
Designing Distributed Applications
Using a Phase-Aware, Reversible System

Ruma R. Paul∗

Microsoft
Dhaka, Bangladesh

ruma.paul@microsoft.com

Jérémie Melchior, Peter Van Roy
Université catholique de Louvain

Louvain-la-Neuve, Belgium
{jeremie.melchior, peter.vanroy}@uclouvain.be

Vladimir Vlassov
KTH Royal Institute of Technology

Stockholm, Sweden
vladv@kth.se

Abstract—Distributed applications will break down or per-
form poorly when there are too many failures (of nodes
and/or communication) in the operating environment. Failures
happen frequently on edge networks including mobile and
ad hoc networks, but are also unexpectedly common on the
general Internet. We propose an approach for designing stress-
aware distributed applications that can take environment stress
into account to improve their behavior. We give a concrete
illustration of the approach by targeting applications built on
top of a Structured Overlay Network (SON). Our underlying
SON is Reversible and Phase-Aware. A system is Reversible if the
set of operations it provides is a function (called the reversibility
function) of its current stress (i.e., all perturbing effects of
the environment, including faults), and does not depend on
past stress. Reversibility generalizes standard fault tolerance
with nested fault models. When the fault rate goes outside
the scope of one model, then it is still inside the next one. In
order to approximate the reversibility function we introduce
the concept of Phase, which is a per-node property that gives
a qualitative measure of the available system operations under
the current stress. Phase can be determined with no extra
distributed operations.

We show that making the phase available to applications
allows them to improve their behavior in environments with
high and variable stress. We propose a Phase API and we
design an application, a collaborative graphic editor, that
takes advantage of phase to enhance self-adaptation and self-
optimization properties. Furthermore, we analyze how the
application itself can achieve reversibility in the application-
level semantics. Using the phase of the underlying node, the
application provides an indication to the user regarding its
behavior. Thus, the application has improved behavior with
respect to the user, i.e., the user can better understand and
decide what to do in a high-stress environment.

Keywords-reversibility; phase; high-stress environment; re-
versible system; phase-aware application

I. INTRODUCTION

Too much stress (e.g., node and/or communication fail-
ures, slow communication) in the operating environment
can cause distributed applications to break down or perform
poorly, without providing any prior indication to the users.
For such scenarios, the application may switch to an “offline
mode” with reduced functionality. This may be acceptable

∗This work was done during the author’s doctoral study at UCL,
Louvain-la-Neuve, Belgium and KTH, Stockholm, Sweden

for client-server applications, such as mobile applications
that depend on a data center that remains a single point
of failure. However, this is now changing with increasing
decentralization of the Internet: data centers are increasing
in number and come in various sizes. Also, the technological
advances and always-increasing user demands of better QoS
and scalability of distributed applications are preparing the
way for a paradigm shift in the field. We are moving away
from data-center-based computing toward edge computing,
i.e., pushing the computation towards the logical extreme of
a network: mobile edge computing, cooperative distributed
peer-to-peer ad-hoc networking, Internet of Things (IoT)—
to name a few of the wide range of technologies covered
by edge computing. Ideally, the applications running on
such increasingly decentralized infrastructures should: (1)
survive with partial functionality during arbitrary stress and
recover their full functionality when the stress recedes; and
(2) change their behaviors to take functionality loss into
account and make themselves predictable to the user.

Reversibility. We propose an approach to design ap-
plications capable of surviving arbitrary stress, providing
reduced but predictable functionality in that case; and, when
the stress goes away, fully recovering functionality. We
apply our approach to applications designed using Structured
Overlay Networks (SON), a well-known approach for build-
ing decentralized distributed systems. In previous work, we
have defined Reversibility of a representative SON against
churn (i.e., nodes failing and being replaced by new correct
nodes) [1] and network partitioning [2]. A system is Re-
versible if the set of available operations (i.e., the function-
ality of the system) is a function of its current stress (called
reversibility function) and does not depend on the history
of the stress. In this paper, we expand and refine this idea
and present two different forms of Reversibility. Also, this
paper focuses on designing applications on top of reversible
systems so that, taking advantage of the reversibility of the
underlying system, the application can manage its behavior
while experiencing stress in its environment. We analyze the
design decisions of the application that will allow it to have
enhanced self adaptation and self optimization, and achieve
reversibility at the application level as well as the SON level.



Phase API. A SON providing functionality at low stress,
e.g., transactions over a Distributed Hash Table (DHT),
might no longer do so at higher stress. Applications relying
on transactions will no longer be able to use them. We
want these applications to continue running nevertheless,
with predictable behavior even with reduced functionality.
For this purpose, an application needs to be informed by
the SON about the qualitative changes in the provided func-
tionality. This information is contained in the reversibility
function. In order to practically approximate this function,
we introduce a Phase concept [1], analogous to that in
physical systems [3]. In contrast to stress, which is a global
property and cannot easily be measured by individual nodes,
phase is a per-node property. All nodes with the same phase
exhibit the same qualitative functionality, which is different
for nodes in different phases. The phase is provided to
the application at each node through a Phase API. This
allows applications to manage their behaviors predictably
in stressful environments.

