework and by introducing concepts one by one to overcome limitations in
expressiveness. The approach is not built around a single concept, such as functions or
objects, but rather on how different concepts are used together. We extend the language
progressively with new concepts and we explain the new techniques that are made possible
by each concept.

We have elaborated this approach since 1999 into a course and a textbook. The course
is designed for the second year in a university or college setting, for all engineering stu-
dents and not just students in computer science. The course teaches programming as an
engineering discipline, that is, as a set of practical techniques based on a sound scientific
foundation. It attempts to cover all the most important concepts, techniques, and paradigms
within the limitations of twelve two-hour lectures. It reduces bias toward any particular
paradigm or language by using a research language, Oz, that was designed to support all
paradigms equally. The textbook was published in March 2004 and the course has been
taught at UCL since 2003 up to the present day [13, 14].2 The current course is called
FSAB1402 and is part of the core curriculum taught to all engineering students at UCL [4].
This curriculum has two programming courses, FSAB1401 in the first year and FSAB1402
in the second year.

1It is curious that music has a deep relationship to computer programming, where the score corresponds to
the program and the performance to its execution [2].

2The course materials are available for free download atctm.info.ucl.ac.be/fr.

The CTM Approach for Teaching and Learning Programming 103

Structure of the Chapter

This chapter is organized as three parts:

• Section 2. explains the CTM approach: a uniform framework in which we introduce
concepts one by one, a simple formal semantics for the framework, and a practical
implementation that respects this semantics. Section 2.5. gives the measurable learn-
ing objectives of the course that are made possible by the CTM approach.

• Section 3. gives the course’s historical background and explains how it has come
to be accepted at the Louvain Engineering School of UCL (École Polytechnique de
Louvainor EPL).

• Section 4. presents three course lectures in detail to show the distinctive flavor of the
approach: named state and modularity, concurrency and multi-agent systems, and
formal semantics.

programming
(with streams)

Programming with
data abstractions

(state and objects)

+ thread
(concurrency)

+ cell
(state)

programming
(functional)
Declarative

Dataflow concurrent

Figure 1. The three main programming paradigms taught in the course.

2. Course Principles

For most engineering students at UCL, this course is the deepest study of computer pro-
gramming they will see in all their studies. This makes the course’s foundation especially
important. We base the course on a uniform framework that contains all the concepts taught
in the course, that is defined precisely with a formal semantics, and that is supported by a
practical software system.

2.1. Uniform Framework

The course can teach a large number of programming concepts in a short period be-
cause no information is repeated. We teach functional, object-oriented, and dataflow con-
current programming but we do not need three sets of concepts. The object-oriented and
dataflow paradigms are extensions of the functional paradigm, with just one extra concept
for each (cells and threads, respectively). Concepts used in functional programming remain

104 Peter Van Roy

useful for object-oriented programming and dataflow concurrent programming. Neverthe-
less, each paradigm is complete and supports all programming techniques specific to the
paradigm. Figure 1 shows the relationships between the three paradigms. We note that
the course is relatively free from temporary fashions; it is focused on deep concepts that
remain useful. For example, the recent popularity of multi-core processors highlights the
importance of dataflow concurrency, which is well-suited for that architecture.

nondeterminism?
Observable

Yes No

More declarative Less declarative
Named stateUnnamed state (seq. or conc.)

Haskell

Lazy
functional

programming

Monotonic
dataflow

programming

Declarative
concurrent

programming

ADT
functional

programming

ADT
imperative

programming

Functional
programming

First−order
functional

programming

Descriptive
declarative

programming

Imperative
search

programming

Event−loop
programming

Multi−agent
programming

Message−passing
concurrent

programming

Data structures only

Turing equivalent

+ cell (state)

+ unification

Dataflow and

Oz, Alice, Curry Oz, Alice, Curry

CLU, OCaml, Oz

E in one vat

Continuation
programming

Logic and
constraints message passing Message passing Shared state

+ nondeterministic
(channel)

Oz, Alice, Curry, Excel,
AKL, FGHC, FCP

+ synch. on partial termination

FrTime, SL
+ instantaneous computation

Strong synchronous
programming

Esterel, Lustre, Signal

Functional reactive
programming (FRP)

Weak synchronous
programming

Pipes, MapReduce

Nondet. state

Erlang, AKL

CSP, Occam,
E, Oz, Alice,

publish/subscribe,
tuple space (Linda)

choice

Nonmonotonic
dataflow

programming

Concurrent logic
programming

Oz, Alice, AKL

+ port

Multi−agent
dataflow

programming

+ local cell

Active object
programming

Object−capability
programming

Java, OCaml

+ closure

embeddings
+ solver

LIFE, AKL

CLP, ILOG Solver

+ thread
+ single assignment

+ thread

Smalltalk, Oz,

+ thread

Java, Alice
+ log

+ cell
(state)

Functional

SQL embeddings

Prolog, SQL

+ search

record

XML,
S−expression

Haskell, ML, E

(unforgeable constant)

+ cell

Scheme, ML

+ procedure

+ closure
Pascal, C

SNOBOL, Icon, Prolog

+ search

(channel)
+ port

Scheme, ML

(equality)
+ name

+ by−need synchronization

+ by−need
synchronization

+ thread

+ continuation

Lazy concurrent

object−oriented
Concurrent

programming

Shared−state
concurrent

programming

Software
transactional

memory (STM)

Sequential
object−oriented
programming

Stateful
functional

programming

programming
Imperative

Lazy
declarative
concurrent

programming

programming

Lazy
dataflow

Concurrent
constraint

programming

constraint
programming

Constraint (logic)
programming

Relational & logic
programming

Deterministic
logic programming

synchron.
+ by−need + thread

+ single assign.

Figure 2. Programming paradigms organized according to the creative extension principle.

The uniform framework is applicable to many more paradigms than just these three.
Figure 2 shows a more complete diagram of programming paradigms that subsumes Figure
1 [15]. Programming paradigms appear as a kind of epiphenomenon, depending on which
concepts one uses. This leads to multiparadigm programming in a completely natural way.
The diagram in Figure 2 is not shown to the students in our course. However, other uni-
versities have organized courses based on CTM that cover a bigger part of this diagram.
Some of these courses are listed on the CTM website [13]. The diagram is organized ac-
cording to thecreative extension principle: a new concept is added when programs start
getting complicated for reasons unrelated to the problem being solved. More precisely, a
new concept is added to the language when programs require nonlocal transformations to
encode the concept in the language. If the new concept is added to the language, then only
local transformations are needed. This principle was first defined by Matthias Felleisen [5].

