
Improving DUIs with a decentralized approach with
transactions and feedbacks

Jérémie Melchior, Boris Mejı́as, Yves Jaradin, Peter Van Roy, Jean Vanderdonckt
Information Systems Unit

ICTEAM Institute
Université catholique de Louvain, Belgium

{firstname.lastname}@uclouvain.be

ABSTRACT
When multiple users work collaboratively, coherence is not
an easy feature to guarantee. It requires an exclusive access to
some part of the User Interface (UI) and needs to give some
feedbacks to other users. This synchronization needs a true
concurrency control algorithm. One of the most common so-
lution is to use a server as a transactional manager. Unfortu-
nately, a central point of control is also a single point of fail-
ure. This paper proposes a decentralized architecture based
on a peer-to-peer network providing decentralized transac-
tional support with replicated storage. As a consequence,
there is a gain in fault-tolerance and the transactional protocol
eliminates the problem of network delay improving the over-
all usability. The addition of a feedback mechanism allow the
users to understand better the behaviour of the system.

Author Keywords
Distributed User Interfaces; Collaborative work.

ACM Classification Keywords
C.2.4. Distributed Systems. H.5.m. Information Interfaces
and Presentation (e.g. HCI): Miscellaneous

General Terms
Design

INTRODUCTION
There are many software applications supporting collabora-
tive work, such as drawing, text editing or software devel-
opment. Collaborative work can be done synchronously or
asynchronously. In the later case, the participants make their
modifications on their local copy without direct interaction
with the other participants. Once the changes are made, they
are committed to the global state. In the former case, which is
the focus of this paper, all participants are concurrently work-
ing on a shared working space. Such scenario requires con-
tinuous synchronization of the participants in order to avoid
conflicts. One way of achieving such synchronization is by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

letting the participants lock the part of the shared space they
want to modify, granting exclusive access to that part. Since
all participants can take any lock, having a single point of
control make sense, resulting in the classical client-server ar-
chitecture. Unfortunately, it is well known that having a sin-
gle point of control also means having a single point of fail-
ure, because the whole application relies on the stability of
the server.

The case study we present in the paper is based on Trans-
Draw [5]; a distributed collaborative vector-based graphical
editor with a shared drawing area. Each user runs the ap-
plication and joins a server to get access to the shared area.
When someone is drawing in this area, feedback is sent to
other users reflecting the action. In addition, TransDraw uses
a transactional protocol to allow users to make optimistic
changes on the drawing with immediate conflict resolution.
This feature eliminates the problem of performance degrada-
tion caused by network latency and it is a crucial property of
TransDraw. The synchronization and storage of the global
state is done on a server which centralizes the control of the
work flow. When users modify an object on the drawing, they
request exclusive access for it, which may succeed or fail de-
pending on the behaviour of the other users. All this is re-
flected graphically in the shared drawing space.

A problem of TransDraw, due to its centralized architecture,
is its dependency on the server. If the server crashes the work
is lost, and the application will not run until the server is re-
booted. Peer-to-peer networks have the nice property of be-
ing self-organized, fault-tolerant and fully decentralized. We
propose in this paper to redesign the transactional protocol
of TransDraw to overcome the problem of the single point of
failure. In order to do that, we use Beernet, a structured peer-
to-peer overlay network providing a fault-tolerant distributed
transaction layer with replicated storage. Every time a user at-
tempts to modify a graphical object, this modification will be
done inside a transaction with a different transaction manager,
which is replicated to allow the transaction to finish in case
of failure of the manager. Unfortunately, this fault-tolerance
mechanism is not free. Replication requires a higher usage of
network resources increasing latency of transactions, but the
optimistic approach for starting the modification of an object
counteracts the latency. We consider this a small drawback
because the functionality of TransDraw is fully respected and
there is an important gain in fault-tolerance.

