
2004 S. Haridi & P. Van Roy 1

Concepts, Techniques,
and Models of Computer

Programming

Seif Haridi

& Peter Van Roy

haridi@comp.nus.edu.sg

2004 S. Haridi & P. Van Roy 2

The Problems of
Teaching Programming

 For our purposes, let us define
“programming” broadly as the activity
that starts with a specification and
leads to its solution on a computer

 This includes designing a program and
coding it in a language

2004 S. Haridi & P. Van Roy 3

The Problems of
Teaching Programming

 How can we teach programming without
being tied down by the limitations of
existing tools and languages?

 Example: concurrency
 is both complicated and expensive in

Java, so Java-taught programmers
get the mistaken impression that it is
always so

2004 S. Haridi & P. Van Roy 4

The Problems of
Teaching Programming

 How can we teach programming without
being tied down by the limitations of
existing tools and languages?

 Example: data abstraction
 is limited in pure object-oriented languages to

a single style, the “object style”,
 Programmers don’t realize that there are

many other styles, e.g., the “abstract data type”
style, each with its own trade-offs.

2004 S. Haridi & P. Van Roy 5

The Problems of
Teaching Programming

 How can we teach programming
as a unified discipline with a
scientific foundation?

 Not as a set of disjoint paradigms

2004 S. Haridi & P. Van Roy 6

Our Solution
A Concepts-based Approach

 We start with a small language containing just
a few programming concepts

 We show how to program and reason in this
language

 We then add concepts one by one to remove
limitations in expressiveness

 In this way we cover all major programming
paradigms

 We show how they are related and how and
when to use them together

2004 S. Haridi & P. Van Roy 7

Our Solution
A Concepts-based Approach

 Similar approaches have been used
before, notably by Abelson & Sussman
in SICP

 We apply it both broader and deeper:
we cover more paradigms and we have
a simple formal semantics for all
concepts

 We have especially good coverage of
concurrent programming

2004 S. Haridi & P. Van Roy 8

Realizing the Approach

 We draw on more than a decade of
research in language design and
implementation by an international group,
the Mozart Consortium

 We have a software system, Mozart,
that can run all the examples

 We have a simple formal semantics for
all the paradigms

2004 S. Haridi & P. Van Roy 9

Realizing the Approach

 We have been writing the textbook for four years
and teaching with a draft for three and a half years
 The draft has been used in ten universities around

the world
 The textbook is now available for the first time at

SIGCSE 2004 from MIT Press: “Concepts,
Techniques, and Models of Computer
Programming”, by Peter Van Roy and Seif Haridi

 We are making available for free complete course
materials for several courses based on the
approach

2004 S. Haridi & P. Van Roy 10

Some Courses

 Here are two ways we have taught with the
approach

 Single course (Datalogi II at KTH, CS2104
at NUS, second year)
 Start with functional programming

 Give declarative techniques and higher-order
programming

 Add concurrency: gives dataflow programming

 Add communication channel: gives multi-agent
programming

2004 S. Haridi & P. Van Roy 11

Some Courses
 Two course sequence

 (at UCL, second and third years)

 First course: similar to the SICP approach
(LINF1251)
 Start with functional programming
 Give declarative techniques and higher-order

programming
 Add state: lets us cover techniques for data

abstraction, such as OOP
 Explain components and objects

2004 S. Haridi & P. Van Roy 12

Some Courses

 Two course sequence
 (at UCL, second and third years)

 Second course: focus on concurrency
(INGI2131)
 Give refresher on functional programming
 Add concurrency: dataflow programming)
 Add communication channel: multi-agent

programming
 Add state: gives locks, monitors, and

transactions

2004 S. Haridi & P. Van Roy 13

Stream Communication
with Dataflow Concurrency

 There are two threads
 The first thread creates the stream X incrementally
 The second thread displays it using dataflow
 Transmission is asynchronous (like a pipe)

X

X = all | roads | Y
Y = lead | to | Z
Z = alexandria | nil

Display
(with Browse tool)

2004 S. Haridi & P. Van Roy 14

Stream Communication
with Dataflow Concurrency

MapX=1|2|3|…

X = 1 | 2 | 3 | Y
Y = 4 | 5 | 6 | Z
Z = 7 | 8 | 9 | nil

Display

1|4|9|…

Calculation
(with functional

operation)

