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Abstract—Distributed applications built on top of Structured
Overlay Networks (SONs) operate based on certain assurances
from the underlying Peer-to-Peer network. Such applications
continue to increase in scale, becoming more complex and
difficult to manage. The situation becomes worse if the behavior
of underlying SON is non-deterministic or even unknown for a
given scenario. This implies non-trivial questions: what behavior
should the application layer expect from the underlying SON in
a given scenario? Under what conditions should a SON exhibit
resiliency against an extremely hostile environment? Ideally, the
behavior of a complex system such as a SON needs to be defined
for every possible operating condition. Existing literature lacks a
systematic and in-depth study of the global behavior of a SON.
This work is a step towards answering those questions, which
starts by proposing an organization of the global operating space
of a SON, also defines the term ”behavior”, with respect to a SON.

In order to conduct the experimental study, an existing ring-
based SON, namely Beernet, is chosen as a representative. As the
entire operating space of a SON is extremely large, due to space
limitation, this paper presents the first results of our investigation,
the behavior of Beernet along the dimension of Churn. The
study assesses behaviors like key availability, updates, replica
management, and failed transactions, as a function of churn up
to 100% node turnover per time unit. The result shows that,
continuous injection of extremely high churn causes the ring to
be dissolved, creating isolation of peers. However, at such a high
node turnover of 100% per 5s, there are instances, where the
% of failed transactions didn’t reach 100%, especially in cases,
when the join events dominate failures during initial period.

I. INTRODUCTION

The Structured Overlay Networks (SONs) have become the
most popular way of implementing large scaled distributed
systems because of their de-centralized, fault-tolerance and
self-organizing properties. The application layer requires sev-
eral assurances from the underlying SON. It is required for
a large-scale system to be deterministic in all scenarios,
especially the adverse ones. For that, it is necessary to have an
underlying SON, whose behavior is well known in every situa-
tion. However, current literature lacks such effort to explore the
behavior of a SON in its entire operating space. The existing
works mostly validate the operations of the SON in usual or
some specific (like simultaneous failures, interleaved join and
failures) scenarios. With the increased development of large-
scaled distributed applications, the behavior of a SON needs
to be assessed in every possible operating environment so that
the critical points in the operating space can be identified,
beyond which the resiliency of the SON starts degrading.

In order to explore the entire operating space of a SON,
the first step is to identify and organize it, which has been
addressed by this work. Among all the structures proposed
for SONs, the ring topology is the most popular choice; as
it is competitive with other SONs in terms of reaching any
other node in smaller steps and also most resilient to failures
[1]. Many ring-based SONs were proposed; Chord [2], DKS
[3], Beernet [4] to name a few. We have chosen Beernet as
a representative ring-based SON for this study because it is a
typical exponential-routing SON, so the outcome of this study
can be applied to any other SON with similar design. The
goal is to define the best behavior of a SON at any point
of its operating space, in other terms, to identify the pre-
conditions of a SONs resiliency against an extremely hostile
environment. The next key term in our title is ”behavior”, so
we have identified a set of behavior matrices to provide an
idea of the affect of a particular environment on the operation
of the SON. So, the overall contributions are as follows:

• Organization of the entire operating space of a SON;
• Present a self-adaptable eventually perfect failure detec-

tor; evaluate its Quality-of-Service (QoS);
• Augment Beernet’s replica management with a protocol

for better availability and consistency of replica sets;
• Define behavior of a SON in terms of a set of parameters

and present the behavior of Beernet along Churn.
The rest of the paper is organized as follows: Section II

presents the organization of a SON’s operating space, Sec-
tion III gives a brief description of Beernet. In Section IV, we
propose all the matrices. Section V presents the experimental
results. Section VI discusses some relevant works and we
conclude in Section VII.

II. GLOBAL OPERATING SPACE

As the operating space of a SON is large, it is essential to
organize it. Most of the space is constituted by the scenarios
when something goes wrong, so we can call this organization
as the fault model for a SON. We attempt to structure all
possible non-malicious failure conditions using 5 dimensions.
Any point in this 5-dimensional space represents a valid
operating environment that a SON may face during its lifetime.
Below we present these dimensions and only describe in detail
the parameter along churn:
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Fig. 1: A branch on the relaxed
ring as peer q cannot commu-
nicate with p. Peers p and s
consider t as successor, but t
only considers s as predeces-
sor.