Contributions. The contributions are as follows.
• Extension of the Reversibility concept; Introduction of

two different forms of reversibility;
• Definition and computation of self-awareness at each

node and how a self-aware node determines its phase;
• Approximation of available functionality (reversibility

function) at each node based on its phase;
• First demonstration of a Phase-Aware application de-

sign and its evaluation;
• Demonstration of self-adaptive/optimization behavior

of the application under churn, delays, and partitions;
• Demonstration of how functionalities of an application

operating under stress can be predictable to the user.
Structure of the paper. Section II defines the concepts

of Reversibility and Phase. Section III presents our repre-
sentative system, a reversible SON. Section IV uses the
phase concept to approximate the reversibility function in
our SON, and explains how we extend a peer to determine
its current phase. Section V shows a phase-aware application
design based on an existing distributed transactional editor
called DeTransDraw (DTD). Section VI evaluates and ana-
lyzes the enhancements in DTD due to the phase-oriented
design. Section VII discusses related work, and we conclude
in Section VIII.

II. REVERSIBILITY AND PHASE

In [1] we have presented a formal definition of Reversibil-
ity. Here, we refine that definition and discuss two different
forms of reversibility. We also discuss how reversibility is
related to fault tolerance and self stabilization. We define
stress as a measure of all the potential perturbing effects
of the environment on the system, including both faults and
other nonfunctional properties such as communication delay.
We conclude with a brief definition of the Phase concept and
its relation with reversibility.

A. Reversibility

Given a function S(t) that returns system stress as a
function of time, in some arbitrary but well-defined units.
For example, S(t) can represent network partitioning as a
function of time. S(t) can return any data structure needed
to represent the stress.

A system is Reversible if there exists a total function
Frev (s), which we call the reversibility function, that returns
the set of available system operations Opavail = Frev (s) for
stress s; and when there is no stress, i.e., s = 0 (where
the symbol 0 indicates no stress), then the system provides
full functionality at all nodes. From this definition, we can
identify two different forms of reversibility.

• Weak Reversibility. A system is Weakly Reversible if
for all t such that S(t) = 0, the system provides full
functionality at all nodes. An operation is guaranteed
to complete if S(t) = 0 during the operation.

• Strong Reversibility. A system is Strongly Reversible
if there exists a function Frev (s) such that the set of
available operations of the system is equal to Frev (s)
for any value of stress s. An operation is available for
a given stress if it eventually succeeds (i.e., it will fail
only a finite number of times if tried repeatedly, and
then succeed).

For strong reversibility, if the stress changes from s1 to s2,
and then back to s1, then the functionality that was available
at s1 is regained. For weak reversibility, s1 is always 0, and
nothing is said for nonzero stress. Section II-B presents our
approach to approximate the reversibility function.

Reversibility is a related but different property than Fault
Tolerance. A fault-tolerant system is resilient for a given
fault model, but its behavior is undefined outside that model.
In order to specify a system that can provide partial func-
tionalities under stress, we would have to define a separate
fault model for each of those partial functionalities. By
introducing reversibility we generalize fault tolerance with
nested fault models. When the fault rate goes out of the
scope of one model, it is still in the next model.

Self Stabilization was introduced in [4] as a non-masking
fault tolerance for distributed systems. Unlike self stabiliza-
tion, reversibility does not assume anything about system
state. A self-stabilizing system survives any temporary per-
turbation of its state, and it will always eventually return
to a valid state when there are no perturbations. In con-
trast, a reversible system provides predictable functionality
under long or continuous stress; therefore, the reversibility
property is more useful in practice. A self-stabilizing system
is reversible, but a reversible system is not necessarily
self-stabilizing. However, self stabilization implies weak
reversibility. Weak reversibility may imply self stabilization
in some cases, if the values of S(t) can cause the system’s
state to be any arbitrary value.



B. Phase

In order to approximate the reversibility function we
introduce the concept of Phase. In contrast to stress, which
is a global condition that cannot easily be measured by
individual nodes, the phase is a local property of a node.
A Phase is a subset of a system for which the qualitative
properties are essentially the same. The phase Pi at the node
i is a well-defined local property of the node. As a node
experiences changes in its local environment, it changes its
phase independently of the other nodes. If this happens at
many nodes, we have a Phase Transition at system level.

We define the Phase Configuration of the system as
the vector Pc = (P1; P2; : : : ; Pn). Both phase and phase
configuration are functions of time. If Pc contains enough
information, then we can define Opavail (Section II-A) in
terms of it: Opavail = Frev(S(t)) ≈ Fphase(Pc(t)). The
phase function Fphase is total: ∀Pc(t); Fphase(Pc(t)) 7→
Opset, here Opset can be a vector, where an element is a set
of available operations at a particular node. In Section IV
we apply the the Phase concept to our representative system
to estimate the phase function.

III. A REVERSIBLE SYSTEM

We have used a ring-based SON, namely Beernet [5],
which hosts a transactional key-value store, as the underlying
system in our work. Beernet is based on Chord [6]. Unlike
Chord, Beernet has correct lock-free join/leave operations,
and we have extended Beernet to be reversible. We have
chosen ring-based overlays, because the ring is competitive
with other SON structures in terms of routing efficiency and
failure resiliency [7]. We briefly describe a model of ring
overlays following the reference architecture of [8].

