
Designing an Elastic and Scalable Social Network Application

Xavier De Coster, Matthieu Ghilain, Boris Mejı́as, Peter Van Roy
ICTEAM institute

Université catholique de Louvain
Louvain-la-Neuve, Belgium

{decoster.xavier,ghilainm}@gmail.com {boris.mejias,peter.vanroy}@uclouvain.be

Abstract—Central server-based social networks can suffer
from overloading caused by social trends and make the service
momentarily unavailable preventing users to access it when
they most want it. Central server-based social networks are
not adapted to face rapid growth of data or flash crowds.
In this work we present a design for a scalable, elastic and
secure Twitter-like social network application, called Bwitter,
built on the top of a scalable transactional key/value datastore,
such as Beernet or Scalaris. The application runs on a cloud
infrastructure and is able to scale its resource usage up
and down quickly to avoid overloading and resource wasting.
We measure performance, scalability, and elasticity for our
prototype and show it performs satisfactorily up to 18 nodes
with realistic loads.

Keywords-Scalability; elasticity; cloud application; social net-
work; Twitter; Beernet; Scalaris; key/value store.

I. INTRODUCTION

Social networks are an increasing popular way for people
to interact and express themselves. People can now create
content and easily share it with other people. The servers of
those services can only handle a given number of requests
at the same time, so if there are too many requests the
server can become overloaded. Social networks thus have
to predict the amount of load they will have to face in
order to have enough resources at their disposal. Statically
allocating resources based on the mean utilisation of the
service would lead to a waste during slack periods and
overloading during peak periods. Twitter shows the “Fail
Whale” graphic whenever overloading occurs [1]. This is a
tricky situation as this load is related to many social factors,
some of which are impossible to predict. For instance we
want to be able to handle the high amount of people sending
Christmas or New Year wishes but also reacting to natural
disasters. This is why we want to turn towards scalable and
elastic solutions, allowing the system to add and remove
resources on the fly in order to fit the required load. This
work focuses on the design of a social network with elastic
and scalable infrastructure: Bwitter, a secure Twitter-like
social network built on the transactional key/value store
Beernet [2].

This paper summarizes the results of a master’s thesis
[3]. Section II defines the basic required operations for a
Twitter-like social network. Section III explains why we
chose a transactional key/value store, such as Beernet, for

implementing Bwitter, and Section IV explains how to run
multiple services on top of it. In this section we also discuss
some possible improvements for DHTs in order to increase
their security and offer a richer application programming
interface. Section V presents the application design and
Section VI gives our cloud-based architecture. Section VII
describes the implementation of our prototype, and Section
VIII evaluates its performance (including scalability and
elasticity). We then conclude in Section IX.

II. A QUICK OVERVIEW OF REQUIRED OPERATIONS

Bwitter is designed to be a secure social network based
on Twitter. Twitter is a microblogging system, and while it
looks relatively simple at first sight it hides some complex
functionalities. We included almost all of those in Bwitter
and added some others. We will only depict the relevant
functionalities here that will help us to analyse the design
of the system and the differences between a centralised and
decentralised architecture.

A. Nomenclature

There are only a few core concepts on which our appli-
cation is based. A tweet is basically a short message with
additional meta information. It contains a message up to 140
characters, the author’s username and a timestamp of when
it was posted. If the tweet is part of a discussion, it keeps
a reference to the tweet it is an answer to and also keeps
the references towards tweets that are replies to it. A user
is anybody who has registered in the system. A few pieces
of information about the user are kept in memory by the
application, such as her complete name and her password,
used for authentication. A line is a collection of tweets and
users. The owner of the line can define which users he wants
to associate with the line. The tweets posted by those users
will be displayed in this line. This allows a user to have
several lines with different topics and users associated.

B. Basic operations

1) Post a tweet: A user can publish a message by posting
a tweet. The application will post the tweet in the lines to
which the user is associated. This way all the users following
her have the tweet displayed in their line.



2) Retweet a tweet: When a user likes a tweet from an
other user she can decide to share it by retweeting it. This
will have the effect of “sending” the retweet to all the lines
to which the user is associated. The retweet will be displayed
in the lines as if the original author posted it but with the
retweeter’s name indicated.

