
Sept. 2008 1

Overcoming Software Fragility with
Interacting Feedback Loops and

Reversible Phase Transitions

Sept. 23, 2008
BCS 08 – Visions of Computer Science

Peter Van Roy

Université catholique de Louvain
Louvain-la-Neuve, Belgium

Overview
  Motivation for interacting feedback loops

  Example from Norbert Wiener
  Human respiratory system
  Software example: TCP

  Structured overlay networks (
  We are using overlay networks for distributed applications
  Relaxed ring: handles imperfect failure detection
  Merge algorithm: handles network partitioning

  Physical analogy
  Our practical structured overlay network shows phases
  Robust software should have reversible phase transitions

project)

Sept. 2008 2

Interacting feedback loops

Sept. 2008 3

Sept. 2008 P. Van Roy, UCL, Louvain-la-Neuve 4

Feedback loops

  A feedback loop consists of three elements that interact continuously with a
subsystem: a monitoring agent, a correcting agent, and an actuating agent
  The elements and the subsystem are concurrent components interacting through

asynchronous message passing
  The correcting agent has an abstract model of the system and a goal
  The model does not have to be complete but it has to be correct

  Example: transaction manager using concurrency control
  monitor = resource request, actuator = resource grant/refusal, corrector = model

of who has exclusive access to what resources
Sept. 2008 4

Sept. 2008 P. Van Roy, UCL, Louvain-la-Neuve 5

Example from Wiener (1948)

  This is unstable!
  Wiener leaves the fix

as homework for the
reader

  One possible
solution: outer loop
(tribesman) controls
the other by simply
adjusting the
thermostat
  One loop controls

the other

  A system with two loops interacting through a common subsystem

Sept. 2008 5

Sept. 2008 P. Van Roy, UCL, Louvain-la-Neuve 6

Human respiratory system

Sept. 2008 6

Sept. 2008 P. Van Roy, UCL, Louvain-la-Neuve 7

Discussion of respiratory system
  Four interacting feedback loops: two inner loops (breathing reflex

and laryngospasm), a loop controlling the breathing reflex
(conscious control), and an outer loop controlling the conscious
control (falling unconscious)
  This design is derived from a precise textual medical description (if you

believe Wikipedia : entry “Drowning” from 2006)
  Holding your breath can have two effects

  Breath-hold threshold is reached first and breathing reflex happens
  O2 threshold is reached first and you fall unconscious, which

reestablishes the normal breathing reflex
  Some plausible design rules inferred from this system

  Common design pattern: one loop controlling another
  Conscious control is sandwiched in between two simpler loops: the

breathing reflex provides abstraction (consciousness does not have to
understand details of breathing) and falling unconscious provides
protection against instability

Sept. 2008 7

Sept. 2008 P. Van Roy, UCL, Louvain-la-Neuve 8

Software example: TCP

  This example shows a
reliable byte stream
protocol with
congestion control (a
variant of TCP)
  This diagram is for the

sending side
  The congestion control

loop manages the
reliable transfer loop
  By changing the sliding

window’s buffer size
  Again, an essential

pattern is one loop
controlling another

Sept. 2008 8

Structured overlay networks
(“peer-to-peer”)

Sept. 2008 9

Sept. 2008 P. Van Roy, UCL, Louvain-la-Neuve 10

Robust distributed systems
with structured overlays
  How can one build robust distributed systems?

  One approach is to make them decentralized and self-managing
  No single point of failure, every node can play any role

  A good example is the structured overlay network, which is an example
of a peer-to-peer network with strong self-organizing properties

  In the SELFMAN project we have built a practical structured overlay
network, a transactional storage service on top, and a Distributed Wiki
application using this service (*)

  For SELFMAN it is important to make overlay networks practical
  Coping with imperfect failure detection and network partitioning
  For imperfect failure detection: the relaxed ring [Mejias et al 2008]
  For network partitioning: the merge algorithm [Shafaat et al 2008]

  We then made an observation that led to this paper:
  Both of these contributions lead to the same physical analogy

Sept. 2008

(*) First prize in IEEE International Scalable Computing Challenge (SCALE 2008)