Ring overlay. A ring overlay has an identifier space, I ⊆
N, of size N . Each node is associated with a unique id, p ∈
I , using a hash function or some random function. A node
with an id p is responsible for (predecessor(p); p], i.e., p is
responsible for keys in the range k ∈ (predecessor(p); p].
Each node p perceives I to be partitioned into log(N)
partitions, where each partition is k times bigger than the
previous one. The routing table of p contains logk(N)
connections (referred as fingers) to some nodes from each
partition. The neighborhood of p, N(p), is the set of peers
with which p maintains a connection. For a target identifier
i, peer p selects the closest preceding link, d ∈ N(p) to
forward the message. Since there are always k intervals,
routing converges in O(logk(N)) hops.

Beernet, A reversible Chord. Beernet is a version of
Chord, the canonical ring-based SON, with correct lock-
free join/leave handling protocols. The join/leave handling
in Chord requires coordination of three peers that is not
guaranteed due to non-transitive connectivity (i.e., A can
talk to B and B can talk to C 6=⇒ A can talk to C) on
the Internet. In contrast to Chord, Beernet does not assume
transitive connectivity. This makes Beernet more resilient on

Internet-like scenarios. We briefly describe Beernet and how
we have extended it to achieve reversibility.

Figure 1: General structure of a
relaxed ring

To avoid locking,
the join/leave operation
in Beernet is done in
two steps. Each step is
a one message round
trip between two nodes.
This greatly simplifies
the join/leave since
it does not have to
handle special cases for
failure. A consequence of such multi-step operations is
that the network is structured as a core ring surrounded
by branches. The branches contain nodes that have done
one step of the procedure. Fig 1 shows a general structure
of Beernet, where red (dark in B/W) nodes are organized
into a ring, green (gray in B/W) nodes are on branches and
blue (light-gray in B/W) nodes are isolated. Ringlets are
formed (by k, l, and m in Fig 1) due to logical partition
of the system due to stress, e.g., high churn or physical
partition. In Beernet, unlike Chord, a node always forwards
a message to the responsible node in order to take into
account any branch in between, and if a node considers its
successor to be responsible, it sets a flag in the message.
Due to branches, the guarantees about proximity offered by
Beernet routing correspond to O(logk(N) + b), where b is
the distance to the farthest peer on the branch.

For Beernet, which hosts a transactional key-value store,
we can identify an ordered set of functionalities, Optotal =
{T R; OpDHT ; Routinge�cient ; Routingbasic; NONE}.

• T R = Transactional functionality.
• OpDHT = Basic DHT operations, get(Key; ?V alue)

(binds V alue to the value stored with key Key) and
put(Key; V alue) (stores the value V alue associated
with key Key). These operations access the storage of
the noderesponsible for the corresponding key;

• Routinge�cient = Logarithmic routing;
• Routingbasic = Basic routing by following the succes-

sor pointer of each node, i.e., O(n) routing.
• NONE = No functionality.
In our case, Optotal is ordered, i.e., if the system supports

transactional functionality (which is the highest-level) then
all the lower-level functionalities are also available. Follow-
ing the definition of reversibility (see Section II-A), the set
of available operation at a node p, Opavail[p] ⊆ Optotal.

Maintenance strategies to achieve reversibility. We
have extended Beernet to be reversible. In order to be
reversible complete self healing is crucial. This can be
achieved by the maintenance strategy of an overlay. A
Maintenance Strategy maintains the structural integrity of a
SON while peers go offline or network connections fail. We
have organized the maintenance strategies of overlays using
the Efficiency ↔ Resiliency spectrum [1]. Correction-on-



change/use, as used in DKS [9], is much more efficient than
gossip-based strategies (e.g., T-Man [10]); whereas gossip is
much more resilient. We have shown that both efficiency and
resiliency are required for reversibility. A full discussion of
the maintenance strategies used in Beernet for reversibility
is outside the scope of this paper; we refer interested readers
to [1], [2]. Reversibility is useful in other distributed systems
as well, e.g., in the Lasp implementation [11], which uses
convergent data structures and is naturally reversible.

IV. APPROXIMATING THE REVERSIBILITY FUNCTION

The goal of this section is to approximate the reversibil-
ity function, i.e., to compute the phase function for our
representative system. In this paper, we do this based on
an assumption: the rest of the system is qualitatively the
same as the current node, i.e., at node i, Pc[j : j 6=
i](t) = Pi(t). Thus, each node i computes the phase
function, thus approximates Opavail based on its current
phase. The reason behind such simplification is to avoid
any extra distributed operation or bandwidth consumption.
In order to have a better approximation, each node needs
to maintain a Phase Base (PB) (a local view of Pc) and
communicate with others to enhance its PB. This can be
done by piggybacking PB with messages routed via each
node to avoid any extra distributed operation; however still
consumes extra bandwidth. The implementation of PB, and
the investigation about extra resource consumption to justify
the worthiness of such protocol, are left as future work.