For the management of DUIs another problem comes from
the needs of feedback. The initiator of the distribution must
know when the distribution is over and if everything went
well. The destination platform should notice the distribution
and not be affected negatively by it. For this, we use a feed-
back mechanism in order to notify both the source and the
destination for any kind of distribution. If the result of the
distribution is invisible to one of them, a feedback needs to
ensure the action went well. If the result is creating infor-
mation or modifying the destination remotely, the destination
should understand this addition or change

What follows is a more detailed description of TransDraw and
related works in sections TRANSDRAW and RELATED
WORKS Beernet is described in section DECENTRAL-
IZED TRANSACTIONAL DHT. The core of the proposal
is explained in section , being followed by conclusions.

TRANSDRAW

Description
Transdraw is a collaborative vector drawing tool created by
Donatien Grolaux using transactions[5]. The toolbar pro-
vides, not only the traditional tools of vector editing (eg.
lines, ellipse, rectangles), but also a pair of tools supporting
collaboration. As soon as a user selects an object, a request
is sent to the server for the corresponding lock. However, the
user is permitted to edit the object optimistically before the
server can answer the request. The optimistic nature of the
operation is visually presented to the user by feedback in the
form of a red selection frame. When the server grants the
lock, the transaction on the object is committed and the user
can continue to edit the object in exclusive mode, indicated
by black selection handles until he deselects it at which time
the lock will be returned. If the lock was already held by
another user, the server has to refuse it to the user and the
transaction is aborted. The user sees the modifications he did
optimistically undo themselves and the object is deselected.

A user can also manage explicitly his locks by using the “take
lock” tool, for example to make a complex reorganisation of
the drawing, involving several individual objects. He then
has to release the locks manually using the flashing “release-
locks” button. In order to prevent starvation which could hap-
pen as simply as by a user inadvertently selecting every object
before taking a rest, a lock stealing mechanism is provided.
The “steal lock” tool make a request to steal a lock to the
server which forwards it to the current owner of the lock. This
user then has a few seconds to accept or reject the stealing of
her locks. On timeout, the stealing is considered accepted.
Once accepted, the previous owner notifies the server to for-
ward the lock to the stealer.

Example scenario
Figure 1 presents the view of two users working on the same
drawing, each in his own window. Bob, on the right, had the
top ellipse selected long enough for the server to grant him
the lock as can be seen by the black selection handles around
it. Alice, on the left has just tried to select this ellipse. After
a, normally brief, period during which she was able to do
optimistic changes to this ellipse, her transaction is aborted,

Figure 1. Alice, on the left, see a locked and non-editable ellipse while
Bob has it is selected and editable.

Figure 2. Scenario of complex interaction

and she is notified of it by the disappearance of her selection
and the red dot on the ellipse which will blink a few times to
explain that Bob is a currently editing this object.

The diagram in Figure 2 describes a possible continuation of
the scenario in which Alice steals the lock from Bob to per-
form the update she wants. Alice ask to steal the lock to the
server. Since Bob currently has the lock, the server ask Bob
whether he allows his lock to be stolen or not. This is shown
to Bob as two blinking buttons at the bottom of his edition
window as we can see in Figure 3. If Bob allows his lock
to be stolen, either explicitly or by ignoring the request long
enough, he loose selection of the object and possession of the
lock and the server transfer them to Alice.

All of this assumes that the server does not crash.

RELATED WORKS
There are some applications that already support collabora-
tion in different ways. We describe and comment some of
them briefly.

BOUML

Figure 3. Bob is asked whether he allows his lock to be stolen.

BOUML[8] is a free UML tool that allows drawing diagrams
and generating code in multiple languages. The tool has
been developed as a multiuser application in a sequential way.
Each user of the application must choose an identifier which
allows working on some diagrams. The work may be done
in parallel but there is not any feedback on other users work
as there is no support for concurrent work. There are many
problems with the tool. The lack of feedback prevents user to
know what others are doing and to see their changes. It is also
impossible to know which files are currently being modified
or that have been modified and saved. There can be conflicts
when saving the project. When users are working collabora-
tively, the work of a user will be saved but not all the mod-
ification of other users. This leads to irreversible lost work
without any warning. Another problem is the impossibility
to lock part of the work to prevent modification from another
user.

