
UNIVERSITÉ CATHOLIQUE DE LOUVAIN
ÉCOLE POLYTECHNIQUE DE LOUVAIN

DÉPARTEMENT D’INGÉNIERIE INFORMATIQUE

A modular Oz compiler for the new 64-bit Mozart
virtual machine

Supervisor: Peter Van Roy
Readers: Sébastien Doeraene

Pierre Schaus

Mémoire présenté en vue de l’obtention du
grade de master ingénieur civil en informa-
tique option software engineering and pro-
gramming systems par Raphaël Bauduin

Louvain-La-Neuve
Année académique 2012-2013

i

I would like to thank

• Peter Van Roy who trusted me enough to let me work on this compiler

• Pierre Schaus who kindly accepted to be a reader of this report

• Sébastien Doeraene who patiently supported my efforts, answering even
the dumbest questions

Contents

Contents iii

1 Introduction 1
1.1 Initial State . 1
1.2 Goal and Scope . 1
1.3 Contributions of this work . 2
1.4 Source Code . 2

2 Infrastructure 3
2.1 Virtual Machine . 3

2.1.1 Registers . 3
2.1.2 Abstractions . 4

2.2 Target Language . 5
2.2.1 Register Operations . 5
2.2.2 Variables . 6
2.2.3 Jumps . 7
2.2.4 Calls . 7
2.2.5 Records . 8
2.2.6 Procedures . 9
2.2.7 Pattern Matching . 9
2.2.8 Exceptions . 10
2.2.9 Skip . 11

2.3 Compiler input . 11
2.3.1 Position in source code 11
2.3.2 Literals . 12
2.3.3 Identifiers . 12
2.3.4 Unification . 12
2.3.5 Instructions sequence 12
2.3.6 Local . 12
2.3.7 Procedures . 13
2.3.8 Functions . 13
2.3.9 Operators . 14
2.3.10 Nesting marker $. 15
2.3.11 Cells . 15
2.3.12 Records . 15
2.3.13 Wildcards . 16
2.3.14 Threads . 16
2.3.15 Locks . 17

iii

iv CONTENTS

2.3.16 If then else . 17
2.3.17 Short-circuit boolean combinators 17
2.3.18 Case Instruction and Pattern Matching 17
2.3.19 Classes . 20
2.3.20 Loops . 23
2.3.21 Exceptions . 25
2.3.22 Arrays . 26
2.3.23 Functors . 26

3 Compiler 31
3.1 Architecture . 31

3.1.1 Declarations Flattener 32
3.1.2 Namer . 33
3.1.3 Desugar . 41
3.1.4 Unnester . 59
3.1.5 Globaliser . 68
3.1.6 CodeGen . 73

3.2 Compiling to a file . 83
3.3 Tests . 83

3.3.1 Helper functions tests 83
3.3.2 Compiler tests . 84

3.4 Performance . 85

4 Conclusion 91
4.1 Achievements . 91
4.2 Future work . 91

4.2.1 Missing language support 91
4.2.2 A better try-finally transformation 91
4.2.3 Better calls to builtins 92
4.2.4 Improve CodeGen . 93
4.2.5 Others . 93

Bibliography 95

A Pattern Variables 97
A.1 Statements . 97
A.2 Expressions . 97

B OpCodes 98

C Symbol Description 101

D Tests list 102

E README 109

F Performance measures 111
F.1 Additions . 111
F.2 Cells . 112
F.3 Fibonacci . 113
F.4 Pattern Matching . 114

CONTENTS v

G Structure of code naming classes 116

Chapter 1

Introduction

This report documents the development of a compiler for the Oz language. Oz
was first designed in 1991. It is a multi-paradigm language, supporting imper-
ative, object-oriented, functional, logic and constraint programming [OzOv].

The Mozart Programming System is a multi-platform implementation of
the Oz programming language[Moz], the last stable release dating from 2008.

It was deemed necessary to refresh the platform, and a new implementation
was started, which we will refer to by Mozart2.

1.1 Initial State

A new virtual machine had been developed for Mozart2. The compiler target-
ing the Mozart1 virtual machine had been adapted to target the new virtual
machine, and a boot compiler developed in Scala was used to compile it for the
new virtual machine.

This was seen as a temporary solution though, and a new compiler needed
to be developed.

1.2 Goal and Scope

The new compiler was to be developed in Oz. There were four goals set for the
compiler:

1. compile the whole language so that it can replace the current compiler in
Mozart 2

2. generate quality code, exploiting the capabilities of the virtual machine

3. easy to understand and modular code

4. the compiler should also be extensible so that, for example, support for a
new instruction can be added without the recompilation of the compiler.

Although the code is extensively commented, this report contributes to the
third goal. The first three goals have been reached or approached, only the
fourth proved to be to ambitious for this work.

1

2 CHAPTER 1. INTRODUCTION

1.3 Contributions of this work

This work has the goal to lay a solid foundation for future developments. The
whole code was written from scratch. Nearly the whole Oz language is sup-
ported by the compiler, and the code is clearly structured and fully docu-
mented. A flexible and easy to use test infrastructure has been set up. This
test infrastructure has been used to write 439 tests scripts, performing more
than 1000 output checks. An Oz script runner is also included, compiling the
Oz source file and outputting AST at each transformation step for easy debug.
Compiling a file to a .ozf is also possible.

1.4 Source Code

The whole source code for the compiler, the tests as well as this report is avail-
able at http://www.github.com/raphinou/oz-compiler. It can be downloaded
as a zip file or checked out using git with the command
git clone git://github.com/raphinou/oz-compiler.git.

Chapter 2

Infrastructure

2.1 Virtual Machine

The Mozart2 virtual machine is a bytecode vm developed from scratch, with
extensive support for the Oz language’s concepts. The code to be generated
by the compiler should use these capabilities and possibly be different in some
cases from the code generated by the Mozart1 compiler.

2.1.1 Registers

The Mozart2 virtual machine works with four kind of registers. The description
of the registers uses the concept of abstractions, which is precisely defined in
the next section. It is however sufficient for the understanding of this section
to equate the concept of abstraction with the concept of procedural value.

X registers X registers are work registers that should not be used to perma-
nently store values as their content is undefined after a call. They are
thread-specific and caller-saved, meaning it is the caller’s responsibility
to save the value of an X register if it will be reused. X registers are
for example used to pass the arguments to calls. However, the values in
these registers are undefined after the call so they should be considered
as lost. X registers are currently indexed by an unsigned 16 bit integer,
but this might change in the future to be indexed by a signed integer.

Y registers are specific to the activation frame, and are used as locally per-
sisting registers. They can be allocated only once per frame.

G registers are holding global variables, i.e. variables that are accessed by
the abstraction, but that are not locally declared. They are specific to
the abstraction.

K registers are holding constant values, be it integers, floats or records. They
are specific to the abstraction’s code area, which we will analyse in the
next section. A constant value is a value known by the compiler at
compile time, which can be an unbound variable

3

4 CHAPTER 2. INFRASTRUCTURE

2.1.2 Abstractions

An Oz procedure is represented in the virtual machine by what is called an
abstraction. An Oz program itself is implicitly placed in what is called a top
level abstraction. An abstraction holds references to G registers and to its code
area. This code area has references to its K registers and the code itself, as
illustrated in Figure 2.1.

Abstraction

CodeArea
G0

G1

. . .

CodeArea

Code
K0

K1

. . . Bytecode

Figure 2.1: Internals of the virtual machine

Capturing the global variables at the abstraction level is what provides clo-
sures: a procedure captures the environment it was defined in. The CodeArea
is not stored in the abstraction itself, but is referenced from it, simply because
the same CodeArea can be referenced from multiple abstractions. The example
from [CTMCPFigs] in Figure 2.2 illustrates this.

fun {Sqrt X}

fun {Improve Guess}

(Guess + X/Guess) / 2.0

end

fun {GoodEnough Guess}

{Abs X-Guess*Guess}/X < 0.00001

end

fun {SqrtIter Guess}

if {GoodEnough Guess} then Guess

else

{SqrtIter {Improve Guess}}

end

end

Guess=1.0

in

{SqrtIter Guess}

end

Figure 2.2: Functions sharing the same CodeArea

The method Sqrt computes the square root of a number by Newton’s
method. Each time Sqrt is called, it defines three local functions. The two
first reference the variable X, which is a global variable for them, and which
has probably a different value at each call of Sqrt. However, the code area for
each function is the same for every call of Sqrt, and the virtual machine can

2.2. TARGET LANGUAGE 5

simply create a new abstraction referencing the already existing code area and
defining the global it needs. Often, code areas are created at compile time, and
the abstractions at run time.

If we have 2 simultaneous calls to Sqrt, for example Sqrt 2 and Sqrt 5, we
would end up with the structure of Figure 2.3 in the virtual machine.

Abstraction

CodeArea
G0 = 2

CodeArea

Code
K(2)

Bytecode
Abstraction

CodeArea
G0 = 5

Figure 2.3: Multiple Abstractions referring to the same CodeArea

2.2 Target Language

The compiler generates code that can be passed to the assembler targeting
the virtual machine. This assembler language has solid support for the virtual
machine concepts as we will see. Appendix B gives a reference list of the
opcodes available.

The core of the virtual machine is the emulator loop which interprets the
bytecode. This loop is found in the file emulate.cc of the virtual machine
[Moz2vmsrc] 1.

The assembler accepts an Oz list of instructions that are Oz tuples. This
list of opcodes is actually further transformed by the assembler before it gets
its definitive form and is fed to the virtual machine.

One transformation applied by the assembler is to translate generic opera-
tions on register to operations specific to the registers manipulated.

For example, we will present the move(src dst) opcode taking a source
register and a destination register. This opcode is actually specialised according
to the source and destination register types. Source register can be X, Y, G or K
registers. Destination registers can be X or Y registers. As a consequence, move
is actually translated into 8 specialised operations. The resolution is done by
the assembler with a function ResolveOverload [Moz2src]2 which will actually
resolve all overloaded opcodes that will be covered in this section.

2.2.1 Register Operations

Registers access instructions are proper to each kind of register. To access the
nth G X Y registers, the instruction will respectively be g(n), x(n), y(n).

1http://git.io/5CcN2A
2http://git.io/XLk5wQ

6 CHAPTER 2. INFRASTRUCTURE

K registers are used to store constants. The assembler abstracts away the
actual indexing of K registers. It expects values in k(V) tuples, and assigns
indices to K registers itself. The constant 2 will thus appear in the code as
k(2), the constant record r(a b c) is denoted in the code as k(r(a b c)).

As mentioned earlier, Y registers are persisting for the lifespan of the cur-
rent frame. Their number has to be determined when the frame is created, and
all needed Y registers are allocated at once with the instruction allocateY(n)

where n is the number of Y registers used in this frame. Y registers are deal-
located when their owning frame is disposed of, i.e. upon execution of one of
return, tailCall or tailSendMsg.

X registers are work registers, and if a value in an X register needs to be
accessed several time across calls, it has to be saved in a Y register. This is done
with a move instruction: move(source_reg destination_reg). As mentioned
earlier, source can be X, Y, G or K registers. Destination can be X or Y
registers.

Unification is supported with the instruction unify(LHS RHS) where LHS and
RHS are X, Y, G, or K registers. Internally, and because unification is commu-
tative, this does not result in 16 but 10 specialised opcodes. For example,
moveXY is defined, but not its mirror operator moveYX. It is the assembler’s
ResolveOverload function that will pick the available specialised operator and
possibly switch the arguments order.

Two consecutive move operations on registers X and/or Y registers are trans-
formed by the assembler in a moveMove operation, transforming

move(s1 d1) move(s2 d2)

into

moveMove(s1 d1 s2 d2)

Four different situations can occur as both source and destination can be X
or Y registers resulting in 4 specialised operations moveMoveXYXY, moveMoveYXYX,
moveMoveYXXY, moveMoveXYYX.

2.2.2 Variables

The opcode createVar(R) assigns to register R, which is an X or Y register,
a new unbound variable. The assembler also translates it to createVarX and
createVarY.

createVarMove(r(i) x(j)) is an opcode that will assign an unbound variable
to register r(i) (X or Y), immediately followed by a move to register x(j)

(always an X register). This is very handy when an unbound variable is passed
as argument to a procedure, to be reused after the call, as in

{MyProc ?R}

{Show R}

The variable R has to be in a Y register to be reused after the call, but it
has to be passed as argument to the call in an X register. createVarMove does
both operations in one opcode. Again, createVarMove is actually specialised in
createVarMoveX or createVarMoveY if the first register is respectively an X or a
Y register.

2.2. TARGET LANGUAGE 7

2.2.3 Jumps

Code positions can be identified by labels, which need to be atoms or names.
A label L is encoded in the code as a tuple lbl(L). Labels are required for
jumps in the code. Jumps will move the execution to the label they have as
argument. For example branch(endLabel) will jump to the position in the code
identified by the label endLabel.

Conditional jumps will look at the value in an X register, and if this value is
not true, it will jump to the code at the label it was given. That instruction also
takes a label locating error handling code. Here is an example of conditional
jump that will look at the value in X register 0:

condBranch(x(0) elseLabel errorLabel)

If the value in x(0) is true, it continues execution. If it is false it jumps to
the position in the code identified by the label elseLabel. If an error occurs in
the test, it jumps to the label errorLabel. This is illustrated in Figure 2.4. If
the value in register x(0) is not tested successfully as a boolean, execution will
jump to lbl(1) and raise an exception. If the condition (the value in x(0)) is
true, the code will execute {Show ’true’}, else it will execute {Show false}.

condBranch(x(0) 2 1)

move(k(’true’) x(0))

call(k(<P/1 Show>) 1)

branch(3)

lbl(1) move(k(badBooleanInIf) x(0))

tailCall(k(<P/1 Exception.raiseError>) 1)

lbl(2) move(k(’false’) x(0))

call(k(<P/1 Show>) 1)

lbl(3) return

Figure 2.4: Conditional branch example

2.2.4 Calls

Calls can be made with call(R Args), where R is an X, Y, G or K register.
identifying what to call (procedure or builtin) and Args is the number of argu-
ments passed to the callee. As per the calling convention of the vm bytecode,
the arguments of the call have to be placed in the X registers from 0 to Args-
1 with move instructions before the call. The complete code for a call to a
callee located in register Y 3 with three arguments which values come from Y
registers 4 to 6 will thus be of the form illustrated in Figure 2.5.

A call done as last instruction of an abstraction should be made with the
tailCall instruction, as this lets the virtual machine optimise the execution
(see below). It has the exact same arguments as the call instruction, only the
name of the instruction differs: tailCall(Callee Args).

call starts by creating a new frame on the stack with the currently running
abstraction/code area, the program counter, and the Y registers. tailCall

instead frees the Y registers. After that, the current abstraction and its code
area are replaced by the callee and its code area.

8 CHAPTER 2. INFRASTRUCTURE

move(y(4) x(0))

move(y(5) x(1))

move(y(6) x(2))

call(y(3) 3)

Figure 2.5: Opcodes for a call

A builtin is called with callBuiltin(k(BI) Args), where BI must be a builtin
(i.e. {IsBuiltin BI} == true).

callBuiltin always takes the builtin to call in a K register, but it is nonethe-
less specialised in different operations with 0 to 5 arguments or with an arbi-
trary number of arguments N. These are called callBuiltinX where X is one of
0 1 2 3 4 5 N.

return cleans the Y registers and pops the top frame on the stack.

2.2.5 Records

Without being exhaustive, here is a reminder of the record concept in Oz.
A record is defined by Label(F1:V1 F2:V2) where the label and features (Fi)

can be an integer, an atom or a variable, and the values (Vi) can any expression.
Features can be left out, in which case they are implicitly assigned increasing
values from 1.

At the virtual machine and compiler level, the arity of a record is made
of its label and features. A tuple is a record whose features are consecutive
integers starting from 1. In an abuse of language and only when no confusion is
possible, we will sometimes refer to a feature’s value simply as “feature”. This
simplifies the text without adding confusion, especially in the case of tuples
where features are known to be numeric.

Records, tuples and cons are directly supported by the virtual machine,
handling each of these particularly to ensure performance and efficiency. A
record of arity Arity, with NumberOfFeatures features is unified with Destina-
tionReg (an X, Y, G or K register) with this instruction:

createRecordUnify(k(Arity) NumberOfFeatures DestinationReg)

which has to be followed by instructions to fill the features with their respective
values:

arrayFill(Reg)

where Reg is the register corresponding to the feature’s value3. The arity is
supported by the virtual machine and includes the label and features without
their respective values.

There are two special cases of records that are handled specifically by the
virtual machine. A cons is a record with label ’|’ and with only 2 features
numbers 1 and 2 and is initialised by:

createConsUnify(DestinationReg)

3arrayFill might be renamed in structFill in the future

2.2. TARGET LANGUAGE 9

Again, this instruction has to be followed by arrayFill instructions, two in this
particular case. A tuple is a record with all consecutive numeric features from
1. It is initialised with

createTupleUnify(k(Label) NumberOfFeatures DestinationReg)

and followed by arrayFill instructions.
Each of these instructions have a Store version (for example createConsStore)

with the same arguments. This opcode stores the record created in the destina-
tion register which in this case must be an X or Y register, instead of unifying
former with the entity created.

2.2.6 Procedures

A procedure is represented by what is called an abstraction (see Section 2.1.2),
which is created and unified with the contents of register DestinationReg with

createAbstractionUnify(k(CodeArea) GlobalsCount DestinationReg)

CodeArea is the assembled body of the procedure (see Section 3.1.6.6 for details).
GlobalsCount identifies how many references to global variables this abstraction
holds. It is the number of arrayFill instructions that will follow to initialise
those global variables that the abstraction can access in G registers numbered
from 0. The first arrayFill instruction will set the value of g(0), the second
the value of g(1), . . .

Figure 2.6 lists the Oz code we will analyse.

local

A B P

in

A=1 % in register X 0

B=2 % in register X 1

proc {P} % in register Y 0

{Show A+B} % A and B are globals for P

end % access in g(0) and g(1) resp.

end

Figure 2.6: Oz code example for opcodes generation

As noted in the code comments, we suppose, the compiler having done
its work of registers allocation, variables A and B are stored in registers x(0)

and x(1) respectively, that the abstraction for procedure P is stored in register
y(0) , and that P accesses the values of A and B via the registers g(0) and g(1)

respectively. The body having been assembled and stored in the constant value
CodeArea, this will lead to the code in Figure 2.7 to be passed to the assembler.

createAbstractionStore is used similarly to the records’ Store instructions.

2.2.7 Pattern Matching

The instruction patternMatch(Reg PatternMatchRecord) supports the pattern
matching, where Reg is the X, Y or G register containing the value to test,

10 CHAPTER 2. INFRASTRUCTURE

createAbstractionUnify(k(CodeArea) 2 y(0))

arrayFill(x(0))

arrayFill(x(1))

Figure 2.7: Opcodes generated for example Oz code

and PatternMatchRecord is a record specifying the patterns and their respective
jump address in case of a match. Figure 2.8 gives a simple Oz case instruction,
and Figure 2.9 lists the generated opcodes. Section 3.1.6.8 covers pattern
matching and the patternMatch instruction thoroughly.

case R

of l(1 2) then

{Show ’l’}

[] rec(a b) then

{Show ’rec’}

else

{Show ’else’}

end

...

Figure 2.8: Example case instruction

patternMatch(x(0) k((l(1 2)#6)#(rec(a b)#7)))

branch(5)

lbl(6) move(k(l) x(0))

call(k(<P/1 Show>) 1)

branch(3)

lbl(7) move(k(rec) x(0))

call(k(<P/1 Show>) 1)

branch(3)

lbl(5) move(k(’else’) x(0))

call(k(<P/1 Show>) 1)

lbl(3) ...

Figure 2.9: Opcodes for the example case instruction

2.2.8 Exceptions

There is an opcode to setup an exception handler and jump to a label:

setupExceptionHandler(DestLabel)

If the code executed from DestLabel raises an exception before the exception
handler is removed with popExceptionHandler, the execution will jump to the
opcode following the instruction setupExceptionHandler.