The CTM Approach for Teaching and Learning Programming 105

Table 1. Programming concepts taught in the course

Lecture Concepts
1. Basic concepts Programming paradigm, instruction, value, interactive interface,

declaration, identifier, single-assignment variable, environment, as-
signment, lexical scope, function, integer, floating point, atom, con-
ditional, induction, recursion, kernel language, procedure

2. Integer recursion Contextual environment, kernel language, declarative model, recur-
sion, invariant, accumulator, tail recursion, tail call optimization,
free identifier, higher-order programming, specification, list, type,
type variable

3. List recursion Loop, nested loop, invariant, contextual environment, kernel lan-
guage, list, grammar rule, EBNF notation, type variable, syntactic
sugar, tuple, pattern matching

4. Computational com-
plexity

Tuple, record, tree, execution time, active memory, memory con-
sumption, garbage collection, best/worst/average case, asymptotic
analysis, elementary operation, kernel language, big O/Ω/Θ nota-
tion, recurrence equation, Moore’s law, P and NP problems, travel-
ing salesman problem, satisfiability, NP-completeness

5. Records and trees Tuple, record, equality, kernel language, ordered binary tree, search
tree, global condition, goal-oriented programming

6. State and data abstrac-
tion

State, cell, multiple-assignment memory, kernel language, structure
equality, name equality, cell semantics, modularity, encapsulation,
data abstraction, abstract data type, object

7. Programming with ab-
stract data types

Indexed collection, array, dictionary, hash table, matrix, specifica-
tion, formal semantics, mathematical induction, abstract machine,
environment

8. Formal semantics Kernel language, abstract machine, operational semantics, seman-
tic instruction, semantic stack, initial configuration, execution, se-
quential composition, adjunction, restriction, instruction semantics,
procedure definition semantics, procedure value (lexically scoped
closure), procedure call semantics

9. Objects, classes, poly-
morphism, inheritance

Object, procedural dispatch, class, polymorphism, responsibility
principle, inheritance, interface, composition, substitution princi-
ple, static link, overriding, dynamic link, self, multiple inheritance

10. Java and exceptions Tail call semantics, kernel language, Java, primitive type, reference
type, parameter passing, abstract class, final class, Java interface,
exception, error containment principle, execution context

11. Concurrency and
multi-agent systems

Concurrency, declarative concurrency, message passing, shared
state, free (unbound) variable, dataflow execution, thread, exe-
cution order, nondeterminism, race condition, thread scheduling,
thread priority, thread suspension, fair scheduling, stream, agent,
pipeline, transformer, producer/consumer

12. Declarative concur-
rency

Deterministic concurrency, transparency, dataflow, multi-agent pro-
gramming, programming paradigms, kernel language

2.2. Important Concepts

Table 1 lists the most important programming concepts taught in the course. These con-
cepts complete and generalize the concepts learned in the first-year course: object-oriented

106 Peter Van Roy

programming (by giving a more general view of data abstraction including abstract data
types), the Java language (by explaining class hierarchies and parameter passing), recur-
sive data types and algorithms (by defining and using lists and trees), and reasoning about
programs (through computational complexity and formal semantics).

Of all the course’s concepts, higher-order programming, data abstraction, and concur-
rency are particularly important. The course introduces higher-order programming early
on, as part of a programming example in which a general iterator is specialized to calculate
square roots using Newton’s method. The general iterator is parameterized with functions
for termination detection and state transformation. Higher-order programming with lexical
scoping appears naturally when these functions are defined.

Data abstraction is a broad concept that is often taught too narrowly. For example, pure
object-oriented languages such as Smalltalk use one kind of data abstraction, but many
other kinds are possible. There are two orthogonal axes: whether the abstraction uses
state (destructive assignment) or not, and whether the abstraction is bundled (object) or not
(abstract data type). This gives four possibilities in all. Each has its own trade-offs and real-
world metaphors. We explain the trade-offs between objects and abstract data types, and
show how to use polymorphism with both. For example, we show how Java objects combine
characteristics of both objects and abstract data types to get some of the advantages of both.
It is important for the students to understand the issues involved and why languages make
the choices they do.

Concurrency is often considered a difficult concept, and for this reason it is usually left
to third or fourth-year courses. The difficulty is apparent for the most widespread form of
concurrency, namely the shared-state concurrency as used in Java’s threads and monitors.
This form is hard to program in and subject to race conditions. But shared-state concurrency
is not the only form of concurrency. There exist much simpler, deterministic forms of
concurrency. We teach declarative dataflow concurrency, which has no race conditions. It
is expressive enough to program parallel tasks, streams, and pipelines. We consider it a
good preparation for the more sophisticated forms of concurrency that are used in Internet
applications and multicore programming. We note that Gary Leavens has also used this
approach with CTM to teach concurrent programming [10].

2.3. Formal Semantics

We give a formal semantics for the uniform framework of the course. The semantics
covers all the concepts taught in the course. It is an essential part of the course. Without
it, programming becomes a set of recipes in a cookbook instead of an engineering disci-
pline. We introduce the semantics gradually from the beginning of the course. In the first
lecture, we explain the concepts of lexical scope, variable identifier (textual name), variable
in memory, and environment (frame) which connects identifiers and variables in memory.

We give the semantics of a practical language, i.e., a language with a rich syntax that
supports many programming idioms, by translating it into a kernel language. The ker-
nel language consists of a small number of programmer-significant concepts. This makes
it easy to understand by practicing programmers. Nevertheless, the kernel language is for-
mally defined as a process calculus; we give its operational semantics in terms of an abstract
machine. The abstract machine explains all concepts and techniques used in the course and

The CTM Approach for Teaching and Learning Programming 107

allows to reason about program behavior, execution time, and execution space. With the ab-
stract machine we can derive asymptotic complexity, explain garbage collection, and show
how tail call optimization keeps stack size constant.

The kernel language is factored: it gives the semantics of each programming concept
separately. This lets us show exactly what each concept adds and lets us give the semantics
of each paradigm separately, uncontaminated by other paradigms. The semantics supports
whatever degree of formality best suits the problem: from the most rigorous formal methods
to the most intuitive craftsmanship. Even if programmers do not use the semantics directly,
its mere existence ensures that there are no unpleasant surprises.

The two most similar approaches to our kernel language approach are the foundational
calculus and the virtual machine. A foundational calculus, like theλ-calculus orπ-calculus,
reduces programming to a minimal number of primitive concepts. This is especially useful
for the theoretical study of computation. A virtual machine defines a language in terms of its
implementation on an idealized machine. This is especially useful for language implemen-
tors and compiler writers. The problem with both approaches is that any realistic program
written in them will be cluttered with technical details about language mechanisms. The
kernel language approach avoids this clutter by choosing concepts wisely. The kernel lan-
guages are designed for human beings. Students can use them to execute programs with
pencil and paper.