In this section, we explain how we apply the definition
of phase (see Section II-B) to identify different phases, sub-
phases in Beernet. Next, we define the semantics of each
phase and sub-phase in terms of available operations, i.e.,
we compute the phase function based on our simplifying
assumption described above and expose Opavail to the
application layer by exposing the phase of each node. We
also explain how we have made each peer self-aware so that
a peer can determine its current phase with high confidence
without any global synchronization.

A. Phases in Relaxed Ring

In case of Beernet, we have identified a property that
satisfies the definition of phase. Depending on the neighbors’
behaviors of a node there are three mutually exclusive
states: neighbors on core ring, neighbors on branch, and
no neighbors. This, together with the validity of the fingers
in the routing table of a node, gives detailed information
about the structure of the ring and the expected routing
guarantees. Drawing an analogy with the phases in physical
matter (e.g., water), we have termed these three phases as
solid, liquid and gaseous respectively. Also, when a node
is on a branch (i.e., liquid phase), we have identified three
sub-phases in terms of available operations and probability
of facing an immediate phase transition. All these phases and
sub-phases are distinguishable from each other and provide

sufficient information to understand the available operations
of the system. We define the semantics of each phase and
sub-phase, in the context of Optotal (see Section III), the
functionality set of our representative system.

• Solid (PS) : If a node has stable predecessor and
successor pointers (i.e., the node is on core ring), along
with a stable finger table, then it can be termed to be
in solid phase. It can be safely assumed that such a
node can support efficient routing and accommodate
up-to-date replica sets, leading to all the upper layer
functionalities, e.g., transactional DHT.

• Liquid : If a node is on a branch, then it is less strongly
connected than those in PS . However, a node can be on
a branch temporarily, e.g., as part of the join protocol.
We identify three liquid sub-phases.

– PL1: If the node is on a branch, but the depth
(distance from the core ring) is ≤ 2. The justifi-
cation of depth of 2 for this sub-phase is based
on the evaluation of average branch sizes in [5],
that shows that the average branch size of Beernet
is ≤ 2, corresponding to the connectivity among
nodes on the Internet. So, if a node’s depth on
a branch is ≤ 2, the operating environment from
a node’s perspective is the usual one, it might
temporarily be pushed on a branch. The node
holds a stable finger table and is able to provide
transactional functionality to the application.

– PL2: If the node is on a branch with a depth > 2,
but is not the tail of the branch. The finger table
at the node holds > 50% valid fingers. The node
is able to support DHT operations, however suc-
cessful transactions are not guaranteed anymore.

– PL3: If the node is on a branch with a depth
> 2 and it is the tail of a branch (farthest node
from the core ring). The tail of a branch has
higher probability to get isolated during churn,
thus introducing unavailability in the key range [5].
Also, most of the fingers in the node’s finger table
are invalid or crashed. From the application’s per-
spective, the node in this sub-phase provides very
limited functionality, mostly basic connectivity.

• Gaseous (PG) : If a node is isolated, it is in gaseous
phase. As shown in Fig 1, ringlets can be formed
due to stress. For example, if there are > 1 nodes
per physical machine and the physical network breaks
down, then ringlets will be formed by the nodes on the
same physical machine. For such scenarios, using the
global view we can term the nodes on a ringlet to be in a
form of gaseous sub-phase. However, as phase is a node
specific local property, a node on a ringlet determines
its phase based on its local view, thus its phase decision
will be either solid or a liquid sub-phase.



B. Computation of Phase at Individual Nodes

The phase is a local property of each node. Each node
determines its own phase independently, and at a given in-
stant different nodes in the system can be in different phases.
The phase of a node should reflect the current stress in its
local environment. The phase should be determined with low
resource consumption, so that it can be useful even in highly
stressful scenarios. Given these constraints, how a node can
determine its phase with high confidence, without any global
synchronization? In order to determine the current phase at
each node by satisfying these constraints, self-awareness is
crucial for each node. In this section we describe how we
have extended each node in our representative system to be
self-aware and how a self-aware node determines its phase
following the semantics described in Section IV-A.

Self-awareness. Knowing its state is not enough for a
node to determine phase with high confidence. The node
needs to know about its immediate vicinity, and how it is
being perceived by the other parts of the system. This com-
bined knowledge provides meaningful context for behavioral
decisions and prediction, thus improves accuracy in phase
determination. These two types of node’s knowledge (i) its
internal state, and (ii) how other parts of the system perceive
it, can be termed as private and public self-awareness respec-
tively [12], [13]. A self-aware node can determine its phase
with high confidence without any global synchronization.

Internal state of a node: The state of a node p is Statep =
{p; N(p)}; where N(p) is the neighborhood (see Section III)
of p. For our representative system, N(p) = {successor(p);
predecessor(p); RTp}, here RTp is the routing table of p.
N(p) is time-dependent due to the dynamics in the overlay.
So, each node corrects its internal state, if required, as part
of its maintenance strategy.

