Data Stream Processing in the Cloud

Evangelia Kalyvianaki
ekalyv@imperial.ac.uk

joint work with Raul Castro Fernandez, Marco Fiscato,
Matteo Migliavacca and Peter Pietzuch

Large-Scale Distributed Systems Group
http://lsds.doc.ic.ac.uk

Doctoral School Day in Cloud Computing, Université catholique de Louvain – November 2012
Big data
- 150 Exabytes (billion GBs) in 2005 → 1200 Exabytes in 2010
- real-time big data analytics in UK £25 billions → £216 billions in 2012-17

Many new sources of data become available
- Sensors, mobile devices
- Web feeds, social networking
- Cameras
- Scientific instruments

How can we make sense of all data?
- Most data is not interesting
- New data supersedes old data
- Challenge is not only storage but also querying
Real Time Traffic Monitoring

Instrumenting country’s transportation infrastructure

- Many parties interested in data
 - Road authorities
 - Traffic planners
 - Commuters

- High-level queries
 - “What is the best time/route for my commute from London to Cambridge at 7-8am?”
Detection and reaction to social cascades
Astronomic Data Processing

Analysing transient cosmic events: γ-ray bursts

Large Synoptic Survey Telescope (LSST)
- Generates 1.28 Petabytes per year
Global Sensor Applications: EarthScope

Using sensors to understand geological evolution

- Many sources: seismometers, GPS stations, ...

How do you process all this data?
Traditional Databases

Database Management System (DBMS):
- Data relatively static but queries dynamic

- Persistent relations
 - Random access
 - Low update rate
 - Unbounded disk storage

- One-time queries
 - Finite query result
 - Queries exploit (static) indices
SPSs: Queries static but data dynamic

- Data represented as time-dependent data stream

→ Process data streams on the fly without storage

- Transient streams
 - Sequential access
 - Potentially high rate
 - Bounded main memory

- Continuous queries
 - Time-dependent res. stream
 - Indexing?
Data Stream Processing

Process **tuple streams** on-the-fly by **operators**:

Distributed Stream Processing Systems
This talk is about ...

Data Stream Processing in the Cloud

Scalable and Fault-tolerance Stream Processing in the Cloud
 – Increasing workload rates
 – Stateful operators

Fair Stream Processing in Federated SPSs under Overload
 – Tuple shedding user-feedback metric
 – Fair tuple shedding under overload
Scalable and Fault-tolerant Stream Processing in the Cloud
Clouds provide virtually infinite pools of resources
- Fast and cheap access to new machines for operators

In a utility-based pricing model:

👉 How do you use the optimal number of resources?

- Needlessly over-provisioning system is expense
- Using too few resources leads to poor performance
Challenges in Cloud-Based Stream Processing

Intra-query parallelism
- Provisioning for workload peaks unnecessarily conservative

Failure resilience
- Active fault-tolerance requires 2x resources
- Passive fault-tolerance leads to long recovery times

Dynamic scale out: increase resources when peaks appear

Hybrid fault-tolerance: low resource overhead with fast recovery

both mechanisms must support stateful operators
Operator State Management

Operator state:
- A summary of past tuples’ processing, e.g. max result
- It cannot be lost, or stream results are affected

On **scale out**:
- Partition operator state correctly, maintaining consistency

On **failure recovery**:
- Restore state of failed operator
- Define primitives for state management and build other mechanisms on top of them

➤ Make operator state an external entity that can be managed by the stream processing system
What is state in stream processing system?

- Need to externalise processing state of operators
State Management Primitives

- **Checkpoint**: Takes snapshot of state and makes it externally available.

- **Backup**: Moves copy of state from one operator to another.

- **Partition**: Splits state in a semantically correct fashion for parallel processing.

- **Restore**: ...
1. **Dynamic Scale Out**: Detect bottleneck, remove by adding new parallelised operator

2. **Failure Recovery**: Detect failure, replace with new operator
Dynamic Scale Out: Detecting bottlenecks

Bottleneck detector

CPU utilisation report 35%

Logical infrastructure view

Bottleneck

85%

30%

35% 85% 30%
The VM Pool: Adding operators

Problem: Allocating new VMs takes minutes...

Bottleneck detected

Decision to scale-out

Select pre-provisioned VM (order of secs)

Provision VM from cloud (order of mins)

Add new VM to pool

Virtual Machine Pool

VM1, VM2, VM3

Bottleneck detector

Monitoring information

Cloud provider

VM3
Periodically, stateful operators checkpoint and back up state to designated **upstream backup node**.

Finally, upstream operators replay unprocessed tuples to update checkpointed state.

For scale out, backup node already has state of operator to be parallelised.
Processing state modeled as (key, value) dictionary

State partitioned according to key k of tuples
- Same key used to partition incoming streams

Tuples will be routed to correct operator
- x is splitting key that partitions state

![Diagram showing state partitioning and data flow](image-url)
Passive Fault-Tolerance Model

Recreate operator state by replaying tuples after failure
- Send acknowledgements upstream for tuples processed downstream

May result in long recovery times due to large buffers
- System is reprocessing streams after failure ➔ inefficient
Upstream Backup + Checkpointing

Benefit from state management primitives
- Use periodically backed up state on upstream node to recover faster

State is restored and unprocessed tuples are replayed from buffer
SEEP scales out to increasing workload in the Linear Road Benchmark
THEMIS: Max-min Fairness in Federated Stream Processing under Overload
Federated Stream Processing System

- We cannot scale out to additional resources
- Permanent resource, skewed overload conditions
- Tuple shedding
Tuple Load Shedding \rightarrow discard data!

Query:
Which are the two rooms with the highest temperatures, every 5 minutes?