10

Sept. 2008 P. Van Roy, UCL, Louvain-la-Neuve 11

Structured overlay networks:
inspired by peer-to-peer

  Hybrid (client/server)
  Napster

  Unstructured overlay
  Gnutella, Kazaa,

Morpheus, Freenet, …
  Uses flooding

  Structured overlay
  Exponential network with

ring structure
  DHT (Distributed Hash

Table), e.g., Chord, DKS,
P2PS

R = N-1 (hub)

R = 1 (others)

H = 1

R = ? (variable)

H = 1…7

(but no guarantee)

R = log N

H = log N

(with guarantee)

Sept. 2008 11

Sept. 2008 12

Distributed Hash Tables
  Dynamic distribution of a hash table onto a set of cooperating

nodes
Key Value

1 Algorithms

9 Routing

11 DS

12 Peer-to-Peer

21 Networks

22 Grids

•  Basic service: lookup operation
•  Key resolution from any node

•  Each node has a routing table
•  Pointers to some other nodes (called “fingers”)
•  Typically, a constant or a logarithmic number of pointers

node A

node D

node B

node C

→Node D : lookup(9)

P. Van Roy, UCL, Louvain-la-Neuve

Sept. 2008 P. Van Roy, UCL, Louvain-la-Neuve 13

Ring structure

Ring

Fingers

  Structured overlay networks
are based on a ring structure
  By far the most popular structure,

it has many variants and has
been extensively studied

  Self organization is done at
two levels:
  The ring ensures connectivity: it

must always exist despite node
joins, leaves, and failures

  The fingers provide efficient
routing: they can be temporarily
in an inconsistent state

Sept. 2008 13

Sept. 2008 P. Van Roy, UCL, Louvain-la-Neuve 14

The relaxed ring
  False failure suspicions are common on the Internet

  We do not want to eject the node from the ring when this happens
  The relaxed ring solves this by doing ring maintenance in

asynchronous fashion [Mejias et al 2008]
  Nodes communicate through message passing
  For a join, instead of one step involving 3 peers (as in Chord or DKS),

we have two steps each with 2 peers → we do not need locking or a
periodic stabilization algorithm

  Invariant: Every peer is in the same ring as its successor

Sept. 2008 14

Sept. 2008 P. Van Roy, UCL, Louvain-la-Neuve 15

Example of a relaxed ring
  It looks like a ring with “bushes”

sticking out
  The bushes appear only if

there are failure suspicions
  “Bushiness” increases with

failure suspicion rate
  There always exists a perfect

ring (in red) as a subset of the
relaxed ring

  The relaxed ring is always
converging toward a perfect
ring
  The bush structure existing at

any time depends on the churn
(rate of change of the ring,
failures/joins) and the failure
suspicion rate

Sept. 2008 15

The merge algorithm (1)
  Network partitioning is a common occurrence in realistic

networks (such as the Internet)
  The nodes are partitioned into several groups, with no

communication between groups
  With properly designed ring maintenance, each group

continues to work as a single structured overlay network
  But the groups do not communicate, even when the network

partition is removed
  The merge algorithm is designed to merge the groups back

into a single overlay network [Shafaat et al 2008]
  Before we designed this algorithm, structured overlay networks

would break irreversibly when the network partitioned

Sept. 2008 16

The merge algorithm (2)
  The algorithm has two parts

  Automatic detection of when to merge
  Each node maintains a passive list of nodes without communication
  These nodes are pinged periodically

  Simple ring unification algorithm
  Assume node a detects node b on another ring
  Node a calls mlookup(b) to find b’s place in the ring
  When b is adjacent, then call trymerge(cpred, csucc) to insert the node
  Recursive call to mlookup; stops when mlookup to itself

  Optimized versions of the algorithm use gossip to
achieve logarithmic time

Sept. 2008 17

18

SON 1

b

a

mlookup(a)

mlookup(b)

SON 2

a:trymerge

b:trymerge

trymerge

trymerge

Sept. 2008 18

19

SON 1
SON 2

b

b:trymerge

trymerge

c

c.succ

mlookup(r.succ)

mlookup(c)

c:trymerge

trymerge

trymerge

c.succ:trymerge

Sept. 2008 19

Physical analogy

Sept. 2008 20

Phase transitions?
  A phase is a set of states of a macroscopic physical system that have

relatively uniform chemical composition and physical properties (i.e. density,
crystal structure, index of refraction, and so forth).
  A phase is a region in the parameter space of thermodynamic variables in which

the free energy is analytic; between such regions there are abrupt changes in the
properties of the system, which correspond to discontinuities in the derivatives of
the free energy function.