Achieving public self-awareness: We have extended each
node to be self-aware by collecting information about how it
is being perceived by the other nodes. A node collects this
information as part of its maintenance and also from the
messages it receives or routes. The collected knowledge is
stored as: Kpublic = {Br; Brroot; Brtail; Brsize; Brdepth},
where Br; Brroot; Brtail are flags denoting existence of a
branch and whether the current node is the root or tail of
a branch respectively. Brsize and Brdepth denote the size
of the branch and the depth of the node on the branch. In
Beernet, each node maintains a list of nodes, called predList,
that consider the current node as its successor, to do routing
on the branches. The list is used to determine the branch
size and a node’s depth on the branch. Public self-awareness
is achieved using both maintenance and protocol messages.
For example, consider a node with id u and its predecessor
s (Fig 1); u is responsible for the keys {t; u}. If u receives
a message, which is destined to u based on the flag as
described in Section III concerning a key q, then u can imply
that some nodes of the system perceive it to be responsible of

key q. Thus, u can gather the knowledge about the existence
of a branch in its local environment and sets the correspond-
ing flag. Similarly, public self-awareness is achieved as part
of maintenance also, particularly via proactive maintenance.
For example, as part of Periodic Stabilization (PS) [6], each
node exchanges periodic messages with its successor to
maintain its internal state. Consider a node with virtual id y
and predecessor x (see Fig 1). If y receives a PS message
from w, which implies w perceives y as its successor and
is not aware of or suspecting node x. Thus, y can learn the
knowledge of x being on a branch and it itself be the root
of a branch, thus it sets the corresponding flags. Similarly, x
can also deduce from the absence of periodic maintenance
messages from its predecessor about it being pushed as a
tail on a branch, thus it sets its flags.

Periodic phase computation. As mentioned in Sec-
tion II-B, phase at each node is a function of time. So
phase determination at a node is periodic. Every Tphase

time unit, a node computes its current phase. Tphase is a
configurable parameter. If this time window is too long,
several phase transitions, that the node has experienced in
between, might be missed to be traced, especially when there
is stress in the environment. As a result, the application layer
also will not be notified about those, which might affect
the performance of the application that invokes phase-driven
actions. A better approach is to recompute phase whenever
there is a change in a node’s internal state or public self-
awareness, implementation of which is left as future work.

We can express the phase determination at a node p
during a round R, as a function Fdet. The phase of p at
round R is, P hasep(R) = Fdet(Statep(R); Kpublic(R);
Historyphase(p; S)). Here, Statep(R) is the state of p and
Kpublic(R) is the knowledge p has gathered during Tphase

time unit. Historyphase(p; S) is a vector which stores the
phases of p during the last S rounds. This is required
particularly to optimize the decision about the routing table
in our context (explained shortly). The function, Fdet, can
be a simple algorithm, such as if-else logic on the fields of
the parameters, or a stronger machine learning algorithm. In
our implementation, we have used light-weight if-else logic
on the flags and values of the fields of three parameters to
determine phase at each node. The goal is to demonstrate
that using simple logic at each node, without introducing
extra resource consumption, the usability and behavior of a
distributed application can be significantly improved.

As mentioned in Section III, each node perceives the
identifier space to be partitioned into logk(N) partitions,
where each partition is k times bigger than the previous
one. The k-ary routing table of a node contains logk(N)
fingers to some nodes from each partition. We have assigned
weights to the fingers, depending on the partition it belongs
to, to compute the invalid/missing fingers. The longest finger
to the biggest partition has a maximum weight of 1=k and
for the next k-times smaller partition, the finger weight



Figure 2:
DeTransDraw
Transactional

Protocol
(Eager Paxos

with
notifications

to the
readers)

is also reduced proportionally as 1=k2, and so on. The
motivation for such weighted scheme is that if the longest
finger is missing or suspected to be invalid then it affects
the routing guarantees more than an invalid finger to the
smallest partition, which is in its immediate neighborhood.
Consider a scenario: in node p’s routing table, one node
x is responsible for more than one contiguous partition.
As a result p will find missing fingers to some partitions,
thus might misjudge the accuracy of its routing table and
inaccurately determine its phase during that round. However,
it might be the case that the p’s routing table is in perfect
state as per the global view and the reason for the missing
fingers are something different than the effect of stress, e.g.,
there are only few nodes in the system or skewed mapping
of the nodes on the identifier space. Taking these scenarios
into account, p must revise its decision about its routing
table in subsequent rounds: if during contiguous S rounds,
the routing table is in the same inaccurate state, then p can
safely assume that this is the optimal state of its routing table
as per the global view and re-evaluate its phase decision. p
can also proactively verify this, thus optimize its decision,
by doing lookups using the ids of the invalid/missing fingers;
however also incurring resource consumption. Here, S is a
configurable parameter: if S is too low then, a node might
misjudge about a scenario, whereas for very high values of
S the node will take more time to re-evaluate its phase, also
it will consume more memory to store the history.

C. Exposing Phase to Applications

We provide qualitative indication of what system opera-
tions are available, i.e., Opavail, by exposing the phase of
a node. The phase information is given to the application
at each node, using an API [1]. Our API supports push
and pull methods: using pull method the application queries
the underlying node about its current phase, whereas the
push method allows the application to be notified when
the underlying node changes phase. With this API, the
application can be made reversible, i.e., the application can
monitor the qualitative network behavior and change its own
behavior accordingly.