Gobby
Gobby is a free text-editor that allows collaborative work [1].
It supports multiuser parallel edition on multiple documents
and a multiuser chat. A user has to start a session and cre-
ate the documents, he will host the server needed to central-
ize the information. Other users must choose a name and a
color and connect to the server host. The collaboration be-
tween all the users is simple thanks to the feedback brought
to users with colors. As the BOUML application, Gobby
does not support any lock of some part of the text and all the
users can edit what they want. There is a problem when the
server crashes. The unsaved modifications can be saved but
the whole process of creating a server and joining the server
must be restarted.

Google Docs
Google Docs [3] is an online office suite that allows multiple
users to modify the same file at the same time. One particular
feature, similar to TransDraw, can be seen on spreadsheets.
Once a user is modifying a cell, this one is coloured differ-
ently as in any single user spreadsheet application. When
other users connect to Google servers to edit the same file,
then, the cells they select will appear with a different colour
on the view of the other users, and with a tag identifying the
user. Instead of locking the cell, changes are save incremen-
tally using versioning. Google Docs uses also a centralized
architecture because everything is controlled at Google side.
But, there is a very important difference. There is not only
one server to rely on, but a set of servers with replicated in-
formation, so if a server crashes, another one takes over. Of
course, these are only conjectures about Google’s back-end.

Figure 4. Paxos consensus protocol for distributed transactions.

DECENTRALIZED TRANSACTIONAL DHT
Beernet [2] is a structured overlay network providing a dis-
tributed hash table (DHT) with symmetric replication. Peers
are self-organized using the relaxed-ring topology [6], which
is derived from Chord [9], with cost-efficient ring mainte-
nance and self-healing properties. Data replication is guar-
anteed with a decentralized transactional protocol allowing
the modification of different items within a single transaction.
The transactional protocol implements a Paxos-consensus al-
gorithm [7, 4], which requires the agreement of the majority
of peers holding the replicas of the items. We will focus on
the transactional layer of Beernet because it will be our mean
to decentralize TransDraw.

Figure 4 describes how the Paxos-consensus protocol works.
The client, which is connected to a peer that is part of the
network, triggers a transaction in order to read/write some
items from the global store. When the transaction begins,
the peer becomes the transaction manager (TM) for that par-
ticular transaction. The whole transaction is divided in two
phases: read phase and commit phase. During the read phase,
the TM contact all transaction participants (TPs) for all the
items involved in the transaction. TPs are chosen from the
peers holding a replica of the items. The modification to the
data is done optimistically without requesting any lock yet.
Once all the read/write operations are done, and the client de-
cides to commit the transaction, the commit phase is started.

In order to commit the changes on the replicas, it is neces-
sary to get the lock of the majority of TPs for all items. But,
before requesting the locks, it is necessary to register a set of
replicated transaction managers (rTMs) that are able to carry
on the transaction in case that the TM crashes. The idea is
to avoid locking TPs forever. Once the rTMs are registered,
the TM sends a prepare message to all participants. This is
equivalent to request the lock of the item. The TPs answer
back with a vote to all TMs (arrow to TM removed for leg-
ibility). The vote is acknowledged by all rTMs to the leader
TM. Like that, the TM will be able to take a decision if the
majority of rTMs have enough information to take exactly the
same decision. If the TM crashes at this point, another rTM
can take over the transaction. The decision will be commit if
the majority of TPs voted for commit. It will be abort oth-

erwise. Once the decision is received by the TPs, locks are
released.

The protocol provides atomic commit on all replicas with
fault tolerance on the transaction manager and the partici-
pants. As long as the majority of TMs and TPs survives the
process, the transaction will correctly finish. These are very
strong properties that will allows us to run TransDraw on a
decentralized system without depending on a server.

DECENTRALIZED TRANSDRAW
Instead of using a big infrastructure, we can achieve repli-
cation and fault-tolerance by building TransDraw on top of
a peer-to-peer network, and by decentralizing the synchro-
nization of locks and data storage. Our proposal is to build
TransDraw on top of Beernet.

The Paxos-consensus protocol as described in section DE-
CENTRALIZED TRANSACTIONAL DHT is not suffi-
cient to provide exactly the same functionality of TransDraw
as it was described in section TRANSDRAW. The main dif-
ference lies on the moment where the locks are granted. As
it is currently, locks are granted too late for TransDraw, be-
cause it is not possible to inform users about the intention of
the others.