3) Reply to a tweet: A user can decide to reply to a tweet.
This will include a reference to the reply tweet inside the
initial tweet. Additionally a reply keeps a reference to the
tweet to which it responds. This allows to build the whole
conversation tree.

4) Create a line: A user can create additional lines with
custom names to regroup specific users.

5) Add and remove users from a line: A user can asso-
ciate a new user to a line, from then on all the tweets this
newly added user posts will be included in the line. A user
can also remove a user from a line, she will then not see the
tweets of this user in her line anymore and will not receive
her new tweets either.

6) Read tweets: A user can read the tweets from a line
by packs of 20 tweets. She can also refresh the tweets of a
line to retrieve the tweets that have been posted since her
last refresh.

III. WHY BEERNET?

Beernet is a transactional, scalable and elastic peer-to-peer
key/value data store built on top of a Distributed Hash Table
(DHT) [2][4]. Peers in Beernet are organized in a relaxed
Chord-like ring [5] and keep O(log(N)) fingers for routing.
This relaxed ring is more fault tolerant than a traditional ring
and its robust join and leave algorithm to handle churn make
Beernet a good candidate to build an elastic system. Any
peer can perform lookup and store operations for any key in
O(log(N)), where N is the number of peers in the network.
The key distribution is done using a consistent hash function,
roughly distributing the load among the peers. These two
properties are a strong advantage for scalability of the system
compared to solutions like client/server.

Beernet provides transactional storage with strong con-
sistency, using different data abstractions. Fault-tolerance is
achieved through symmetric replication, which has several
advantages that we will not detail here compared to a
leaf-set and successor list replication strategy [6]. In every
transaction, a dynamically chosen transaction manager (TM)
guarantees that if the transaction is committed, at least the
majority of the replicas of an item stores the latest value
of the item. A set of replicated TMs guarantees that the
transaction does not rely on the survival of the TM leader.
Transactions can involve several items. If the transaction is
committed, all items are modified. Updates are performed
using optimistic locking.

With respect to data abstractions, Beernet provides not
only key/value-pairs as in Chord-like networks, but also

key/value sets, as in OpenDHT-like networks [7]. The com-
bination of these two abstractions provides more possibilities
in order to design and build the database, as we will explain
in Section V. Moreover, key/value sets are lock-free in
Beernet, providing better performance. We opted for Beernet
because of these native data abstractions. But any scalable
and elastic key/value store providing transactional storage
with strong consistency could be used as well.

IV. RUNNING MULTIPLE SERVICES ON BEERNET

Multiple services using the same DHT can conflict with
each other. We will now discuss two mechanisms designed
to avoid those conflicts.

A. Protecting data with Secrets

Early in the process, we elicited a crucial requirement.
The integrity of the data posted by the users on Bwitter
must be preserved. A classical mechanism, but not without
flaws, is to use a capability-based approach. Data is stored at
random generated keys so that other applications and users
using Beernet cannot erase others values because they do not
know at which keys these values are stored. But in Bwitter,
some information must be available for everybody and thus
keys must be known by all users, meaning that we cannot use
random keys. For example, any user must be able to retrieve
the user profile of another user, it must thus know the key
at which it is stored. The problem is that Beernet does not
allow any form of authentication so key/value pairs are left
unprotected, meaning that anybody able to make requests to
Beernet can modify or delete any previously stored data.

We make a first and naive assumption that services
running on Beernet are bug free and respectful of each other.
They thus check at each write operation that nothing else is
stored at a given key otherwise they cancel the operation.
Thanks to the transactional support of Beernet the check and
the write can be done atomically. This way we can avoid
race conditions where process A reads, the process B reads,
both concluding that there is nothing at a given key and both
writing a value leading to the lost of one of the two writes.

This assumption is not realistic and adds complexity to the
code of each application running on Beernet. We thus relax
it and assume that Beernet is running in a safe environment
like the cloud, which implies that no malicious node can
be added to Beernet. We allow any application to make
requests directly to any Beernet node from the Internet. We
designed a mechanism called “secrets” to protect key/value
pairs and key/value sets stored on Beernet enriching the
existing Beernet API.

Applications can now associate secrets to key/value pairs
and key/value sets they store. This secret is not mandatory,
if no secret is provided a “public” secret is automatically
added. This secret is needed to modify or delete what is
stored at the key protected. For instance we could have the
following situation. A first request stores at the key bar the



value foo using the secret ASecret, then another request tries
to store at key bar another value using a secret different
from ASecret. Because secrets are different Beernet rejects
the last request, which will thus have no effect on the data
store. A similar mechanism has been implemented for sets,
allowing to dissociate the protection of the set as a whole
and the values it contains.