2.4. Software Support

The course uses the Oz language throughout. Oz is a fully developed research language
that is supported by a complete implementation, the Mozart Programming System [11]. Oz
is designed to support multiple paradigms in a factored way: concepts can be used sepa-
rately without having to mix them. Because of its multiparadigm design that combines a
large number of concepts, Oz has an unusual syntax compared to more widespread syntaxes
such as those inspired by C. We do not consider this a serious problem. Syntax is just a thin
surface layer over what really matters, namely the semantics. Furthermore, not depending
on a C-like syntax makes the course less sensitive to current fashions. The Oz syntax is
simple and factored, and not difficult to learn. In the course we organize the first two prac-
tical sessions in the engineering school’s computer labs, to help the students quickly master
the Oz syntax and the Mozart programming environment.

Once the students understand the Oz syntax, many advantages are gained. Using a sin-
gle language instead of several (e.g., Java, Prolog, Haskell, and Erlang, which are often
used in courses on programming paradigms) makes it easier to show the deep relationships
between the paradigms as well as reducing the administrative burden for students and teach-
ers (since only one system needs to be installed and learned instead of many). The students
understand this: they consistently give the course high marks and they accept the use of
Oz. They understand that using Oz lets the course go much farther than Java. The course
presents higher-order functional programming, object-oriented programming and general
data abstractions, dataflow concurrency, and a simple formal semantics for all these con-
cepts. To my knowledge, this coverage is not possible with any other language than Oz.

Java is not a good language for teaching programming, for the following reasons. Java
does not support functional or dataflow concurrent programming in a simple way. Java’s

108 Peter Van Roy

support for concurrent programming and its semantics are unnecessarily complex for stu-
dents. Furthermore, Java is strongly biased toward object-oriented programming, which is
only one narrow segment of a wide spectrum of programming concepts. Many important
industrial applications, such as distributed and telecommunications applications, require
very different concepts including dataflow concurrency and functional programming.

Mozart is a production-quality implementation that supports all the code examples in
CTM. Mozart is available without charge under an Open Source license. It exists for var-
ious flavors of Unix and Windows and for Mac OS X. Mozart is actively developed and
maintained by the Mozart community. Since 2007 there is a second tool, the iLabo, that is
specifically targeted to support the course. The iLabo is a front end to Mozart that contains
all the examples of the French version of CTM and has the same structure as the book [12].

2.5. Learning Objectives

We have defined a set of measurable learning objectives that are attainable within the
length of a one-semester course. The learning objectives were determined based on the
following meta-objectives:

• Thinking algorithmically Continued advances in computing technology make it
clear that computer usage, which is already high, will continue to increase for the
foreseeable future. Engineers of all disciplines therefore need to understand how
to design and understand programs that satisfy specifications while being readable,
maintainable, extensible, efficient, and parsimonious in resource usage.

• Thinking with abstractions Good design in all disciplines depends on the ability
to think clearly with abstractions: the ability to reason correctly about a system that
consists of several layers of abstraction and the ability to define new abstractions to
simplify a problem’s solution [6]. This is especially important for computer program-
ming because of the large size and complexity of programs.

• Continued study The course should be a good foundation for advanced study of pro-
gramming. For example, this covers the ability to continue with courses on program-
ming language theory and with advanced courses in symbolic programming systems
(such as Mathlab, Mathematica, Maple) and in programming languages that imple-
ments one of the course’s paradigms (including Java, Erlang, Scheme, and Haskell,
but not Prolog which is out of scope for the course).

To determine the actual learning objectives, the above meta-objectives were confronted with
the discipline of programming as presented in CTM [13]. The objectives were then refined
over several years as the course has matured. Given the time constraints of the course, there
is a tension between the desire to broaden the learning objectives and the desire to keep the
course simple. We find that strengthening the unified framework has allowed us to improve
both simultaneously. This gives us the following set of learning objectives for the current
version of the course:

• Programming concepts The ability to define with precision and to use appropriately
in small programs (up to one page) the principal programming concepts. The abil-

The CTM Approach for Teaching and Learning Programming 109

ity to use the right programming techniques for each concept. The list of concepts
covered by the course is given in Table 1.

• Programming paradigms The ability to define with precision the three principal
programming paradigms, namely functional programming, object-oriented program-
ming, and concurrent dataflow programming, with the concepts they contain and the
properties they give to programs. The ability to choose the right paradigm to solve
a given problem and to write a program in that paradigm to solve the problem (up
to several pages). Finally, the ability to combine paradigms inside a program when
necessary, with a justification of the design.

• Syntax and recursion The ability to define the syntax of a recursive data structure
(both linear and arborescent) using EBNF (Extended Backus-Naur Formalism) gram-
mar rules. The ability to write a program to traverse a recursive data structure to do a
calculation on the structure or to create another structure.

• Semantics The ability to define a formal operational semantics of a simple program-
ming language in one of the paradigms of the course, with the right mathematical
concepts. The ability to execute a program manually (on paper) according to this
semantics. The ability to justify certain programming rules of thumb (such as tail call
optimization) based on the semantics. The ability to calculate the asymptotic com-
plexity, both temporal and spatial, in big O/Ω/Θ notation, for the best case, worse
case, and average case for simple programs (except if the calculation requires solving
nontrivial recurrence equations or more than an elementary knowledge of probability
theory).

• Concurrent programming The ability to define the basic concepts of concurrent
programming, in particular, the concepts of thread, dataflow synchronization, nonde-
terminism, scheduler, and fair scheduling. The ability to explain the three principal
paradigms of concurrent programming (shared state, message passing, and declara-
tive concurrency) with their main properties. The ability to write small programs in
the declarative (dataflow) concurrent paradigm.

These learning objectives are student-centered: they indicate clearly to students what the
course expects from them and they can be evaluated (for example, in an examination).

3. Historical Background and Acceptance

3.1. Origins of the Course

The course’s foundation is based on a large collaborative research effort in program-
ming languages that started in the late 1980s undertaken by three research groups. The
three groups were located at Saarland University, Germany (headed by Gert Smolka), the
Royal Institute of Technology, Sweden (headed by Seif Haridi), and the DEC Paris Re-
search Laboratory (headed by Hassan Aı̈t-Kaci). These partners and others initiated the
European ACCLAIM project (1991–1994), which had a major effect on this work. The

110 Peter Van Roy

goal was to study programming languages by factorizing them into their independent con-
cepts. The research started with logic and constraint programming, as an outgrowth of work
on concurrent logic programming, but quickly branched out to embrace all important pro-
gramming paradigms. Several languages were designed, among which Oz, AKL, and LIFE
were the most prominent. The ideas of AKL and LIFE were eventually merged into Oz,
which became the most visible result of this research.

In the summer of 1999, Seif Haridi and Peter Van Roy had the insight that the clean and
factored design of Oz could be used as the basis of a programming course. They started
writing a book on programming. The book was published in March 2004 by MIT Press as
Concepts, Techniques, and Models of Computer Programming[13]. This book has become
known as CTM.