Figure 2.10 gives a simple example of Oz code handling exceptions, and
Figure 2.11 gives an idea of corresponding opcodes. The opcodes corresponding

2.3. COMPILER INPUT 11

to ExceptionHandlingOpCodes and more detailed examples are given in Section
3.1.6.10.

try

{Show 1}

catch E then

{Show ’catched exception’}

end

Figure 2.10: Oz code handling exceptions

setupExceptionHandler(1)

ExceptionHandlingOpCodes

branch(2)

lbl(1) move(k(1) x(0))

call(k(<P/1 Show>) 1)

popExceptionHandler

lbl(2) return

Figure 2.11: Opcodes handling exceptions

2.2.9 Skip

skip is a no-op opcode, that is actually dropped by the assembler. It is however
available to ease the generation of the opcodes having some parts optional.
Rather than testing if the opcodes sublist is empty before including it in the
whole program’s opcodes list, it is possible to generate it in every case: for
the situation in which no operation is needed, a skip opcode will be issued. If
the vm loop encounters a skip opcode, it does nothing and goes to the next
opcode.

2.3 Compiler input

The compiler takes as input the AST in the form of Oz records [AST], and
generates opcodes sent to the assembler. This section will present and describe
the records received from the parser and their corresponding Oz form. Note
that in de display of the ASTs, list can be represented by the square bracket
notation and the ’|’ labeled records. For example, the list with elements 1

and 2 can be denoted [1 2] as well as ’|’(1 ’|’(2 ’|’(3 nil))).

2.3.1 Position in source code

Most records have the corresponding position in the source code available in
their last feature, encoded in a record of the form:

pos(File Linebegin Columnbegin Fileend Lineend Columnend)

12 CHAPTER 2. INFRASTRUCTURE

The position of each instruction has to trickle through all transformations so
meaningful error messages can be given to the programmer in case of error.
Most of the nodes in the AST include the position of their instruction in the
source code.

For clarity and brevity, in the examples of AST included in this document,
the positions will always be represented by the featureless record pos or a
variable named Pos.

2.3.2 Literals

The basic data type described in this section are the simplest node found in
the AST as they have no children and are always leafs of the AST. These are
the basic data types with their corresponding tuples in the AST:

integers fInt(Val Pos)

floats fFloat(Val Pos)

atoms fAtom(value position)

fAtom are also used to place unit, true and false in the AST.

2.3.3 Identifiers

An identifier is denoted by a tuple fVar(Ident Pos) in the AST, where Ident

is the text of the identifier represented as an atom.

2.3.4 Unification

A unification is found in a tuple fEq(LHS RHS Pos). A=3 results in
fEq(fVar(A pos) fInt(3 pos) pos).

2.3.5 Instructions sequence

A sequence of instructions is wrapped in fAnd records, the first feature being
usually one instruction, the second feature being an fAnd if more than one
instruction follows, or a single instruction. Here is an example of three unifi-
cations and the corresponding AST:

A=1

B=2

C=3

fAnd(fEq (fVar (A pos) fInt (1 pos))

fAnd(fEq (fVar(B pos)) fInt(2 pos)

fEq(fVar(C pos) fInt(3 pos))))

2.3.6 Local

local..in..end are represented in the AST by tuples of the form

fLocal(Declarations Body Pos)

where Declarations and Body are both AST subtrees. Figure 2.12 shows Oz
code declaring the three variables A, B and C, and bounding variable A with
integer 1. The AST corresponding to this Oz code is shown in Figure 2.13.

2.3. COMPILER INPUT 13

local

A B C

in

A=1

end

Figure 2.12: Declaration of 3 variables

fLocal(

fAnd(

fVar(A pos)

fAnd(

fVar(B pos)

fVar(C pos)

pos)

pos)

fEq(

fVar(A pos)

fInt(1 pos)))

Figure 2.13: AST for the code in Figure 2.12

2.3.7 Procedures

2.3.7.1 Definitions

Procedures are found in records of the form

fProc(Name Arguments Body Flags Pos)

where the Arguments and Body features are AST subtrees. Figure 2.14 and
Figure 2.15 show a small procedure definition and its corresponding AST.

2.3.7.2 Calls

Procedure calls are found in records of the form fApply(Proc Arguments Pos).
Example:

{Compute 1 2 3}

will result in the AST portion:

fApply(

[fVar(Compute pos)

fInt(1 pos)

fInt(2 pos)

fInt(3 pos)

])

2.3.8 Functions

Function definitions are found in the AST in fFun tuples, with the same features
found in fProc records. Functions are simply procedures that implicitly return
exactly one value. This similarity between functions and procedures can be

14 CHAPTER 2. INFRASTRUCTURE

proc {P A1 A2}

{Show A1}

{Show A2}

end

Figure 2.14: Oz procedure definition

fProc(

fVar(’P’ pos)

[

fVar(’A1’ pos)

fVar(’A2’ pos)]

fAnd(

fApply(

fVar(’Show’ pos)

[fVar(’A1’ pos)]

pos)

fApply(

fVar(’Show’ pos)

[fVar(’A2’ pos)]

pos))

pos)

Figure 2.15: AST of the Oz procedure definition

seen in their similar AST for definitions and calls. It will be exploited later on
to merge both forms of AST into one. However, only functions can be marked
as lazy as in fun lazy {F N} .. end. This lazy marker is translated in a flag.

2.3.8.1 Definitions

Function definitions are found in records fFun(Name Arguments Body Flags
Pos). The features are identical to the procedure definition.

2.3.8.2 Calls

The calls of functions are identical to the call of procedures as they are found
in fApply.

2.3.9 Operators

Operators are parsed as records of the form

fOpApply(Operator Args Pos)

whose first feature is the operator to apply, its second feature being the list of
operands. It also has a position record as third feature. For example 5+2 is
parsed as displayed in Figure 2.16.

2.3. COMPILER INPUT 15

fOpApply(

’+’

[

fInt(5 pos)

fInt(2 pos)

]

pos

)

Figure 2.16: AST for 5+2

2.3.10 Nesting marker $

In Oz, some statements can be transformed in expressions by the use of the $

marker. This marker is found in the AST as a tuple fDollar() with a unique
feature: its position. The statements that can be transformed in expressions
are

• Function, Procedure, Functor and Class declarations.
For example X=fun{$ A B} .. end

• A call to a procedure having the nested procedure in one of the pattern
positions of its arguments.

The pattern positions PP of an argument being the union of

• the argument itself

• if it is a record of the form l(f1:v1 ... fn:vn), PP (v1) ∪ ... ∪ PP (vn).

2.3.11 Cells

2.3.11.1 Assignation

A new value can be stored in a cell with this Oz code: Cell:=Val. This code
will result in this tuple in the AST: fColonEquals(Cell Val Pos).

2.3.11.2 Read

The value stored in a cell can be access with the @ operator, as is @Cell, which
results in this tuple in the AST: fAt(Cell Pos)

2.3.12 Records

Records are present in the AST as tuple with label fRecord. Its label is the
first feature, and the second feature is the list of feature-value pairs. If no
explicit feature was specified, the entry in the list is simply the value. If an
explicit feature was specified, the entry in the list is a tuple fColon, with the
first feature being the feature and second feature being the value. All this will
become much clearer with the following examples.

Figure 2.17 displays the AST corresponding to the record rec(f1:v1 f2:v2).
We see that the label (rec) is an atom located in an fAtom tuple. The pairs of
features and their respective values are wrapped in fColon.

16 CHAPTER 2. INFRASTRUCTURE

fRecord(

fAtom(rec pos)

[

fColon(

fAtom(f1 pos)

fAtom(v1 pos))

fColon(

fAtom(f2 pos)

fAtom(v2 pos))])

Figure 2.17: Record AST

When the feature is not explicitly given, the item in the list of features
and their respective values is simply the value. Figure 2.18 is the AST of
rec(v1 f2:V2). The first item in the list is simply an atom, the value of the
first feature. Note that the value of the feature f2 is a variable in this case.

fRecord(

fAtom(rec pos)

[

fAtom(v1 pos)

fColon(

fAtom(f2 pos)

fVar(V2 pos))])

Figure 2.18: AST for record with implicit feature

2.3.13 Wildcards

Oz syntax allows to put a wildcard _ in the location of a value we want to
ignore, for example in calls and records pattern matching. These markers
are present in the AST in the form of a tuple fWildcard(Pos). Ignoring the
value returned by a function is thus written _={F N}. This allows the user to
not declare variables he wouldn’t use anyway, which would in addition raise a
warning about a variable used only once. . .

Pattern matching is covered extensively in Section 2.3.18.

2.3.14 Threads

Thread instructions are present in the AST in the form of tuples with label
fThread, and with two features: the body of the thread, and its position in the
source code:

thread Body end

results in

fThread(Body pos)

2.3. COMPILER INPUT 17

2.3.15 Locks

Oz enables the programmer to protect a critical section with a lock previously
created with L={NewLock}:

lock L then

% critical section

end

This code results in a tuple fLockThen in the AST, with 3 features: the lock
L, the body of the critical section, and the position in the code: fLockThen(L Body Pos).

2.3.16 If then else

The if..then..else construct is put in a tuple:

fBoolCase(Condition ThenCode ElseCode)

The else part is optional in Oz. In this case, ElseCode is a tuple fNoElse(pos)

in the AST.

2.3.17 Short-circuit boolean combinators

The boolean conjunction operation in Oz is represented by the keyword andthen.
Such a conjunction is present in the AST in the form of a tuple

fAndThen(First Second)

where first and second must be expressions with a boolean value. The boolean
disjunction operation is done using the keyword orelse, present in the AST in
the form of a tuple fOrElse(First Second).

2.3.18 Case Instruction and Pattern Matching

The Case instruction in Oz is of the following form where optional parts are
enclosed in double square brackets ([[]]).

case Value % _

of Pattern1 [[andthen Guards1]] then % ____ This is a clause

Code1 % _/

[] Pattern2 [[andthen Guards2]] then

Code2

..

[[else

ElseCode]]

end

This ends up in the AST in a tuple of the form

fCase(Value Clauses ElseCode pos)

Clauses is a list of tuples each representing one clause and containing the clause’
pattern, guards and code. We will analyse these further below. The else part
of the instruction is optional. If no else is provided, then ElseCode in the AST
is a tuple fNoElse(pos).

A clause with no guards is present in the AST in the form of a tuple
fCaseClause(Pattern Body). Pattern can be a constant value (integer, string,

18 CHAPTER 2. INFRASTRUCTURE

record, . . .), present in the AST as described earlier. It can also be a record
where a feature’s value is not a constant but a variable (in a fVar(Name pos)

record as described in section 2.3.3). In case of a match of the constant feature
values in the pattern, this declares said variable and assigns the value of the
corresponding feature in the value the pattern is tested against. Here is an
example:

R=lab(a b c d)

case R

of lab(a B c d) then

{Show B} % B’s value is b

end

Features of a record in a pattern can also have the wildcard _ as value, repre-
sented in the AST as described in section 2.3.13.

The pattern can also be or contain an open record specifying only a subset
of features which should match, as in the following example:

R=lab(a b c d)

case R

of lab(3:c 4:_ ...) then

% Code for record matching pattern

end

The syntax for an open record pattern is the same as for a record pattern,
except that subsequent features that should be ignored are replaced by
Also in the AST an open record is very similar to a record. Only the label
changes to fOpenRecord, and only the specified features are present in the AST,
the ... being absent from the AST. Here is an example of an open record:
lab(a b ...) and its AST representation:

fOpenRecord(

fConst(lab pos)

[

fColon(

fConst(1 pos)

fConst(a pos))

fColon(

fConst(2 pos)

fConst(b pos))])

Records and open records can of course be nested.
A clause with guards is present in the AST in the form of a tuple

fSideCondition(Pattern Decls Guards Pos)

where Pattern is as above, and Guards is simply the AST of the code of the guard
(without the andthen introducing the guard). Guards must be an expression
with a boolean value, possibly using the short-circuit boolean combinators of
section 2.3.17.

Decls is the declarations introduced by the guards, as the variable X in the
code of Figure 2.19. When there are no declarations, the value is fSkip(pos)

Variables can also be used in patterns for their value, and not as a new
capture declaration. This is done by prefixing the variable with an exclamation
mark. Here is an example:

2.3. COMPILER INPUT 19

case Foo

of bar(F) andthen X = F+4 in X > 0 then

{Show X}

end

Figure 2.19: Guards declarations

A=a

case V

of rec(A b c) then

% matches rec(_ b c), i.e. all records with label rec, second feature

% value b, third value c, with A being a new capture variable

[] rec(!A b c) then

% only matches rect(a b c)

end

An escaped variable ends up in the AST as wrapped in an fEscape tuple.
!A appears in the AST as fEscape(fVar(A pos) pos).

Oz pattern matching also support what is called pattern conjunction, en-
abling to capture the value of a subexpression of the pattern as illustrated in
this example:

case V

of rec(I=inner(a b ...)) then

...

end

In the clause’ code, the variable I will have the value of the inner record.
These pattern conjunctions are present in the AST in fEq tuples just like unifi-
cation instructions. Note that just like unifications (and unlike local..in..end),
the variable implicitly declared can be at the left as well as at the right
side of the equal sign. So the pattern rec(V=inner(a b ...)) is equivalent
to rec(inner(a b ...)=V) And also like in unification, the capturing side can
be a pattern, it doesn’t have to be a single variable.

case {GetToken}

of unit then

skip

elseof S then

{Handle S}

end

Figure 2.20: elseof construct

20 CHAPTER 2. INFRASTRUCTURE

2.3.19 Classes

Analysing classes is best illustrated by an example of Oz code:

class C

meth init skip end

meth hello(A1)

{Show ’hello’}

{Show A1}

end

end

which results in this AST:

fClass(

fVar(’C’ pos)

nil

[

fMeth(

fAtom(init pos)

fSkip(pos)

pos)

fMeth(

fRecord(

fAtom(hello pos)

[

fMethArg(

fVar(’A1’ pos)

fNoDefault)

])

fAnd(

fApply(

fVar(’Show’ pos)

[

fAtom(hello pos)

]

pos)

fApply(

fVar(’Show’ pos)

[

fVar(’A1’ pos)

]

pos))

pos)

]

pos)

Class definitions are found in fClass(ClassVar SpecsList MethodsList Pos).
A method is found in a tuple fMeth(Signature Body Pos). For methods with-
out argument, Signature is simply the method name. In the example, this
is illustrated by the init method. For methods with arguments, Signature is
the AST of a record whose label is the method name, and the values in the
record are the method arguments found in fMethArg(Var DefaultValue), where
DefaultValue is fNoDefault if none was provided. This is illustrated by the
method hello(A1).

2.3. COMPILER INPUT 21

The class of this example had no feature, attribute, parent or property
defined, hence the empty list as value of the second feature. Both attribute
and features are placed in this list. Attributes are placed in fAttr(AttrsList)

tuples and features are placed in fFeat(FeatsList) tuples. Both these tuples
have one feature whose value is a list. Each attribute and feature corresponds
to one item in its respective list. If the attribute or feature has a default value,
its corresponding item is a record with label ’#’ and two values: the first is the
name of the attribute or feature, the second is the default value. If no default
value is defined, the item in the list is simply the name of the attribute or the
feature. Let’s look at an example. A class with the following attributes and
feature definition

attr

count:0

state

feat

type:repeater

will have its list of attributes and features looking like this:

[

fAttr(

[#(fAtom(count pos)

fInt(0 pos))

fAtom(state pos)]

pos)

fFeat(

[#(

fAtom(type pos)

fAtom(repeater pos))]

pos)

]

The count attribute is placed in a ’#’ record, but not the state attribute. All
attributes are placed in one fAttr tuple, and all features in one fFeat tuple.

This list also contains more information: the parents of the class, as well as
the properties of the class.

The parents are located in fFrom(ParentsList). Here is an example from a
class inheriting from classes A and B. In Oz, this class will be defined by

class C from A B

..

end

and this will result in this element in the list

fFrom(

[fVar(’A’ pos)

fVar(’B’ pos)]

pos)

The properties of a class are also present in that list, under fProp tuples.
A class having the locking property would have this fProp tuple:

fProp(

[fAtom(locking pos)]

pos)

22 CHAPTER 2. INFRASTRUCTURE

When a class has the locking property, a lock is implicitly created, that
can be used in a method with the lock statement without specifying the lock
object, as this:

meth update(A)

lock

..

end

end

This lock instruction is put in the AST as a node fLock(Body Pos).
Assignation to attributes can be done in two ways. The first has the same

syntax as cell updates, described in Section 2.3.11:

my_attr:=NewVal

and is found in the AST just as a cell update operation under a node fColonEquals.
The second uses the syntax <-, as in:

my_attr<-NewVal

and is found in the AST under a node fAssign(LHS RHS pos).
The method head can also be captured and made available to its body,as

in

meth echo(First ...)=H

Body

end

At run time, the H variable will give access to the message sent to the object,
with the actual arguments list.

fMeth(

fEq(

fOpenRecord(

fAtom(echo pos)

[fMethArg(

fVar(’First’ pos)

fNoDefault)])

fVar(’H’ pos)

pos)

BodyAST

Pos)

Method can also be defined as private by using a variable name as their
label:

meth A(V)

Body

end

resulting in the AST in Figure 2.21.
The method A will be bound to a new name, only visible in the class defi-

nition’s scope (see Section 3.1.2.5 for details).
Method can also have dynamic labels assigned, by escaping the variable

holding the label to use:

meth !A(V)

Body

end

2.3. COMPILER INPUT 23

fMeth(

fRecord(

fVar(’A’ pos)

[fMethArg(

fVar(’V’ pos)

fNoDefault)]

BodyAST

pos)

Figure 2.21: Private method AST

The AST for a dynamic label assigned to a method is:

fMeth(

fRecord(

fEscape(

fVar(’A’ pos)

pos)

[fMethArg(

fVar(’V’ pos)

fNoDefault)]

BodyAST

pos)

2.3.20 Loops

There are three forms of the for..in..do..end statement, working respectively
on list, ranges, and C-like for loops conditions.

2.3.20.1 Iterating over lists

The Oz syntax is best illustrated by an example:

for Var in L do {Show Var} end

Var is bound to each element of L in turn, and the code executed. Hence this
code will show all elements of the list L.

Multiple list can be iterated:

for I in L J in L2 do {Show I#J} end

but note that the iteration goes over the two zipped lists , and the loop ends
once the end of one of the list is reached. The number of times the body of the
loop is called is thus the number of elements of the smallest list.

The AST of the first for example is displayed in Figure 2.22.
The first value in the fFor tuple is the list of patterns, one for each list.

Each item of this list is a forPattern tuple, with its first value being the variable
that will be available in the loop, and the second value an fGeneratorList tuple
referencing the list over which to iterate. The second value in the fFor tuple is
the code to be executed for each element of the list.

24 CHAPTER 2. INFRASTRUCTURE

fFOR(

[forPattern(

fVar(’Var’ pos)

forGeneratorList(

fVar(’L’ pos)))]

fApply(

fVar(’Show’ pos)

[fVar(’Var’ pos)]

pos)

pos)

Figure 2.22: For loop iterating over list L

2.3.20.2 Iterating over ranges

Here is an example of a for loop iterating over integers from 1 to 5 with a step
of 2, resulting the execution of the body of the loop for integers 1 3 and 5:

for I in 1..5;2 do {Show I} end

fFOR(

|(

forPattern(

fVar(’I’ pos)

forGeneratorInt(

fInt(1 pos)

fInt(5 pos)

fInt(2 pos)))

nil)

fApply(

fVar(’Show’ pos)

|(

fVar(’I’ pos)

nil)

pos)

pos)

The AST is very similar to the first loop form, only the fGeneratorList

tuple is replaced by a forGeneratorInt tuple holding the specification of the
range and step to use.

2.3.20.3 C-style for loops

Iterating over integers from 1 to 5 with a step of 2 can also be written in the
C-style for loop:

for I in 1;I<4;I+1 do {Show I} end

It takes a generator composed of 3 expressions: E1;E2;E3 where E1 is the start
value, E2 is the test condition, the looping continuing as long at it evaluates to
true, and E3 is the next value’s expression. It is found in the AST illustrated
in Figure 2.23.

The notable difference is the generator tuple now being forGeneratorC hold-
ing the three expressions.

2.3. COMPILER INPUT 25

fFOR(

[forPattern(

fVar(’I’ pos)

forGeneratorC(

fInt(1 pos)

fOpApply(

’<’

[fVar(’I’ pos)

fInt(4 pos)]

pos)

fOpApply(

’+’

[fVar(’I’ pos)

fInt(1 pos)]

pos)))]

fApply(

fVar(’Show’ pos)

[fVar(’I’ pos)]

pos)

pos)

Figure 2.23: C-like loop

2.3.21 Exceptions

An exception can be raised with the instruction raise E end. A raise instruc-
tion is represented in the AST by a tuple fRaise(E pos).