• Churn: most usual and basic scenario that a SON faces
during its lifetime.

• Network Partition: creates distinguishable operating con-
dition for a SON.

• Network Dynamicity: triggers false suspicions, in the face
of which SON struggles to maintain its structure.

• Workload: beyond a threshold might make a particular
SON unresponsive.

• Ring Size: evaluates the scalability of SON.

A. Churn

The term churn is used to express the measurement of peers
joining or leaving the network. The literature mostly addresses
churn as the only failure scenario. In most cases churn is
introduced under a certain limit. However, studies [5], [6] show
that P2P environment experience high churn rates. So, it is
worth observing the behavior of a SON under high churn.

Let us define churn, assuming that join and leave events
have equal probabilities. We say that a node changes its
identity under churn with two events, join and leave. Assuming
also a single event per time unit, every 2 time units, one node
leaves and a new node joins the network; thus, only a single
node changes its identity whereas the total number of nodes in
the network does not change. That’s why, we measure churn
as the percentage of nodes turnover per time unit.

III. BEERNET

Here we describe the concepts behind Beernet (for more
details, see [4]) and present the extensions and modifications:
a self-adapting QoS-aware eventually perfect failure detector
and a lazy data-migration protocol during failure recovery.
The relaxed ring structure of Beernet doesn’t rely on transitive
connectivity, or perfect failure detection. It uses Correction-on-
change and Correction-on-use [3] to obtain self-configuration,
self-optimization and self-healing. Every step of Beernet’s
join and leave operations requires agreement between only
two peers. Lookup consistency is guaranteed after every step.
Beernet doesn’t rely on graceful leaving of peers.

Beernet has 2 invariants: Every peer is in the same ring
as its successor, that allows a new peer to be part of the
network by connecting only to its successor and A peer does
not need to have connection with its predecessor, but it must
know its predecessor’s key, this determines the responsibility
of the peer. These properties allow relaxation of the ring in
the form of branches as shown in Fig. 1.

The routing principle is a slight variation of Chord’s: a
peer always forwards the lookup request to the responsible
candidate. Because of branches, the proximity guarantee of
the Beernet lookup mechanism corresponds to O(logk(n)+b),
where b is the distance to the farthest peer on the branch.

A. Failure Detector

Failure Detectors play an important role in network man-
agement, because changes like node crashes or leaves are
detected by failure detectors. Beernet relies on Eventually
Perfect Failure Detection. Maintaining Quality of Service
(QoS) of failure detectors is crucial for Beernet’s performance,
because frequent false suspicions may cause instability in
SON; and longer period to detect a crash or correct a false
suspicion causes larger inconsistency. This section presents a
self-adaptable eventually perfect failure detector, which adapts
to the environment, providing QoS.

The public release of Beernet (version 0.9) [7] includes a
generic eventually perfect failure detector [8]. The algorithm
has 2 observed problems. First, the timeout is global for all
connections of a node whereas Round Trip Time (RTT) is
often different for each connection; thus, the detection process
is driven by the slowest connection. Second, the timeout only
increases, whereas RTT may vary along time, in a long running
distributed system. It is necessary to adapt timeout to RTT,
without creating any oscillation.

The expectations from the failure detector are threefold:
to detect failures quickly, to reduce the number of false
suspicions, and to correct mistakes quickly. These goals are
contradictory: the time to detect failures or correct a mistake
depends on the timeout period. Lower timeout delays lead to
quicker detection of failures or correction of mistakes, but in
order to reduce the number of false suspicions, timeout needs
to be large enough to cope with changes in the environment. To
determine the best value of timeout period for each connection,
adapting to RTT of each connection is the only option.