During the writing of CTM (mid 1999 to mid 2003), Seif Haridi, Christian Schulte,
and Peter Van Roy all taught programming courses based on this material to students at
the Royal Institute of Technology (KTH), the National University of Singapore (NUS), and
UCL. Seif Haridi taught the course Datalogi II at KTH in Fall 2001 and Christian Schulte
taught it in Fall 2002 and Fall 2003. Seif Haridi taught a similar course during his sabbatical
at NUS in Fall 2003. Peter Van Roy has continued to teach and refine a programming
course at UCL since the Spring 2003 semester up to the present day. The course, currently
called FSAB1402, is taught in French to all engineering students at UCL as part of the
core curriculum in the three-year Bachelor’s degree in engineering [4]. There is a choice of
two textbooks: CTM or its French translation which was published in Sep. 2007 together
with its custom software support, the iLabo environment [14, 12]. The French translation
covers exactly the material of the course, which is about one third of CTM. There is another
course at UCL, currently called INGI1131, which is a successor to FSAB1402 for computer
science majors. It is focused on concurrent programming and covers another third of CTM.

3.2. Acceptance at the Louvain Engineering School (EPL)

An early version of this course, named LINF1251, was taught to computer science
students in the second year of the four-year licentiate degree during the Spring 2003 and
Spring 2004 semesters. Subsequently, there was a course opening in the Fall 2004 semester
for all second-year students at EPL. When the course was first taught to all engineering
students, there was skepticism in the computing science department whether it would be
successful. The course was provisionally accepted for two years, to be followed by an
evaluation to see whether it should be continued. After two years, the course was accepted
without any problems and it has been taught each fall semester ever since (six times so far
including the Fall 2009 semester) [4].

One reason for the initial skepticism was a problem of perceived scientific credibility
of computer science with respect to other engineering disciplines. Since all engineering
disciplines use computers as tools, the non-computer science disciplines at UCL tended
to consider computer science as a technical field but not a scientific one. This perception
was initially strengthened by the computing science department itself, a young department
which taught programming using mainstream languages such as C++ and Java. Paradoxi-
cally, this was done to improve the usefulness of computer science for the other engineering
disciplines. The CTM approach has partially changed this mindset, although a lingering

The CTM Approach for Teaching and Learning Programming 111

unease remains about the use of a non-mainstream language, Oz, to illustrate the concepts.
This was done to support the focus on programming concepts, since no single mainstream
language has the broad coverage and simple semantics of Oz (see also Section 2.4.).

In the current version of the course, there are around three hundred students each year.
The didactic team consists of the author, four teaching assistants, and eight or nine student
monitors. There are many ways to teach the course. We currently organize the course as a
two-hour lecture and a two-hour practical session each week for thirteen weeks. The lecture
combines transparencies, interactive programming using the Mozart system, and explana-
tions on the blackboard. The practical sessions are organized in groups of 24 students. The
students have take-home exercises that are graded each week, an optional midterm, a pro-
gramming project, and a final exam. The project counts for one fourth of the final grade and
the final exam counts for three fourths. The take-home exercises, if completed successfully,
add a small bonus to the final grade. The midterm can improve the final score through a
weighted average in which it counts for one third. The project is done in groups of two
students during the last third of the course and cannot be redone. Part of the project grade
comes from an interview of each group.

3.3. Two Essential Insights

Since the initial teaching of this course, we have gained two important insights about
how to teach programming [8]:

• Importance of the second year. We find that the second year is a good time to teach
a programming course based on programming concepts. In the first year, students
are not mature enough (the course is too abstract for them). In the third and later
years, students get conservative (they get too attached to the languages they have
learned so far). In the second year, they have enough maturity to understand the
concepts and enough openness to appreciate them. At UCL, the core curriculum for
all engineering students has a first-year course based on Java, FSAB1401, that gives
an introduction to programming and object-orientation. The second-year course is a
natural continuation of FSAB1401 [4].

• Importance of formal semantics. We recommend that students be taught program-
ming language semantics in the second year. This can succeed if: (1) the semantics
requires very little mathematical baggage, for example just sets, sequences, and func-
tions, (2) the semantics is factored so it can be taught incrementally for all paradigms,
and (3) the semantics is simple and uncluttered so that students can work out a pro-
gram’s execution with paper and pencil. The abstract machine semantics of CTM is
one example that fits these conditions. Despite its simplicity, the students consider the
semantics the hardest part of the course. They are used to highly technical courses in
continuous mathematics such as the differential and integral calculus, but they have
never before in their studies been exposed to the style of discrete mathematics used
in a programming language semantics. The semantics is important because it allows
the students to think precisely about how programs execute. Without a formal seman-
tics, the execution of programs remains vague and mysterious. For this reason, we
consider that students in any technical field should be taught a language semantics at

112 Peter Van Roy

least once in their careers. Considering the omnipresence of computers and program-
ming, it needs to be a part of engineering culture as much as traditional mathematical
subjects such as algebra and calculus.

3.4. Comparison with Other Approaches

The ACM computing curriculum gives several approaches to teach introductory pro-
gramming [7]. It has approaches focused on different concepts such as objects and func-
tions. Since object-oriented programming can be explained with functional programming
extended with named state, we find it natural to start with functional programming and
then extend it to object-oriented programming. We show the techniques of functional pro-
gramming and then we show how adding named state allows to add more techniques. For
example, object-oriented programming allows richer forms of data abstraction than func-
tional programming.

MIT has recently switched from Scheme to Python for their first-year course. This was
much discussed on Internet forums, including the programming languages forum Lambda
the Ultimate [9]. In our experience it is not necessarily a bad thing to put Scheme beyond the
first year. First-year students are not yet ready for the abstract thinking that such a course
requires. The book used in MIT’s first-year course, namelyStructure and Interpretation
of Computer Programs(SICP) [1], is dense with concepts and programming techniques
in a similar style to CTM. SICP uses an interpreter-based approach as opposed to CTM’s
kernel language approach which is based on translation. CTM has a greater coverage of
concurrency whereas SICP covers meta-interpreters.

At EPL there are two computer science courses in the core curriculum: a first-year
course that uses Java, called FSAB1401, and a second-year course explained in this chapter
that uses Oz, called FSAB1402. Java is a mainstream language that the students must learn
at some point. Putting it in the first year is a reasonable solution since the first-year course
does not go far enough to show its limitations. Using Oz in the second-year course allows
the course to cover a much wider set of concepts. The second year also has a project course
based on Java (currently only for students taking computer science as a major or a minor).
With these two courses, students get both sides of the coin in the second year: an improved
understanding of programming concepts (a long-term educational goal) and an improved
understanding of practical programming with Java (a short-term educational goal).

4. Example Lectures and Highlights

To give the flavor of our approach and how it differs from more standard approaches,
we give three example lectures from the course. We give them with text, code, and figures
in similar fashion to an actual lecture. We have chosen three lectures:

• Named state and modularity (part of lecture 6). This lecture introducescells, which
are variables that can be assigned many times (destructive assignment variables) and
shows why they are good for modularity. It makes the bridge between the functional
paradigm and the object-oriented paradigm.