Code possibly raising exceptions can be wrapped in a try-catch-finally in-
struction of the form illustrated in figure 2.24.

try Code

catch

Pat1 then

Code1

[] Pat2 then

Code2

finally

FinalCode

end

Figure 2.24: Try-cat-finally structure

We can see that the catch part specifies multiple clauses each with a pat-
tern against which the exception raised will be tested, and code which will be
executed if the pattern effectively matched. finally introduces code that will
be executed in all cases after Code and the possible matching catch clause.

It results in the AST of Figure 2.25.
which exactly mirrors the Oz code: fTry holds the AST of the body, which

is code possibly throwing an exception, the fCatch tuple containing the list of
clauses, and the finally code. The finally may be left out of the Oz code, in

26 CHAPTER 2. INFRASTRUCTURE

fTry(

Body

fCatch(

[fCaseClause(

Pat1

Code1)

fCaseClause(

Pat2

Code2)]

pos)

FinalCode

pos)

Figure 2.25: Try-catch-finally AST

which case FinalCode is the tuple fNoFinally. Clauses of a catch are present in
the AST in the same form as clauses of a case instruction (see Section 2.3.18),
i.e. a fCaseClause tuple holding the pattern and the code to execute if the
pattern matches. This similarity will be exploited by the compiler, notably in
the namer, which is the next transformation to be applied to an fTry node (see
Section 3.1.2.6).

2.3.22 Arrays

A special notation is available for assigning value to array elements, as to mimic
the matrix notation. As such, the code A.I:=V will assign V to the Ith element
in the array A. This results in node fDotAssign in the AST. The node generated
by the parser is

fDotAssign(fOpApply(’.’ [A I] Pos1)

V

Pos2)

The first transformation applied to these nodes takes place in the desugar step,
described in Section 3.1.3.16.

2.3.23 Functors

Modular applications can be developed in Oz by using functors. A functor
computes a module, taking modules as input and producing a new module
as output. A module groups together related operations, and consists of an
interface and an implementation. The interface publishes entry points to the
module implementation, the rest of the implementation being unreachable from
the outside. A functor can import other modules, export entry points to its
implementation, and define its implementation, as illustrated by the code in
Figure 2.26.

Two important steps are distinguished in the life of a functor: it is first
evaluated, and then it is applied. These two steps bring a distinction between
compiled and computed functors [Func]

2.3. COMPILER INPUT 27

functor

import

DumpAST at ’../lib/DumpAST.ozf’

export

PrettyPrint

define

proc {PrettyPrint AST}

{DumpAST.dumpAST AST _}

end

end

Figure 2.26: Compiled functor

A computed functor has its name coming from the fact that some of its code
is evaluated at definition time, resulting in a functor that has been computed,
in opposition to compiled functors.

The code executed when evaluating computed functors can for example
compute a data structure to be carried with the computed functor.

Computed functors are supported in Oz with require and prepare, which
define code parts to be evaluated when building the functor. This is illustrated
by the code in Figure 2.27, coming from the online Oz documentation [Func].

functor

import

DB Form % User defined

System Application % System

require

BuildSampleFlights

prepare

Flights = {BuildSampleFlights}

define

%% Enter some flights

{ForAll Flights DB.add}

...

end

Figure 2.27: Computed functor

The key point in this functor definition is the presence of the require and
prepare sections. When this functor is evaluated, the require and prepare are
evaluated. Hence the computed functor contains the sample flights list. This
means that the code will have access sample flights that were selected when
the functor was evaluated (built), and not when it was applied (imported).

Functors appear in the AST in fFunctor:

fFunctor(Id ImportRequirePrepareDefineExportList Pos)

The first value, Id, is the identifier of the functor, either fDollar for anonymous
functors, or fVar. The second value is a list containing all import, require,
prepare, define and export information.

28 CHAPTER 2. INFRASTRUCTURE

We will illustrate the explanations by using the example code in Figure 2.28.

functor

export

echo:Echo

import

Helpers(print:Print) at ’../lib/Helpers.ozf’

prepare

Test=1000

define

proc {Echo S}

{PrivateEcho S}

end

proc {PrivateEcho S}

{Print Test}

{Print S}

end

end

Figure 2.28: Example functor

The import information is present in a tuple fImport holding a list of tuples
fImportItem(Id Aliases Location) as illustrated in Figure 2.29. The Id is sim-
ply the variable defined for the import. Aliases is a list of pairs ’#’(Var Key)

binding Var to the function exported by the imported functor under the key
Key. Location is either fNoImportAt if no location was given, or fImportAt(Path)
specifying the relative URL of the imported functor. require is placed in a tu-
ple fRequire of exactly the same form, and is not illustrated here.

fImport(

|(

fImportItem(

fVar(’Helpers’ pos)

|(

#(

fVar(’Print’ pos)

fAtom(print pos))

nil

) fImportAt(

fAtom(’../lib/Helpers.ozf’ pos)))

nil)

pos)

Figure 2.29: Import AST example

The prepare section is placed in a tuple fPrepare(Decls Stats Pos), holding
the prepare’s declarations and statements, as illustrated in Figure 2.30. Our
example contained only declarations, and the statement part is a skip instruc-
tion. define is placed in a tuple fDefine of exactly the same form, and is not
illustrated here.

2.3. COMPILER INPUT 29

|(

fPrepare(

fEq(

fVar(’Test’ pos)

fInt(1000 pos)

pos)

fSkip(pos)

pos

)

Figure 2.30: Prepare AST example

export is a tuple fRecord([fExportItem(fColon(Key Var))...]), specifying
Key as the key in the module’s interface to access Var, as illustrated in Fig-
ure 2.31.

fExport(

|(

fExportItem(

fColon(

fAtom(echo pos)

fVar(’Echo’ pos)))

nil)

pos)

Figure 2.31: Export AST example

Chapter 3

Compiler

3.1 Architecture

The AST received from the parser goes through several transformations called
passes. Each pass has its specific purpose and applies a specific transformation
to the AST. The compiler’s passes are illustrated in Figure 3.1

Parser

DeclsFlattener Namer Desugar Unnester

GlobaliserCodeGen

declareY(2)|createVar(y(0))|...

Assembler

Figure 3.1: Compiler phases

These transformations are implemented by functions taking as only argu-
ment the AST, and they return the transformed AST. These functions all have
the same structure, as displayed in Figure 3.2. Having the same structure
enables the use of the function DefaultPass listed in Figure 3.3, which calls
the function passed as second arguments recursively on the AST with Params

as last argument, but returns the root of the AST unchanged. This facili-
tates the recursive calls for default behaviour on elements not modified by the
transformation.

Params is a record with label params, and features are added as necessary.
For example, this Params argument is used by the Globaliser described in
Section 3.1.5. All passes take a params record as last argument, even if some
do not use it. This early design decision proved very beneficial afterwards.

Although all passes work exclusively on the AST, the transformations de-
scribed in later sections can and will often be illustrated more clearly and
concisely by giving the Oz code corresponding to the ASTs before and after
the transformation.

31

32 CHAPTER 3. COMPILER

fun {Transform AST}

fun {TransformInt AST Params}

case AST

of ... then

else

{DefaultPass AST TransformInt Params}

end

end

InitialParams = ...

in

{TransformInt AST InitialParams}

end

Figure 3.2: Structure of a transformation function

fun {DefaultPass AST F Params}

% beware of the order. a record is also a list!

if {List.is AST} then

{List.map AST fun {$ I} {F I Params} end}

elseif {Record.is AST} then

case AST

of pos(_ _ _ _ _ _) then

% Do not go down into position records

AST

else

{Record.map AST fun {$ I} {F I Params} end}

end

else

AST

end

end

Figure 3.3: DefaultPass function

3.1.1 Declarations Flattener

The Oz language accepts complex instructions in the declaration part of

local Decls in Body end

It is thus necessary to identify the variables declared by each instruction present
in the Decls. For example, in unifications, only the left hand side variable gets
declared, and only B is implicitly declared in the following code snippet:

local

B=2*A

in

...

end

Fortunately, this has been clearly formalised by the Oz implementers and pub-
lished on the web [BaseLang]. This information has been included in Appendix

3.1. ARCHITECTURE 33

A. The namer simply applies these rules to move all code to the Body beginning,
keeping only simple variable declarations in Decls.

3.1.2 Namer

The namer basically replaces all occurrences of a variable’s fVar by fSym tuples
holding a symbol instance representing said variable. All uses of a variables are
replaced by the same symbol instance. This symbol holds information about
the variable, that will be completed by subsequent compiler passes, such as the
type of the symbol, its allocated register,. . . and is documented in Appendix C.

In declarations, the namer creates a new symbol for the declared variables,
in other code, it looks at already defined symbols and replaces fVars by a fSym

tuple containing the existing symbol for that variable. This works because a
variable can only be in the subtree whose root is the variable declaration’s
instruction (be it a local Decls in Body end declaring variables in Decls, a
proc {Id P1 P2} declaring its formal parameters, . . .) . The namer can thus
be sure to find a symbol for variables it encounters in the AST, or it is an error.

The Namer also has some work to do on patterns and the variables it im-
plicitly declares. As a consequence, it also handles and transforms the AST for
functions and procedures, which implicitly declare their formal parameters.

The set of maps from a variable name to its corresponding symbol is called
environment, and is maintained by the namer.

3.1.2.1 Declarations

Variables can be declared in different ways and instructions. One such instruc-
tion is of course the explicit declaration instruction local Decls in Body end,
present in the AST in the form of fLocal tuples introduced in section 2.3.6. At
this stage, Decls only contains simple variables declaration, thanks to the dec-
laration flattener (see Section 3.1.1). fLocal introduces a new environment, in
which the variables declared in its first feature are added to the environment of
the code present in its second feature, possibly erasing mappings for variables
with the same name coming from the parent environment.

It is these manipulations of the environments that make that the code in
Figure 3.4 does not throws an error of impossible unification of A with 6.
Indeed, the inner variable A gets another symbol assigned than the outer one,
and replaces it in the environment of the inner instructions. Thus there is no
ambiguity in the Show instruction as to which its argument is, and it effectively
shows 6.

Another kind of declaration is found in the definition of procedures and
functions. Indeed, fProc (Section 2.3.7) and fFun (Section 2.3.8) tuples also
implicitly declare the variables for their formal parameters.

Still another kind of declaration happens in pattern matching (Section 2.3.18),
when a record present in the pattern has a feature that is a variable. This case
is analysed specifically in Section 3.1.2.3.

These variables get implicitly declared and added to the environment in
which not only the clause’ body but also its guards will be executed.

34 CHAPTER 3. COMPILER

local

A=5

in

local

A=6

in

{Show A}

end

end

Figure 3.4: Nested locals handled by Namer

3.1.2.2 Non-declaration code

In code not declaring variables, the namer’s transformation is much simpler:
it will simply replace all occurrences of fVar tuples by a fSym tuple having the
corresponding symbol as first feature.

3.1.2.3 Case Pattern Matching

Let’s note PatternX(Var1,Var2,..) the Xth pattern tested and implicitly declar-
ing variables Var1,Var2,. . . , and let’s use the same convention for code fragments
CodeX(Var1,Var2,..) and guards GuardsX(Var1,Var2,..) using those implicitly
declared variables.

The transformation of the AST corresponding this Oz code:

case Val

of Pattern1(A,B) andthen Guards1(A) then

Code1(A,B)

[] Pattern2(B,C) andthen Guards2(C) then

Code2(B,C)

else

ElseCode

end

results in an AST corresponding to this Oz code:

local

A1 B1 B2 C2

in

case Val

of Pattern1(A1,B1) andthen Guards1(A1) then

Code1(A1,B1)

[] Pattern2(B2,C2) andthen Guards2(C2) then

Code2(B2,C2)

else

ElseCode

end

end

Here is the way how it is achieved. The compiler traverses each clause in
turn, and collects all symbols introduced during this operation. It creates a
new environment for this clause, which is updated with captures done in the
pattern. After that, the namer traverses the ASTs of the Guards and the

3.1. ARCHITECTURE 35

Code using this updated environment, and restores the original environment,
on which the next clause will build its own environment. This shows clearly
that although all capture variables are technically reachable from all clauses’
bodies, it will never be the case as the environment on which a clause builds its
own is the environment of the case instruction, not the environment updated
by the previous clause.

In addition, the fSym tuple corresponding to these capture variables are
themselves stored in an unforgeable secure structure (as described in [VRH04]
Section 3.7.5) which is itself wrapped in an fConst. The reason of this manip-
ulation is to prevent manipulations of those symbols by later compiler passes.
Now these will be handled as constants in all subsequent compiler passes. An-
other consequence of this is that the records implicitly declaring variables in a
pattern are seen as constant records, all features being constants. And these
are treated as such, notably in the desugaring of records (section 3.1.3.6).

To ease the work of future passes and improve readability of their code, the
namer also replaces fEq tuples of pattern conjunctions by fPatMatConjunction

tuples.
Patterns with guards require some additional work. These are present in

the AST as

fSideCondition(Pattern Decls Guards Pos)

First, a new symbol is introduced and unified with the Guards expression. The
record in the AST is replaced by

fNamedSideCondition(Pattern Decls GuardsStatement GuardSymbol Pos)

where GuardStatement is the unification of the newly introduced symbol
GuardSymbol. The GuardSymbol is declared together with capture variables. This
transformation cannot be completely represented in Oz code, notably the trans-
formation of the guards in statement. It will become clear when looking at the
CodeGen why this transformation is done like this (the description of the Code-
Gen code Section 3.1.6.11 has more details on page 81).

Escaped variables are transformed by the namer, which introduces a capture
symbol and then validates in a new guard that it has the value of the escaped
variable. A pattern with an escaped variables, like rec(!Var) is transformed in
rev(Capt) and then Capt==Var Although this transformation might be seen as
a Desugar transformation, it is done in the Namer because it already traverses
and transforms the patterns, and all code infrastructure was already in place.
Putting this transformation in the Desugar pass would have introduced code
duplication.

3.1.2.4 Pattern Arguments

Functions and procedures in Oz can be defined with pattern arguments, which
destructures the argument and can shorten significantly the code:

fun {GetName person(name:Name ...)}

Name

end

Name={GetName person(name:’Turing’ firstname:’Alan’)}}

36 CHAPTER 3. COMPILER

The AST of this function’s definition is actually transformed in an AST
corresponding to the code listed in Figure 3.5.

fun {GetName Arg }

case Arg

of person(name:Name ...) then

Name

end

end

Figure 3.5: Pattern argument transformation result

The namer thus replaces pattern variables by a synthetic symbol, and wraps
the body of the function in case instructions (one level of case nesting for each
pattern argument).

3.1.2.5 Classes

The work of the namer on classes is in most cases straight-forward. It goes
through the tuple fClass(Id Specs Methods Pos) and names variables as one
would expect: method arguments are named as declarations i.e. it adds map-
pings to the environment which are then used when traversing the body of the
method. It also goes through the attributes, features, properties and parents.

Difficulties arise though when methods have dynamic names, are private
and/or capture their head.

For method with a dynamic name, the namer simply has to use the binding
for the escaped variable in the current environment.

Private methods have their label defined as a variable. The namer will
transform this by declaring a new symbol for the variable and bind it to a new
name. The transformation can be illustrated in Oz code, transforming

class C

meth init skip end

meth A()

Body

end

end

in

local

A

in

A={NewName}

class C

meth init skip end

meth !A()

Body

end

end

Note also that the variable being the label of the method can have the same
name as the class. Inside the class the variable will reference the method, and

3.1. ARCHITECTURE 37

not the class, as illustrated in Figure 3.6. The private methods’ variables are
available inside the class, overriding the mapping to the class C.

class C

meth init skip end

meth C(M)

{Show M}

end

meth whisper(M)

{self C(M)}

end

end

Figure 3.6: Private method overriding the mapping of C

We can now look at the situation when the method head is captured (see
Section 2.3.19 page 22 for the AST form). Figure 3.7 lists code illustrating the
specific points requiring attention.

class C

meth init skip end

meth echo(F ...)=C

{Show C}

end

meth whisper(F ...)=C

{Show F}

end

meth clone()

{New C init}

end

end

Figure 3.7: Class definition

These attention points are:

• the same variable name can be used by multiple methods to store their
respective method heads

• the variable holding the method head has to be available only to the
method defining it

• the variable can have the same name as the class in which the method is
defined (C in method clone references the class C)

Again, when the namer enters a method, it defines a new environment.
Having covered all special behaviour to support, we can now look at how

the namer works to respect these constraints.
We have seen that the namer has to be able to declare and initialise new

variables which will be available inside the class only. As a consequence, the
namer will maintain a list of symbols to be declared with their respective
initialisation code.

38 CHAPTER 3. COMPILER

The namer starts by naming the class.
It then creates a new environment, and names all method labels (and only

the labels, not the arguments, not the variable capturing the method head).
Variables named in this step will be available to all methods of the class. They
correspond to labels of private methods, and their initialisation code is simply
unifying them with a new name.

It will then go through all methods again to name their respective argu-
ments, body and possible method head capture variable. For each method it
will take these actions in order

1. create new environment

2. name the method head capture variable as declaration if it was defined

3. name the method’s arguments as declaration

4. name the body

5. restore the previous environment

It then wraps the class definition in a local..in..end declaring the variables
to be declared collected while traversing the class (these are variables that
were encountered as method label), and prepend the class definition by the
initialisation code collected:

3.1.2.6 Exceptions

The AST received by the namer for a try instruction is:

fTry(

Body

fCatch(

|(

fCaseClause(

Pat1

Code1)

|(

fCaseClause(

Pat2

Code2)

nil))

pos)

FinalCode

pos)

The namer will traverse Code and Finally and name variables based on
existing mappings present in the environment. The patterns of a catch clause
is handled exactly (in the sense that it is the same compiler code that is called)
as the pattern of a case clause (see Section 3.1.2.3). A new environment is
created for each clause, to which the pattern might add bindings, which are
then available when naming the code of the clause. New symbols are possibly
introduced by the patterns, which then have to be declared in a local..in..end

instruction wrapping the named try instruction. This construction is very
similar to the one presented in Section 3.1.2.3.

3.1. ARCHITECTURE 39

3.1.2.7 Functors

The work done by the namer on fFunctor(Id SpecsList Pos) nodes is trivial,
but the order of naming the items of the SpecsList is important. For example,
imported variables have to be named before traversing the define block, or else
these wouldn’t be available to that code!

It is possible to sketch the scope of variables introduced by a functor with
the code in Figure 3.8. The variables declared by require are available to all
other parts of the functor, which is not the case of the variables defined by
prepare, which are not available in the require statements.

local

require_decls

in

require_stats

local

prepare_decls

in

prepare_stats

local

import_decls

in

import_stats

local

define_decls

in

define_stats

exports

end

end

end

end

Figure 3.8: Functor variables scopes

One other small change introduced by the namer is the creation of default
export key, changing

export

DumpAST

in

export

dumpAst:DumpAST

3.1.2.8 For loops

Loops over a list are transformed in a call to ForAll which is then recursively
named. Note that the behaviour of a for loop over multiple lists is not correct
with this implementation and as a consequence the test number 133 of the test
suite does not currently pass. The correction of this code is mentioned in the
“Future work” section on page 91.

40 CHAPTER 3. COMPILER

Loops over an integer range are first transformed in a call to for and then
recursively named.

C-like loops are currently not supported.

3.1.2.9 Compiler Code Notes

The namer is one function unimaginatively named Namer taking as argument
an AST, and returning the resulting AST. The following local functions are
defined: NamerForDecls,NamerForBody,NamerForCaptures.

NamerForBody calls NamerForDecls when a function or procedure is defined,
and calls NamerForCaptures for patterns in fCaseClauses. Figure 3.9 lists the
code handling a definition in non-declaration part of a function with no pattern
argument:

%---------------------------------

[] fFun(Name Args Body Flags Pos) then

%---------------------------------

Res

in

{Params.env backup()}

Res=fFun(

% The function’s variable has to be declared explicitely

% in the declaration part.

% That’s why we call NamerForBody on the Name

{NamerForBody Name Params}

% Formal parameters are declarations, that’s why we

% call NameForDecls

{List.map Args fun {$ I} {NamerForDecls I Params} end }

{NamerForBody Body Params}

Flags

Pos

)

{Params.env restore()}

Res

Figure 3.9: Namer transformation of fFun nodes

The environment, mapping variable names to their respective symbol, is
stored in the object available through Params.env. This object’s backup method
will backup the current environment and create a new one with the exact same
bindings. The function creates a new environment based on its parent environ-
ment, which is backed up to be restored when done. The name of the function
is passed to NamerForBody, because the name of the function must have been
declared previously and be present in the environment. The formal parameters
of the function however are passed to NamerForDecls, as these are variables
implicitly declared, that have to be added to the current environment. This
updated environment is then used by NamerForBody to transform the function’s
body. At the end, the parent’s environment is restored, ensuring that formal
parameters of the function are not available outside of the function.