Secrets are implemented in Beernet and have been tested
through our Bwitter application. A similar but weaker mech-
anism is proposed by OpenDHT [7].

B. Dictionaries

At the moment in Beernet, as in all key/value stores we
know, there is only one key space. This can cause problems
if multiple services use the same key. For instance two
services might design their database storing the user profiles
at a key equal to the username of a user. This means they can
not both have a user with the same username. This problem
cannot be solved with the secrets mechanism we proposed.
We thus propose to enhance the current Beernet API with
multiple dictionaries. A dictionary has a unique name and
refers to a key-space in Beernet. A new application can
create a dictionary as it starts using Beernet. It can later
create new dictionaries at run-time as needed, which allows
the developpers to build more efficient and robust imple-
mentation. Dictionaries can be efficiently created on the fly
in O(log(N)), where N is the number of peers in the Beernet
network. Moreover dictionaries do not degrade storing and
reading performance of Beernet. If two applications need to
share data they just have to use the same dictionary. This
has not yet been implemented, but API and algorithms are
currently being designed. An open problem is how to avoid
malicious applications to access the dictionary of another
application.

V. DESIGN PROCESS

We will now present our design choices and explain
how we prevent machines hosting popular values from
overloading.

A. Main directions

We will start by discussing the main design choices we
made for our implementation.

1) Make reads cheap: While designing the construction
mechanism of the lines we were faced with the following
choice: Either push the information and put the burden on
the write, making the “post tweet” operation add a reference
to the tweet in the lines of each follower. Or pulling the
information and build the lines when a user wants to read
them, by fetching all the tweets posted by the users he
follows and reordering them. As people do more reads than
writes on social networks, based on the assumption that each
posted tweet is at least read one time, we opted to make
reads cheaper than writes.

2) Do not store full tweets in the lines but references:
There is no need to replicate the whole tweet inside each
line, as a tweet could be potentially contain a lot of in-
formation and should be easy to delete. To delete a tweet
the application only has to edit the stored tweet and does
not need go through every line that could contain the tweet.
When loading the tweet the application can see if it has been
deleted or not.

3) Minimise the changes to an object: We want the
objects to be as static as possible to enable cache systems.
This is why we do not store potentially dynamic information
inside the objects but rather have a pointer in them, pointing
to a place where we could find the information. For instance,
Tweets are only modified when we delete them, if there is a
reply to them, the ID of the new child is stored in a separated
set.

4) Do not make users load unnecessary things: Loading
the whole line each time we want to see the new tweets
would result in an unnecessarily high number of messages
exchanged and would be highly bandwidth consuming. This
is why we decided to cut lines, which in fact are just big
sorted set, into subsets, which are sets of x tweets, that can
be organised in a linked list fashion, where x is a tunable
parameter. This way the user can load tweets in chunks of
x tweets. The first subset contains all the references to the
tweets posted since the last time the user retrieved the line,
it can thus be much larger than x tweets, it is not a problem
as users generally want to check all the new tweets when
they consult a line. The cutting is then done as follows: the
application removes the x oldest references from the first
set, posts them in an new subset and repeats the operation
until the loaded first set is smaller than x.

5) Retrieve tweets in order: Due to the cutting mecha-
nism and delays in the network we can not be sure that
each reference contained in a subset is strictly newer than
the references stored in the next subset. So we also retrieve
the tweet references from this one and only select the first
20 newest references before fetching the tweets.

6) Filter the references: When a user is dissociated from
a line we do not want our application to still display
the tweets he posted previously. We decided not to scan
the whole line to remove all the references added by this
user, but rather remove the user from the list of the users
associated with the line and filter the references-based on
this list before fetching the corresponding tweets.

7) Only encrypt sensitive data: Most of the data in Twit-
ter is not private so there would be no point in encrypting
it. Only the sensitive data such as the password of the users
should be protected by encryption when stored.

8) Modularity: Even if our whole design and architecture
relies on the features and API offered by Beernet it is always
better to be modular and to define clear interfaces so we can
replace a whole layer by an other easily. For instance any
other DHT could easily be used, provided it supports the



same data abstractions or they can be simulated.