The CTM Approach for Teaching and Learning Programming 113

• Concurrency and multi-agent systems (part of lecture 11). This lecture introduces
a particularly simple and well-behaved form of concurrent programming, namely
declarative dataflow concurrency. This form of concurrency has no race conditions
and is as simple to program as the functional paradigm.

• Formal semantics (part of lecture 8). This lecture gives the formal semantics of the
complete language in terms of a kernel language and an abstract machine. This model
is general enough to cover all the paradigms of the course and simple enough that the
students can work out semantic examples with pencil and paper.

Introduction to the Oz language The three lectures all use the Oz language. We give a
brief introduction to Oz, explaining just enough to understand the lectures. Variable identi-
fiers in Oz start with capital letters and must be declared before use. Function and procedure
calls are delimited with braces{ and}, because the parentheses (and) are used for records.
Here is a simple way to define the factorial function:

fun {Fact N}
if N==0 then 1 else N*{Fact N-1} end

end

All compound instructions, such as function definition (fun) and conditional (if), start
with a keyword and terminate withend. The basic data structures are lists, tuples, and
records. These are values; once created they cannot be modified. Lists are written as dotted
pairs with a notation derived from Prolog. The empty list is denoted bynil andH|T
denotes a list with headH and tailT. Pattern matching is done with acase statement. We
can define the list append function as follows:

fun {Append Xs Ys}
case Xs
of X|Xr then X|{Append Xr Ys}
[] nil then Ys end

end

Because Oz has single-assignment variables, the above append function is tail-recursive.
We can see this by translatingAppend into the simple core language of Oz, thekernel
language:

proc {Append Xs Ys Zs}
case Xs of X|Xr then

local Zr in
Zs=X|Zr
{Append Xr Ys Zr}

end
else

case Xs of nil then
Zs=Ys

else
raise typeError end

end
end

end

114 Peter Van Roy

The variableZr is created unbound and passed to the recursive call{Append Xr Ys Zr}.
This allows us to place the recursive call last. The kernel language has only procedures;
functions are encoded as procedures with an additional output argument. All variables
used during calculations are visible in the kernel language, including function outputs and
local variables. The formal semantics of Oz explained in the course is given for this kernel
language.

4.1. Named State and Modularity (part of lecture 6)

Our first lecture introduces explicit state. This extends the declarative model with de-
structive assignment variables. We will show that explicit state is essential for modularity:
the ability to change part of a system without changing the rest.

Explicit state added to the language In the declarative model, there is no notion of time.
Functions are mathematical functions: for the same arguments the results are always the
same. This is not true for entities in the real world. In the real world, there is time and
time is accompanied by change. Organisms change their behavior with time, they grow
and learn. How can we model these changes in a program? We can add a kind ofabstract
time in a program. Abstract time is simply a sequence of values, which we call astate.
More precisely, a state is a sequence of values calculated successively, which contain the
intermediate results of a computation. According to this definition, the declarative model
can also have state! For example, consider this definition:

fun {Sum Xs A}
case Xs of nil then A
[] X|Xr then {Sum Xr A+X}
end

end
{Browse {Sum [1 2 3 4] 0}}

(Browse is a one-argument procedure that displays its argument.) At each recursive call to
Sum, the two argumentsXs andA have the following values:

Xs A

[1 2 3 4] 0

[2 3 4] 1

[3 4] 3

[4] 6

nil 10

This gives a sequence of values, which is exactly a state. We call this animplicit state
because we did not change the programming language. The state exists in the programmer’s
mind. State can also be explicit, in other words, we extend the language. This extension
allows us to express directly a sequence of values in time. We will call this extension acell.
A cell has a content that can be changed. A state is a cell’s sequence of contents.

The CTM Approach for Teaching and Learning Programming 115

x

x 5

x 6

An unbound variable

Creation of a cell with initial content 5

Changing the content to become 6

A cell is a container that has two parts: an identity and a content. The identity is constant
(the “name” or “address” of the cell). The content is a variable in the single-assignment
memory. The cell’s content can be changed. This replaces the variable by another variable.
It does not change the variable’s value!

X={NewCell 5}
{Browse @X}
X:=6
{Browse @X}

We add the cell as a new concept to the kernel language. A cell has three operations:

• X={NewCell I} creates a new cell with initial contentI and bindsX to the cell’s
name.

• X:=J gives the cell a new contentJ, if X is bound to the cell’s name.

• Y=@X bindsY to the content of the cell, ifX is bound to the cell’s name.

Explicit state is needed for modularity We say that a system (or a program) ismodular
if it is possible to update part of the system without updating the rest. Here, “part” can
have many meanings: function, procedure, component, module, class, library, package, and
so forth. We give an example to show how explicit state can be used to make a modular
system. We will see that this is not possible in the declarative model.

Consider the following scenario. There are three software developers, let us call them
P, U1, and U2. P has developed a module M that provides two functions F and G:

fun {MF}
fun {F ...}

% Definition of F
end
fun {G ...}

% Definition of G
end

in
moduleRec(f:F g:G)

end
M={MF}

In this code,MF is a component that creates moduleM when it is instantiated. The module
M has two functionsF andG accessed through the module’s interface, which is the record
moduleRec(f:F g:G). U1 and U2 are both users of the module M.

Now, U2 has an application that takes a lot of computation time. U2 would like to extend
the moduleM to count the number of times that functionF is called by its application. U2

116 Peter Van Roy

asks P to do this without changingM’s interface. Surprise! This is impossible to do in the
declarative model becauseF has no memory of its previous calls. The only possible solution
in this model is to changeF’s interface by adding two argumentsFin andFout:

fun {F ... Fin Fout} Fout=Fin+1 ... end

HereFin is the number of timesF is called before this call, andFout is the number of
timesF is called after. The rest of the program has to make sure that the outputFout of
one call toF is the inputFin of the next call toF. This means that the interface toM has
changed. All users ofM, even U1 (who did not ask for any change), must change their
programs. Neither U1 nor U2 are happy.

The solution to this problem is to use explicit state, namely a cell.

fun {MF}
X={NewCell 0}
fun {F ...}

X := @X+1
% Definition of F

end
fun {G ...}

% Definition of G
end
fun {Count} @X end

in
moduleRec(f:F g:G c:Count)

end
M={MF}

When the moduleM is created, this creates a cell referenced byX inside the module. Be-
cause of lexical scoping, the cell is hidden and is only visible from inside the module. The
functionF (called asM.f from the outside) has not changed its interface. A new function
M.c is available to get the value of the count, but this can be ignored.

We conclude this example by comparing the declarative model with the imperative
model (which has cells). In the declarative model, a component never changes its behavior
(if it is correct, it stays correct). But updating a component is difficult: it means that often
the interface has to be changed too. In the imperative model, a component can be updated
without changing its interface (the program is modular). But a component can change its
behavior because of previous calls (it may break, for example). It is sometimes possible
to combine the advantages of both models: use explicit state to help with updating, but be
careful never to change the behavior of a component.

