
116	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0740 -7459 / 19©2019 I EEE

THE PRAGMATIC
DESIGNER

Editor: George Fairbanks
gf@georgefairbanks.com

I’M ALWAYS DELIGHTED to dis-
cover a connection between two ideas
that I’m already fond of on their own,
so I’d like to share a connection I
found recently. The first idea is writ-
ing code that expresses my thinking
about the problem domain, and the
second is the principle of least expres-
siveness (PLE). The connection is that
I can use the PLE to reveal my think-
ing about the problem domain, and
because all ambiguity stops at the
code, the act of programming using
the PLE can help me simplify and
debug the flawed ideas I have in
my head.

The PLE3 is as follows:

When programming a component,
the right computation model
for the component is the least
expressive model that results in a
natural program.

The least expressive model means
that if you can express your idea
with a constant, use that, and simi-
larly for lookup tables, state ma-
chines, and so on. You should only
use a Turing-complete language
when you cannot use something sim-
pler—with the caveat not to contort
the code.

We can see the same idea with a
different name in the Rule of Least

Power, where it guides the architec-
ture of the web. Berners-Lee and
Mendelsoh1 put it this way:

The Rule of Least Power suggests
choosing the least powerful lan-
guage suitable for a given purpose.
… If, for example, some weather
data is published as a Web resource
using RDF [Resource Description
Framework], a user can retrieve it
as a table, perhaps average it, plot
it, or deduce things from it in com-
bination with other information.
… The only way to find out what
a Java [weather] applet means is
generally to set it running, and see
what it does.

The PLE is like many other design
principles in that you may have dis-
covered it independently, already use
it when you write code, and yet still

find plenty of other code violating it.
If nothing else, perhaps this article
connects your good design instincts
with a named concept and you can
point to it during code reviews or
mentoring. For those who haven’t
already been down this path, let’s
work through how using the PLE
can improve your code.

Saying More by
Expressing Less
Imagine that our program has a fairly
common task: to decode files in vari-
ous formats. Not knowing any more
about the problem, we can guess
that one of the following is probably
true, but which one?

1.	one format and one decoder
2.	one format and many decoders
3.	many formats and one decoder
4.	many formats and many

decoders.

Figuring out this relationship be-
fore writing code is instinctive to
anyone who has worked with data-
base schemas or any careful soft-
ware design process. How might this
relationship reveal itself in code?
Figure 1 shows a typical way to use
an IF/ELSE statement to implement
decoding. A CASE statement would
look quite similar.

From this, we can see that a for-
mat maps to one decoder and a de-
coder maps to many formats, but we

Principle of Least
Expressiveness
George Fairbanks

Digital Object Identifier 10.1109/MS.2019.2896876
Date of publication: 16 April 2019

FIGURE 1. Using IF/ELSE to invoke the

right decoder plus express the relationship

between formats and decoders.

if (file.format() == JPG
|| file.format() == PNG) {

return new DecoderA().decode(file);
} else if (file.format() == GIF) {
return new DecoderB().decode(file);

} else {
throw new IllegalStateException();

}

	 MAY/JUNE 2019 | IEEE SOFTWARE � 117

THE PRAGMATIC DESIGNER

have to look around a bit to decide
that. How well does this code rate
from the perspective of the PLE?
Well, it uses a Turing-complete lan-
guage to express a relationship that’s
tabular, which is more than neces-
sary. As shown in Figure 2, we can
express the table directly in the code,
at which point the rest of the code
shrinks to just a lookup. What’s more,
it no longer takes any effort to see
what the relationship between for-
mats and decoders is.

Readers can look at this code and
think, “It doesn’t look like this map-
ping ever changes.” That’s right, and
it’s easy enough for us to say that
more clearly. Figure 3 shows the
same map but declares it as final
and uses the Guava ImmutableMap
class, making it unchangeable at
runtime. I call this nailing it down
because things that are nailed down
don’t move and don’t complicate my
thinking. I nail down as much as
possible so I have fewer things to
think about.

By the way, you might notice that
the code in Figure 3 has only one
semicolon. I have never really paid
much attention to Java’s design de-
cision in the early collection classes
(e.g., HashMap, as seen here) to use
statements instead of expressions.
However, that decision makes it im-
possible to declare a new HashMap
and populate it with data at the same
time. In contrast, the ImmutableMap
in Figure 3 can be declared and pop-
ulated in a single expression.

I’ve noticed that, over the code’s
life, people will make expedient
edits to it and won’t always pause
to think whether the edit belongs
there or elsewhere. The original IF/
ELSE variant lends itself to expe-
dient inline edits because it’s so
easy to just add a new line within
the curly brackets. The revised code

with tabular data does not lend it-
self to that kind of edit, so it might
maintain its design integrity better
over time.