 There are three threads
 The first thread creates a stream of data
 The second thread does a calculation
 The third thread displays the results

2004 S. Haridi & P. Van Roy 15

Stream Communication
with Dataflow Concurrency

Map
1|2|3|…

X = 1 | 2 | 3 | Y
Y = 4 | 5 | 6 | Z
Z = 7 | 8 | 9 | nil

Display

1|4|9|…

Calculation

 Exactly the same thing, but distributed
 The processes connect through a ticket

 A ticket is a reference that can exist outside of a
process (since it is coded as an Ascii string)

 Except for the ticket, the program is unchanged

First process Second process

ticket

2004 S. Haridi & P. Van Roy 16

Other Courses

 We also cover these other paradigms
 Distributed programming (see dataflow example)

 Lazy (demand-driven) programming

 Relational programming

 Constraint programming

 Logic programming (deterministic and nondeterministic)

 Concurrent logic programming

 Graphical user interface programming

 All of these paradigms fit naturally with the rest
 They are all covered in the textbook

2004 S. Haridi & P. Van Roy 17

The Exaggerated Importance
of Object-oriented Programming

 Consider for example the task of building robust
telecommunications systems

 Ericsson has developed an extremely reliable
ATM switch (the AXD 301) using a message-
passing architecture

 The important concepts are isolation,
concurrency, and higher-order programming

 Not used: inheritance, classes and methods,
UML diagrams, and monitors

2004 S. Haridi & P. Van Roy 18

The Exaggerated Importance
of Object-oriented Programming

 We find that inheritance especially is
overused with respect to other techniques
such as composition

 Our approach is agnostic with respect to
object-oriented programming

 We place it in the wider context of data
abstraction and concurrent programming

2004 S. Haridi & P. Van Roy 19

Semantics

 It’s important to put programming on a
solid foundation. Otherwise, students will
have muddled thinking for the rest of their
careers.

 We propose a flexible approach, where
more or less semantics can be given
depending on taste and the course goals

2004 S. Haridi & P. Van Roy 20

Semantics can be Taught at
Three Levels

 Informal presentation of the formal
semantics

 Give an outline of an abstract machine.
Explain the concepts of execution stack
and environment.

 This can explain last call optimization and
memory management (including garbage
collection)

2004 S. Haridi & P. Van Roy 21

Semantics can be Taught at
Three Levels

 Complete formal semantics using an
abstract machine

 The semantics is at the service of
programming: it is as simple as possible
without sacrificing rigor or coverage

 Simple reasoning techniques such as
invariant assertions can be used in both
declarative and procedural programming

2004 S. Haridi & P. Van Roy 22

Semantics can be Taught at
Three Levels

 Structural operational semantics

 This is the most concise way to give the
semantics of a practical language

 Other approaches (axiomatic, denotational,
and logical) are introduced for the
paradigms in which they work the best

2004 S. Haridi & P. Van Roy 23

Programming Languages and
Paradigms

 We show the relationships between the
different paradigms

 Each paradigm has its own kernel
language, its own reasoning techniques,
and its own programming techniques

 The kernel languages are closely related,
e.g., the declarative paradigm is a subset
of all of them

2004 S. Haridi & P. Van Roy 24

Programming languages and
paradigms

Declarative paradigm
strict functional programming, e.g., Scheme, ML
deterministic logic programming

 + concurrency
 + by-need synchronization
 declarative concurrency
 lazy functional programming, e.g., Haskell

 + nondeterministic choice
 concurrent logic programming

 + exception handling
 + encapsulated state
 object-oriented programming

 + search
 nondeterministic LP, e.g., Prolog

concurrent OOP
(active object style, e.g., Erlang)
(shared state style, e.g., Java)

+ computation spaces
constraint programming

2004 S. Haridi & P. Van Roy 25

Conclusions

 We have presented an approach for teaching
programming that is based on programming language
concepts
 This covers all major programming paradigms; they are

placed in a wider framework and we show why and how
to use them together

 We have been teaching with this approach for more than
three years and we have written a textbook now
published by MIT Press
 If you are interested in trying out the approach, we will

be happy to help
 See http://www.info.ucl.ac.be/people/PVR/book.html