B. Improving overall performance by adding a cache

1) The popular value problem: Given the properties of
the DHT, a key/value pair is mapped to a node or f
nodes, where f is the replication factor, depending of the
redundancy level desired. This implies that if a key is
frequently requested, the nodes responsible for it can be
overloaded while the rest of the network is mostly idle
and adding additional machines is not going to improve
the situation. It is not uncommon on Twitter to have wildly
popular tweets that are retweeted by thousands of users. In
the worst case the retweets can be seen as an exponential
phenomenon as all the users following the retweeter are
susceptible to retweet it too [8].

2) Use an application cache as solution: Adding nodes
will not solve the problem, because the number of nodes
responsible for a key/value pair will not change. In order to
reduce this number of requests we have decided to add a
cache with a LRU replacement strategy at the application
level. This solves the retweet problem because now the
application, which is in charge of several users, will have
in its cache the tweet as soon as one of its user reads the
popular tweet. This tweet will stay in the cache because the
users frequently make requests to read it. This way we will
reduce the load put on the nodes responsible for the tweet.

We now have to take into account that values are not
immutable, they can be deleted and modified. A naive
solution would be to do active pulling to Beernet to detect
changes to the key/value pair stored in the cache. This would
be quite inefficient as there are several values, like tweets,
that almost never change. In order to avoid pulling we need
a mechanism that warns us when a change is done to a
key/value pair stored in the cache. Beernet, as described
in [2], allows an application to register to a key/value pair
and to receive a notification when this value is updated. Our
application cache will thus register to each key/value pair
that it actually holds and when it receives a notification from
Beernet indicating that a pair has been updated it will update
its corresponding replicas. This mechanism has the big
advantage of removing unnecessary requests. Notifications
are asynchronous, so the replicas in the cache can have
different values at a given moment, leading to an eventual
consistency model for the reads. On the other hand writes do
not go through the cache but directly to Beernet, this allows
to keep strong consistency for the writes inside Beernet.
This is an acceptable trade off as we do not need strong
consistency for reads inside a social network.

VI. ARCHITECTURE

Bwitter is designed as a cloud application in which both
the Beernet and Bwitter nodes run on a cloud infrastructure
and the users are purely clients. We can thus easily add
or remove Bwitter and Beernet nodes to meet the demand,

Figure 1. Architecture of the Bwitter social network application

increasing the efficiency of the network. A Bwitter node is a
machine running Bwitter but generally also a Beernet node.
This solution also allows us to keep a stable DHT as nodes
are not subject to high churn as it was the case in the first
architecture we presented. The Beernet layer is monitored in
order to detect flash crowds and Beernet nodes are added and
removed on the fly to meet the demand. We were not able
to compare our system with the current Twitter architecure
due to the lack of official documentation. But we know that
Twitter is centralized, being able to handle only a limited
number of concurrent request.

Our application consists of three loosely coupled layers.
From top to bottom: the Graphic User Interface (GUI), the
Bwitter layer which implements the operations described
in Section II and finally the Beernet layer. The overall
architecture is very modular and each layer can be changed
assuming it respects the API of the layer above. The Beernet
layer could be replaced by any key/value store with similar
properties (in particular, with transactions and strong consis-
tency). We recall that the data store must provide read/write
operations on values and sets as well as implementing the
secrets we described before.

The intermediate layer, also running on the cloud, is the
core of Bwitter. It communicates both with Beernet and the
GUIs. This layer can be put on the same machine as a
Beernet node or on another machine. Normally there should
be less Bwitter nodes than Beernet nodes. One Bwitter node
is associated to a Beernet node but can be relinked to another
Beernet node if it goes down. Each Bwitter node should
be connected to a different Beernet node in order to share
the load. In practice the Bwitter nodes are not accessible
directly. They are accessed through a fast and transparent
reverse proxy that splits the load between Bwitter nodes.

The top layer is the GUI, which runs on the client nodes
and connects to a Bwitter node using a secure connection
channel that guarantees the authenticity of the Bwitter node



and encrypts all the communications between the GUI and
the Bwitter node. Multiple GUI modules can connect to the
same Bwitter node.