Which version of the code you
prefer depends partly on what kind
of code you are used to seeing. Once
you are past that, however, I think
the revised version is the clear win-
ner. It has better separation of con-
cerns, with one part tabularizing the
formats and decoders and the other
part doing the decoding and excep-
tion handling. Adding a new format
and decoder pair is localized. If we’re
lucky, the decoder lookup lines will
never need to change.

The revised version is also eas-
ier to read and reason about. When
I’m reading the declaration of the
map, I’m just paying attention to
the entries themselves, not reason-
ing through a Turing-complete lan-
guage. This is the key benefit of the
PLE: reading that part of the code
doesn’t require me to mentally sim-
ulate a complicated language. It’s
both less mentally taxing and less
prone to error.

Consider doing a code review on
Figure 1 versus Figure 3, especially a
scaled-up version with lots of cases.
If there were bugs in the logic, I
think I’d be less likely to catch them
in the IF/ELSE style simply because

my brain has to work harder to fol-
low the logic. I’ve found myself many
times becoming numb during reviews
when the code is intricate but repeti-
tive. Presented as a table, it feels less
tedious to scan.

Reveal Your Thoughts About
the Problem
Any time you revise your code down
from a Turing-complete language to
something simpler, you’re not giv-
ing your thoughts anywhere to hide.
If you show a state machine with ex-
actly one transition from A to B, that’s
not just an implementation choice—
you are saying that you’ve thought
about the problem, that there are two
states worth paying attention to, and

FIGURE 2. Expressing the relationship between formats and decoders as a table,

separated from the decoding and exception handling.

Map<Format, Decoder> decoders = new HashMap<>();
map.add(JPG, new DecoderA());
map.add(PNG, new DecoderA());
map.add(GIF, new DecoderB());

return getOptional(decoders, file.format())
.map(Decoder::decode)
.orElseThrow(IllegalStateException::new);

FIGURE 3. The mapping between

formats and decoders does not change

at runtime, so we can express it as

immutable.

final Map<Format, Decoder> DECODERS =
ImmutableMap.builder()
.add(JPG, new DecoderA())
.add(PNG, new DecoderA())
.add(GIF, new DecoderB())
.build();

...

THE PRAGMATIC DESIGNER

118	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

that it’s possible to go from one to the
other but not the reverse.

The act of choosing a less-than-
Turing way to express the problem
requires you to be more precise. It’s
not just a variable that doesn’t seem
to change—it’s a constant. It’s not
just a table—it’s a bimap. It’s not just
an update operation—it’s a discrete
state transition.

When you read code that’s writ-
ten using the PLE, you are seeing the
problem domain through the eyes of
the code author who acts as a tour
guide, telling you what is worth pay-
ing attention to and how it behaves.

Activate Your Critical
Thinking
The idea is that by applying the PLE,
we can write clearer code that bet-
ter reveals how we think about the
problem. But wait, surely we can’t
explain something more clearly than
we understand it nor can our code
be clearer than our thoughts. A me-
chanical application of the PLE can-
not create simplicity from a tangled
understanding.

Here’s the trick: revealing your
thoughts in the unforgiving environ-
ment of code has the delightful effect
of activating your critical thinking
to focus your fuzzy thoughts. When
they are in your head, your thoughts
are not subject to a compiler, type
checker, or regression tests; but in
code, they are. This is true even with-
out using the PLE.

Using the PLE leads you to poke
and prod the idea more thoroughly
and from new angles. Consider our
format and decoder example again.
Once the relationship was expressed
as a table, perhaps you wondered
if the relationship also works in
the reverse direction. Perhaps you
thought about what should happen
if more than one decoder works on

a format—should that be expressed
in our table and the choice among
the suitable decoders pushed into
the lookup code? And if your math
classes stuck with you, perhaps you
even considered if the relationship
was injective, surjective, or bijective.

These kinds of questions natu-
rally arise from the way the idea is
structured—in this case, as a ta-
ble—and may not arise in other rep-
resentations. When I read the IF/
ELSE code, I only seem to activate
the parts of my brain that ask, “will
this work?” and not, “what is the
nature of formats and decoders?”
The closer I get to expressing that
nature directly, the more I trigger
my brain to ask whether I’ve got it
right or not.