This code also illustrates how functions can access variables available in
the defining environment (such functions are called closures): all those are

3.1. ARCHITECTURE 41

inherited by the function’s environment.
Some parts of the namer code are not that simple. For example NamerForBody

declares a function HandlePatternArgs to apply the described transformation
of functions and procedures with patterns arguments.

Handling fCase nodes also requires more work as it needs to

• declare new capture variables

• handle guards by, amongst other things, introducing a new symbol

• add guards corresponding to escaped variables in patterns

The function NamerForCaptures is called on the case patterns, collecting sym-
bols to be declared in Params.captures. New symbols introduced for escaped
variables are collected in Params.guardsSymbols.

As for the work of the namer in case of classes, it involves several steps as
described in Section 3.1.2.5. Several functions are defined to help these steps.
NameMethodLabel is the function used when traversing the methods list the first
time to name only the method labels. NameMethod is used when traversing the
methods the second time to name the arguments and the body.

Once these functions are defined, the namer’s code for classes is quite simple,
and listed in Appendix G to illustrate the different steps.

The code traversing catch patterns makes use of the same function used for
naming case clauses, namely NamerForCaptures.

3.1.3 Desugar

The desugar pass handles the transformation of syntactic sugar code in its
canonical form. Oz distinguishes two groups of instructions: statements and
expressions. An expression is “syntactic sugar for a sequence of operations
that return a value” [VRH04]. Statements do not return a value. The desugar
function handles statements and expression differently, and defines two local
functions, one for handling expressions, one for handling statements.

3.1.3.1 On statements and expressions

Handling expressions and statements is often very similar, but sometimes re-
quire significant differences of treatment. Hence the use two different local
functions in the Desugar pass.

It is important that a lot of instructions can be used both as expression and
as statement. Here is an example. In Oz, a cell is a mutable storage element
which is created with an initial value (C={NewCell 0}), it can be given a new
value (C:=NewValue) and its value can be read (@C). There’s also an exchange
operation {Exchange C Old New} which “atomically binds Old with the old con-
tent of the cell, and set New to be the new content” [VRH04].Assigning a new
value to a cell is usually a statement returning no value, but when used as the
right hand side of an unification, it becomes an expression, whose value is the
Old value of the cell.

Determining if an instruction is a statement or and expression is done re-
cursively from top to bottom, the starting case being that the program is a
statement. In Figure 3.10, the whole code snippet which we consider in this
case as a complete program is a statement. This local...in...end instruction

42 CHAPTER 3. COMPILER

local

C={NewCell 0}

Old

in

C:=1 % statement

Old=(C:=2) % expression, whose value is assigned to Old

{Show Old} % displays 1

end

Figure 3.10: Cell assignment as statement and as expression

is thus a statement. The declaration part of this instruction is always a list of
fSym. The body is also a statement because the whole local...in...end is a
statement. If it were an expression, the body would have been an expression.
In our case, the body is a sequence of instructions, resulting in a hierarchy of
fAnd tuples in the AST. Thus we see that a sequence can be a statement or an
expression, in the latter case the value of the whole sequence is the value of
the last instruction which must be an expression. This illustrates the need of
distinct functions when statement and expressions must be handled differently.

If we note F the pass of the compiler, FExpr the locally defined function
handling expressions, and FStat corresponding function for statements, we can
ensure that the right function is applied to each instruction’s AST as defined
in section 2.3 by following these rules of identification, and call FStat on state-
ments and FExpr on expressions:

program the program is a statement

fLocal • the declarations are all just fSyms, since the DeclsFlattener has
moved all other code to the body. These fSyms are neither expres-
sions nor statements, they are just fSym declarations

• the body is of the same kind as its parent fLocal

fAnd • the first feature is a statement

• the second feature is of the same kind as its parent fAnd

fEq both sides are expressions

fProc if the procedure’s definition is an expression, its identifier must be the
nesting marker $, else its identifier is an expression. The arguments
are patterns, and the body is a statement except if one of its formal
parameters has a nesting marker, in which case the body is an expression.

fFun are similar to fProc, because a function definition is desugared in a pro-
cedure definition as described in Section 3.1.3.3. The body of a fFun is
an expression.

fApply calls can be statements or expressions, but in both cases the callee
and its arguments are all expressions.

fColonEquals can be statement or expression, but Cell and Val are in both
cases expressions.

3.1. ARCHITECTURE 43

fAt(Cell Pos) can only be used as an expression. Cell is an expression.

fRecord can only be used as expressions. Its label, features and values are
expressions.

fCase can be a statement or an expression. The value tested is an expression.
The fCaseClauses and the else code have the same type as their parent
fCase. The patterns in the fCaseClauses are patterns, and the guards are
expressions.

All expressions and statements in the AST will be visited by Desugar. Even
if the statement itself is not transformed, as is the case for a unification, its
children will be visited and possibly transformed. For example X=5+2 will still
be a unification after it’s been desugared, but its children will have been trans-
formed in X={Number.’+’ 5 2}.

3.1.3.2 Operators

Operators are transformed in the call of their respective function as listed in
Table 3.1.

Operator Desugar result
+ Number.’+’

* Number.’*’

- Number.’-’

~ Number.’~’

div Int.’div’

mod Int.’mod’

/ Float.’/’

== Value.’==’

>= Value.’>=’

=< Value.’=<’

> Value.’>’

< Value.’<’

\\= Value.’\\=’

:= Value.catExchange

Table 3.1: Operators and their desugar result

The operators are parsed as fOpApply tuples as described in section 2.3.9.
Building further on the example of that section, the AST coming from the
parser

fOpApply(

’+’

[fInt(5 pos)

fInt(2 pos)]

pos)

will be transformed in:

44 CHAPTER 3. COMPILER

fApply(

Number.’+’

[fInt(5 pos)

fInt(2 pos)]

pos

)

3.1.3.3 Functions

Functions are transformed in their canonical procedure form. This is done
simply by replacing the function by a procedure with exactly the same charac-
teristics, except that it takes one additional argument (the return value), and
the body of this procedure is the unification of this new argument with the
original body of the function. This resulting AST is itself recursively desug-
ared.

For example, the code

fun {F A B}

A+B

end

will have its AST transformed such that it corresponds to this Oz code:

proc {F A B ?R}

R={Number.’+’ A B}

end

A new symbol, denoted R for convenience, is added to the arguments list of the
procedure, and this new symbol is then unified with the body of the original
function. This unification will in turn be handled by the unnester, which is the
next pass of the compiler.

The function definition is parsed in the AST of Figure 3.11 and transformed
by the desugar pass into the AST in Figure 3.12.

Lazy functions have in their flags a lazy atom: fAtom(lazy pos). The
desugar step of lazy function consists in wrapping in a thread a call to the
builtin waitNeeded on the return symbol before unifying it with the body of the
function. If the function of the previous example had been marked as lazy, the
transformation would have yielded this result, in Oz notation:

proc {F A B ?R}

thread

{WaitNeeded R}

R={Number.’+’ A B}

end

end

3.1.3.4 Procedures

The only special operation in desugaring procedure definitions, is the case
procedures having the nesting marker as one of their formal parameters. At
the call, the argument passed in place of the nesting marker will be unified
with the body of the procedure which much be an expression. Understanding
this makes the transformation immediate. For example, this procedure

3.1. ARCHITECTURE 45

fFun(

fSym(F pos)

[fSym(A pos)

fSym(B pos)]

fOpApply(

’+’

[fSym(A pos)

fSym(B pos)]

pos)

pos)

Figure 3.11: Function definition

fProc(

fSym(F)

[fSym(A pos)

fSym(B pos)

fSym(R pos)]

fEq(

fSym(R)

fApply(

fConst(’+’ pos)

[fSym(A pos)

fSym(B pos)]

pos)

pos)

pos)

Figure 3.12: Desugared function definition

proc {Succ In $}

In+1

end

will be desugared in

proc {Succ In R}

R=In+1

end

3.1.3.5 Calls

A node fApply(Op Args Pos) has Op and Args desugared as expressions.

3.1.3.6 Records

As mentioned in the description of records in Section 2.3.12, the features can
be left out, and are in that case implicit, with increasing integer values starting
from 1. The Desugar pass will make these features explicit.

46 CHAPTER 3. COMPILER

In Oz syntax, it means that rec(a b c) is transformed in rec(1:a 2:b 3:c).
Of course, attention has to be paid by the programmer to avoid conflict, as im-
plicit feature assignment does not check for explicit features’values, and conflict
can arise. For example rec(a 1:b c) will be transformed in rec(1:a 1:b 2:c).
This behaviour is consistent with Mozart 1.

Records undergo two additional transformations. First, fRecord that have
all label, features and values constant are replaced by a fConst with as value
the record reconstructed. This greatly simplifies the AST for these records as
is illustrated in the next example, and can be done because the value of the
record can be used as is in later steps, notably the opcodes generation. This
transformation is called constant folding.

fRecord(

fAtom(rec pos)

[

fColon(

fInt(1 pos)

fAtom(a pos)

)

fColon(

fInt(2 pos)

fAtom(b pos)

)

]

)

is transformed in

fConst(rec(1:a 2:b) pos)

Records with non constant labels and/or features are replaced by a call
to Boot_Record.makeDynamic, Boot_Record being a builtin module (a module
implemented in C++ and made available to the Oz code as if it was a functor).
The goal of this transformation is to leave in the AST only records with constant
label and features. MakeDynamic takes two arguments. First the label of the
record to construct. And second, a tuple with label ’#’ and whose values are
alternately the features and their respective value. As a result, we replace
Rec(F1:V1 F2:V2) by

{Boot_Record.makeDynamic Rec ’#’(1:F1 2:V1 3:F2 4:V2)}

We end up with an AST that only contains records with constant label and
features: only the values are not constants. This is required because there is
no opcode capable of handling a record with non-constant arity.

3.1.3.7 Pattern Matching

Records and open records present in a pattern undergo the same desugar trans-
formation as normal records. Patterns however can only have constant label
and features.

3.1.3.8 Wildcards

Although the programmer is not interested in these values, the compiler will
declare and place a new synthetic symbol in each of these locations. In oz code

3.1. ARCHITECTURE 47

notation, _ is replaced by the expression local NewSymbol in NewSymbol end.
Patterns with guards, found in the AST as

fNamedSideCondition(Pattern Decls Guards GuardSymbol Pos)

have their features handled according their statement/expression character:
Pattern is a pattern, Decls are left as is, Guards is a statement (see the introduc-
tion of fNamedSideCondition by the namer in Section 3.1.2.3) and GuardSymbol

is just a symbol, left as is.
Pattern conjunctions, present in fPatMatConjunction records, have their fea-

tures desugared and are then placed in a secure structure like fSym in patterns
are by the namer (Section 3.1.2.3). This is done because no other transforma-
tion should be done on the pattern conjunction’s member before it is used by
the code generator.

3.1.3.9 Threads

A thread expression thread Body end is desugared in the resulting statement

local

X

in

thread X=Body end

X

end

This statement is then itself desugared.
Transforming a thread statement consists in the creation of a procedure

with no argument whose body is the desugared body (which is a statement)
of the thread, and then passing this procedure to the internal Thread.create

procedure. In Oz notation, thread Body end is transformed in

local

P

in

proc {P}

DesugaredBody

end

{Thread.create P}

end

At the AST level fThread(Body Pos) is transformed in this AST (taken from
the compiler source code):

fLocal(NewProcSym

fAnd(fProc(NewProcSym nil {DesugarStat Body Params} nil pos)

fApply(fConst(Boot_Thread.create pos) [NewProcSym] pos)

)

Pos)

3.1.3.10 Locks

Lock instructions are handled very similarly to thread statements: their body
is wrapped in a argumentless procedure, which is passed as argument, to-
gether with the lock itself, to the base environment’s LockIn. In Oz notation,
lock L then Body end is transformed in

48 CHAPTER 3. COMPILER

local

P

in

proc{P}

Body

end

{LockIn L P}

end

3.1.3.11 If then else

The condition tested is always an expression. The instruction itself can be a
statement as in

if Cond then {DoTrue} else {DoFalse} end

in which case both code branches are desugared as statement or an expression
as in

X=if Y>Z then bigger else smallerOrEqual end

in which case both code branches are desugared as expression. A fNoElse tuple
is left as is and will only be useful for the opcode generation function.

3.1.3.12 Case

The case instruction is very similar to if..then..else..end. The condition
tested is always an expression. The case instruction can be a statement as in
Figure 3.13 , in which case clauses are desugared as statement or an expression
as in Figure 3.14 in which case each clause is desugared as an expression.

case Rec

of action(A) then

{DoAction A}

[] ’skip’() then

skip

[] else

{LogError}

end

Figure 3.13: Case statement

3.1. ARCHITECTURE 49

PersonId= case Rec

of create(Name) then

Person = {Create Name}

in

Person.id

[] find(Name) then

Person = {Find Name}

in

if Person==unit then

unit

else

Person.id

end

[] else

unit

end

Figure 3.14: Case expression

As for the if..then..else instruction, the absence of an else clause is indi-
cated by a tuple fNoElse in the AST. If no else clause was present, the desugar
step introduces one which raises an error, transforming

case Rec

of action(A) then

{DoAction A}

end

in

case Rec

of action(A) then

{DoAction A}

else

{Boot_Exception.’raiseError’ kernel(noElse File Line Rec)}

end

3.1.3.13 Booleans Combinations

Conjunctions of boolean expressions with andthen are desugared in if..then..else

expressions. Here is the translation rule: Cond1 andthen Cond2 is translated in
if Cond1 then Cond2 else false end We see that conditions are evaluated from
left to right, and that conditions evaluation stops as soon as possible, i.e. when
a false condition is encountered.

orelse combinations are similarly translated from Cond1 orelse Cond2 to
if Cond1 then true else Cond2 end The example of Figure 3.15 is transformed
in the code in Figure 3.16.

becomes
This form will then be handled by later passes of the compiler.

50 CHAPTER 3. COMPILER

(A==1 andthen B==2) orelse C==3

Figure 3.15: orelse code to be desugared

if (if A==1 then B==2 else false end)

then

true

else

C==3

end

Figure 3.16: Desugaring orelse

3.1.3.14 Classes

Handling classes in the compiler consists in desugaring the class definition in a
call to OoExtensions.’class’. The AST node fClass(FSym Specs Methods Pos)

gets transformed in

fApply(fConst(OoExtensions.’class’ Pos)

[Parents Meths Attrs Feats Props PrintName FSym]

Pos)

The Desugar function just has to correctly build the arguments of the call.
Of course, the arguments are themselves ASTs. So an argument that is a list
will be in fact an fRecord.

Information to build the elements Parents, Attrs, Feats and Props come
from the Specs value in the fClass node.

Parents is simply a list of the parents of the class. The elements of the list
are simply the fSym tuple holding the symbols corresponding identifying the
parent classes.

Meths is a #-tuple with one item of the form name#Proc for each method,
where name is the method name, and Proc is a procedure (which we will char-
acterise as a “proxy” procedure) with 2 arguments implementing the method.
The two arguments of the method are self, which is the object on which the
method is called, and M, the message corresponding to the call. It is the message
that contains all argument values. It is important to note that the symbols
used inside the body of the method don’t correspond to the arguments of the
procedure implementing the method. This mismatch is handled by unifying
symbols in the method body with values found in the message. Figure 3.18
shows a methods and its implementing procedure.

Of course, the compiler handles keyed arguments, where the features of the
message M are not only numeric.

As described in Section 2.3.19 on page 22, the message corresponding to the
method call can be captured and made available to the body of the method.
The message being the second argument of the “proxy” procedure, it is easy
to make it available in the method body by prepending it with a unification of
the header capture symbol and the message symbol itself. A better approach
might be to use the capture symbol directly as the message symbol in a future
revision of the code.

3.1. ARCHITECTURE 51

meth foo(X Y)

{Show X+Y}

end

Figure 3.17: Example method

proc {Foo Self M}

X Y

in

X = M.1

Y = M.2

{Show X+Y}

end

Figure 3.18: Procedure implementing example method

Handling default values needs special care. The unification of the symbol
with its default value may only be done if no value was provided in the message
M. But this can only be done at run time, hence the compiler has to inject code
in the AST to check if a value was provided for the method argument. Here is
the code injected in the AST, where Index is the index of the argument that is
handled and MessageSymbol is the symbol corresponding to the message of the
method call:

fEq(Sym

fBoolCase(fApply(fConst(Value.hasFeature pos)

[MessageSymbol fConst(Index pos)] pos)

fOpApply(’.’ [MessageSymbol fConst(Index pos)] pos)

Default

pos)

pos)

which, written in Oz, is:

Sym=if {Value.hasFeature MessageSymbol Index} then

MessageSymbol.Index

else

Default

end

Note that this code behaviour is different from

{CondSelect MessageSymbol Index Default}

as in the latter case, all arguments of CondSelect will be evaluated first.
The body of the method is desugared with an additional bit of information

compared to normal procedures: the symbol corresponding to self, the object
on which the method is called. The availability of self is not the only differ-
ence in the desugarisation of the methods’ bodies. Some operators also have
another meaning inside methods, like for example @. In code outside methods,
@ is desugared in a call to Boot_Value.catAccess, but in methods, it has to
be desugared in a call to Boot_Value.catAccessOO. There is a similar change
for other operators like := and the exchange operation. Some operators are

52 CHAPTER 3. COMPILER

only available in methods, such as the attribute assignation operator <-. It is
desugared in {BootObject.attrAssign Self LHS RHS}.

Just as procedures, methods can have the nesting marker as formal param-
eter. The transformation needed is exactly the same as explained in Section
3.1.3.4 for functional procedures.

Attrs is a record with label attr. For each attribute of the class, there is a
feature-value pair in that record. The feature is the name of the attribute, the
value is the default value provided in the class definition, or the result to a call
to {Boot_Name.newUnique ’ooFreeFlag’}

Feats is a record with label feat built exactly in the same way as Attrs,
but with the features present in the class definition.

Props is similar to Parents in that it is simply a list of properties of the
class (final, locking). The locking property implicitly declares a lock object
for the class, which can then be used with the lock instruction, which then
appears in the AST as fLock(Body Pos), which differs from the nodes fLockThen
described in Section 2.3.15, notably because it doesn’t take the lock object
as argument. fLock needs to be desugared to make the lock object explicit.
Instance an instance of a class, the lock object can be obtained by a call to
OoExtensions.’getObjLock’, which can then be used in a fThenLock instruction.
In practice, the node

fLock(Body Pos)

will be desugared in

fLockThen(fApply(fConst(OoExtensions.’getObjLock’ Pos)

[@(Params.’self’)]

Pos)

Body

Pos)

which is itself desugared.
PrintName is an atom which is the name of the class, or ’’ if it is an anony-

mous class.
This is all the compiler has to do to support classes. From this point,

the AST has no more references to classes. The virtual machine will handle
everything related to classes for us.

3.1.3.15 Exceptions

fRaise nodes are desugared in a call to the builtin Exception.’raise’. The
exception is an expression, and desugared as such, transforming

fRaise(E pos)

in

fApply(

fConst(Exception.’raise’ pos)

[{DesugarExpr E Params}]

pos)

3.1. ARCHITECTURE 53

As a reminder, here is the AST of a try instruction:

fTry(

Body

fCatch(

|(

fCaseClause(

Pat1

Code1)

|(

fCaseClause(

Pat2

Code2)

nil))

pos)

FinalCode

pos)

Desugaring an fTry node without finally code is not much more complex. If
the try instruction is an expression (resp. statement), the body and the clauses’
code are desugared as expressions (resp. statements). A case instruction is
introduced, using the very same clauses as the catch, transforming [BaseLang]

try SE1

catch C1 [] ... [] Cn

[[finally S]]

end

in

try SE1

catch X then

case X of C1 [] ... [] Cn

else

raise X end

end

[[finally S]]

end

As this code shows, the very same clauses can be reused for the case in-
struction, without the need of complex AST transformation.

Note that an else clause is introduced in the case instruction. This is simply
to re-raise the exception if no pattern matched, meaning that the exception was
not caught at this level. In the transformed code, note also that a new symbol,
X is introduced. This results in the new AST transformation for a try expression

54 CHAPTER 3. COMPILER

from

fTry(Body fCatch(Clauses CatchPos) fNoFinally Pos)

to

fLocal(NewSymbol

fTry({DesugarExpr Body Params}

fCatch([fCaseClause(NewSymbol

{DesugarExpr fCase(NewSymbol

Clauses

fRaise(NewSymbol Pos)

CatchPos)

Params})]

CatchPos)

fNoFinally

Pos)

Pos)

Desugaring an fTry node with a finally block is more involved, and al-
though the logic is similar, handling try-finally expressions and statements
requires some differences of treatment.