V. PHASE-AWARE APPLICATION DESIGN: A USE CASE

In order to demonstrate design of a phase-aware appli-
cation, we have selected a nontrivial use-case application
called DeTransDraw = Decentralized Transactional Draw-
ing (DTD), a collaborative drawing tool. The first version of
DTD is described in [5]. We extend DTD to integrate phase-
aware design decisions in order to improve self-management
properties, usability and reversibility of the application.

DTD is a decentralized real-time collaborative vector-
based drawing application. It provides a graphical editor with
a shared drawing area, and enables coherent collaboration
among the users, where each user is graphically notified
about the activities of others. DTD is the successor of
TransDraw [14], which has a client-server architecture. DTD
is the decentralized version of TransDraw that runs on a
peer-to-peer network. In TransDraw, as the server holds
the entire state of the application, it is the single point of
failure as well as the source of congestion and scalability
issues. In DTD the state is spread across the network and
replicated using Symmetric Replication [15]. DTD provides
load balancing, scalability, and fault tolerance.

DTD is an asynchronous and consistent collaborative
application that provides a shared drawing area.DTD uses
transactions to hide network latency and improve perfor-
mance. Transactions allow a user to modify the figures
immediately, without waiting for the confirmation of a dis-
tributed operation. Due to such optimistic approach (from a
user’s perspective) a user may lose her modifications if there
are concurrent modifications of the same figure by another
user, or the user is experiencing intermittent connectivity
(i.e., the application has stress in its environment). A conflict
resolution mechanism is needed to resolve conflicts, if any,
among concurrent transactions. In DTD, the conflicts are
resolved by the transaction manager by rolling back one of
the conflicting transactions. The probability of conflicts is
higher in coherent collaboration. So, we need a pessimistic
transactional approach with eager locking, so that the user
is notified about any concurrent update earlier, instead of
losing all her modifications when trying to commit. A
Paxos consensus based commit protocol with optimistic
locking [16], where the client performs modifications and
then requests locks to commit the changes, hinders the
functionality of such applications. So we use an adapted
version [5] of Paxos (Eager Paxos) to support eager locking
with a notification mechanism so that other users are notified
on updates or locking of each of the shared items.

Fig 2 illustrates the Eager Paxos transactional protocol as
used in DTD. A transaction is done in two steps: i) get the
lock and ii) commit. When a user starts modifying objects,
the client initiates a transaction by contacting a transaction
manager (TM), different for every transaction. Before the
TM requests for lock, it registers a set of replicated transac-
tion managers (rTMs) for fault tolerance. If the TM crashes,



Figure 3:
DeTransDraw GUI.
The bottom status
bar indicates the

phase of the node
solid/liquid/gaseous
in green/yellow/red

(gray/light-
gray/dark-gray)

respectively.

the rTMs take over. To get the lock, the TM contacts all
transaction participants that store replicas of the object in
the transaction. Once the decision (lock granted or rejected)
has been made, the client is informed, to prevent users from
working on already locked objects. If the locks are granted,
new values of corresponding items are committed. DTD
merges optimistic and pessimistic approaches to transaction
management. It is optimistic as the user does not need to
wait for the lock to start working, and it is pessimistic as a
transaction first gets the lock and then commits.

Fig 3 shows the graphical user interface of DTD that
has four parts: the title bar, the canvas (the shared drawing
area), the toolbar and the status bar. The toolbar contains
five buttons to set the color and border of the object, to
choose drawing operations, and to select objects. When the
user selects objects, the client tries to acquire corresponding
locks.If the locks are not granted, the objects are unselected
and the modifications to these objects are aborted, reverting
the objects to their original states. As we can see in Fig 3,
the top-right oval is successfully selected by the user. When
the user completes modifying the objects, she unselects the
objects, the new state of those objects is committed, and
object locks are released. The status bar notifies the user
about two things. First, the phase-aware indicator (color of
the status bar) conveys to the user the behavioral prediction
of the application (for details see Section V-A); Second, the
status bar notifies the user about her current action.

A. Phase-Aware Design Aspects

We extend DTD to integrate phase-aware design decisions
in order to enable the application to manage its behavior
in stressful environments and achieve self-adaptation and
self-optimization. Showing the phase of the underlying node
allows DTD to become behaviorally predictable to the users.

Phase-aware behavioral indication. We have integrated
color-based phase-aware behavioral indicator in the status
bar of our application. The indicator can be green or yellow
or red, denoting respectively solid/liquid/gaseous phase (see
Section IV-A) of the underlying node. From the user’s
perspective, if this indicator is green, she can continue her
work without being concerned. If the indicator turns to
yellow, the user can expect some functionality disruptions.
The red color of this indicator tells the user about her offline
state. The indicator in Fig 3 is green, thus assuring the user
with full functionality of the application. In this way, the ap-

plication becomes behaviorally predictable to the user. Such
predictability indications allow the users to manage their
behaviors and use the application productively, especially
when there is stress in the application’s environment.

