International Conference on Networked Systems, Netys 2016, Marrakech, Morocco

UC

Université
catholique
de Louvain

Reversible Phase Transitions
in a Structured Overlay Network

with Churn

Ruma R. Paul'?, Peter Van Roy?, and Vladimir Vlassov?

May 18, 2016

L Université catholique de Louvain, Belgium
{ruma.paul, peter.vanroy}@uclouvain.be

2KTH Royal Institute of Technology, Sweden
{rrpaul, vladv}@kth.se

ke

o = S5
© 9,

28 OCH KONST %%

Bt

Introduction

Applications are exposed to increasingly stressful environments
— Out of data centers, to georeplication and edge computing
— Node and communication failures are increasing as nodes increase in number

We would like applications to survive such stressful environments and to
have predictable behavior

— We introduce the concept of Reversibility to define what survival means in
arbitrarily stressful environments

— We introduce the concept of Phase to allow applications to observe the
hostility of their environment and behave accordingly

We evaluate these concepts on a large realistic system
— A structured overlay network with simulated environment and high churn
— We investigate how to make it Reversible and how to build applications on top

Reversibility

Why we need Reversibility

Suppose a distributed system running on n nodes providing a
specific set of services

From time t to t+T7, the system experiences external stress

— Ex. k nodes crash and j nodes join the system

— Ex. a system partition due to a connectivity problem of the underlying
physical network

Can we ensure that the system will eventually regain its full
functionality after time t+77?

Does the system have a well-defined behavior during the
interval [t,t+T]?

NETYS 2016

Reversibility (informal)

* With Reversibility we can give affirmative answers to
both questions!

* Informally, Reversibility means that the system's

functionality depends only on the current stress
experienced by the system and not on the history of

the stress

NETYS 2016

Reversibility (formal)

e Given a function S(t) that returns the system stress in some
arbitrary but well-defined units

— Ex. 5(t) can explain how the system is partitioned as a function of time,
or give churn as function of time

* Asystem is Reversible if there exists a function F (id,5(t)) of
node identifier id and stress S(t) such that the set of system
operations available at node id is F,(id,S(t))

— An operation is available for a given stress if the operation will eventually
succeed (it will fail only a finite number of times if tried repeatedly and then
succeed)

— Note that when S(t)=0 the system provides full functionality

Comparison with related concepts

* Reversibility versus Fault Tolerance

— A fault-tolerant system is resilient for a given fault model, but
its behavior outside that model is undefined

— Reversibility is a stronger property because it guarantees that
the system will recover functionality if the stress is removed

* Reversibility versus Self Stabilization

— A self-stabilizing system survives any temporary perturbation of

its internal state; it returns to a valid state when there are no
perturbations

— Reversibility is more useful in practice: it gives information
about functionality even during nonzero stress

Evaluation

Evaluation

* Investigate Reversibility in the context of a realistic system
— Representative system: a structured overlay network

e Simulated environment running on Mozart-Oz 2.0 platform
— Simulated message delays follow Internet distribution
— Network size of 1024 peers

* Experiments
— First story: achieving Reversibility during high churn
— Second story: deducing system functionality by observing structure
— Third story: designing Reversible applications

Structured Overlay Network (SON)

e P2P Systems: Dual client/server role of /';
each node of the system. / | /

* Due to local cooperation of peers an

overall network routing view emerges, o | ;
known as an overlay network, on top of i é | ? ﬁ’

the underlay network. é é_
- g

Overlay Network: A P2P System with nodes
a, f,i, pand x forms the overlay network
on top of the underlay network

@

@

e Structured Overlay Network: A structure
is induced through the pointers
maintained by each peer of the system.

NETYS 2016 10

Beernet

* Beernet3is a representative example of the design class as per the reference
architecture proposed by Aberer et.al.

e Why Beernet?
— Similar to Chord, but with correct lock-free join operation.

— Join/leave in Chord requires coordination of three peers that is not guaranteed due to
non-transitive connectivity on Internet.
* Non-Transitive Connectivity: A can talk to B and B can talk to C # A can talk to C.

— Beernet does not assume transitive connectivity. More resilient on Internet. Three
step join/leave operation, each step requires coordination among only two peers
(guaranteed with a point-to-point communication).

* Consequence: Natural Branching structure. A stable core ring and transient branches.

q u Branches on a relaxed ring. Peers p and s
consider u as successor, but u only

P
considers s as predecessor. Peer g has not
established a connection with its

predecessor p yet.

NETYS 2016 11

3B. Mejias, “Beernet: A relaxed approach to the design of scalable systems with self-managing behaviour and transactional robust storage,” Ph.D. dissertation, UCL, Belgium, 2010.

Maintenance Strategies

A Maintenance Strategy maintains correct structure of a SON
— We investigate the Maintenance Strategies needed for Reversibility

e Several strategies are proposed in the literature:
— Correction-on-Change/Use (used by DKS, Beernet);
— Periodic Stabilization (used by Chord);
— Gossip-based strategies, e.g., T-MAN (building overlay topology).