The transformation arises from the fact that the finally code has to be
executed, even when an exception was raised. Let’s examine the transformation
of try statements, which transforms this

try Body

finally S

end

to

local X in

X = try

try Body end

unit

catch Y then ex(Y)

end

S

case X of ex(Z) then

raise Z end

else skip

end

end

This example does not include catch clauses for brevity. They can be con-
sidered as being part of Body. A new variable (X) is introduced and unified
with a new try expression whose body is a sequence made of the original try
statement without its finally code followed by unit. This means that if exe-
cution of the original try statement does not raise an exception, the variable X

will have the value unit. The new try catches all exceptions (which can only
be exceptions not caught by the original try expression) with one clause whose
body is a record with label ex holding the caught exception as value.

This construction ensures that the finally code can be executed, even if
there is an exception raised not caught by the original try.

After the finally code is executed, it is needed to check if the original try
executed successfully, in which case the X variable has value unit, or if it failed,

3.1. ARCHITECTURE 55

in which case the variable X is bound to a record with label ex holding the
exception. In the latter case, the exception needs to be re-raised held in the
record needs to be re-raised.

If the statement has no catch, but a finally block, the inner try is replaced
by the body of the original try statement, resulting in a very similar structure:

local X in

X = try

Body

unit

catch Y then ex(Y)

end

S

case X of ex(Z) then

raise Z end

else skip

end

end

We have seen that the original try statement is transformed in an expression
by putting it in a sequence which second element is simply the unit expression.
One might propose to handle try expressions in the same way, and test if the
value bound to X is a record with label ex to know if an exception was raised.
But we have to accept a try expression whose value is a record with label ex.
The consequence is that the transformation applied in case of try expressions
is very similar, but with a different value for the new try expression. The body
of the new try expression is simply a record of label ok and holding as value
the original try expression. It will thus transform this expression

try Body

finally S

end

to

local X in

X = try

ok(try Body end)

catch Y then ex(Y)

end

S

case X of ex(Z) then

raise Z end

else X.1

end

end

Wrapping the value of the original try expression in a record with a specific
label (ok in our case) enables us to check, after execution of the finally code, if
the execution was successful or not. If an exception was raised, it is re-raised.
If no exception was raised, the expression’s value is extracted from the success
record and returned.

3.1.3.16 Array assignation

The node fDotAssign found in the AST is of the form

56 CHAPTER 3. COMPILER

fDotAssign(fOpApply(’.’ [LHS CHS] Pos1)

RHS

Pos2)

and is desugared in

fApply(fConst(Boot_Value.’dotAssign’ Pos1) [LHS CHS RHS] Pos2)

which is itself recursively desugared. See section 3.1.3.5 to see how an fapply

node is desugared.

3.1.3.17 Functors

Anonymous functors are expressions, and named functors are statements but
the transformations described below are applied in exactly the same way on
expression and statement functors.

A different treatment is applied to compiled and computed functors, which
differ as explained in Section 2.3.23.

A compiled functor is desugared in a call

{NewFunctor [ImportRecord ExportRecord ApplyFun]}

taking three arguments:

ImportRecord is of the form illustrated in Figure 3.19 where ModName is the
name of the variable identifying this imported module, and AliasesAtoms

is the list of atoms identifying the imported functions. An example is
given in Figure 3.20.

ExportRecord is a record with label ’export’. Its features are the exported
keys, and the values of each feature is the atom value, stating that the
values can be of any type. This information is currently not used further
by the compiler. An example of an ExportRecord is given in Figure 3.21.

ApplyFun is a function taking one parameter, as shown in Figure 3.22. When
a functor is applied, this function is called and it is the record it returns
that gives entry points to the module functionality. The structure of
this function can be put in relation with the functor variables scopes
illustrated in Figure 3.8 on page 39.

import(ModName:info(type:AliasesAtoms

from:"x-oz://system/"#ModName#".ozf"))

Figure 3.19: ImportRecord argument of NewFunctor call

Computed functors are desugared differently. A computed vector has at
least one require or prepare. It is desugared in a new outer functor itself
defining an inner functor. This is best illustrated by the example of a functor
in Figure 3.23 and its desugared result in Figure 3.24.

As the outer functor is immediately applied, its import and define sections
are evaluated. But these are, or include, the original functor’s require and
prepare sections, and this construction ensures the behaviour we need. This
result is recursively desugared.

3.1. ARCHITECTURE 57

This import directive:
import

DumpAST(dumpAST PPAST) at ’../lib/DumpAST.ozf’

will result in this import record definition:
import(’DumpAST’:info(type:[dumpAST] from:’../lib/DumpAST.ozf’))

Figure 3.20: ImportRecord example

This export directive:
export

dumpAST:DumpAST

will result in this import record definition:
export(dumpAST:value)

Figure 3.21: export directive example

fun {$ ImportParamSym}

local

<importedSymbolsDeclarations>

<defineDeclarations>

in

<importBinds>

<defineStats>

’export’(dumpAST:DumpAST ...)

end

end

Figure 3.22: ApplyFun structure

3.1.3.18 Compiler Code Notes

The desugar pass is implemented by a function named Desugar. It defines
multiple local functions:

DesugarOp called to desugar operators

DesugarRecordFeatures working on record features, making them explicit
if need be, and also desugaring the value corresponding to each feature.

TransformRecord called to transform records as described above, just after
it has been desugared.

IsConstantRecord called by TransformRecord to determine if the record for
which the AST is passed as argument is a record with constant label,
features and values

HandleLazyFlag will wrap the body of a function in a thread if needed, as
described in Section 3.1.3.3.

DesugarExpr called to desugar expressions

58 CHAPTER 3. COMPILER

functor

require <req>

prepare <prep>

import <imp>

export <exp>

define <def>

end

Figure 3.23: Computed functor example

local

functor Outer

import <req>

export inner:Inner

define

<prepareDecls>

in

functor Inner

import <imp>

export <exp>

define

<defDecls>

in

<defStats>

end

<prepareStats>

end

in

{ApplyFunctor BaseURL Outer}.inner

end

Figure 3.24: Desugared computed functor

DesugarStat called to desugar statements

DesugarClass is handling class definitions

The program itself being a statement, the function Desugar simply call
DesugarStat on the AST of the whole program. This will trigger further calls
to DesugarExpr and DesugarStat that will traverse and transform the whole
AST.

DesugarClass defines multiple local functions:

TransformMethod Takes one method signature and an index, and builds its
element of the ’#’ record containing the class’ methods. The Body is also
desugared with the SelfSymbol passed in Params. This is needed, for ex-
ample for desugaring @attribute in catAccessOO rather than in catAccess.
In this case, DesugarOp will check if self is available to decide which re-
sult to produce. Functional methods, defined with one of their formal
parameters being the nesting marker, are also handled by this function,
using functions HandleDollarArg and InjectDollarIfNeeded also used to

3.1. ARCHITECTURE 59

work on function procedures. As we’ve seen, several constructs (like pa-
rameters default values, method head capture, nesting marker as formal
parameter) need to inject symbol declarations and initialisations in a
method’s body. It is TransformMethod that manages all this, constructing
a list of pair Symbol#InitCode which is then used to inject declaration and
initialisation code in the body of the method.

TransformAttribute sets default value {Boot_Name.newUnique ’ooFreeFlag’}

if none was provided.

With these functions defined, the code of DesugarClass is greatly simplified and
easy to understand.

3.1.4 Unnester

The unnester will result in an AST in which there are only elementary in-
structions. For example, after the unnester, the arguments of functions all are
symbols. The instructions susceptible to be unnested are inspected each in
turn in the following subsections.

3.1.4.1 Unification

The unnesting result of a unification instruction depends on the elementary
character of each side. fConst and fSym are considered elementary AST nodes,
as these are not to be unnested in a unification. Considering the elementary
character of both sides of the unification, we have to handle three situations:

Both elementary In this case there is nothing to do

One complex, one elementary The unnesting is done according to what
the complex expression is:

Call This is either a call without nesting marker in a pattern posi-
tion, V={P E1...En}, which needs to be transformed in the form
{P E1...En V}, i.e. the elementary side is injected as last argument
of the call. Or it is a call with the nesting marker in a pattern po-
sition, of the form V={P E1..$..En}, which needs to be transformed
in {P E1..V..En}.

Sequence of instructions In the AST, the sequence of instructions is
available in a hierarchy of fAnd tuples. We also know that the value
of a sequence of instructions is the value of the last instruction in the
sequence. As a consequence, the unnesting of this type of unification
is done by moving the unification to the second feature of the fAnd,
and recursively unnest the resulting AST.

Declaration (local) The value of a local..in..end in a unification is
the value of its body. Hence, the unification

V = local declarations in body end

is moved inside the local’s body resulting in the code

local declarations in V=body end

60 CHAPTER 3. COMPILER

This clearly requires a recursive call as the body can be a sequence of
instructions, which will have to be handled as described previously.

if then else The unification is simply moved inside each branch, the
symbol being unified with the branch body and the resulting code
is further unnested. For example, V=if B then Is1 else Is2 end is
transformed in if B then V=Is1 else V=Is2 end. This needs to be
recursively unnested as Is1 and Is2 can be, for example, sequences
of instructions.

case Similar to the previous item, the elementary side unified with the
case expression is unified in each clause with its respective body.

try The unification is moved inside every catch clause, but not in the
finally code. It needs extra precaution though and is analysed
specifically in Section 3.1.4.2.

Anonymous procedure The elementary side replaces the fDollar, for
example P = proc {$ A} Body end is transformed by replacing $ by
P yielding proc {P A} Body end

Both complex This is unnested by creating a new synthetic symbol, unifying
it with the left side then with the right side, and unnesting the resulting
code.

In the case of fApply the unified symbol may have to be injected in place
of a nesting marker deeply nested in a record argument, like in this example:

{GetAttribute Val attr(value:$...)}

where we suppose that GetAttribute has the signature

proc {GetAttribute Object Rec}

To handle this case, arguments have to be tested to see if a nesting marker
is present, and the code needs to descend in the record arguments. Once the
unified symbol is injected in the arguments list, a recursive call is done to
unnest the fApply itself.

This part of the code requires enhancements, as it does not compile this
code successfully due to the non-constant feature:

local

A P

in

A=a

proc {P ?R}

R=rec(a:1 b:2)

end

{Show {P rec(A:$ b:2)}}

end

All cases covered by the unnesting of unifications make recursive calls on
their result. Here is an illustration of the need of recursive calls. It also explains
why this particular form executes successfully:

3+4 = {Show}

3.1. ARCHITECTURE 61

It is transformed due to both sides being non-elementary, in this form in a first
step:

local

T

in

T = 3+4

T = {Show}

end

The unnester will work on the already transformed code

local

T

in

T = {Number.’+’ 3 4}

T = {Show}

end

and finally in this form by the transformation of the assignment of a procedure
call in the same procedure call with the return variable passed as additional
argument:

local

T

in

{Number.’+’ 3 4 T}

{Show T}

end

The order of the assignments of the first step explains why this doesn’t work:

{Show} = 3+4

3.1.4.2 Exceptions

raise expressions at this stage are present in the form Sym=raise E end, and
this unification statement is simply replaced by raise E end

A try expression at this stage is found in the form

Sym = try Body

[catch y then CatchExpr]

end

and the unnesting simply consists of injecting the unification inside the try’s
body and inside each clause, resulting in:

try X in

X = Body

Sym = X

[catch y then Sym = CatchExpr]

end

There is a subtlety though, in that the symbol originally unified with the
try expression, when injected in the try, is not directly unified with the original
body. This is to account for the special case of a procedure raising an exception
after having bound Sym. Here is an illustration, actually from the test suite of
the compiler (see test 372):

62 CHAPTER 3. COMPILER

local

proc {P ?X}

X = 42

raise exception end

end

Y =

try {P}

catch exception then

error

end

in

{Show Y}

end

With a single assignation, the transformation would result in

local

proc {P ?X}

X = 42

raise exception end

end

try {P Y}

catch exception then

Y=error

end

in

{Show Y}

end

In this case Y would be bound by the procedure to 42, before it raises an
exception. But when the exception is caught, Y is again assigned, this time
with error.

The double assignation solves this problem, by producing this code:

local

proc {P ?X}

X = 42

raise exception end

end

try

X

in

X={P}

Y=X

catch exception then

Y=error

end

in

{Show Y}

end

When P raises its exception, it hasn’t bound Y but the proxy variable X.
Once the statement Y=X is reached, no exception can be raise anymore, and

3.1. ARCHITECTURE 63

there is no risk of executing the assignation Y=error in the catch clause.
Remember that the statement produced is then recursively unnested.

3.1.4.3 Calls

All arguments are examined in turn, one by one. Elementary arguments are
left untouched Complex arguments are extracted from the arguments list by:

1. declaring a new symbol.

2. unifying this new symbol with the argument

3. replacing the argument by the new symbol in the argument list.

Here is an example of unnesting in Oz code:

{F {F2 A} B}

will be transformed in:

local

NewVar

in

NewVar={F2 A}

{F NewVar B}

end

If multiple arguments are complex, all are declared in the same local..in..end

instruction.
Of course, the function called can itself be the result of a function call, and

this is handled too:

{ {F1 A} B }

will result in an AST for this code:

local

NewVar

in

NewVar = {F1 A}

{ NewVar B }

end

If a nesting marker is found in a record argument, it is replaced by the other
side of the unification, transforming

Res={P rec($)}

into

{P rec(Res)}

3.1.4.4 Declarations (local)

The unnester will not touch at the declaration part of a local..in..end in-
struction. It will only traverse the body.

64 CHAPTER 3. COMPILER

3.1.4.5 If then else

The unnesting of the instruction if Cond then Branch1 else Branch2 end de-
pends on the type of Cond.

• If Cond is elementary, the unnesting is done simply by unnesting the two
branches.

• If Cond is complex, a new symbol is created and unified with it. This
is then followed by the if..then..else instruction in which the complex
condition is replace by the symbol newly introduced:

if Cond then Is1 else Is2 end

becomes

local

S

in

S=Cond

if S then Is1 else Is2 i

end

Looking at the result of the Desugar pass for the boolean combination example
on Figure 3.16 page 50, this code

if (if A==1 then B==2 else false) then

true

else

C==3

end

Will become

local

Cond

in

Cond=(if A==1 then B==2 else false end)

if Cond then

true

else

C==3

end

end

and then, by unnesting the if..then..else:

local

Cond

in

if A==1 then Cond=(B==2) else Cond=false end

if Cond then

true

else

C==3

end

end

3.1. ARCHITECTURE 65

There is a notation abuse in these last examples, as Cond=(B==2) should
have been written {Value.’==’ B 2 Cond} to be correct. This was not done to
focus on the transformation at hand.

3.1.4.6 Case

Unnesting case instructions is very similar to unnesting if..then..else in-
structions. If the value tested is not elementary, it has to be extracted and
replaced by a new symbol unified with it.

case {Label R}

of l then

{Show ’L record’}

end

local

V

in

V = {Label R}

case V

of l then

{Show ’L record’}

end

end

3.1.4.7 Records

The values in a record can be of non-elementary form, for example a function
call. This has to be extracted from the record definition and replaced by a new
symbol which has been unified with the initial value.

The work happening on the records is very similar to the work done on
(function and procedure) calls. Rather than working on the procedure argu-
ments, we work on the pairs feature-value and only handle the value.

There is a catch however: records in tail positions of a procedure need to
be unnested differently. To understand why, let’s first look at how records are
unnested when they are not in tail position.

Here is an example where the value of a feature is an if expression.

R=rec(a:if B then 2 else V end b:2)

Supposing the record is not in tail position, it will be transformed in two steps.
First non-elementary value will be extracted from the record, resulting in

local

NewVar

in

NewVar=if B then 2 else V end

R=rec(a:NewVar b:2)

end

And this requires a new unnesting step because the right side of the unification
is an if expression (see the unnesting of unifications Section 3.1.4.1). This

66 CHAPTER 3. COMPILER

second transformation results in

local

NewVar

in

if B then NewVar=2 else NewVar=V end

R=rec(a:NewVar b:2)

end

Figure 3.25 lists code with a record in tail position.

fun {Fill V}

{Delay 5000} % Represents long computation

if V>1000 then

nil

else

V+1|{Fill V+1}

end

end

Figure 3.25: Producer with record in tail position

The expected behaviour is that the consumer of the items can start to work
as soon as there is one item inserted. Such a consumer can be the procedure
of Figure 3.26.

proc {Print L}

case L

of X|Xs then

{Show X}

[] nil then

skip

end

end

Figure 3.26: Consumer procedure

However, if the record V+1|{Fill V+1} is desugared in

V1=V+1

V2={Fill V+1}

Ret=V1|V2

The record will be accessible only after the statement V2={Fill V+1}. This
means that the consumer will only be able to start working only when the
producer returns. The solution is to unnest it like this:

Ret=V1|V2

V1=V+1

V2={Fill V+1}

In that case, the consumer will be able to start working as soon as V1 is bound,
i.e. as soon as V1=V+1 is executed.

3.1. ARCHITECTURE 67

Another illustration is given by the Oz code in Figure 3.27. Figure 3.28
shows the situation if the unnesting is done incorrectly: the return value will
be available only after V2 is available, i.e. only after MyMap has traversed the
whole list.

fun {MyMap L F}

case L

of X|Xs then

{F X}|{MyMap Xs F}

[] nil then

nil

end

end

Figure 3.27: Record in tail position of MyMap function

V1={F X}

V2={MyMap Xs F}

Ret=V1|V2

Figure 3.28: Wrong unnesting in tail position in MyMap

Determining if a record is in tail position is done top-down. The body
of a procedure is in tail position. For fAnd(First Second), First is not in tail
position, and Second is in tail position only if its parent fAnd was in tail position.
Same reasoning applies for clauses of a fCase and branches of a fBoolCase.

3.1.4.8 Nesting Marker

It is also the unnester that will handle the nesting marker and remove it from
the AST. There are three cases that are handled and have been covered. Here
is a summary:

Definitions of procedures At this step, if we found a nesting marker as the
identifier of a procedure, it is necessarily in an assignment statement.
The unnester needs to transform X=proc{$ A..N} in proc{X A..N}.

As argument of a call In this case, the nesting marker has to be replaced
by the variable the expression is unified with. For example, X={P A $ B}

needs to be transformed in {P A X B}.

Inside a pattern argument This can be considered as a more general case
of the second bullet. The nesting marker is replaced by the symbol the
expression is unified with.

3.1.4.9 Compiler Code Notes

The unnester is implemented by a function called Unnester. The unnester
implements multiple local functions:

68 CHAPTER 3. COMPILER

• IsElementary will return true if the AST passed as argument is elemen-
tary.

• UnnestFEq is called to unnest unification ASTs

• BindVarToExpr is the function called by UnnestFEq when one side is ele-
mentary, and the other complex.

• UnnestFApply is called to unnest calls

• UnnestFRecord is called to unnest records and open records. Its structure
is similar to that of UnnestFApply.

• UnnestFBoolCase is called to unnest if..then..else instructions.

If the unnester encounters a tuple in the AST for which no specific operation is
prescribed, it recursively unnests each feature of the record. An improvement
to the code would be to explicitly handle every kind of tuple found in the AST.

The unnester also tracks if an instruction is in tail position or not, simply
by maintaining a tail field in the params record.

3.1.5 Globaliser

This pass handles the global variables of a procedure, that is, variables used by
a procedure that it does not declare (implying that the declaration is done at
an upper level in the AST). It is interesting to note that the concept of global
variables is only defined for procedures. Just as locals attached an environment
to their body, procedures attach their own unique procId to their arguments,
declarations and body. Symbols for variables declared by a procedure, including
formal parameters, get assigned the procId of said procedure.

Here is a simple example of a procedure having one global variable, A:

A=1

proc {P} % A is global to P

B=2

in

{Show A+B}

end

When P is executed, it will show 3, using its locally declared variable B, and
its global variable A.