Phase-aware self adaptation. We extend DTD to re-
act to the phase transitions of the underlying node, thus
adapting its behavior to the changes in its environment. If
the application is notified about a transition from solid to
liquid, the application deduces that the underlying system is
not stable anymore, and reacts. It commits all the pending
modifications and releases the locks. For example, when the
user is doing modifications on one or more selected objects
and a transition from solid to liquid happens, the application
commits the changes till that point and releases the locks
of corresponding objects, instead of waiting for the user’s
action to initiate the commit. The goal is to avoid losing all
the user’s actions at the end, due to intermittent connectivity.
However, if the application immediately takes such reactive
actions, it might degrade the environment by making the
physical links more congested. Also, the user experience
might also be affected, e.g., a transient slow-down of the
underlying physical link changing the phase for a brief
period; for such scenarios reacting immediately will deter
the user’s work-flow. To avoid these, the application waits
for a certain time, TReact (a configurable parameter) before
reacting. Suppose, the application is notified about the phase
transition at T th time unit, it waits till T +TReact time unit,
if the current phase is still not a stable one, it initiates the
reactive actions. Such adaptive actions will enhance user’s
experience of the application in high-stress environment.

Phase-aware self optimization. We extend DTD to
proactively optimize its state based on the recent phase
transition history. As there is coherent collaboration among
the users, keeping the canvas consistent is important. Sup-
pose, there are three users, A, B, and C, using DTD. B is
having intermittent connectivity and misses some updates of
other users’ activities, making B’s canvas inconsistent. In a
similar way, A and/or C might miss the notifications about
B’s activities. To avoid such inconsistencies, the application
needs to proactively sync a user’s canvas with its global
state. However, unnecessary synchronization attempts will
only result in resource consumption. The application can
initiate such optimization efforts based on the recent phase
transitions of the underlying node. If the application is
notified about a transition to gaseous phase or m times
solid ↔ liquid phase transitions during a period of Topt,
the application initiates a read transaction to sync its canvas
with the global state. Here, Topt and m are configurable
parameters. We have set m > 1 to avoid unnecessary
optimization attempts (thus, resource consumption) due to
transient transitions to liquid phase, because for such cenar-
ios the probability that any update is lost is very low. Thus,
based on the phase transitions of the underlying node, the
application proactively achieves self optimization.



(a) 4 instances of DeTransDraw (b) User D has crashed (c) User E has joined
Figure 4: DeTransDraw facing Churn. (a) Suppose Users A, B, C and D. (b) D has crashed and is replaced by E. B makes a transient

transition to liquid phase while doing self-healing, as D was its successor. (c) The system is stable again with full functionality.

VI. EVALUATION

We evaluate DTD in stressful environments and analyze
the benefits of the phase-aware extensions. We discuss
the reversibility of DTD against such environments. Visual
demonstrations of our experiments can be found in [17].

We use an overlay of 10 nodes for our experiments. A
DTD instance runs on each node. During the steady state of
the system, we invoke different stresses, e.g., churn, network
congestion, and partitioning. We observe the behavior and
available functionalities of the application during the stress
and after the stress is revoked. Due to lack of space, we
present screen shots of only 4 representative DTD instances.

We simulate churn by terminating one or more DTD
instances (i.e., injecting failures at the underlying nodes)
and joining new instances. We keep the average number
of instances the same. Fig 4 shows the behavior of the
DTD instances when one node fails and is replaced by
another node. The phase indicators on the status bars (of
corresponding successors and predecessors) capture these
events by showing a transient transition to the liquid phase
(in yellow). Due to the reactive maintenance strategy, the
concerned nodes correct their states and change to solid
phase (in green) again after the completion of self healing.

In order to assess the behavior of the application when
there is congestion in the physical network, we invoke slow
down of node communication. We simulate such scenarios
by adding delay (30 sec) on each outgoing message.As the
failure detector at each node is adaptive with Round Trip
Time (RTT) [18], all nodes adapt with the new RTT of
a slow node after initial false suspicions, and the system
becomes stable with all nodes in solid phase. To make
the environment more stressful and simulate intermittent
connectivity, we trigger periodic slow down of node(s). In
our experiments, every minute a slow node slows down by
30 sec for a period of 20 sec, i.e., during this 20 sec period
each outgoing message of the node suffers an added delay of
30 sec, followed by a 1 minute period, during which there are
no added delays on the outgoing messages. We have invoked
5 rounds of such intermittent connectivity for 2 slow nodes.
Fig 5 shows the 3 snapshots of our experiment, where user
B and C have intermittent connectivity. D is in liquid phase
as it is suspecting its successor C, and C is in gaseous phase

transiently, because due to its intermittent connectivity, C is
also falsely suspecting its predecessor, D and successor, A.
However, B is in solid phase in Fig 5b, the reason is: B is
in a period during which its connectivity has been restored
(i.e., no added delay on its outgoing messages). Also, due to
facing congestion, both B and C have missed some activities
of A and D (see Fig 5b). However, the application eventually
recovers all its functionalities at all users, once the system
is stable again, as observed in Fig 5c.