Based on above reasoning, we propose a self-adapting fail-
ure detection algorithm, influenced by [9], that adapts to RTT
of a connection and keeps a safety period to accommodate the
variability or unpredictability of a large and complex network
like Internet. A weighted standard deviation over the history
of RTT is the best candidate as the safety period, where the
weight m depends on the variability in the network. The failure
detector at each node maintains a history of last k RTT for
each connection and the timeout period of next round for each
connection is determined based on this history as follows.

Timeout Period for next round = Average RTT over last k
rounds + m*Standard Deviation of RTT over last k rounds.

Our algorithm addresses the issues mentioned above by
striving to attain an optimal timeout. The algorithm can be
expressed as a function of k and m, the best values for these
parameters can be determined for a particular environment,
based on experiments, as shown in Section V. For the initial
rounds, when there is not enough RTT data collected, a pre-
defined timeout period is used.

B. Transactional DHT

Beernet provides support for Transactional Distributed Hash
Table (DHT) with replication. This section provides relevant
information about Beernet’s data layer support with an aug-
mentation of replica management in order to achieve improved
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data availability and replica consistency. Paxos Consensus
protocol is used for atomic commits in the transactions.

Beernet uses Symmetric Replication [10]. The replica man-
agement of Beernet strives to maintain a consistent set of
replicas under any extreme environment. Let us analyze the
operations of this layer under churn. When a new peer joins,
the successor pushes all data-items to the new peer that it
has become responsible for. Taking values only from a single
replica is fine in this case, as if the successor has stale value
of a data-item, this will replace one bad replica with one
bad replica (i.e. the number of bad replicas stays the same).
However, when there is a failure, it is more important to
read from the majority during the recovery, as there is no
way for the recovery node to know whether the dead peer
was up-to-date or not. Instead of doing expensive transaction
for each data-item we propose an inexpensive lazy-migration
protocol during failure recovery, which can achieve eventually
consistent replica set for a data-item, without creating conflict
with simultaneous transaction of that particular data-item.

1) Lazy Data Migration: Each data-item has a version
number, which increases on each update. The read operation
reads from the majority and returns the value with the highest
version number. While committing a transaction, a replica
votes for commit if versionnew >= versionexisting for an
existing data-item or the data-item is absent. The monotonicity
of the version number, along with the advantages of symmetric
replication is exploited in the lazy migration protocol. Suppose
peer q has successor r and predecessor p. When p suspects q,
it initiates failure recovery, if q is also suspected by r, r takes
over the responsibility for all data items that q was responsible
for. With the symmetric replication, r can find out other
members of the replica set of the corresponding data items,
eliminating the need of any expensive group management of
replica sets. Though there is a replica set per data-item, due to
symmetric replication, many replica sets overlap, that facilitate
the data migration. A pull request to do data migration for the
corresponding data-items is sent by r to all other members of
the replica set. If a peer receives a pull request, it retrieves
all the data-items belonging to the specified range and sends
them to the destination. After receiving data, r does an update
if versionreceived > versionexisting for an existing unlocked
data-item or the data-item is absent in r. Thus, r may have a
stale value for the data-item temporarily, however eventually
r will be consistent for the data-item. Though, this is not a
perfect solution to achieve consistent and complete replica set
for each data-item, as there might be non-overlapping replica
sets, however this is a trade-off between cost and consistency.

IV. MATRICES

We study the ”behavior” of a SON in all possible non-
malicious scenarios. In Section II, we have defined the oper-
ating space for a SON, here we define the term ”behavior”,
with respect to a SON. We propose a set of matrices, which
capture the behavior of a SON at various levels. We also define
the parameters, which can be used to assess the QoS of an
eventually perfect failure detector, discussed in Section III-A.

A. Behavioral Matrices

For a systematic and thorough understanding of the behavior
of a SON with transactional DHT, we have identified 3 levels.
Below we present the parameters of all levels, studying which
will provide an assessment of the impact of a particular
environment on the operation of a SON:

• Data Level: % of failed transactions, % of lost keys, %
of inconsistent replicas, % of lost updates.

• Connection Level: # of imperfections introduced, % of
time a node experiences imperfections, % of nodes on
core ring.