A. Elasticity

We previously explained that to prevent the Fail Whale
error, the system needs to scale up to allocate more resources
to be able to answer an increase in user requests. Once the
load of the system gets back to normal, the system needs to
scale down to release unused resources. We briefly explain
how a ring-based key/value store can handle elasticity in
terms of data management.

1) Scale up: When a node j joins the ring in between
peers i and k, it takes over part of the responsibility
of its successor, more specifically all keys from i to j.
Therefore, data migration is needed from peer k to peer j.
The migration involves not only the data associated to keys
in the range ]i, j], but also the replicated items symmetrically
matching the range. Other NoSQL databases such as HBase
[9] do not trigger any data migration upon adding new nodes
to the system, showing better performance scaling up.

2) Scale down: There are two ways of removing nodes
from the system: by gently leaving or by failing. It is very
reasonable to consider gentle leaves in cloud environments,
because the system explicitly decides to reduce the size of
the system. In such case, it is assumed that the leaving peer
j has time enough to migrate all its data to its successor,
which becomes the new responsible for the key range ]i, j],
being i the predecessor.

VII. IMPLEMENTATION

We implemented Bwitter using the cloud-based archi-
tecture of Figure 1. Source code is available at [10]. We
made implementations both using Beernet [2] and Scalaris
[11]. The architecture has three main layers: the GUI layer,
the Bwitter layer, and the DHT layer. The GUI layer is
implemented as a Rich Internet Application (RIA) using
the Adobe Flex technology. The DHT layer is implemented
using Beernet, built in Mozart v1.3.2 [12] enhanced with
the secret mechanism. Beernet is accessible by the Bwitter
layer through a socket API.

The Bwitter layer is connected to the DHT layer using
sockets to communicate with an Oz agent controlling Beer-
net. The Bwitter layer is connected to the GUI layer with
a Tomcat 7.0 application server using Java servlets from
Java EE. The Bwitter nodes are accessible remotely via
an http API that conforms to REST. The Tomcat servers
are accessed indirectly through a reverse proxy server, in
this case nginx. This nginx server is in charge of serving
static content as well as doing load balancing for the Tomcat
servers. This load balancing is performed so that messages
of the same session are always mapped to the same Tomcat
server. This is necessary as authentication is needed to
perform some of the Bwitter operations and we did not

Figure 2. Scalability of the Scalaris transactional key/value store

want to share the state of the user sessions between the
Bwitter nodes for performance reasons. The connection to
the Web-based API is performed using https to meet the
secure channel requirement of our architecture.

VIII. EVALUATION

We evaluated a prototype implemented with Scalaris v0.3
running on Amazon EC2 with up to 20 compute nodes.
Note that we used Scalaris for the evaluation instead of
Beernet, for technical reasons unrelated to Bwitter. This
section summarizes our most important results; many more
measurements and details can be found in [3]. Scalaris and
Beernet both have very similar architecture and function-
ality: both provide a scalable transactional key/value store
implemented on top of a replicated DHT and both use Paxos
consensus for the transaction commit [2][11]. Since Scalaris
underlies our Bwitter prototype (each Bwitter tweet requires
many Scalaris operations), we first verified the performance
and scalability of Scalaris. Figure 2 shows throughput for
20000 operations (reads or writes) as the number of compute
nodes increases. This clearly shows that Scalaris is scalable
for both reads and writes, on both Small and Medium size
compute node instances in Amazon EC2.

For the Bwitter tests, we use one Large node for the
dispatcher and many Small nodes for the Bwitter application.
We simulated a network with two kinds of users, “Stars”
and “Fans’, where Stars are followed by many Fans. We
simulated two kinds of network: a Light network with 4000
users and 25 followers per user (each user follows 0.625% of
the network) and a Heavy network with 2000 users and 50
followers per user (each user follows 2.5% of the network).
Remark that both Light and Heavy networks have greater
connectivity between users than the actual Twitter system,
so that we can safely assume they are realistic loads.