4.2. Concurrency and Multi-Agent Systems (part of lecture 11)

Our second lecture introduces concurrent programming. We will see how to do dataflow
execution with threads and streams. We will build simple multi-agent systems including
producer/consumer systems and pipelines (similar to Unix pipes).

The real world is concurrent: it consists of activities that evolve independently. The
computing world is concurrent too. There are three levels of concurrency in a computing
system:

The CTM Approach for Teaching and Learning Programming 117

• A distributed system consists of computers linked by a network. A concurrent activity
in a distributed system is called a computer.

• An operating system of a computer consists of the software program that provides
the basic environment available to all other programs. A concurrent activity in an
operating system is called a process. Processes have independent memory spaces.

• A process consists of an executing program with its memory space. A concurrent
activity in a process is called a thread. Threads share the same memory space.

In Web browsers each window typically corresponds to one concurrent activity, which can
be a thread or a process depending on how the Web browser is built.

There is a strong link between independence and concurrency: any two activities that
are independent are concurrent. How can we write a program with two independent activ-
ities? It needs support from the programming language. In a concurrent program, there
can be several activities executing at the same time. These activities can communicate (one
activity passes information to another) and synchronize (one activity waits for another).

Declarative concurrency There are three main approaches to program with concurrency.
By far the simplest of the three isdeclarative concurrency. This is the one we will see
today. The two other approaches are outside the scope of this course. We mention them
briefly:

• Message-passing concurrency. Activities send each other messages, similar to pack-
ets on a network or postal mail. This approach is also relatively simple. It is used in
the Erlang language.

• Shared-state concurrency. Activitiesshare data and try to work together without inter-
fering with each other. Whenever an activity uses some data, it locks the data to keep
other activities from interfering. This is by far the most complicated approach. Un-
fortunately, for historical reasons this is the most widely used one. It is implemented
in Java via themonitorconcept, which allows multiple activities to coordinate access
to shared data.

We study these approaches in other courses, such as INGI1131 in the third year bachelor’s
program of computer science at UCL. Today we will focus on declarative concurrency. It
is based on a simple idea: using single-assignment variables to synchronize data. Assume
we have a variableX that is not bound to a value. Let us try to use it in an operation:

local X Y in
Y=X+1
{Browse Y}

end

The additionX+1 has an unbound argumentX. What does it do? Nothing! Execution waits
just before the addition operation untilX is bound. As we shall see, this behavior is at the
heart of declarative concurrency.

We can compare this behavior to other languages. Different programming languages do
different things with variables that are not initialized. In early versions of C, the addition

118 Peter Van Roy

continues butX has a “garbage” value (content of machine memory at that instant). This
is very bad since the result can vary from one execution to the next. In Java, the addition
continues withX bound to 0 (if X is the attribute of an object and has type integer). This is
better since the result is always the same. In Prolog, execution stops with an error message.
In Java, the compiler detects an error ifX is a local variable. In Oz (our language), the
execution waits just before the addition and can continue whenX is bound (dataflow execu-
tion). In constraint programming, the equation “Y=X+1” is added to the set of constraints
and execution continues by solving the constraints. This is the most sophisticated form of
declarative programming, which is outside the scope of this course. If you are curious about
this, you can take the course INGI2365 on constraint programming at UCL.

Now, let us see how execution can continue with our example:

declare X
local Y in

Y=X+1
{Browse Y}

end

(The declare X instruction declaresX as a global variable in the interactive Mozart in-
terface.) If someone could bindX, then execution would continue. But who can bindX?
Answer: another concurrent activity! If the activity doesX=20 then the addition will con-
tinue and21 will be displayed. This behavior is calleddataflow execution.

Y=X+1 {Browse Y}
Activity A’s progress

(1)
X=20

Activity B’s progress
(2)

Activity A waits patiently at point (1) just before the addition. When activity B doesX=20

at point (2), then activity A can continue. If activity B doesX=20 before activity A arrives
at point (1), then activity A will continue without waiting. In both cases, the same result
(21) is displayed.

Threads In the previous examples, what we called an “activity” is a sequence of instruc-
tions in execution. Technically this is called athread. Each thread is an independent sequen-
tial execution. There is no order defined between two threads, that is, we cannot tell which
thread will execute first. The system is free to choose this. The system guarantees that each
thread will receive a fair share of the processor’s calculating capacity. Two threads can
communicate if they have a shared variable, such as the variableX in the previous example.

In Oz it is easy to create a thread. Any instruction<s> can run in a new thread by
executingthread <s> end. For example:

declare X
thread {Browse X+1} end
thread X=1 end

What does this program do? There are several possible executions, but they will all eventu-
ally display the same result: 2!

The CTM Approach for Teaching and Learning Programming 119

Total order, partial order, and nondeterminism Concurrent activities can execute “at
the same time”. We can imagine that all the threads are really executing in parallel, each
with its own processor but sharing the same memory. This is not really the case, but it is a
good way to picture what is going on. In reality, the threads will share the processor that
is executing the process containing the threads. In a sequential program, which executes in
one thread, all execution states are in atotal order: there is an order between each pair of
execution states.

One execution step

Sequential
execution

In a concurrent program, all execution states of the same thread are in a total order. The
execution states of the whole program are in apartial order: some pairs of execution states
are not ordered.

Thread T1

Thread T2

Thread T3

Thread
creation

What does the following program do:

declare X
thread X=1 end
thread X=2 end

The execution order of the two threads is not determined.X will be bound to 1 or 2, but
it is not specified which. The other thread will have an error (an exception will be raised)
since a variable cannot be bound to two values. This uncertainty about what is done is
callednondeterminism. The system is free to choose either possibility. Let us try the same
example with cells:

declare X={NewCell 0}
thread X:=1 end
thread X:=2 end

Again, the execution order is not determined. The cellX will first be assigned one value
and then the other. When both threads have finished,X will have content 1 or 2, but it is not
specified which. This time there is no error. Again, the uncertainty about what is done is
called nondeterminism. The programmer does not know what will happen, because the two
activities are independent. The system is free to choose either possibility.

Nondeterminism is bad if it can affect the outcome of a program, i.e., different execu-
tions of the same program can give different outputs. We call thisobservable nondeter-
minism. This is possible in both of the examples given above. Avoiding this is not always
easy. It is especially difficult for programs that use both threads and cells, which is called

120 Peter Van Roy

shared-state concurrency. Unfortunately, many popular languages such as Java and C++ use
this form of concurrency. The usual approach to control the nondeterminism is to use a pro-
gramming concept called amonitor. This is outside the scope of this course. It is explained
in the course INGI1131. The declarative model has a major advantage over shared-state
models: it has no observable nondeterminism. A declarative concurrent program that does
not end in error always gives the same result. This is a remarkable property that deserves to
be widely known.