• Routing Level: # of messages generated.
The data level parameters signify the impact of a particular

environment on the DHT and data level operations. The last
parameter, % of lost updates is the ratio of successful updates
of the stored data in a particular environment. This parameter
is mostly dominated by % of failed transaction, however other
scenarios may also contribute. If the replicas holding up-to-
date value of a data-item leave or crash or become unavailable
(for example, due to partition) simultaneously then there will
be loss of updates, though in this case there were no failed
transactions. Another scenario: suppose transaction is designed
for an application in such way that the update operation of a
key depends on its old value, in this case if the key is lost, then
it doesn’t invoke any update, contributing to the lost updates.
All other data level parameters are apparent from their titles.

The connection level parameters assess the deviation of the
ideal ring structure during adjustment with a particular envi-
ronment. The parameter # of imperfections introduced, counts
the total number of times peers falsely suspect their ideal
successor or predecessor and choose an imperfect peer. The
next parameter % of time a node experiences imperfections
accounts for how long a peer goes through such imperfection.
The parameter % of nodes on core ring reflects the rigidity
of the ring by finding out the maximal ring in the system and
reports % of nodes on it. The routing level parameter shows
how many messages are generated to cope with the changed
environment. These matrices are general enough to be applied
for any SON with transactional DHT.

B. QoS Matrices for Eventually Perfect Failure Detection

In order to assess QoS of an eventually perfect failure
detector we define 3 primary QoS matrices, which are in-line
with those proposed by Chen et al. [11]:

• Detection Time: Average duration after which all peers
permanently suspect the crashed node.

• Accuracy: % of suspicions that are correct.
• Reaction Time/Mistake Duration: Average duration after

which a peer detects and corrects a false suspicion.

V. EXPERIMENTAL STUDIES

We present the evaluation of Beernet only along Churn.
The study for other dimensions (Section II) is ongoing work.
Before doing any experiment, it is necessary to evaluate and
tune the failure detector (Section III-A).
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We have ported Beernet v0.9 [7] implemented in Mozart-
Oz (v1.4), to Mozart 2.0 [12]. In our experiments we have
used the simulated environment in order to have an in-depth
understanding of a SON along a particular dimension of the
operating space; we leave the experimental study in a real-
world dynamic environment to future work. To simulate un-
derlying network, the fixed end-to-end delays are set based on
the empirical distribution of minimum RTT provided in [13].
A network of 100 peers is used in all presented experiments.

A. Self-Adapting Failure Detector
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Fig. 2: QoS for various k

To evaluate the QoS of
failure detection, in the
steady state of SON, 5%
churn is injected every
5s. The churn events are
modeled by a Homogeneous
Poisson Process (HPP)
with λ = 2 event/sec (i.e.
for 100 peers, 5% churn
issues 10 events per 5s).
Simultaneously, to simulate
variability in the underlying
network, 5% of links (end-
to-end overlay connections)
changes connectivity every
5s, based on the empirical
distribution of standard
deviation in per-connection
RTTs as measured in [13].
The connectivity change
events are also modeled as
an HPP with λ = 5 ∗ L/100

per 5s, where L is the total number of connections (for 100
peers, L =

(
100
2

)
). Also, to evaluate the adapting capability of

the failure detector, we have taken measurement for 1 minute
and 5 minutes.
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Fig. 3: QoS for various m

For this environment, we
have measured the QoS pa-
rameters by varying RTT
history size, k (with m =
4) and the weight of the
standard deviation of the
RTT history, m (with k =
30). The obtained results are
shown in Fig. 2 and Fig. 3.
For the following experi-
ments, we have kept k = 30
and m = 4.

B. Behavior of Beernet
along Churn

Churn of increasing in-
tensity is injected in order
to understand Beernet’s re-
siliency in extremely hostile
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Fig. 6: Imperfections in SON

environment, where nodes are joining and leaving abruptly in
a continuous and frequent manner. The result presented is the
outcome of Beernet’s operation using Correction-on-change
and Correction-on-use. The impact of Lazy-Data-Migration
(Section III-B1) on the data level parameters is also evaluated.