Special attention has to be paid to nested procedure declarations. The
globals of procedures in the code have to be determined from the inside to the
outside: determine the globals of the deepest nested procedure, and go up. The
globals of a procedure are:

• all variables it uses directly (i.e. not in a procedure definition)

• plus the globals of all the procedures it defines

• minus the variables it declares itself

In the example of Figure 3.29 we see that P3 uses 2 variables declared by
another procedure: A and B. P2 does not directly use any variable, but it defines
P3 which itself has 2 global variables. Those two variables are thus also globals

3.1. ARCHITECTURE 69

A=1

proc {P1} % A is global to P1

B=2

P2

in

proc {P2} % A and B are globals to P2

P3

in

proc {P3} % A and B are globals to P3

C

in

{Show A}

{Show B}

{Show C}

end

{P3}

end

{P2}

end

Figure 3.29: Example of nested procedures

to P2. P1 also does not use any variable directly, but it gets 2 globals from P2,
of which it declares one: B. P1 indeed only has one global: A.

In the AST, we replace symbols corresponding to a global variable by a new
local symbol of type localised referencing the symbol for this variables in the
parent proc which might itself be a localised symbol, and so on until we reach
the level where the variables is declared. fProc is also replaced by fDefineProc

taking 1 additional argument: the newly created local variables referencing a
variable in the surrounding procedure. This additional information will enable
the code generator to handle global variables.

Handling globals correctly requires to handle numerous cases, as illustrated
by these examples:

local

A

in

proc {P1}

P2

in

proc {P2}

P3

in

proc {P3} {Show A} end

{P3}

end

end

end

In this case, A is global to P3 and it creates a new local symbol that will reference
a symbol local to P2. But for P2, A is also global, and this situation needs to
trigger a new local creation in P2, which will be referenced by the new local in

70 CHAPTER 3. COMPILER

P3. Same thing in P1.

local

A

in

proc {P1}

P2

in

{Show A} % Use A before a defined procedure needs it

proc {P2}

P3

in

proc {P3}

{Show A}

end

{P3}

end

end

end

In this case, the traversal of the AST will first analyse {Show A} and create
a new local symbol for the variables A in P1. P2 is visited later and will create
a new local to reference a symbol local to P2, which is also a new local as A is
global to P1. But this new local has already been created, and this situation
must not trigger the creation of a new local symbol for A. Rather, the new
local symbol to P2 must reference the new local symbol to P1. We see that the
new local variables created in a procedure definition may have to be modified
by its parent procedure.

Of course, the inverse has to be handled too, i.e. a new local is created for
a defined proc, and reused later:

local

A

in

proc {P1}

P2

in

proc {P2}

P3

in

proc {P3}

{Show A}

end

{P3}

end

{Show A} % Use A after a nested proc triggered the creation

% of a new local.

end

end

Also, a new local symbol must not be created when it would represent a
locally declared variable, as in this case:

local

A

in

3.1. ARCHITECTURE 71

proc {P1}

P2

in

proc {P2}

P3

in

proc {P3}

{Show A}

end

{P3}

end

end

{Show A} % A is defined locally, and the nested procs defined

% should not trigger the creation of a new local, but P1’s

% new local for A should reference the A declared by

% the local .. in .. end

end

Two procedures defined at the same level must have have their respective
new local symbols reference the same symbol at the parent level (whether it
be a new local symbol created at the parent level or the existing symbol of a
declared variable at the parent level). In this example, P2 and P3 each create
a new local for A and both trigger the creation of a new local in P1 for A. But
only one new local should be created in P1 for A, and both locals in P2 and P3

should reference it.

local

A

in

proc {P1}

P2 P3

in

proc {P2}

{Show A}

end

proc {P3}

{Show A}

end

{P2}

{P3}

end

{Show A} % Use A after a nested proc

% triggered the creation of a new local.

end

Figure 3.30: Use of a local variable after a nested proc definition accesses it as
global

In the end, the algorithm used is the following. Each call of the globaliser
takes the AST sub tree and an additional Params argument with three fields:

• the current procId

72 CHAPTER 3. COMPILER

• a list of global variables already seen in the current procId

• a list, each item being the list of new local symbols created for the global
at the same position in the previous list.

The globaliser handles the following nodes:

fProc When handling a fProc, the globaliser call gets the informations from
the parent in its Params argument. Because we enter a new level of proce-
dure nesting, a NewParams is initialised to be passed to recursive globaliser
calls handling children nodes. NewParams is initialised with a new procId
and two empty lists.

The symbol of the procedure itself gets the procId of its parent, found
in Params. The arguments of the procedure get the procId of the cur-
rently handled procedure, found in NewParams. At that time the glob-
aliser function is called recursively on the children nodes, with NewParams

as additional argument.

Once all children have been traversed, the list of their globals and their
respective newly created locals is found in NewParams. We have multiple
new locals corresponding to one global in the case of 2 sibling procedure
definitions referring the same global as in Figure 3.30.

Globals whose procId match the NewParams’ procId are ignored, as those
are variables that are declared at this level, and the chain of references
must stop here for these variables.

For each remaining global, we look at the list of their locals. If one
of these has the procId matching the current level, all other locals are
changed to reference this one. This is because this specific symbol has
been created by a direct use at this level, and we will use this one as
the new localised symbol at this level. Then we push the global on the
parent’s globals list and add the local symbol to its corresponding list of
new locals (those lists are found in Params)

If none of the locals has the current level’s procId, it means the global
variables has only been used in nested procedure definitions. We need to
create a new local symbol for that variable at the current level that will
be referenced by the existing locals. Finally, we push the global and the
new local symbol we created to the parent via Params.

fSym If the symbol in this fSym has the current procId found in NewParams,
keep it as is, do not change it. If its procId is different from the current
procId, this fSym represents a global variable for the current level. We
look in Params if a local variable with the current procId has already been
created for this global variable. If yes we reuse it, else we define a new
symbol, having the current procId and referencing the symbol initially
in fSym. We modify the fSym to use that newly created symbol. Finally,
push the global and its local to the parent.

fLocal Simply assign the current procId to the variables declared by the in-
struction and recursively call the globaliser on the body.

3.1. ARCHITECTURE 73

3.1.5.1 Compiler Code Notes

The globaliser is implemented by a function called Globaliser. It defines a
local class GlobalsManager used to ease the management of the newly localised
symbols created and their relations to procIds. It also defines a function
AssignScope used to assign scope to variable declarations. Globaliser trans-
forms fProc, fLocal and fSym nodes, and it leaves untouched the nodes fConst

and pos. All other nodes are traversed with the DefaultPass function.

3.1.6 CodeGen

The last pass of the compiler will not return a new AST, but a list of opcodes to
be passed to the assembler. It is implemented by the function CodeGen, which
is also responsible for register allocation of symbols present in the AST.

3.1.6.1 Register allocation

Currently, register allocation is very basic as all variable get a Y register as-
signed. This is far from optimal and offers a big opportunity for improving the
performance of the compiled code.

3.1.6.2 Local..in..end

Those Oz instructions are present in the AST as fLocal nodes. Generating
the opcode for these nodes simply consists in generating the opcodes for the
declaration part, followed by the opcodes for the body part of the instruction.

Handling the declaration parts includes assigning a Y register to the sym-
bols, before initialising this Y register with a createVar instruction.

Handling the body parts simply consists in traversing the body AST and
generate the needed opcodes.

For example, the code fragment in Figure 3.31 declares two variables A and
B, and the opcodes for the declarations is shown in Figure 3.32. These opcodes
will be followed by the opcodes for Body.

local

A B

in

Body

end

Figure 3.31: Declaration of two variables in Oz

allocateY(2)

createVar(y(0))

createVar(y(1))

Figure 3.32: Opcodes for the declaration of two variables

74 CHAPTER 3. COMPILER

3.1.6.3 If then else

Rather than give convoluted explanations, it is easier to look at the code gen-
erating the opcodes for fBoolCase(FSym TrueCode FalseCode Pos) found in the
AST for an if..then..else instruction:

move({CodeGenInt FSym Params} x(0))|

condBranch(x(0) ElseLabel ErrorLabel)|

%---- true ----

{CodeGenInt TrueCode Params}|

branch(EndLabel)|

%---- error ----

lbl(ErrorLabel)|

move(k(badBooleanInIf) x(0))|

tailCall(k(Exception.raiseError) 1)|

%---- else ----

lbl(ElseLabel)|

case FalseCode

of fNoElse(_) then

lbl(EndLabel)|nil

else

{CodeGenInt FalseCode Params}|

% ---- end ----

lbl(EndLabel)|nil

end

It first moves the symbol containing the boolean to be tested in an X register,
which is then used in a condBranch opcode, taking as additional arguments
the labels identifying the start of the else branch, and the start of the error
handling code. The “then” branch directly follows the condBranch. After that
come the error code and the else branch. Note that at the end of the “then”
branch, a branch opcode is needed to jump over the code corresponding to the
else branch and the error handling. However, putting the error code before the
”else” code avoids an additional jump at the end of the latter. Putting the
error code at the end would have required a jump at the end of the ”else” code
too.

If no code is present in the else branch, no opcode is generated for that
branch.

3.1.6.4 Unification with Records

At this step, the only place outside pattern matching (described later) where
we can find records are in the right hand side of unifications, i.e. the second
features of fEq.

The virtual machine requires, for performance reasons, the compiler to gen-
erate different opcodes for cons, tuples and records. If the record is a cons, i.e.
a record with label ’|’ and with exactly two features labeled 1 and 2, we need
to issue a createConsUnify(DestReg).

If the arity is made of numbers only, i.e. we have the arity of a tuple, we
need to issue a createTupleUnify(k(Label) FeaturesList DestReg) instruction.
Else we need to issue a createRecordUnify(k(Arity) FeaturesList DestReg) in-
struction. The function CompilerSupport.makeArity is used to build the arity
for use in createRecordUnify. It takes as argument the label and a list of

3.1. ARCHITECTURE 75

pairs Label#Value. If the labels passed in the list are labels of a tuple, it
returns false, else it returns the constructed arity. It is based on the value re-
turned by makeArity that the compiler decides which instruction is issued. The
FeaturesList has to be ordered according to the features. This is important,
as the createConsUnify/createTupleUnify/createRecordUnify instructions have
to be followed by arrayFill instructions, one for each value, in the same order
as the features passed to the instruction.

As an illustration, this unification of a variable with a record having one
value not constant:

R=rec(a:A b:2)

results in this AST

fEq(

fSym(’R’ pos)

fRecord(

fAtom(rec pos)

[fColon(fAtom(a pos)

fSym(’A’ pos))

fColon(fAtom(b pos)

fInt(2 pos))])

pos)

and, if we note y(Variable) the register assigned to Variable by the compiler,
it results in these opcodes being generated:

createRecordUnify(k(<Arity rec(a b)>) 2 y(R))

arrayFill(y(A))

arrayFill(k(2))

3.1.6.5 Unification

Unifications involving elementary values (variables or constants) simply issue a
unify(LHS RHS) instruction, where LHS is the register where the left-hand side
is stored and RHS is the register for the right-hand side.

A=10

A=B

present in the AST in this form:

fAnd(

fEq(

fSym(Symbol(A) pos)

fConst(10 pos)

pos

)

fEq(

fSym(Symbol(A) pos)

fVar(Symbol(B) pos)

pos

)

)

where Symbol(A) (resp. Symbol(B)) represents the instance of the class
Symbol corresponding to variable A (resp. B) in this part of the code.

76 CHAPTER 3. COMPILER

The opcodes generated for this AST are:

unify(y(1) k(10))

unify(y(1) y(2))

if A was allocated register y(1) and B was allocated register y(2).

3.1.6.6 Procedures/Abstractions

At this stage, only procedures are defined, as found in fDefineProc tuples
(created by the Globaliser, see Section 3.1.5) of the form:

fDefineProc(fSym(Sym pos) Args Body Flags Pos NewLocals)

As described in Section 2.2.6, the body has first to be assembled. This requires
to first assign registers to all symbols used in the body, generating the opcodes
for the body (which might itself define procedures and thus do recursive calls)
and pass it to the assembler which will return the CodeArea we need. The
createAbstractionUnify instruction can then be issued, unifying the assembled
abstraction’s code area CA with the register assigned to the symbol Sym:

createAbstractionUnify(k(CA) GlobalsCount {RegFor Sym})

GlobalsCount in this instruction is the integer number of global variables present
in CA. Each global variable has to be initialised in turn by an arrayFill in-
struction. The first arrayFill will initialise the abstraction’s g(0), the second
will initialise the abstraction’s g(1), etc.. . . For example, if the variable in the
enclosing environment referenced by the localised symbol is located in an X
register, say 0, then the global is initialised by arrayFill(x(0)).

3.1.6.7 Calls

Calls are done with the opcode call(Callee NumberOfArgs). The arguments
are not passed to call, but will be accessed in registers X with index 0 to
NumberOfArgs. CodeGen will thus first move all argument values to X registers,
then issue the call. Let’s have a look at this example code

{F A B 10}

and let’s suppose that F is located in register y(0), B in y(2) and A in g(2).
10 is accessed via register k(10) as described in Section 2.2.1. The opcodes
generated for this call will be

move(y(2) x(0))

move(g(2) x(1))

move(k(10) x(2))

call(y(0) 3)

3.1.6.8 Case

Case statements are amongst the most complex instructions to handle in code
generation. This is because different pattern types are handled differently.

We’ll start by ignoring guards for the moment and look at the code in
Figure 3.33.

The Mozart1 virtual machine allowed the compiler to group in one test
instruction subsequent clauses of constant patterns (records, integers, atoms,

3.1. ARCHITECTURE 77

case Val

-------------------+

---+ |

of Pattern1 then |->1 clause |

Body1 | |

---+ |

[] Pattern2 then |-> Clauses sequence for

Body | Mozart2 VM

... |

[] PatternN then |

BodyN |

--------------------+

else

ElseBody

end

Figure 3.33: Case clauses sequence

floats,...), but open record patterns could only be handled individually. With
the Mozart2 virtual machine, both records and open records can be grouped
in one test instruction.

We call sequence of clauses a group of subsequent clauses and with no
guards. As clauses of a sequence are grouped, the opcode generated will not
have one test instruction per clause, but one test instruction per sequence of
clauses, and the test result will jump to the corresponding clause’ body.

We look here at the code generated for the pattern matching, and don’t
consider the code declaring the symbols for the captures, as this has been
extracted by the namer as described in Section 3.1.2.3.

This will result in opcodes of this form when testing the value in register
x(0) against two clauses part of one sequence:

patternMatch(x(0) k(’#’(Pattern1#lbl1 Pattern2#lbl2)))

branch(ElseLabel)

lbl(1)

... Code for clause1 ...

branch(EndLabel)

lbl(2)

... Code for clause2 ...

lbl(ElseLabel)

... Else Code ...

lbl(EndLabel)

The patternMatch instruction takes two parameters: the register containing
the value to test against, and a constant record with label ’#’ and with one
feature-value pair for each clause (in the order corresponding to the clauses in
the Oz code).

The feature is the pattern to which three transformations have been applied.
First capture variables have been replaced by a value resulting from a call

to Boot_CompilerSupport.newPatMatCapture, passing as unique argument the X

78 CHAPTER 3. COMPILER

register index in which to store the value of the capture variable in case this
pattern matches. The value is the label identifying the start of the code of the
corresponding clause, which is where the patternMatch instruction will jump in
case of a match.

Second, open records have been replaced by an object resulting from a call
to Boot_CompilerSupport.newPatMatOpenRecord, passing as arguments the arity
and features list of the open record.

Third, pattern conjunctions have been replaced by an object resulting
from a call to Boot_CompilerSupport.newPatMatConjunction, passing as argu-
ment the result of the same transformation applied to both features of the
fPatMatConjunction record.

The patternmatch is immediately followed by an unconditional branch in-
struction, which will jump to the ElseCode, but is only reached if no match was
found.

When a match is found, the execution jumps to the label indicating the
start of the clause’ body. The opcodes of the clause’ body are prefixed by
instructions moving the capture variables’values from their X register to their
respectively assigned Y registers. The clause’ body opcodes are immediately
followed by an unconditional jump to the label indicating the end of opcodes for
the case instruction. This ensures that no following clause’ body is executed.

Guards, however, add some complexity to the generation of opcodes because
clauses with guards cannot be grouped with other clauses. For each clause with
guards, there will be a test instruction generated. The code for the guards also
needs access to the value of the captures in the pattern, meaning it must
come after the test instruction. As a consequence the test instruction may
not jump to the start of the clause’ body, but must jump to the guards’ code.
Additionally, when a match is unsuccessful, execution has to jump to the next
test.

Here is an example of a case instruction having clauses with guards:

case R

of 2 andthen V then

{Show match}

else

{Show nomatch}

end

and the corresponding opcodes for the case instruction(denoting y(V) the
Y register allocated for V):

1 patternMatch(x(0) k(’#’(2#8)))

2 branch(6)

3 lbl(8) unify(y(1) y(V))

4 move(y(1) x(1))

5 condBranch(x(1) 6 4)

6 move(k(match) x(0))

7 call(k(<P/1 Show>) 1)

8 branch(3)

9 lbl(4) move(k(errorInCase) x(0))

10 tailCall(k(<P/1 Exception.raiseError>) 1)

11 lbl(6) move(k(nomatch) x(0))

12 call(k(<P/1 Show>) 1)

13 lbl(3) return

3.1. ARCHITECTURE 79

The patternMatch instruction is built the same way, but it now jumps to the
guards’ code at lbl(8) in case of success.

The guards’ code, which here only consists of line 3, is immediately followed
by the code of a conditional jump (lines 4 and 5) to the next test or, if as here
it is the guards of the last clause, to the else code (lbl(6)). The condBranch

also takes a label for error code, which in this case is label 4.
The code of the clause is on line 6 and 7, followed by the unconditional

jump to the end label, here lbl(3).
As clauses with guards can be mixed with clauses without guards, the

opcodes generated will contain some test instructions covering multiple clauses
while some tests will cover only one clause.

3.1.6.9 Instructions Sequences

Generating opcodes for sequences of instructions consists in the generation in
order of the opcodes for each element of the sequence. When CodeGen visits a
node fAnd(First Second) in the AST, it first generates the opcodes for First,
then for Second.

3.1.6.10 Exceptions

The nodes present for the try statements in the AST handled by the code
generator are of the form

fTry(Body

fCatch([fCaseClause(E Case)]

CatchPos)

fNoFinally

Pos)

It corresponds to the code

try Body catch E then Case end

and translates in opcodes as:

setupExceptionHandler(TryLabel)

{CodeGen Case}

branch(EndLabel)

lbl(TryLabel)

{CodeGen Body}

popExceptionHandler

lbl(EndLabel)

setupExceptionHandler(TryLabel) sets up an exception handler, and then
jumps to the TryLabel, which is the location of the opcodes for Body. If an
exception is raised, the execution jumps to the instruction following the setup of
the handler. If the Body executes successfully (without exception), the exception
handler is removed, and execution continues after the EndLabel.

Notice that when an exception is raised, the exception handler jumps in, ex-
ecutes its code, and then jumps to the end label over the popExceptionHandler.
This has to be so because the virtual machine removes the exception handler
when it treats the exception.

80 CHAPTER 3. COMPILER

3.1.6.11 Compiler Code Notes

The functions CodeGen declares multiple local functions:

• CodeGenDecls will generate opcodes for symbols in declaration parts. This
currently consists in assigning a yindex to the symbol and issuing a
createVar(y(yindex)) instruction.

• RegForSym will generate opcode to access the register of the symbol passed
as argument

• PermRegForSym will generate opcode to access the Y register of the symbol
passed as argument. This is needed to specifically access the Y register
of a symbol for a pattern matching capture, which also has an X register
assigned.

Most operations applied to AST nodes in CodeGen are straight-forward
translation of the descriptions given in this text to Oz code. For example,
here is the code handling fLocal nodes in the AST:

%----------------------

of fLocal(Decls Body _) then

%----------------------

[{CodeGenDecls Decls Params} {CodeGenInt Body Params}]

It just generates opcodes for declarations followed by the opcodes of the
body of the local..in..end Oz instruction, as described in Section 3.1.6.2.

However, due to the higher complexity of the code handling fCase nodes,
we’ll spend some time analysing it here.

As a reminder, we call sequence a group of consecutive clauses that can
be grouped in one test instruction in the opcodes generated. As clauses with
guards cannot be grouped with other clauses in one test instruction, these can
only be part of a sequence of which they are the only clause!

We call prefix of a sequence the test instructions checking the pattern and
the guards before jumping to the clause’ code, the next test instruction, the
else code, or the end label. The prefix also includes the code moving captures,
available in X registers, to Y registers if needed. The prefix of a sequence is gen-
erated by a call to the function PrefixOfSeq which itself calls UsedSymbolsToYReg
to generate opcode to move symbols used in a pattern to Y registers.