Next we experiment with network partitioning. We sim-
ulate scenarios where nodes are partitioned away. During
the partition, the DTD instances in one partition do not
receive updates from the other partitions. As the partition
ceases, the application syncs as part of its self-optimization
and achieves canvas consistency across users. In our cur-
rent implementation, the users in one partition lose their
modifications done during the partition after the partition is
repaired. This was our design choice to retain the highest
version of the canvas. This can be improved, by allowing
the application to merge the diverging versions accounting
to application-level semantics. Fig 6 shows three snapshots
of our experiment where a node is partitioned away. As we
can see in Fig 6b, during the partition, user A, C and D are
in one partition, whereas B is in another partition. With time
the canvas across the partitions continues to diverge, i.e., the
users in one partition are not aware of the activities of the
users in the other partition. After the partition ceases, all
DTD instances synchronize with the highest version of the
canvas, thus eventually restoring canvas consistency (as in
Fig 6c, though B has lost all her modifications done during
the partition) and other functionalities.

Reversibility of DeTransDraw. To analyze the reversibil-
ity of DTD, first we need to identify its overall func-
tionalities.For DTD, the set of functionalities, Optotal =
{CC; ADD; DEL; SEL; MULT SEL; UP D}.

• CC corresponds to consistent canvas across users;
• ADD and DEL correspond to the functionalities of

adding and deleting a figure respectively;
• SEL and MULT SEL allow a user to select one and

multiple figure(s) on the canvas respectively;
• UP D allows a user to update selected figure(s).
During our experiments, we have assessed reversibility of



(a) 4 instances of DeTransDraw (b) Intermittent connectivity of B and C (c) Eventually stable with full functionality
Figure 5: DeTransDraw facing Congestion. (a) Suppose users A, B, C and D, where B and C have intermittent connectivity (periodic
slow-down). (b) The node D suspects its successor C, and makes a transient transition to the liquid phase; while C becomes isolated.

Node B is in solid phase as it is in a period when its connectivity has been restored. Both B and C have missed some activity updates
of A and D. (c) As the connectivity of B and C is restored, canvas consistency and all other functionalities are retrieved.

DTD. While experiencing stress, some functionalities may
become transiently unavailable, e.g., due to lost updates (as
a result of congestion or partitioning in physical network)
the canvas consistency gets broken; if a node crashes while
holding lock of one or more figure(s) (as a result of selecting
those), other nodes are temporarily unable to select and
update those particular figure(s), until the lock expires.
However, we have established the weak reversibility of our
application, i.e., when the stress fades away, the application
eventually regains all its functionality.

VII. RELATED WORK

We briefly summarize the relevant work on self aware-
ness in distributed systems. Next, we briefly mention some
related works about self adaptation and self optimization in
distributed applications. A paradigm shift in system design
is explored in [19], [20], from procedural design methodol-
ogy, where the behavior of the system is pre-programmed,
towards self-aware system design, where the system adapts
to its context during run-time. In their follow-up work [21],
a self-aware computing framework is proposed, which au-
tomatically and dynamically schedules actions to satisfy the
application’s goals. Another approach to build self-managing
systems is proposed in [22], based on interacting feedback
loops, so that systems can adapt to a wide range of operating
conditions and maintain useful functionality. In [23], authors
present a high-level methodology for designing the manage-
ment part of a distributed self-managing application in a
distributed manner by partitioning of management functions
and orchestration of multiple autonomic managers. The
design of a self-aware application to control the behavior
of distributed smart cameras is explored in [24]. Based on
a utility function, the system decides at run-time how to
exchange tracking responsibilities among cameras. A much
simpler application of self awareness can be found in [25],
in which cognitive radio devices monitor and control their
capabilities and also communicate others to achieve efficient
communication by negotiating changes in parameters.

Diligent search has failed to uncover any work on phase-
aware application design. However, we have found sev-
eral works on designing self-adaptive and self-optimized

distributed systems and applications. The survey in [26]
proposes a taxonomy of concerned aspects of adaptation and
also presents a landscape of research to identify the research
gaps and corresponding challenges. An approach is proposed
in [27], following the principle of Separation of Concerns,
to systematically develop self-adaptive component-based
applications. As per their approach, the adaptation logic
is developed separately from the rest and the adaptation
policies are interpreted at run-time based on the changes in
the environment, detected by a context-awareness service.
A predictive stabilization is proposed in [28], as part of
Chord, where the nodes of the overlay adapt their main-
tenance to their environments. Such adaptation improve the
performance of the overlay, e.g., low maintenance overhead
and high lookup success ratio. The work in [29] develops a
mechanism to optimize the resource consumption between
nodes by transferring services to other nodes. In our work,
the context-awareness is provided to the application by the
underlying system, in the form of phases, based on which
the application can trigger its adaptation and optimization
policies, thus can be seen as complementary to these works.

VIII. CONCLUSION

In order to take full advantage of edge computing, large-
scale applications must be designed considering the high
stress inherent in such operating environments. In this paper,
we have proposed an approach for designing applications
for such environments. We have built our application on
top of a Reversible and Phase-Aware Structured Overlay
Network, hosting a transactional DHT. We have applied
and expanded the concept of Reversibility in the context of
application design. We extend each node of the underly-
ing system to be self-aware and demonstrate how a self-
aware node can determine its phase without any global
synchronization. We have applied the concept of phase to
approximate the available operations in our system, and have
demonstrated how this information can be made available to
the application layer by exposing the phase of the underlying
node. We have described phase-aware design of one use-case
application, namely a collaborative drawing tool. Using this
use-case application, we exhibit, based on the phase and