The first modification we have to do to the transactional pro-
tocol is to allow eager locking request. One idea is to request
the locks when read/write operations are sent to the trans-
action participants during the read-phase. If locks are not
granted, the transaction is immediately aborted. The problem
introduced by this modification is that if leader TM crashes
after requesting the locks, there is no rTM yet to take over the
transaction, and items would be locked forever. Considering
this, the registration of rTMs must also be moved up to the
read-phase. After this two modifications we realized that in
fact it is better to avoid the read-phase and start immediately
with a extended commit phase that first needs to gather the
participants.

The second modification is an eager notification mechanism.
Currently, out transactional layer is meant for asynchronous
access to the share state. When a peer writes a new value for
item, other users are not notified unless they read the item.
In the case of TransDraw, other users needs to be notified not
only of every modification on the value of items, but also on
the intention of other users when they lock items. To achieve
this, the leader must broadcast its decision to the network
once it get enough locks, and once the final decision is taken.
Note that eager locking and the notification mechanism are
only needed on synchronous collaborative work.

CONCLUSION AND FUTURE WORK
We have seen that several synchronous collaborative applica-
tions are currently based on centralized synchronization. This
strategy is efficient but not fault-tolerant because it strongly
relies on the stability of the server. Some applications achieve
fault tolerance by replicating the state of the server, but this
requires a more sophisticated infrastructure and it is still in-
herently centralized. Single point of control is a single point
of failure.

We propose to implement these kind of applications on top of
structured overlay networks with symmetric replication, and
a transactional layer based on consensus. This strategy pro-
vides synchronization and fault-tolerance by decentralizing
the control of the work flow. We present our approach by tak-
ing the TransDraw application and the Beernet peer-to-peer
network.

Beernet as is, can help to decentralize asynchronous collab-
orative applications. In order to achieve the functionality of
TransDraw, which is synchronous, eager locking and a noti-
fication mechanism need to be added to the current transac-
tional protocol.

We still need to study in detail the new transactional proto-
col, implement it and compare the performance with the cen-
tralized approach. We expect to have a small degradation in
performance at the level of the transactional protocol due to
replication cost, but with a huge gain in fault-tolerance. There
is no degradation in performance for the user in case of no
conflicts, because its changes are done optimistically, elimi-
nating the problem of network latency.

ACKNOWLEDGEMENTS
This work has been funded by the European Commission FP6
IST Project SELFMAN (Contract 034084), with support of
the ITEA2-Call3-2008026 UsiXML European project.

REFERENCES
1. 0x539 dev group. The gobby collaborative editor.

http://gobby.0x539.de, 2009.

2. distoz group. Beernet - the relaxed peer-to-peer network.
http://beernet.info.ucl.ac.be, 2009.

3. Google. Google docs. http://docs.google.com, 2009.

4. Gray, J., and Lamport, L. Consensus on transaction
commit. ACM Trans. Database Syst. 31, 1 (2006),
133–160.

5. Grolaux, D. Editeur graphique réparti basé sur un modéle
transactionnel, 1998. Mémoire de Licence.

6. Mejı́as, B., and Van Roy, P. A relaxed-ring for
self-organising and fault-tolerant peer-to-peer networks.
In XXVI International Conference of the Chilean
Computer Science Society, IEEE Computer Society
(November 2007).

7. Moser, M., and Haridi, S. Atomic commitment in
transactional dhts. In Proceedings of the CoreGRID
Symposium, CoreGRID series, Springer (2007).

8. Pages, B. The bouml tool box.
http://bouml.sourceforge.net, 2009.

9. Stoica, I., Morris, R., Karger, D., Kaashoek, F., and
Balakrishnan, H. Chord: A scalable Peer-To-Peer lookup
service for internet applications. In Proceedings of the
2001 ACM SIGCOMM Conference (2001), 149–160.

	Introduction
	Transdraw
	Description
	Example scenario

	Related works
	BOUML
	Gobby
	Google Docs

	Decentralized transactional DHT
	Decentralized TransDraw
	Conclusion and Future Work
	Acknowledgements
	REFERENCES