Streams and agents Let us write some programs using declarative concurrency. We in-
troduce two programming techniques, streams and agents. We define astreamas a list
whose tail is an unbound variable:

S=a|b|c|d|S2

S is a stream. A stream can be extended indefinitely with new elements by binding its tail
and closed if desired by binding the tail tonil. A stream can be used as a communication
channel between two threads. The first thread adds elements to the stream and the second
thread reads the stream. Here is a program that displays all the elements of a stream:

proc {Disp S}
case S of X|S2 then {Browse X} {Disp S2} end

end
declare S
thread {Disp S} end

All elements added to the stream will be displayed. For example, this fragment will display
a, b, c, andd:

declare S2 in S=a|b|S2
declare S3 in S2=c|d|S3

With streams we can build a simple concurrent producer/consumer system. Aproducer
generates a stream of data:

fun {Prod N} {Delay 1000} N|{Prod N+1} end

Here the{Delay 1000} causes the thread to wait for 1000 ms to slow down execution
enough so we can see what happens. Aconsumerreads the stream and uses it. Here is a
simple producer/consumer system:

declare S
thread S={Prod 1} end
thread {Disp S} end

The structure of this system can be shown nicely as a diagram:

thread S={Prod 1} end thread {Disp S} end

S=1|2|3|4|…

Agent P Agent C

The CTM Approach for Teaching and Learning Programming 121

Each rectangle is anagent, which we define as a concurrent activity with one (or more)
communication channels. The two agents P and C communicate using the streamS. We
can add other agents in between P and C. For example, here is a transformer that reads a
stream and outputs a modified stream:

fun {Trans S}
case S of X|S2 then X*X|{Trans S2} end

end

Here is a producer/transformer/consumer program with three agents:

declare S1 S2
thread S1={Prod 1} end
thread S2={Trans S1} end
thread {Disp S2} end

thread S1={Prod 1} end thread {Disp S2} end

S1=1|2|3|…

Agent P Agent C

thread S2={Trans S1} end

Agent T

S2=1|4|9|…

The pipeline technique illustrated by this example is very useful. It has become a ubiquitous
tool in operating systems since its invention in Unix.

4.3. Formal Semantics (part of lecture 8)

Our third lecture is the most mathematical of the whole course. In previous lectures
we have set the stage by introducing already many of the concepts that we need for the
semantics: instructions, the kernel language, identifiers, variables, the single-assignment
memory, and environments. As you will see, just two additional concepts are needed to
define a complete semantics: the semantic stack and the execution state.

The formal semantics of a language gives a mathematical explanation of how any pro-
gram executes. With this explanation we can understand why a program does what it does,
we can reason about correctness, computational complexity (both in time and space), and
memory management (how the stack and heap are managed, including garbage collection).
For example, we can use the semantics to understand how tail call optimization reduces
the stack space used by a program. We will define the semantics in terms of an idealized
computer called an abstract machine. Starting from a program, there are two steps to take:

• First translate the program into the kernel language. The kernel language is a sim-
plified form of the language that contains all the essential concepts but no syntactic
short-cuts for the programmer. Technically, the kernel language makes explicit all
operations and variables used in the execution.

• Then execute the kernel language program with the abstract machine.

The kernel language of the declarative model has the following syntax definition:

122 Peter Van Roy

<s> ::= skip

| <s>1 <s>2

| local <x> in <s> end

| <x>1 = <x>2

| <x>1 = <v>
| if <x> then <s>1 else <s>2 end

| {<x> <y>1 · · · <y>n}
| case <x> of <p> then <s>1 else <s>2 end

<v> ::= <number> | <procedure> | <record>
<number> ::= <int> | <float>
<procedure> ::= proc {$ <x>1 · · · <x>n} <s> end

<record>, <p> ::= <lit>(<f>1 :<x>1 · · · <f>n :<x>n)

This is an EBNF grammar notation where<s> designates an instruction,<x> and<y>
designate identifiers, and<v> designates a value, which can be a number, procedure, or
record. Patterns<p> in a case statement have the same syntax as records.

To execute an instruction<s> written in kernel language, we need to combine it with
an environmentE and a single-assignment memoryσ that contains variables and the values
they are bound to. The instruction<s> is combined with an environmentE to make a
semantic instructionS = (<s>, E). An execution state(ST,σ) combines a stackST=
[Sn−1, · · · , S2, S1, S0] of semantic instructions together with a memoryσ. Each instruction
on the stack has its own environment and all instructions share the same memory (why?).
An executionis a sequence of execution states (ST0, σ0) → (ST1, σ1) → (ST2, σ2) → · · · .

To execute a program<s>we form the initial execution state (ST0, σ0) = ([(<s>,∅)], ∅).
This combines the instruction<s> with an empty environment∅ to give the first semantic
instruction (<s>, ∅). The semantic stack containing this instruction is then paired with an
empty memory∅.

Execution in the abstract machine Each execution step removes the top of the stack
and executes the instruction according to a rule that defines the semantics of the instruc-
tion. When the stack is empty then execution stops. To show how this works we give the
execution of the following instruction:

local X in
local B in

B=true
if B then X=1 else skip end

end
end

The initial execution state is:

([(local X in local B in B=true if B then X=1 else skip

end end end, ∅)], ∅)

The instruction on the top of the stack islocal <x> in <s> end, where<x>=X and
<s>=local B in B=true if B then X=1 else skip end end. The rule for ex-
ecuting this instruction creates a new variablex in memory and an environment{X → x}
to refer to it. We can define this rule as follows:

The CTM Approach for Teaching and Learning Programming 123

Rule forlocal instruction
Replace:

([(local <x> in <s> end,E), (rest of stack)],σ)
by:

([(<s>,E + {<x>→ x}), (rest of stack)],σ ∪ {x})

wherex is a fresh variable (which does not occur inσ). Applying this rule to the initial
execution state gives:

([(local B in B=true if B then X=1 else skip end end, {X →
x})], {x})

The top instruction on the stack is again alocal, so we apply the rule again:

([(B=true if B then X=1 else skip end, {X → x, B → b})], {x, b})

The top instruction is now a sequential composition<s>1 <s>2. The rule for a sequential
composition splits it into two stack entries:

([(B=true, {X → x, B→ b}),
(if B then X=1 else skip end, {X → x, B → b})], {x, b})

The top instruction is now the bindingB=true. The rule for a binding simply bindsB’s
variable totrue:

([(if B then X=1 else skip end, {X → x, B→ b})], {x, b = true})

Continuing in this way, we eventually end up with an empty stack. This gives the final
execution state:

([], {x = 1, b = true})

Semantics of each instruction For each instruction of the kernel language, there is a rule
that specifies how it executes in the semantics. Each instruction takes an execution state
(semantic stack and memory) and returns another execution state. In the above example we
showed how to use the rules for thelocal instruction, the sequential composition instruc-
tion, and the binding instruction. All the other instructions have similar rules. The most
complicated rules are for the procedure definition and procedure call.