  Our structured overlay network shows characteristics reminiscent of phases
and phase transitions
  At low failure suspicion rates, the ring is a perfect ring where each node has a

fixed set of neighbors (solid phase?)
  At higher failure suspicion rates, the ring has a bushy structure that is always

changing; each node has a varying set of neighbors (liquid phase?)
  At yet higher failure suspicion rates, the ring degenerates into several

disconnected rings, and at highest failure suspicion (failed communication), each
node is a ring of size 1 (gaseous phase?)

Sept. 2008 21

Water/ice/steam phase diagram
Phase Diagram: Water - Ice - Steam

Critical Point

Triple Point

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 100 200 300 400 500 600 700 800

Temperature (K)

P
re

s
s
u

re
 (

b
a
r)

Saturation Line

Sublimation Line

Ice I Line

Ice III Line

Ice V Line

Ice VI Line

Ice VII Line

Copyright © 1998 ChemicaLogic Corporation

Vapor

Solid

Liquid

Sublimation Line

Saturation Line
Melting Line

(Ice I)

Melting Line

(Ice III)

Melting Line

(Ice V)

Melting Line

(Ice VI)

Melting Line

(Ice VII)

Sept. 2008 22

Phases in the relaxed ring

Sept. 2008 23

  The relaxed ring has (at least) three phases
  We are studying its behavior to understand how the ring reacts to

external parameters (including phase transitions)

Some remarks
  Analytic study of Chord shows three phases with transitions as network

delays increase [Krishnamurthy and Ardelius, 2008]
  Chord is an idealized structured overlay network with simple algorithms
  Three phases: (1) a region of efficient lookup, (2) a region of inefficient lookup

(long fingers are dead), (3) a region of disconnected ring
  The inefficient lookup is due to a positive feedback effect: incorrect fingers lead to

longer lookup, which at some point cannot be fixed since lookup is too slow to
allow fixing the fingers (the network has changed in the meanwhile)

  In our own situation, things are not so simple
  Input network parameters: size n (number of nodes), successor list redundancy f

(small integer), failure suspicion rate r (0≤r≤1), churn c (0≤c≤1, rate of node
turnover)

  n and f are imposed by system structure, r and c are imposed by environment
  Output network parameters: perfection p (0≤p≤1), entropy s (0≤s≤nln(n)), lookup

efficiency e (e≥1, as compared to best fingers), lookup inconsistency rate i (0≤i≤1)

Sept. 2008 P. Van Roy, UCL, Louvain-la-Neuve 24 Sept. 2008 24

Simulation study

 We are currently performing simulations to
study the behavior of practical structured
overlay networks
  Chord: simplest system, uses locking and periodic

stabilization
  P2PS: relaxed ring with merge algorithm, uses no

locking
 This is work in progress in the SELFMAN

project
Sept. 2008 25

Design methodology
  Design software systems as a set of interacting feedback loops

  Each feedback loop controls part of the system
  The feedback loops interact to manage the overall system
  Phase transitions will occur naturally as a result of external parameters

  Design software systems so that phase transitions are reversible
  They will “self heal” when the external stress causing the transition is removed
  This may require the design of specialized algorithms (e.g., structured overlay

network with merge algorithm)
  What design methodology should we use?

  We need to design for a desired system behavior
  Analytic study is prohibitive and simulation is only indicative

  Research agenda: create a methodology usable in practical software
development
  First approach (intuitive): study existing systems and derive design rules
  Second approach (rigorous): prove correctness of design rules by using

translations to process calculi Sept. 2008 26

Some conclusions
  To increase robustness and adaptiveness, software can be

designed as interacting feedback loops
  By analogy from the physical and biological sciences

  Phase transitions are a natural consequence of feedback loop
architectures
  For robustness, we need to design reversible phase transitions

  We need a methodology for designing these systems
  How to design a feedback loop structure to achieve desired

robustness
  How to achieve the desired phases and phase transitions
  There is a research agenda here

Sept. 2008 P. Van Roy, UCL, Louvain-la-Neuve 27 Sept. 2008 27