When you structure your code as
a state machine, you reasonably ask
what the legal state transitions are.
In contrast, it doesn’t make sense
to ask about legal state transitions
in general Turing-complete code on
general data structures, even if that
code has identical behavior. It’s the
act of casting your thoughts into the
less expressive representation that
stimulates a cascade of reasoning
that shakes out an improved under-
standing. As is so often true, Fred
Brooks talked about this a long
time ago2:

Much more often, strategic break-
through will come from redoing
the representation of the data or
tables. This is where the heart of a
program lies. Show me your flow-
charts and conceal your tables, and
I shall continue to be mystified.
Show me your tables, and I won’t
usually need your flowcharts;
they’ll be obvious.

By using the PLE, we reveal our
thoughts to readers in the least

complicated way. But the connec-
tion that makes me so delighted is
the way it leads to exactly the kind
of critical thinking that hones our
thoughts.

It’s one thing to resolve to think
more clearly and quite another to
achieve it. My experience has been
that, both individually and as a men-
tor, I’ve been able to simplify pro-
grams to reveal simplicity by applying
the PLE mechanically and then ask-
ing questions about the resulting pro-
gram. If nothing else, I’ve factored
out the parts of the program that
were constants in disguise, leaving
the interesting parts of the code in
plainer view. But more often, it has
led to insights because what I was
manipulating is no longer obscured
by too-powerful language.

Clarity Through Definitions
I find a lot of software developers
write code and comments that are
blandly noncommittal about their
precise thoughts about the problem
domain. As we all know from post-
ing questions on the Internet, the
best way to get constructive feed-
back isn’t to say something bland but
to be not quite right, at which point
people will rise from the dead to cor-
rect your mistake. If constructive
criticism is what you want (and it is),
then you want to be as clear as pos-
sible to trigger exactly that reaction.

Imagine a program expressed in a
Turing-complete language that adds
up some areas and then, ta-da, re-
turns a number that it claims is the
total area. Hmm, it sounds reason-
able because we have some intuition
that the total area must be the sum of
some smaller areas. No alarm bells
go off, no code reviewer objects, and
that code goes into production.

Contrast that with code that states a
definition of total area—for example,

THE PRAGMATIC DESIGNER

	 MAY/JUNE 2019 | IEEE SOFTWARE � 119

that it is length times width. That
too seems reasonable, but then a re-
viewer chimes in and asks, “Are you
assuming that the areas are always
rectangular? Because in this domain
sometimes the angles aren’t quite
90°, so that definition doesn’t al-
ways work.” Instead of sliding into
production, the misunderstanding
is caught, the program is revised to
express the proper definition, and
anyone reading the code will avoid
making the same mistake.

To me, a corollary of the PLE is
seeking out places in the code where
I could have used vague Turing-com-
plete language and instead used equa-
tions or other kinds of definitions.
Definitions are incredibly terse and
usually falsifiable. So again, your
ideas have nowhere to hide.

T ime is the best teacher, but
it kills all of its pupils. It
may sound scary to leave

your ideas exposed, but it is the best
way to grow as a software designer.
I remember the years I spent think-
ing through designs with invari-
ants and precise preconditions and
postconditions. That time was well
spent, but it was a personal journey,
not a nugget of understanding that I
can hand to someone else and have
them get to the same place faster
than I could.

The PLE, in contrast, is one of those
nuggets. It guides you to write code
that, on face value, is easier to read and
understand and, by expressing the code
in a less-than-Turning form, activates
targeted critical thinking that results in
thoughts that are actually clearer than
what you started with.

It’s often remarked that the sign of
a good developer is not building some-
thing complicated but being able to
build something simple. The guidance

of the PLE is helpful precisely because
you can apply it directly, and as you
think more clearly, you find more op-
portunities to apply it.

References
1.	T. Berners-Lee and N. Mendelsohn,

“The rule of least power,” 2006.

[Online]. https://www.w3.org/2001

/tag/doc/leastPower.html

2.	F. Brooks, The Mythical Man-Month.

Reading, MA: Addison-Wesley, 1995.

3.	P. VanRoy and S. Haridi, Concepts,

Techniques, and Models of Com-

puter Programming. Cambridge,

MA: MIT Press, 2004.

ABOUT THE AUTHOR

GEORGE FAIRBANKS is a software engineer at Google.

Contact him at gf@georgefairbanks.com.

IEEE Software seeks

practical, readable articles

that will appeal to experts

and nonexperts alike. The

magazine aims to deliver

reliable information to software

developers and managers to

help them stay on top of rapid

technology change. Submissions

must be original and no more

than 4,700 words, including 250

words for each table and � gure.

Call for Articles

Author guidelines:
www.computer.org/software/author

Further details: software@computer.org

www.computer.org/software

Digital Object Identifier 10.1109/MS.2019.2906534