A workload is a stream of transactions, modeled as an
HPP with λ = 1 transaction/sec. A transaction reads one
key and updates another one. The replication factor is 4. To
assess the impact of churn only, the workload is kept in such
way that without churn there are no failed transactions and
inconsistencies. The churn is modeled as described in V-A.

1) Routing Level Parameter: Fig. 4 shows the impact on
the number of messages generated for increasing churn.

2) Connection Level Parameters: Two parameters: the
number of times imperfections introduced and percentage of
time a node experiences imperfections, reflect the impact of
variability in the underlying network, so increasing churn
should not have any impact on these, as depicted by Fig. 6.
However, percentage of nodes on the core ring shows high
sensitiveness against churn, as shown in Fig. 5. With the
increase of churn the rigidity of the ring degrades, because the
inter-arrival time between two churn events becomes too small
to complete any recovery. The system shows state changes that
can be compared with the state of matter in Physics: Solid,
Liquid and Gas. When there is no churn, 100% nodes are on
the core-ring, which corresponds to the Solid state, the ring is
rigid. As churn increases, there are nodes on branches, can be
compared with Liquid state of matter, which is still valid state
for Beernet. When the environment becomes extremely hostile,
the ring start dissolving, where the nodes become isolated,
corresponding to the Gas state.

3) Data Level Parameters: To evaluate the impact of the
Lazy-Data-Migration protocol all data level parameters are
measured with-without lazy-migration for each churn value.
Fig. 7-10 show 4 data-level parameters for the 2 result sets.

The degradation of ring topology leads to more failures of
data layer operations, as found in Fig. 7. As expected, lazy data
migration does not create any conflicts with transactions. The
main impact of lazy migration is clearly visible in Fig. 9 and
Fig. 10; the integration of this low-cost, optimistic approach
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leads to less key loss and inconsistent replicas. Fig. 8 follows
the trends of Fig. 7, as explained before, more churn leads to
more failed transactions i.e. more updates are lost.

VI. RELATED WORK

This section briefly describes some most relevant works
about failure detection and SONs. Among 2 implementation
strategies for timeout based failure detectors [14], [15], the
ping strategy provides finer-grained control, also matches with
the design philosophy of Beernet. Existing works [11], [14]
on QoS of a failure detector are mostly based on heartbeat
strategy, compared to which the ping strategy has twice more
variables that negatively affects the quality of timeout period
estimation [14]. Very few works exist on the QoS of ping based
failure detectors. A message efficient algorithm is provided
in [16], but each detector monitors only a single process. In
[17], [18] the status of the monitored process can be known by
making a query to the failure detector, whereas Beernet needs
failure detector to push notifications regarding any event.

The most relevant work on the performance evaluation or
dependability analysis of SON is found in [19], that evalu-
ates routing level consistency and improved performance of
MSPastry (a new implementation of Pastry [20]) by varying
parameters like network topology, node session times, link
loss rates, and amount of application traffic. Another work
on lookup consistency, [21] evaluates the frequency of incon-
sistent lookups, overlapping responsibilities and unavailability
of keys in Chord [2] resulting from unreliable failure detectors
and churn. All these works are about the routing level param-
eters and validate the correctness and improvement of lookup
consistency; however a systematic and multi-layer evaluation
of a SON is of utmost importance. There are also analytical
works, like [22], [23]. Our experimental study can be used as
a complementary or precondition of such work.

VII. CONCLUSION

Due to the increasing complexity of distributed applications
running on top of Structured Overlay Networks (SONs), it has
become imperative to define the behavior of the underlying

SON at each point of the operating space. However, existing
literature lacks such comprehensive or systematic study. This
work proposes an organization of entire operating space of
a SON using 5 dimensions and defines the ”behavior” of a
SON in terms of 3-level matrices. In order to achieve the
best possible behavior of a SON, an existing ring-based SON,
Beernet is extended and modified. As part of which, a QoS-
aware self-adapting failure detection algorithm is presented
and evaluated. Also, a lazy data migration protocol is included
as part of failure recovery to fill up the gap in Beernet’s replica
management. Finally, the evaluation of Beernet along Churn
using the defined behavioral matrices is presented.
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