- Reduces resource footprint
- Useful only when feedback is provided to user
- Shedding is controlled for fair processing among queries
Source Information Content (SIC) metric provides feedback on loss of source tuples. SIC is query-independent.
Unfair Processing in Federated SPSs

- 3 nodes, 100 top-5 queries
- Traces from 40 PlanetLab nodes
- “Select the 5 nodes with the highest free CPU and at least 500MB of MEM every second”
- Skewed query deployment

Random shedding → a wide spread in processing quality
G1: Query-independent processing metric \rightarrow SIC

G2: Stream processing fairness \rightarrow max-min SIC
 - Some queries are less/more overloaded than others

Max-min SIC Fairness:
The ordering of queries is max-min SIC fair if and if only an increase in the SIC value of a query must be at the expense of the decrease of the SIC value of an already smaller query.

G3: Decentralised fairness \rightarrow sites are autonomous
Max-min Decentralised Fairness Challenges

assume (node a) << (node b)

Research question:
how can we balance shedding so to maximise SIC values on (node a) queries?
Max-min Decentralised Fairness Solution

Solution insights:
- Each node solves a max-min problem for its running queries
- Each node is updated on the result SIC value of its queries
 → nodes take informed local decisions for global fairness
- Each node always sheds the least SIC tuples
 → save on resources
- Solve a small problem at-a-time and iterate with feedback
THEMIS Evaluation

- 18 nodes, 2,000 fragments
- Mix workload: cov, top-5, avg

THEMIS max-min fairness is always better than random
Conclusions

Data Stream Processing is efficient in the Cloud
- New challenges emerge from Cloud scalability
 - Scale out and fault-tolerance have to be integrated
- New problems arise because of distribution
 - Fairness in overload management requires feedback of processing

Future work -> Cloud is there but does not come cheap
- Large-scale management
- Competing requirements from multi-tenancy deployment
- Unknown changing workloads
- Pay-as-you-go model, is this the best?
- Minimise the cost for users, maximise Cloud providers’ revenue
- Novel architectural designs for data-centre management

Thank you! ekalyv@imperial.ac.uk
Experimental Evaluation

Goals
- Correlation of SIC metric with result correctness
- Effectiveness of the max-min fairness algorithm
- Scalability of the fairness algorithm
- Overhead of our shedder implementation

Prototype system: THEMIS
- Implemented in Java

Workload
- Aggregate workload (max, count, avg)
- Complex workload (top-5, avg-all, covariance)
- Synthetic data (uniform, Gaussian, exponential)
- PlanetLab data (CPU and memory usags, 1month, 40 nodes)

Deployment on local and Emulab (18 nodes) test-beds
THEMIS Evaluation

max query

top-5 query
THEMIS Evaluation
Experimental Evaluation

Goals
- Investigate effectiveness of scale out mechanism
- Recovery time after failure using UBC
- Overhead of state management

Prototype system: Scalable and Elastic Event Processing (SEEP)
- Implemented in Java; Storm-like data flow model

Sample queries + workload
- **Linear Road Benchmark** (LRB) to evaluate scale out [VLDB'04]
 - Provides an increasing stream workload over time for given load factor
 - Query with 8 operators; SLA: results < 5 secs
- **Windowed word count query** to evaluate fault tolerance
 - Induce failure to observe performance impact

Deployment on Amazon AWS EC2
- Sources and sinks on high-memory double extra large instances
- Operators on small instances
Scale Out: LRB Workload

Scales to load factor $L=350$ with 60 VMs on Amazon EC2
- Automated query parallelisation

$L=512$ highest report result [VLDB’12]
- Hand-crafted query on dedicated cluster

Scale out leads to latency peaks, but remains within LRB SLA
UB+C: Recovery Time

Source Replay:
Upstream Backup with tuples replayed by source only

State backed up every 5 seconds in UB+C

UB+C achieves faster recovery, especially for fast stream rates
Shorter checkpointing interval leads to faster recovery times
But also incurs more overhead, impacting tuple processing latency
Related Work

Scalable stream processing systems
- **Twitter Storm, Yahoo S4, Nokia Dempsey**
 Exploit operator parallelism mainly for stateless queries
- **ParaSplit operator** [VLDB’12]
 Partition stream for intra-query parallelism

Support for elasticity
- **StreamCloud** [TPDS’12]
 Dynamic scale out/in for subset of relational stream operators
- **Esc** [ICCC’11]
 Dynamic support for stateless scale out

Resource-efficient fault tolerance models
- **Active Replication at (almost) no cost** [SRDS’11]
 Use under-utilized machines to run operator replicas
- **Discretized Streams** [HotCloud’12]
 Data is checkpointed and recovered in parallel in event of failure
Future Work

Support for full elasticity
- Add dynamic scale in mechanism
- Bottlenecks easier to detect than spare capacity

Cost-aware policies for elasticity
- Performance/cost tradeoff
- How to achieve user-provided SLAs

High-level query languages
- Integrated support for processing stream & historic data
- Programming models
Distributed DSPS

Interconnect multiple DSPSs with network
- Better scalability, handles geographically distributed stream sources

Interconnect on LAN or Internet?
- Different assumptions about time and failure models
Twitter Storm & Yahoo S4

- Java framework for implementing stream processing applications
- Hides stream “plumbing” from developers
- Uses Zookeeper for coordination

Twitter Storm (https://github.com/nathanmarz/storm)
- Focus on fault-tolerance: acknowledgement of processed tuples
- **Spouts** produce data; **bolts** process data
- Different mechanisms for stream partitioning and bolt parallelisation

This is just the beginning... lots of open challenges...