CodeGen visits all clauses in turn.
As the record passed to the instruction patternMatch needs to include the

label of the jump destination in case of a match, opcodes for all clauses have
to be generated before the prefix can be generated.

This is why the code uses a variable Code, containing code, including prefix,
for all completely visited sequences; and a variable CodeBuffer, containing code
for all visited clauses of the sequence currently visited. When a new sequence
is started, the prefix of that sequence and its CodeBuffer are appended to Code,
and CodeBuffer is reset.

As all clauses except those with guards can be grouped, a clause starts a
new sequence in two cases:

• the clause has guards

• the clause immediately follows a clause with guards

3.1. ARCHITECTURE 81

For this, the compiler code defines the function IsNewSequence which returns
true if the clause passed as argument is starting a new sequence. The function
needs to get passed as arguments the current clause and the current sequence
type, held in the variable SequenceType

When a new sequence is started, the previous sequence has to be closed: its
prefix and code buffer must be added to Code. However, building the prefix for
a clause with guards requires knowledge of the register in which the value of the
guards expression is stored. This is found in the fourth features of the pattern’s
fNamedSideCondition tuple in the AST, and is why fNamedSideCondition has
an additional feature compared to fSideCondition. The last visited clause’
pattern is stored in ThisPattern. This is needed for the closing code, which
also generates the opcode for the last sequence.

As described, the test instruction patternMatch has to jump to the clause’
body code or the guards code, identified by the label in ThisLabel. If there is
no match, or if there is a match, but the guards are not respected, the code
must jump to the next test, identified by the label in NextTestLabel This means
that when closing the current sequence, its test instruction has to be identified
by a label, which is found in ThisTestLabel.

The record to be passed to the instruction patternMatch is reset to ’#’()

when a new sequence is started, and is updated for each clause of the sequence.
The record built with all visited clauses of the current sequence is in the vari-
able PatternMatchRecord. Each clause updates its respective feature value in
PatternMatchRecord through a call to the function TransformPattern. A clause’
feature number is tracked by the variable SeqLen, holding the number of clauses
already visited in the current sequence. As all capture values have to be avail-
able to the clause’ code, symbols encountered in the pattern are collected in
UsedSymbols by TransformPattern. It is also TransformPattern that assigns an
X register to each capture. The last X register that has been assigned is kept
in XIndex

Now that we have all elements of the code defined, we can define the in-
variant of the loop over the clauses:

• SequenceType is the type of the currently visited sequence

• ThisTestLabel is the label identifying the test instruction of this sequence

• NextTestLabel is the label that will identify the test instruction of the
next sequence

• Code is the list of opcodes for all completely visited sequences

• CodeBuffer is the code for all visited clauses of the current sequence

• PatternMatchRecord is the record to be passed to patternMatch holding
information for all visited clauses of the current sequence.

• SeqLen is the number or clauses already visited in the current sequence

• LastPattern is the pattern of the last visited clause.

XIndex, ThisLabel and UsedSymbols are not included in the invariant as these
are only used inside each iteration of the loop and reset at the beginning of
each clause handling.

82 CHAPTER 3. COMPILER

With this invariant in place, we can sketch the structure of the code in
Figure 3.34.

{List.forAllInd Clauses proc{$ Ind fCaseClause(Pattern Body)}

if {IsNewSequence {Label Pattern} @SequenceType} then

% close previous sequence

% Ensures Code respects the invariant at the end of this iteration

--- code not included ---

% Reset sequence variables,

% This ensures that SequenceType, ThisTestLabel, NextTestLabel

% respect the invariant at the end of this iteration

CodeBuffer:=nil SeqLen:=0

PatternMatchRecord:=’#’()

SequenceType:={Label Pattern}

ThisTestLabel:=@NextTestLabel

NextTestLabel:={GenLabel}

end

% Reset clause specific variables

ThisLabel:={GenLabel} UsedSymbols:=nil XIndex={NewCell 0}

% Build record used in the pattern matching instruction

% Ensures PatternMatchRecord respects the invariant at the end

% of this iteration

PatternForRecord = {TransformPattern Pattern XIndex UsedSymbols}

PatternIndex=@SeqLen+1

PatternMatchRecord:={Record.adjoin

@PatternMatchRecord

’#’(PatternIndex:PatternForRecord#@ThisLabel)}

% Update CodeBuffer to respect invariant

--- code not included ---

% Restore invariant

SeqLen:=@SeqLen+1

LastPattern:=Pattern

end}

% Add last clause, error handling code, the else code and the

% label identifying the end of the case instruction’s code

Code:=@Code|

PrefixOfLastSequence

@CodeBuffer|

lbl(ErrorLabel)| %---- error ----

move(k(errorInCase) x(0))|

tailCall(k(Exception.raiseError) 1)|

lbl(@NextTestLabel)| %---- else ----

case Else

of fNoElse(_) then

lbl(EndLabel)|nil

else

{CodeGenInt Else Params}|

lbl(EndLabel)|nil

end

Figure 3.34: Case loop structure

3.2. COMPILING TO A FILE 83

3.2 Compiling to a file

The functor in 3.23 is clearly an expression, but the virtual machine can only
execute statements. the compiler applies a trick. When compiling an expres-
sion, the compiler unifies the expression with a variable Result it declares, and
it then executes that statement.

The current implementation uses a constant function BindResult listed in
Figure 3.35, which is injected in the AST received from the parser as illustrated
in Figure 3.36. This modified AST is compiled and executed, and the value of
Result is then written to the output file with Pickle.

proc {BindResult Value}

Result = Value

end

Figure 3.35: BindResult procedure

fApply(fConst(BindResult pos) [AST] pos)

Figure 3.36: BindResult call injected in the AST

3.3 Tests

3.3.1 Helper functions tests

Some helper functions are tested specifically by Oz code, checking that the
result returned by the function is correct. This is simply done by calling the
function in Figure 3.37 with the first argument the function call we want to
test, and the expected result as second argument as illustrated in Figure 3.38
where the function UnWrapFAnd is tested. The only downside to this approach
is that helper functions have to be exported for them to be available in the test
code.

proc {Equals Result Expected}

if Result\=Expected then

%Show error information

raise unexpectedResult end

end

{System.printInfo ’.’}

end

Figure 3.37: HelpersTests function

84 CHAPTER 3. COMPILER

{Equals

{Compile.unWrapFAnd fAnd(first fAnd(second third))}

first|second|third|nil }

Figure 3.38: Helper test example

3.3.2 Compiler tests

Tests are defined by three files each:

• the oz code to compile and execute

• the expected standard output

• the expected standard error

All these files are put under the tests/definitions directory.
A TestRunner script in oz loads the code found in the file whose path is

passed as argument, parses it, gives the AST to the compiler which returns the
opcodes which are assembled and executed. A shell script iterates over all tests
and for each execute the TestRunner, puts the standard output and standard
error in result files under the tests/results directory, compares their content
with the expected results and in case of difference can open a diff-viewer (like
vimdiff). All test code has a preamble comment describing what case this test
covers. If the test code contains the comment line

%-- SKIP TEST--

the test is skipped. This was implemented to be able to run tests even if one
of them was temporarily not passing.

Adding a test is very simple:

1. put the code to compile and execute in an .oz file under tests/descriptions

2. put the expected output in a file with same name but with extension .out

3. put the expected error output in a file with same name but with extension
.err

Once this is done, the new test will be included in the next run.
All tests are run with

make tests

It is also possible to run one individual test with

make test test=$testnumber

In this case, the test is run even if it is marked as to be skipped when running
the full test suite. This helps writing tests for cases needed to be supported in
the future, but that should not make the full test suite fail.

As the virtual machine is still in development, it is possible to restart a
tests run from a specific test. This avoids to re-run all passed tests in case of
a hanging run:

make testsfrom from=$testnumber

3.4. PERFORMANCE 85

3.4 Performance

This section will compare the execution time of source code

• compiled by the Mozart1 compiler and running on the Mozart1 virtual
machine

• compiled by the adapted Mozart1 compiler targeting the new Mozart2
virtual machine

• compiled by the compiler described in this document, running on the new
Mozart2 virtual machine

To obtain relevant results, comparable measures needed to be collected un-
der the three circumstances. To avoid garbage collection penalties, the garbage
collector is called explicitly before the first measure of time with {System.gcDo}.
Code was structured as to avoid the static analysis of the Mozart1 compiler
to optimise the code aggressively (for example in the case measures), but still
one test was not possible: the Mozart1 compiler discarded constant record
unification with a wildcard.

For the code running on the Mozart1 virtual machine, the timing is done
by calling

{Property.get ’time.total’}

before and after the call to the code of which we want to measure the execution
time, and computing the difference. The resolution obtained for these measure
was 10ms.

For the code running on the Mozart2 virtual machine, the timing is done
the same way by calling

{Boot_Time.getReferenceTime}

The resolution of the measures was 1ms. In both cases, the result obtained is
the total running time of the code in milliseconds.

Most measures were done by executing 100 times one operation in a loop
doing 105 iterations. The cost of the loop was evaluated by measuring the time
taken by 107 iteration of an empty loop, and bringing it back to 105 iterations,
to limit the imprecision due to the resolution of 10ms of the measures on
Mozart1. The average cost of the loop doing 105 iterations is about 4ms,
1.9ms and 0.23ms respectively for the compiler described in this document,
the Mozart1 compiler targeting the Mozart2 virtual machine, and the Mozart1
compiler targeting the Mozart1 virtual machine. These times are negligible
compared to the total execution times measured, being for example less than
0.4% in the worst case of the Addition performance test.

Each measure is done 20 times, and the average and standard deviation is
computed. Results can be found in F.

In all measures, the code running on the Mozart1 virtual machine was
the fastest, followed by the Mozart1 compiler targeting the Mozart2 virtual
machine, and with the new compiler being the slowest. This is normal as
the focus of the implementation was producing clean and modular code. The
CodeGen function is currently very naive, but provides a foundation on which
to implement state of the art optimisations.

We will make two comparisons:

86 CHAPTER 3. COMPILER

• the running time of the code generated by the Mozart1 compiler running
on the Mozart2 virtual machine to the running time of the code generated
by the Mozart1 compiler running on the Mozart1 compiler.

• the running time of the code generated by the new compiler running on
the Mozart2 virtual machine to the running time of the code generated
by the Mozart1 compiler running on the Mozart2 compiler.

Two reasons for this:

• we compare a measure to the first faster alternative

• measures compared have at least on element in common: the compiler of
the virtual machine

A simple addition was run by the function listed in Figure 3.39.

proc {Addition N}

for I in 1..N do

_ = 1+1 % line repeated 100 times

...

end

end

Figure 3.39: Simple addition

The function was called with 105 as argument. The Mozart1 compiler
targeting the Mozart2 virtual machine was 10 times slower than the Mozart1
setup. The new compiler was more than 4 times slower than the Mozart1
compiler targeting the Mozart2 virtual machine.

A naive Fibonacci function displayed in Figure 3.40 was tested.

fun{SlowFib N}

if N==0 then 0

elseif N==1 then 1

else

{SlowFib N-2}+{SlowFib N-1}

end

end

Figure 3.40: Naive Fibonacci implementation

The function was called with 30 as argument. The Mozart1 compiler target-
ing the Mozart2 virtual machine was more than 5 times slower than the Mozart1
setup. The compiler described in this document was more than 2 times slower
than the Mozart1 compiler targeting the Mozart2 virtual machine. For further
tests we will note this as a slowdown ratio of 5 and 2.

Code writing to cells was tested with the function in Figure 3.41.
The slowdown ratios were 2.68 and 3.01.
Code reading cell values was tested with the function in Figure 3.42.

3.4. PERFORMANCE 87

proc {CellWrite N}

C={NewCell 0}

in

for I in 1..N do

C:=1 %100 times

...

end

end

Figure 3.41: Writing to cells

proc {CellRead N}

C={NewCell 0}

in

for I in 1..N do

_=@C %100 times

...

end

end

Figure 3.42: Code reading cell value

The slowdown ratios were 6.27 and 3.84. The code generated by the com-
piler described in this document is slower to read from cells than to write to
them. This is because the code generated for reading a cell is not optimal and
contains a unification, as illustrated in Figure 3.43, which has a high cost in
terms of time. Writing to a cell does not generate a unify operation.

createVar(y(1))

createVar(y(2))

unify(y(1) y(2))

moveMove(y(0) x(0) y(1) x(1))

tailCall(k(<P/2 Value.catAccess>) 2)

Figure 3.43: Opcodes for reading a cell

Performance of code using cells in both read and write operations was also
measured, with the code displayed in Figure 3.44.

The function was called with 105 as argument. The slowdown ratio was 2.1
and 2.8.

As displayed in Figure 3.45, the new compiler generate code that is 2 to
3 times slower in average than the code generated by the Mozart1 compiler
targeting the Mozart2 virtual machine. There is one kind of code for which it
can approach the performance of the old compiler though: pattern matching.
Because the new compiler combines constant patterns and open record patterns
clauses without guards in one patternMatch instruction (see Section 3.1.6.8), it
can generate code that is more efficient for the pattern matching(though it stays
slower due to other parts of the code being more inefficient). In the favorable

88 CHAPTER 3. COMPILER

proc {CellAccess N}

C={NewCell 0}

in

for I in 1..N do

C:=@C+I % 100 times

...

end

end

Figure 3.44: Cell access testing function

Figure 3.45: Speed of generated code relative to the Mozart1 platform. Smaller
is better.

case where it is the last clause of a long list of open record pattern clauses that
matches, like the function in Figure 3.46 called with A=rec(f:1 z:3 y:4 x:6)

and N=105 the new compiler generates code that is only 24% slower than the
code generated by the Mozart1 compiler.

3.4. PERFORMANCE 89

proc {OpenMatch A N}

for I in 1..N do

case A % 100 times

of 1 then

skip

[] rec(a:_ ...) then

skip

[] rec(b:_ ...) then

skip

[] rec(c:_ ...) then

skip

[] rec(d:_ ...) then

skip

[] rec(e:_ ...) then

skip

[] rec(f:_ ...) then

skip

[] 2 then

skip

end

end

end

Figure 3.46: Function to test case performance

Chapter 4

Conclusion

4.1 Achievements

Most of the goals set when this work was started have been reached. Although
the whole Oz language is not supported (see the next section), a vast majority
is, as is demonstrated by the fact that all programs extracted from [VRH04]
compile and run successfully. The code generated by the compiler, although
not optimised, is exploiting the capabilities of the new virtual machine, notably
in pattern matching. During the whole development, attention has been paid
to produce code easy to understand and fully documented, which should make
it easy for new developers to dive into the code.

4.2 Future work

4.2.1 Missing language support

Support for these Oz language features have to be added:

• for loops iterating over multiple lists

• C-like for loops

• record pattern arguments having non-constant features

Support for logic programming features of Oz also have to be added.

4.2.2 A better try-finally transformation

A more efficient transformation can be implemented for try-finally as illus-
trated in Figure 4.1 and Figure 4.2.

For an expression, the result of the transformation should be as illustrated
in Figure 4.3 This transformation takes advantage of the fact that if the vari-
able waited for gets bound to a failed value, Wait will re-raise its encapsulated
exception. It is more efficient than the current implementation presented in
Section 3.1.3.15 because there’s no pattern matching involved, there’s no wrap-
ping of the value of the expression if the code executes successfully, and the
test is done in C++.

91

92 CHAPTER 4. CONCLUSION

try <Body> finally <Finally> end

Figure 4.1: Try-finally instruction

local Test in

try

<Body>

Test = unit

catch E then

Test = {Value.failed E}

end

<Finally>

{Wait Test}

end

Figure 4.2: New transformation for Figure 4.1

local Y Test in

try

Y = <Body>

Test = unit

catch E then

Test = {Value.failed E}

end

<Finally>

{Wait Test}

Y

end

Figure 4.3: New transformation for a try expression

4.2.3 Better calls to builtins

The call to builtins can also be improved. Currently, every call is translated in a
call opcode. Calls to builtins should be translated by the opcode callBuiltin.
Determining if the callee is a builtin can be done with

{CompilerSupport.isBuiltin Callee}

Information about the builtin’s parameters can be obtained by a call

BuiltinInfo = {CompilerSupport.getBuiltinInfo Callee}

yielding a record of the form

builtin(arity:N name:Name params:Params ...)

where Params is a list of param(kind:InOut ...), InOut having value in for input
parameters, out for output parameters. N is the number of parameters if the
builtin, and should be used to validate the number of arguments found in the
call. If all is correct, opcodes can be generated. The in parameters are moved
to X registers before the callBuiltin, and out parameters are extracted by
unification of their register with the result register. Here is an example for the
builtin Number.’+’, taking 2 parameters in and one out. This AST for the call

4.2. FUTURE WORK 93

fApply(fConst(Number.’+’)

[y(3) y(1) y(6)]

pos)

should result in these opcodes:

move(y(3) x(0))

move(y(1) x(1))

callBuiltin(k(Callee) [x(0) x(1) x(2)])

unify(x(2) y(6))

4.2.4 Improve CodeGen

Another area of improvement is the CodeGen function, both its inner working
and its output should be improved. Its inner working because it currently
generates nested lists that needs to be flattened at the end. Its output can
greatly be improved, notably in the register allocation, which is currently not
optimised. The latter should improve the performance of the generated code.

4.2.5 Others

Further limiting the use of cells and striving for a totally functional code-base
should also help performance and modularity.

Furthermore, integration in the Mozart development environment also has
to be started and some debug output is still generated.

Bibliography

[OzOv] http://en.wikipedia.org/wiki/Oz (programming language)

[Moz] http://en.wikipedia.org/wiki/Mozart Programming System

[VRH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of
Computer Programming. MIT Press, 2004.

[Moz1.4] Mozart Programming System, version 1.4.0 (www.mozart-oz.org).

[Aho07] Aho, A. (2007). Compilers : principles, techniques, & tools. Boston:
Pearson/Addison Wesley

[BaseLang] Oz - The Base Language
http://www.mozart-oz.org/documentation/notation/node6.html

[AST] Oz - Syntax Tree Format
http://www.mozart-oz.org/home/doc/compiler/node7.html#appendix.syntax

[CTMCPSup] Supplements for “Concepts, Techniques, and Models of Com-
puter Programming”
http://www.info.ucl.ac.be/ pvr/ds/mitbook.html

[BootComp] Mozart2 BootCompiler by Sébastien Doeraene
https://github.com/mozart/mozart2-bootcompiler/tree/master

[Moz2vmsrc] Mozart2 virtual machine
https://github.com/mozart/mozart2-vm

[Moz2src] Mozart2 source code
https://github.com/mozart/mozart2

[Func] More on Oz Functors
http://www.mozart-oz.org/home/doc/apptut/node6.html#chapter.mof

[FuncCode] Oz Application Development - Functors (http://www.mozart-
oz.org/home/doc/apptut/node3.html#section.development.functors)

[CTMCPFigs] Figures of “Concepts, Techniques, and Models of Computer
Programming” (http://www.info.ucl.ac.be/ pvr/bookfigures/)

95

Appendix A

Pattern Variables

The Pattern Variables are the variables declared by an instruction placed in
the declaration part of a local..in..end instruction.

A.1 Statements

D1 D2 PV(D1) ∪ PV(D2)

x {x}

(S) PV(S)

(D in S) PV(S) - PV(D)

local D in S end PV(S) - PV(D)

proc ... {E ...} ... end PV(E)

fun ... {E ...} ... end PV(E)

class E ... end PV(E)

functor E ... end PV(E)

E = ... PV(E)

otherwise ∅

A.2 Expressions

x {x}

(E) PV(E)

(D in [S] E) (PV(S)∪PV(E)) - PV(D)

local D in [S] E end (PV(S)∪PV(E)) - PV(D)

E1 = E2 PV(E1)∪PV(E2)
[E1 ... En] PV(E1)∪ ... ∪ PV(En)

E1|E2 PV(E1)∪PV(E2)
E1#...#En PV(E1)∪ ... ∪ PV(En)

l([f1:] E1 ... [fn:] En [...]) PV(E1)∪ ... ∪ PV(En)

otherwise ∅

97

Appendix B

OpCodes

This table lists the opcodes supported by the assembler.