We have given the semantics of the functional paradigm. To support the object-oriented
and dataflow concurrent paradigms, we extend the declarative model with cells, exceptions,
and threads. We give a semantics to each of these language concepts by extending the
abstract machine. Cells are defined in terms a new memory, amultiple-assignment store,
that sits beside the single-assignment store. Exceptions are defined in terms of anexecution
context, which is a contiguous part of the semantic stack from the top down to the beginning
of the context. Execution contexts can be nested. When an exception is raised, an execu-
tion context is removed by emptying the stack down to the beginning of the context and
replaced by an instruction that does the exception handling. Threads are defined by giving
each thread one semantic stack and by allowing individual semantic stacks to suspend. A
semantic stacksuspendsif the instruction on the top cannot continue because a variable is
not bound. Binding this variable on another semantic stack will allow the original one to
continue.

124 Peter Van Roy

Mastering the semantics The formal semantics is the most mathematical part of the
course. To understand how it works, you need to do exercises using pencil and paper. Be
especially careful with procedure definitions and procedure calls, since they are a bit tricky.
A procedure definition stores a contextual environment together with the procedure’s code
in memory. A procedure call creates an environment by combining the contextual environ-
ment with the procedure’s arguments.

5. Conclusion

We have presented a mature second-year course that teaches computer programming
based on a uniform framework, introducing concepts one by one within the framework as
they are needed. The course teaches programming as an engineering discipline, combining
a theoretical foundation with practical techniques. It is part of the core curriculum for all
engineering students at the Université catholique de Louvain since 2004. The course is
accepted at the Louvain Engineering School and the computing science department and by
the students, who give it high marks in course evaluations. Course materials and a course
book are available in French and English [14, 13]. Student-centered learning objectives
for the course are given in Section 2.5. and are formulated to allow straightforward student
evaluation.

The course is based on a unified framework that covers all concepts taught in the course.
We give the framework a formal operational semantics based on a kernel language and an
abstract machine. This operational semantics is used to reason about program correctness
and to understand how programs execute. It justifies the programming techniques used
in the course (such as tail call optimization) and the techniques used for computational
complexity. The programming semantics and techniques cover the three most important
programming paradigms, namely functional programming, object-oriented programming,
and declarative dataflow programming. The course uses a multiparadigm language, Oz,
which allows presenting all the paradigms using a single syntax in a natural way. Oz has
a simple formal semantics and a high-quality implementation, Mozart [11], which both
contribute to the success of the course.

5.1. Applying the CTM Approach to a First-Year Course

We have experimented with applying the CTM approach of introducing concepts one
by one in a uniform framework to a first-year programming course. For the first year we
focus less on semantics and more on concurrency. The idea is to start immediately with
multi-agent programming in a small microworld. Each time the limits of a microworld are
reached, we add a new concept to create a richer microworld. We have developed a complete
set of lecture notes for this approach and tested it on several small groups of students [3].

The progressive multi-agent microworld approach introduces a series of microworlds
that rapidly advance toward concepts that are typically only seen in much more advanced
courses. The students learn multi-agent programming, asynchronous message passing,
graphic interfaces, higher-order programming, software components, fault tolerance, and
distributed systems. We hope to eventually redo the complete programming curriculum
based on these ideas.

The CTM Approach for Teaching and Learning Programming 125

Acknowledgments

We thank Elie Milgrom and Pierre Dupont for their insightful comments that substan-
tially improved this chapter. We thank Olivier Bonaventure and Charles Pecheur, who teach
FSAB1401, for their insights and support for teaching computer science in the core curricu-
lum. We thank the Dept. of Computing Science and Engineering at UCL for their support
in the development of the course FSAB1402 in the UCL Engineering School.

References

[1] Harold Abelson, Gerald Jay Sussman, and Julie Sussman.Structure and Interpretation
of Computer Programs, 2nd edition. The MIT Press, Cambridge, MA, 1996.

[2] Gérard Assayag, Andrew Gerzso, and Peter Van Roy. “Foreword.”New Com-
putational Paradigms for Computer Music, Assayag G. and Gerzso A. (eds.), IR-
CAM/Delatour France, 2009.

[3] Isabelle Cambron, Mathieu Cuvelier, Gregory de le Vingne, Maxime Romain, Cécile
Toint, and Peter Van Roy. La Programmation en Première Année Basée sur
l’Enrichissement Progressif de Micromondes Multi-Agents(First-Year Programming
Based on Progressive Enrichment of Multi-Agent Microworlds) (in French). Master’s
thesis. See www.info.ucl.ac.be/ pvr/micromondes.html.

[4] École Polytechnique de Louvain (Louvain Engineering School) (EPL). Bachelier en
Sciences de l’Ingénieur, Orientation Ingénieur Civil (Bachelor in Engineering Sci-
ence, Orientation Graduate Engineer). Université catholique de Louvain, Louvain-la-
Neuve, Belgium, 2009. See www.uclouvain.be/prog-2009-fsa1ba.html.

[5] Matthias Felleisen. On the Expressive Power of Programming Languages. In3rd
European Symposium on Programming (ESOP 1990), pages 134–151, May 1990.

[6] Michael French. Invention and Evolution: Design in Nature and Engineering, 2nd
Edition. Cambridge University Press, 1994.

[7] Joint Task Force on Computing Curricula, IEEE Computer Society and ACM. “Com-
puting Curricula 2001: Computer Science”, Final Report, Dec. 15, 2001.

[8] Lambda the Ultimate. “Insights on Teaching Computer Programming.” LtU discus-
sion 1195. See lambda-the-ultimate.org/node/1195. Dec. 2005.

[9] Lambda the Ultimate. “Why Did MIT Switch from Scheme to Python?” LtU discus-
sion 3312. See lambda-the-ultimate.org/node/3312. May 2009.

[10] Gary T. Leavens. Use Concurrent Programming Models to Motivate Teaching of
Programming Languages. InProgramming Languages Curriculum Workshop, May
2008, Cambridge, MA. Also report CS-TR-08-04a, University of Central Florida.

[11] Mozart Programming System version 1.4.0. See www.mozart-oz.org. July 2008.

126 Peter Van Roy

[12] ScienceActive, iLabo, 2007. See www.scienceactive.com.

[13] Peter Van Roy and Seif Haridi.Concepts, Techniques, and Models of Computer Pro-
gramming. Course website: ctm.info.ucl.ac.be/en. The MIT Press, Cambridge, MA,
2004.

[14] Peter Van Roy and Seif Haridi.Programmation: Concepts, Techniques et Modèles(in
French). Course website: ctm.info.ucl.ac.be/fr. DunodÉditeur, Paris, France, 2007.

[15] Peter Van Roy. “Programming Paradigms for Dummies: What Every Programmer
Should Know.”New Computational Paradigms for Computer Music, Assayag G. and
Gerzso A. (eds.), IRCAM/Delatour France, 2009.