* These strategies are complementary

— Correction-on-change is much more efficient than gossip, whereas
gossip is much more resilient

Maintenance Strategies (cont..)

* We cover a complete space of possible maintenance strategies:

EfﬁCIency Maintenance Strategy Local/ | Reactive/ | Fast/ Safety Bandwidth
'T‘ Global | Proactive | Slow Consumption

=T Correction-on-Change (for self-healing) Local Reactive Fast Small
and Correction-on-Use (provides self-
optimization and self-configuration).

=t Periodic Stabilization: correction using Local Proactive Slow Lookup inconsistencies and ~ High
periodic probing. uncorrected false suspicions
can be introduced

—t. Overlay Merger with Passive List: Global Reactive Adaptable Yes Adaptable
Trigger Merger using falsely suspected
nodes?

—— GOssip-based Maintenance, e.g., Global Proactive Adaptable Yes Adaptable

Overlay Merger? with Knowledge Base:
Proactive approach to trigger merger

using the gathered knowledge at each
v node.

Resiliency

NETYS 2016 13

. 2T. M. Shafaat, “Partition tolerance and data consistency in structured overlay networks,” Ph.D. dissertation, KTH, Sweden, 2013.

Stories and Their Contributions

First Story: “Can the system be made reversible against churn using the
Maintenance Strategies?”
— We show experimentally the need of both efficient and resilient maintenance

Second Story: “Can we deduce the system’s functionality by examining its
structure at high churn? YES! Phase concept.”

— Insight on how to observe global structure;
— Insight on how phase of each node is related to functionality of the system;

— Experimental demonstration that reversible phase transitions happenin a
reversible system as the stress varies

Third Story: “Can we help applications to be reversible and predictable”?
YES! Expose Phase of each node through an API.”

— Introduction of Phase API;
— Insight on how the application can use phase concept to manage its behavior

First Story
Churn & Reversibility

Are the Maintenance Strategies
Reversible? (1)

Churn: % of node turnover per second.
Metric: % of nodes on core ring as a function of time

Correction-on-*
To achieve Reversibility, the

100 T T T T T T T
For Churn = 10% ————~ percentage of nodes on the

2 For Churn = 100% =+++++" .
£ sof . core ring should eventually
S approach 100%
8 0 -
Z o Correction-on-* is insufficient
o B N . T
% to achieve Reversibility due to
5l] lack of liveness!!
© L

0 e eeap T reetarfateseatetetattegstartararetatenipetartarepeae

20 40 60 80 100 120 140
Time (in sec)

NETYS 2016 16

Percentage of Nodes on Core Ring

100

80

60

40

Are the Maintenance Strategies
Reversible? (2)

Correction-on-* and Periodic

Correction-on-* and Periodic Stabilization and Merger with
Stab”ization passive ||St
T T T T T T T 100 T T T T T T T

For Churn = 10% =——— For Churn = 10% =

For Churn =50% =====- For Churn =50% ======-

For Churn=100% =====-- For Churn =100% ====="--
- 80 | -
- 60 | -

Percentage of Nodes on Core Ring

20 40 60 80 100 120 140
Time (in sec) Time (in sec)

Still not Reversible. Why?

NETYS 2016 17

Are the Maintenance Strategies

Reversible? (3)

High churn makes overlay unstable, which does not allow new peers to complete a join

— The churn rapidly invalidates the join reference of the new peer

In order to make these isolated peers part of overlay, we need to re-trigger join by
providing a new valid join reference.

— Knowledge Base is required to get knowledge about an alive peer of overlay

Proactive triggering of merger using Knowledge Base to avoid partition of the system

after isolated nodes complete their join procedures.

Percentage of Nodes on Core Ring

100

80

60

40

20

Correction-on-*, Periodic Stabilization,
Merger with Knowledge Base.

T T
For Churn = 10%
For Churn = 50% ======: :
For Churn = 100% ======== o P

-
-
-
-

——————
-

| A Perfect Ring with 100% nodes!!

20 40 60 80 100
Time (in sec)

120

140

NETYS 2016

18

Summary of First Story

Repeated join using Knowledge Base is required to achieve
Reversibility against extremely high Churn.

Proactive merger using Knowledge Base is required to avoid
partitioning of the system.

NETYS 2016

19

Second Story
Phase and Phase Transitions

NETYS 2016

20

Phase, Phase Transition
& Critical Point

System = An aggregate entity composed of a large number of
interacting parts

— Each partis a node of the SON

A Phase is a subset of a system for which the qualitative properties
(e.g., functional guarantees) are essentially the same

— Different parts can be in different phases, depending on the local
environment observed by the part

Why is this interesting?

— System functionality depends on these qualitative properties

* Use phase for observing system functionality, but it should work without extra
computation and even when communication is broken

— Useful to applications running on top of SON in stressful environments

Phase, Phase Transition
& Critical Point (Cont..)