Opcode Arguments Notes
skip No-op, does nothing
move(r s) r: register X, Y, G or K

s: register X or Y
Copies the value of r(i) in s(j).

moveMove(r s t u) r, t: register X, Y, G or K
s, u: register X or Y

Automatically generated by
the assembler when encoun-
tering two consecutive move

operations. Equivalent to
move(r s) move(t u).

allocateY(N) N: integer>0 allocates N Y registers in current
frame. Can only be called once
per frame.

createVar(r) r: register X or Y Assigns a new unbound variable
to register r

createVarMove(r x) r: register X or Y equivalent to
createVar(r) move(r x)

setupExceptionHandler(l) l: label sets up an exception handler,
and execution jumps to label l

popExceptionHandler() removes the exception handler
currently set up. Should not
be called when an exception was
raised, as the virtual machine
pops it in that case

callBuiltin(k(BI) Args)

callBuiltin0(k(BI))

callBuiltin1(k(BI) x1))

..
callBuiltin5(k(BI) x1 .. x5)

callBuiltinN(k(BI) N x1 .. xN)

builtin in a K register, all
others are X registers

The assembler produces the
right specialised version from the
generic callBuiltin

98

99

Opcode Arguments Notes
call(r N)

tailCall(r N)

r: register X, Y, G, K
N: number of arguments of
the call

The N arguments need to be
passed in registers X from x(0)

to x(N-1)

sendMsg(r k(L) N)

tailSendMsg(r k(L) N)

r: register X, Y, G, K
L: record label / arity
N: number of features of
message / number of fea-
tures of arity

Equivalent to {r M} in Oz nota-
tion, where M is a tuple (or a
record of arity L) of label L with N

features, whose values are found
in registers x(0) to x(N-1). Op-
timises method call on objects
by avoiding building the message
tuple then issuing a call

return() Frees Y registers, pops the top
frame from the stack, and contin-
ues execution based on the new
top frame.

branch(L) L: label moves execution to the label L
condBranch(x LF LE) LF: label identifying the

“false” branch
LE: label identifying the
error handling code

if x==true then does nothing. if
x==false then jumps to label LF.
In other cases, jumps to label LE.

patternMatch(r k(H)) r: register X, Y, G
H: see Section 3.1.6.8

unify(r s) r and s: register X, Y, G,
K

Unifies the content of registers r

and s

createAbstractionUnify(k(CA) N r)

CA: CodeArea N: number
of globals r: register X, Y,
G, K

Must be followed by N arrayFill

instructions to initialise the glob-
als

createAbstractionStore(k(CA) N r)

CA: CodeArea
N: number of globals
r: register X, Y

Must be followed by N arrayFill

instructions to initialise the glob-
als

createRecordUnify(k(A) N r)

A: Arity, i.e. label and fea-
tures of the record N: num-
ber of features r: register
X, Y, G, K

Must be followed by N calls to
arrayFill to set the value corre-
sponding to each feature, in the
same order as the features in Ar-
ity.

createRecordStore(k(A) N r)

A: Arity, i.e. label and fea-
tures of the record N: num-
ber of features r: register
X, Y

Must be followed by N calls to
arrayFill to set the value corre-
sponding to each feature, in the
same order as the features in Ar-
ity.

createTupleUnify(k(L) N r) L: label of the tuple N:
number of features r: reg-
ister X, Y, G, K

Must be followed by N calls to
arrayFill to set values corre-
sponding to each feature. Fea-
tures of a tuple are all subsequent
integer from 1.

createTupleStore(k(L) N r) L: label of the tuple N:
number of features r: reg-
ister X, Y

Must be followed by N calls to
arrayFill to set values corre-
sponding to each feature. Fea-
tures of a tuple are all subsequent
integer from 1.

100 APPENDIX B. OPCODES

Opcode Arguments Notes
createConsUnify(r) r: register X, Y, G, K Must be followed by two calls

arrayFill to set the values of fea-
tures 1 and 2, the only two fea-
tures of a cons.

createConsStore(r) r: register X, Y Must be followed by two calls
arrayFill to set the values of fea-
tures 1 and 2, the only two fea-
tures of a cons.

arrayFill(r) r:register X, Y, G, K the ith call to arrayFill will fill
the ith placeholder of the preced-
ing create... instruction

arrayFillNewVar(r) r: register X,Y creates a new unbound variable
in r and puts it in the placeholder
corresponding to the arrayFill

call.
arrayFillNewVars(N) N: integer >0 equivalent to N subsequent calls

to arrayFill, putting an distinct
unbound variable in each place-
holder

Appendix C

Symbol Description

A symbol instance holds information about the variable it replaced in the
AST. Symbols introduced by the compiler are called synthetic symbols. The
attributes of the class Symbol are:

id A unique id for the symbol, used for debugging purposes.

name The name of the variable it represents. This can be empty for symbols
introduced by the compiler.

pos The position of the variable’s declaration in the source code.

xindex yindex gindex The indexes of the registers assigned to the symbol.
A symbol might have both an xindex and a yindex when it is a capture
in a pattern. The xindex is the index in which the value of the capture
is placed, and the yindex is the index of the Y register assigned to the
symbol for permanent storage in the clause’ body.

procId The procId in which this symbol is reachable.

type The type of the symbol, which can take the following values:

• localProcId for a symbol corresponding to a variable defined in the
procedure where it is located.

• localised for a symbol representing a global variable for the procId
where it is located

• patternmatch for a symbol representing a capture in a pattern

• wildcard for a symbol introduced in the place of a wildcard

ref is only used for localised symbols. ref references a symbol local to the
enclosing procedure, building a chain that will eventually lead to a symbol
of type localProcId in the procedure declaring the variable, enabling the
resolution of global variables.

101

Appendix D

Tests list

Here is a description extracted from the tests written (make desc generates it
dynamically). The suite consists of 439 test scripts, performing more than 1000
output checks.

001 nested locals:

Nested locals, with one unification done in the declaration of B.

002 nested locals:

The top local declared and initialises variables A and B.

The nested local redeclares B and initialises it with another value.

In the nested local, we then show both A and B.

In the outer local, we show A and B to check it has the top level value.

003 nested locals:

Three levels deep nested locals, with redeclaration and new variable at each

level.

005 declarations:

Declarations in records (PVS and PVE)

015 procs:

Wildcard in formal parameters

020 nested procs:

Nested proc accessing var 1 and 2 levels higher

021 nested procs:

Global in proc

022 nested procs:

Use of a variable after nested proc definition using it also

023 nested procs:

Variable used before a nested proc also uses it

024 nested proc siblings:

Two nested proc definitions (T and W) at the same level use the same variable

(A) which is also a new local to the outer proc (P), which is used after the

nested procs definitions.

025 nested proc siblings:

Two nested proc definitions (T and W) at the same level use the same variable

(A) which is also a new local to the outer proc (P), which is used *before*

the nested procs definitions.

026 nested proc siblings:

Two nested proc definitions (T and W) at the same level use the same variable

102

103

(A), but T redeclares it and W uses the global. The outer proc uses

A before its children proc definitions.

027 nested proc siblings:

Two nested proc definitions (T and W) at the same level use the same variable

(A), but T redeclares it and W uses the global. The outer proc uses A *after*

its children proc definitions.

028 nested proc:

Locally vars overriding globals

029 globaliser:

Is environment restored avec proc definition?

050 desugar unnester:

Simple desugar of + - * / and unnesting of that operation’s result assignment

Uses a negative number too

051 desugar unnester:

Simple desugar a function

052 desugar unnester:

Desugar of functions returning functions.

All called functions return a function without argument that itself has to be

called, hence the double {{ }}

053 desugar unnester:

Cell creation, assignment, access, exchange, cell in cell

054 desugar unnester:

Wildcard for argument set by procedure.

055 desugar unnester:

Functional procedure definitions (nesting marker in arguments list)

056 desugar unnester:

Unification expressions

060 unnester:

Unnesting of variable assignment in declarations of a local and in proc

argument

061 unnester:

Unnesting of variable assignment in declarations of a local and in proc

argument

062 unnester:

Unnesting of variable assignment with variable being the RHS and in proc

argument

063 unnester:

Unnesting of variable assignment with variable being the RHS and in proc

argument

064 unnester:

Unnesting of locals in unification

065 unnester:

Unnesting of locals in unification and arithmetic

066 unnester:

Unnesting of binding with LHS and RHS both non-elementary

067 unnester:

Unnest the taget of a call

068 unnester:

Dollar present in a record argument of a procedure

069 unnester:

104 APPENDIX D. TESTS LIST

Unnest case values

100 if:

Simple if statement tests

101 if:

Complex if statements and expressions, with condition and branches

non-elementary. Also tests comparators < =< > >=

102 if:

Test if non-boolean are treated correctly

103 if:

Elseif test.

105 if:

If statements with no else

110 lists:

Simple access to list elements

130 for:

Loop ’for’ over lists

131 for:

Statement ’for’ over lists with pattern matching

132 for:

Statement ’for’ over integers

133 for:

For loop over multiple lists

Skipping until I fix the multiple list behaviour

150 records:

Simple record creation and access

151 records:

Auto number features of records if necessary (desugar step)

152 records:

Constant records

153 records:

Records where values are not constants

154 records:

Records where values are results of function call

155 records:

Records where the label is not constant

156 records:

Records with all parts (label, features, values) specified by a the value of a

variable.

157 records:

Records on LHS of unification, both const and not const

158 records:

Record with value result of an if expression

159 records:

Unification of record to assign value by ’pattern matching’

160 records:

Create Cons

180 nesting marker:

Nesting marker in proc argument, and in if statement

190 dotassign:

Test dotAssign expressions

105

200 threads:

Unification of a variable in a thread, depending on variables initialised

later.

201 threads:

Thread as expression, at the 2 sides of unification

202 threads:

Function calls in thread expressions

203 threads:

Wait instruction, waiting for variable bound in thread.

220 lazy functions:

Lazy functions. Result variables used in opposite order than unification, and

one result unused.

230 streams:

List with unbounded tail filled at one second interval

231 streams:

List with unbounded tail filled at one second interval

250 locks:

Locks

260 case:

Records and OpenRecord matches

261 case:

Case with missing else

262 case:

Case expression

263 case:

Case expression with no else

264 case:

Case with only constant tests, i.e. no capture

265 case:

Cases with captures and guards

266 case:

Wildcards in record and openrecords patterns

267 case:

Test !Vars in patterns

268 case:

Pattern conjunction

269 case:

Pattern matching in function and proc arguments

270 case:

Pattern arguments, proc and fun

271 case:

Pattern conjunctions open records and escaped variables in function arguments

272 case:

Parameter arguments test for open record with atom features and not integers

300 classes:

Simple class instanciation and object method call

301 class:

Key arguments in class methods

302 classes:

Default values for method arguments

106 APPENDIX D. TESTS LIST

303 classes:

Attribute access, including with cell values + accessing non-attribute cells

in a method. Also access attribute which name is accessed via a variable.

304 classes:

Exchange operation on attribute, and assigning to an attribute with no default

value.

305 classes:

Class feature access

306 classes:

Method with no argument and class with not feat or attr.

307 classes:

Simple class inheritance

308 classes:

Inheritance and features

309 classes:

Wildcard in feature

310 classes:

Anonymous class

311 classes:

Call a method on self

312 classes:

Attribute assignation with <-

313 classes:

Static calls

314 classes:

Method calls as expression

315 classes:

Static call with nesting marker

316 classes:

Functional methods

317 classes:

Test of pattern variable function for classes

318 classes:

Generic classes

319 classes:

Open record method definitions

320 classes:

Private and dynamic method labels

also tests otherwise method

321 classes:

Private method which has same name has its containing class

322 classes:

Method head reference

323 classes:

Method head captures with same name

324 classes:

Dynamic attribute access

325 classes:

Private method with same variable name as class

326 classes:

107

Method head capture for method with no argument

327 classes:

Locking property

328 classes:

Inherintance from a final class

350 raise:

Exception raised

370 try:

Simple try catch statement

371 try:

Simple try catch expression

372 try:

Corner case illustrating the need of temp var when desugaring try expression

373 try:

try..finally statement

Exception raised

374 try:

try-finally expressions

Exception raised

375 try:

Naming variables in catch clauses

376 try:

Naming variables of catch clauses

377 try:

Unhandled exception

378 try:

Try with multiple catch clauses

379 try:

try-finally without catch

400 functors:

Check prepare is executed when functor is applied

401 functors:

Check prepare declarations are availeble in define code

402 functors:

Location of import + use imported functions

403 functors:

Default esport name

404 functors:

Named functor

405 functors:

Functor without prepare

406 functors:

Functor without import

407 functors:

Named functor with require

408 functors:

Named functor with require

700 tofix:

Pattern matching on procedure arguments when record is handled by Boot

Record.makeDynamic

108 APPENDIX D. TESTS LIST

800 quicksort:

Quicksort from the book CTMCP, lazy and eager versions

801 lazy pascal:

Lazy computation of Pascal triangle

802 scie:

Scie test

803 transactions:

Transaction Manager

804 lift:

Lift simulation. Added determinism with controlled delays and lifts called

805 tuplespace:

Tuplespace and queues

806 bounded buffer:

Bounded buffer, also using monitor

807 lisser:

Lisser code

808 wrapper:

Secure data storage wrapper

809 elaguer:

Numbers list manipulation

810 exprcode:

Pattern matchin, recursive calls, guards,...

811 minimal:

Computes the K minimal elements of a list. This program compares

eager algorithms with a simple lazy algorithm.

812 server:

Server with port object

813 josephus decl:

Josephus problem with streams

814 lazymergesort:

Lazy merge sort

815 barrier:

Variations on barrier synchronization

816 logicgates:

Logic gates simulations

817 memoisation:

Declarative memoization in Oz

998 legacy:

Legacy namer test

999 legacy:

Legacy namer test

Appendix E

README

Introduction

This is a compiler for the Oz language, written in Oz.

It has been developed for a master thesis.

It targets the Mozart2 virtual machine.

Prerequisite

Using this compiler requires the Mozart2 virtual machine available

at http://sourceforge.net/projects/mozart-oz/

Directories:

/src ------------------------------> all Oz source code

/tests/definitions ----------------> test definitions, i.e. oz code and expected output

/tests/results --------------------> output of last test run

/report/ --------------------------> Latex code of the report

Makefile:

A Makefile is located in the root directory, giving access to these commands:

- make tests

run all test suite

- make testsfrom from=$num

run all tests with order number higher or equal to $num

- make test test=$num

run test with order number $num

- make run

compile and run Oz code in the file src/run.oz

Gives complete debug output

109

110 APPENDIX E. README

- make desc

prints descriptions of all defined tests

- make clean

deletes all compiled files

- make report

generates the PDF report from Latex sources. Result file is report/report.pdf

- make compile src=path/to_file.oz

compiles the file path/to_file.oz to path/to_file.ozf

Appendix F

Performance measures

Here are the results of performance tests. Only averages and standard devia-
tions are included here. Exhaustive results are available in the file perfs/timings.ods.

The code tested on the new virtual machine is located in the file perfs/timing.oz,
and the code tested on the Mozart1 virtual machine is in the file perfs/timing.oz.

Here is the procedure to reproduce the performance tests. First, uncomment
the function you want to run and its call. Unused functions are commented to
speed up the compilation. Then, issue the following command from the root
directory of the project to get the measures of the new compiler:

make compile src=perfs/timing.oz && for i in $(seq 20); do

ozengine perfs/timing.ozf; done

For measure of the Mozart1 compiler on the Mozart2 virtual machine:

ozc -c timing.oz && for i in $(seq 20); do ozengine timing.ozf ; done

For measure on the Mozart1 platform:

ozc -c timing1.oz && for i in $(seq 20); do

ozengine timing1.ozf ; done

The column “New Compiler” lists timings of the code generated by the com-
piler described in this document, running on the Mozart2 virtual machine.
The column “Old Compiler” holds the same measurement for code generated
by the Mozart1 compiler targeting the Mozart2 virtual machine. The col-
umn “Mozart1” lists values for the same code compiled and run on Mozart1.
Columns are arranged from left to right from the slowest to the fastest setup.
The line “ratio” show how many times slower the setup of one column is com-
pared to the setup of the column at its right.

Each of the following sections list the code of the function called, the ar-
gument passed, and the table of average and standard deviation of times mea-
sured.

F.1 Additions

The following code was called with N=100000, yielding results in the table. The
body of the loop is simply 100 addition operations, as displayed in Figure F.1.

111

112 APPENDIX F. PERFORMANCE MEASURES

proc {Addition N}

for I in 1..N do

_ = 1+1 % 100 times

end

end

Figure F.1: Addition

Additions
New Compiler Old Compiler Mozart1

average 2775.75 610.7 59.5
standard deviation 25.48 6.46 3.94
ratio 4.55 10.26

F.2 Cells

The first test done was combining read and writes. The function CellAccess

listed in Figure F.2 was called with N=100000.

proc {CellAccess N}

C={NewCell 0}

in

for I in 1..N do

C:=@C+I %100 times

end

end

Figure F.2: Cell operations

Cell reads and writes
New Compiler Old Compiler Mozart1

average 6267.1 1471.8 1480.5
standard deviation 47.14 10.85 21.64
ratio 4.26 0.99

Reads were also tested separately. The function CellRead in Figure F.3 was
called with N=100000.

proc {CellRead N}

C={NewCell 0}

in

for I in 1..N do

_=@C % 100 times

end

end

Figure F.3: Cell reads

F.3. FIBONACCI 113

Cell reads
New Compiler Old Compiler Mozart1

average 2500.25 399.05 104
standard deviation 22.18 5.45 5.03
ratio 6.27 3.84

Finally, write operation were also tested separately. The function CellWrite

in Figure F.4 was called with N=100000.

proc {CellWrite N}

C={NewCell 0}

in

for I in 1..N do

C:=1

end

end

Figure F.4: Cell reads

Cell writes
New Compiler Old Compiler Mozart1

average 1402.5 466.65 174
standard deviation 16.55 11.33 5.03
ratio 3.01 2.68

F.3 Fibonacci

A naive Fibonacci function, SlowFib in Figure F.5, was used to compute the
30th Fibonacci number.

fun{SlowFib N}

if N==0 then 0

elseif N==1 then 1

else

{SlowFib N-2}+{SlowFib N-1}

end

end

Figure F.5: A non-optimised Fibonacci function

30th Fibonacci
New Compiler Old Compiler Mozart1

average 2671.7 1029.15 183
standard deviation 7.63 10.82 4.70
ratio 2.60 5.62

114 APPENDIX F. PERFORMANCE MEASURES

F.4 Pattern Matching

Pattern matching was tested with the function OpenMatch in Figure F.6 taking
two arguments:

• The value to test against the case clauses. This was done to prevent
the Mozart1 compiler’s static analysis to completely transform the case
instruction. Two values were tested: the constant 2 and the record
rec(d:1 z:3 y:4 x:6).

• The number of times the case instruction has to be performed. In our
case, N=1000000.

The body of OpenMatch has a structure advantageous to the new virtual ma-
chine, which can combine all clauses in one instruction, whereas the Mozart1
virtual machine requires one instruction per clause.

proc {OpenMatch A N}

for I in 1..N do

case A

of 1 then

skip

[] rec(a:_ ...) then

skip

[] rec(b:_ ...) then

skip

[] rec(c:_ ...) then

skip

[] rec(d:_ ...) then

skip

[] rec(e:_ ...) then

skip

[] rec(f:_ ...) then

skip

[] 2 then

skip

end

end

end

Figure F.6: Matching open record patterns

30th Fibonacci
New Compiler Old Compiler Mozart1

average 12878.65 10384.25 2045
standard deviation 114.83 114.73 20.39
ratio 1.24 5.08

115

116 APPENDIX G. STRUCTURE OF CODE NAMING CLASSES

Appendix G

Structure of code naming classes

% Name class, then switch to a new environment when inside the class

NamedClass={NamerForBody Var Params}

{NewParams.env backup()}

% Name method first, so the private methods are available in the

%methods bodies

NamedLabelsMethods={List.map Methods

fun {$ I}

{NameMethodLabel I NewParams}

end }

% Name methods arguments and bodies. Remember each method creates

% its own environment

NewMethods={List.map NamedLabelsMethods

fun {$ I}

{NameMethod I NewParams}

end }

% Name attributes, features,..

NewSpecs={List.map Specs fun {$ I} {NamerForBody I NewParams} end }

% Add initialisation code if needed

if @(NewParams.init)\=nil then

ClassWithInit={WrapInFAnd

{List.append

[fClass(NamedClass NewSpecs NewMethods Pos)]

@(NewParams.init)}}

else

ClassWithInit=fClass(NamedClass NewSpecs NewMethods Pos)

end

% Add declaration code if needed

if @(NewParams.decls)\=nil then

ClassWithDecls=fLocal({WrapInFAnd @(NewParams.decls)}

ClassWithInit

Pos)

else

ClassWithDecls=ClassWithInit

end

% Restore previous environment

{NewParams.env restore()}

% Return new AST for class

ClassWithDecls