Figure 3 shows aggregate throughput (number of success-
ful operations per second) as a function of number of nodes.
Here, an “operation” is defined in terms of what users do:



0 

10 

20 

30 

40 

50 

60 

70 

4 6 8 10 12 14 16 18 

Th
ro

ug
hp

ut
 (o

ps
/s

) 

Number of nodes 

Heavy network Light network 

Figure 3. Scalability of the Bwitter application implemented with Scalaris

0 

10 

20 

30 

40 

50 

60 

70 

80 

20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 620 660 700 740 780 820 860 900 

Th
ro

ug
hp

ut
 (o

ps
/s

) 

Time (seconds) 

No nodes added 1 node added each minute Node booting 
6 nodes added each 5 minutes 12 nodes added after 1 minute Node launched 

Figure 4. Elasticity of the Bwitter application implemented with Scalaris

it is either posting a tweet (20% of operations) or reading a
set of recent tweets (reading all unread tweets counts as one
operation; on average 20 tweets are read in one operation)
(80% of operations). This means that Bwitter handles 66
operations/second with 18 nodes, which is slightly more
than 1000 read/writes of individual tweets per second, in
a network with 4000 users. Up to 18 nodes, the number
of operations per second increases linearly with number of
nodes for both Heavy and Light networks.

Figure 4 shows the elasticity behavior over a period of
15 minutes with four elasticity strategies, i.e., four ways
of adding nodes to face increasing load. The black (lowest,
almost horizontal) curve gives the baseline (no nodes added).
The yellow (intermediate) curve shows the effect of adding
one node every minute: the graph shows that this is not
a good strategy. The best strategies are the gray and violet
ones (highest throughput), in which larger numbers of nodes
are added less frequently.

IX. CONCLUSION

The goal of Bwitter was to build a Twitter-like social
network that is able to withstand flash crowds by using

an elastic and scalable architecture. We used a scalable
transactional key/value store, namely Beernet or Scalaris,
as the data storage. We built an architecture on top of this
store that is able to handle users with large numbers of
followers and users following a large number of other users.
We avoid overloading single nodes because we do not rely
on any global keys and we use a cache to avoid the retweet
problem. Scalability and elasticity tests performed on Ama-
zon EC2 give encouraging results up to 18 nodes with
realistic loads. During the implementation we came across
two potentially important improvements for key/value stores,
namely duplicating the key space using multiple dictionaries
and protecting data via secrets (a form of capability). Secrets
are now implemented in Beernet.

REFERENCES

[1] Y. Lu, “What is Fail Whale?” www.whatisfailwhale.info,
2009.

[2] B. Mejı́as and P. Van Roy, “Beernet: Building self-managing
decentralized systems with replicated transactional storage,”
IJARAS: International Journal of Adaptive, Resilient, and
Autonomic Systems, vol. 1, no. 3, pp. 1–24, Jul.-Sep. 2010.

[3] X. De Coster and M. Ghilain, “Designing an Elastic and
Scalable Social Network Application,” pldc.info.ucl.ac.be,
Programming Languages and Distributed Computing (PLDC)
Research Group, Université catholique de Louvain, Tech.
Rep., Aug. 2011.

[4] B. Mejı́as, “Beernet: pbeer-to-pbeer network, version 0.9,”
beernet.info.ucl.ac.be, 2011.

[5] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan, “Chord: A scalable peer-to-peer lookup service
for internet applications,” in Proceedings of the 2001 ACM
SIGCOMM Conference, 2001, pp. 149–160.

[6] A. Ghodsi, “Distributed k-ary system: Algorithms for dis-
tributed hash tables,” Ph.D. dissertation, KTH –- Royal Insti-
tute of Technology, Stockholm, Sweden, Dec. 2006.

[7] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu, “OpenDHT: A public DHT
service and its uses,” citeseer.ist.psu.edu/rhea05opendht.html,
2005.

[8] D. Boyd, S. Golder, and G. Lotan, “Tweet, tweet, retweet:
Conversational aspects of retweeting on Twitter,” in Hawaii
International Conference on System Sciences, 2010, pp. 1–10.

[9] Apache, “HBase,” hbase.apache.org, 2011.

[10] X. De Coster and M. Ghilain, “Bwitter source code,”
www.info.ucl.ac.be/∼pvr/BwitterSources.zip, Aug. 2011.

[11] T. Schütt, F. Schintke, and A. Reinefeld, “Scalaris: reliable
transactional p2p key/value store,” in ERLANG ’08: Proceed-
ings of the 7th ACM SIGPLAN workshop on ERLANG. New
York, NY, USA: ACM, 2008, pp. 41–48.

[12] Mozart Consortium, “Mozart Programming System,”
www.mozart-oz.org, 2011.