A Phase Transition occurs when a significant fraction of a system’s parts
changes phase

— This can happen if the local environment changes at many parts

A Critical Point occurs when more than one phase exists simultaneously in
significant fractions of a system

Reversibility and Phase:
— Stress is a global condition that cannot be easily measured by individual nodes
— Phase P, at each node i is a well-defined local property
— Phase configuration of system, P.=(P,, P,, P;, ..., P,).
— The set of available operations of the system, namely F ., (id, P(t)).
— Important property: F .. (id, P (t)) approximates F, (id, S(t))

Can we observe the global structure?
YES! Phase concept !!

In case of Beernet, we can identify a qualitative property depending on
neighbor behavior

Phases of a node are analogous to solid, liquid and gaseous phases in physical
system (e.g., water)

— Solid: neighbors do not change (core ring).

— Liquid: neighbors changing (branches).

— @Gaseous: no neighbors (isolated nodes).

Three liquid sub-phases in terms of available functionalities and probability of
facing an immediate phase transition.
— liquid-1: if peer is on a branch with depth <= 2 and holds a stable finger table;
— liquid-2: if peer is on a branch with depth > 2, but not tail of a branch. The
finger table holds > 50% valid fingers;
— liquid-3: if peer is on a branch with depth > 2, and it is tail of a branch. Most
fingers are invalid or crashed.

Phase Transitions in SON: red, green and blue areas correspond to % of
nodes on ring (solid), branches (/iquid) and isolation (gaseous) respectively.

100 100

80 - 80

60 - 60

40 - 40

20 - 20

‘s 22228382883 ¢8¢g¢sg g 2 2 2 g g
— — — — — e\ [\l [\l [V} [\} o o o o o < <
Time (in sec) Time (in sec)
Under increasing churn during 5 minutes After withdrawing churn

NETYS 2016 24

Increasing churn with time up to 100%, then decreasing churn with time:

100

80

60

40

20

NNNNNNNNNNN

Time (in sec)

What are Phase Transitions good for?
v’ Give useful information to the application.
v’ Can be used for efficient self-management.

NETYS 2016 25

Summary of Second Story

The Phase of each node has a direct correlation with the overall

functionalities (e.g., routing, availability of keys, transactions) of the
system.

— The current phase and phase transition at each node can be determined with
high confidence, without any global synchronization.

Reversible Phase Transitions in the system with varying stress can be
observed as a by-product of making the system Reversible.

— The system “boils” to the gaseous state (becomes disconnected) when churn

increases and “condenses” from gaseous back to solid phase as churn
intensity goes down.

— Can provide useful information to the application layer using APIs.

— Can be used for efficient self-management of the system.

NETYS 2016 26

Third Story
Phase APl and Applications

Phase API

 An API exists on each node to expose its phase to the application layer

* Push and pull methods to communicate the current phase of a node

— getPhase(?P_,,) Binds P_,, to the current phase of the peer.

— setPhaseNotify(f) Sets a user-defined function, f(?P,.,) to be executed when
the phase changes. P, is bound to the next phase of the peer and fis
executed. Executions of f are serialized in the same thread over a stream of
successive phases.

Phase-Aware Applications

* Predictable behavior for the users: an indicator that changes color to
indicate the current phase of the underlying node.

— Allow users to work productively offline and prevent any potential data-loss.

* Reversibility for the application:

— Canincrease replication factor of critical data, based on phase of underlying
node;

— Can improve throughput, by adapting philosophy of exponential back-off as
TCP congestion algorithm.

— Can manage its behavior for congestion-avoidance, thus help system to
recover quickly.

 Empirical Demonstration of Phase-Aware Application design (future work)

Conclusion and Future Work

Conclusion

In order to design provably correct decentralized networked
systems, it is required to ensure their reversibility against
stressful environments.

— Build systems that are both predictable (hence, useful in practice)
and reversible (hence, they survive)

We define the concept of Reversibility to make precise what
survival means in stressful environments

We define the concept of Phase to allow applications to
observe their stressful environment and act accordingly

Summary of Our Stories

First Story: Repeated join and merger using Knowledge Base
is required to achieve Reversibility against extremely high
Churn

Second Story: We observe Phases and Phase Transitions in
the system as a by-product of making the system Reversible
(give useful information to applications using APIs)

Third Story: We introduce a Phase API to give useful
information to applications and use it for phase-aware
application design: predictable behavior and reversibility in
the application-level semantics.

NETYS 2016 32

Future Work

* Continuing the work directly:
— Deepen the analogy between phase in SONs and in physical systems;

— Design applications that take advantage of the Phase API to survive in
extremely stressful environments;

— Gain more insights about the maintenance strategies.

e Other topics:
— Investigate other application architectures;
— Investigate other stresses and stress interactions;
— Move to real environment, not simulated.

Thank You!!

Reversible Phase Transitions
in a Structured Overlay Network with Churn

Ruma R. Paul*?, Peter Van Roy!, and Vladimir Vlassov?

1 Université catholique de Louvain, Belgium {ruma.paul, peter.vanroy}@uclouvain.be
2 KTH Royal Institute of Technology, Sweden {rrpaul, vladv}@kth.se

