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Overview 
  Motivation for interacting feedback loops 

  Example from Norbert Wiener 
  Human respiratory system 
  Software example: TCP 

  Structured overlay networks ( 
  We are using overlay networks for distributed applications 
  Relaxed ring: handles imperfect failure detection 
  Merge algorithm: handles network partitioning 

  Physical analogy 
  Our practical structured overlay network shows phases 
  Robust software should have reversible phase transitions 

project) 
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Interacting feedback loops 
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Feedback loops 

  A feedback loop consists of three elements that interact continuously with a 
subsystem: a monitoring agent, a correcting agent, and an actuating agent 
  The elements and the subsystem are concurrent components interacting through 

asynchronous message passing 
  The correcting agent has an abstract model of the system and a goal 
  The model does not have to be complete but it has to be correct 

  Example: transaction manager using concurrency control 
  monitor = resource request, actuator = resource grant/refusal, corrector = model 

of who has exclusive access to what resources 
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Example from Wiener (1948) 

  This is unstable! 
  Wiener leaves the fix 

as homework for the 
reader 

  One possible 
solution: outer loop 
(tribesman) controls 
the other by simply 
adjusting the 
thermostat 
  One loop controls 

the other 

  A system with two loops interacting through a common subsystem 
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Human respiratory system 
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Discussion of respiratory system 
  Four interacting feedback loops: two inner loops (breathing reflex 

and laryngospasm), a loop controlling the breathing reflex 
(conscious control), and an outer loop controlling the conscious 
control (falling unconscious) 
  This design is derived from a precise textual medical description (if you 

believe Wikipedia : entry “Drowning” from 2006) 
  Holding your breath can have two effects 

  Breath-hold threshold is reached first and breathing reflex happens 
  O2 threshold is reached first and you fall unconscious, which 

reestablishes the normal breathing reflex 
  Some plausible design rules inferred from this system 

  Common design pattern: one loop controlling another 
  Conscious control is sandwiched in between two simpler loops: the 

breathing reflex provides abstraction (consciousness does not have to 
understand details of breathing) and falling unconscious provides 
protection against instability 
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Software example: TCP 

  This example shows a 
reliable byte stream 
protocol with 
congestion control (a 
variant of TCP) 
  This diagram is for the 

sending side 
  The congestion control 

loop manages the 
reliable transfer loop 
  By changing the sliding 

window’s buffer size 
  Again, an essential 

pattern is one loop 
controlling another 
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Structured overlay networks 
(“peer-to-peer”) 
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Robust distributed systems 
with structured overlays 
  How can one build robust distributed systems? 

  One approach is to make them decentralized and self-managing 
  No single point of failure, every node can play any role 

  A good example is the structured overlay network, which is an example 
of a peer-to-peer network with strong self-organizing properties 

  In the SELFMAN project we have built a practical structured overlay 
network, a transactional storage service on top, and a Distributed Wiki 
application using this service (*) 

  For SELFMAN it is important to make overlay networks practical 
  Coping with imperfect failure detection and network partitioning 
  For imperfect failure detection: the relaxed ring [Mejias et al 2008] 
  For network partitioning: the merge algorithm [Shafaat et al 2008] 

  We then made an observation that led to this paper: 
  Both of these contributions lead to the same physical analogy 

Sept. 2008 
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Structured overlay networks: 
inspired by peer-to-peer 

  Hybrid (client/server) 
  Napster 

  Unstructured overlay 
  Gnutella, Kazaa, 

Morpheus, Freenet, … 
  Uses flooding 

  Structured overlay 
  Exponential network with 

ring structure 
  DHT (Distributed Hash 

Table), e.g., Chord, DKS, 
P2PS 

R = N-1 (hub) 

R = 1 (others) 

H = 1 

R = ? (variable) 

H = 1…7 

(but no guarantee) 

R = log N 

H = log N 

(with guarantee) 
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Distributed Hash Tables 
  Dynamic distribution of a hash table onto a set of cooperating 

nodes 
Key Value 

1 Algorithms 

9 Routing 

11 DS 

12 Peer-to-Peer 

21 Networks 

22 Grids 

•  Basic service: lookup operation  
•  Key resolution from any node 

•  Each node has a routing table  
•  Pointers to some other nodes (called “fingers”) 
•  Typically, a constant or a logarithmic number of pointers 

node A 

node D 

node B 

node C 

→Node D : lookup(9) 
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Ring structure 

Ring 

Fingers 

  Structured overlay networks 
are based on a ring structure 
  By far the most popular structure, 

it has many variants and has 
been extensively studied 

  Self organization is done at 
two levels: 
  The ring ensures connectivity: it 

must always exist despite node 
joins, leaves, and failures 

  The fingers provide efficient 
routing: they can be temporarily 
in an inconsistent state 
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The relaxed ring 
  False failure suspicions are common on the Internet 

  We do not want to eject the node from the ring when this happens 
  The relaxed ring solves this by doing ring maintenance in 

asynchronous fashion [Mejias et al 2008] 
  Nodes communicate through message passing 
  For a join, instead of one step involving 3 peers (as in Chord or DKS), 

we have two steps each with 2 peers → we do not need locking or a 
periodic stabilization algorithm 

  Invariant: Every peer is in the same ring as its successor 
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Example of a relaxed ring 
  It looks like a ring with “bushes” 

sticking out 
  The bushes appear only if 

there are failure suspicions 
  “Bushiness” increases with 

failure suspicion rate 
  There always exists a perfect 

ring (in red) as a subset of the 
relaxed ring 

  The relaxed ring is always 
converging toward a perfect 
ring 
  The bush structure existing at 

any time depends on the churn 
(rate of change of the ring, 
failures/joins) and the failure 
suspicion rate 
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The merge algorithm (1) 
  Network partitioning is a common occurrence in realistic 

networks (such as the Internet) 
  The nodes are partitioned into several groups, with no 

communication between groups 
  With properly designed ring maintenance,  each group 

continues to work as a single structured overlay network 
  But the groups do not communicate, even when the network 

partition is removed 
  The merge algorithm is designed to merge the groups back 

into a single overlay network [Shafaat et al 2008] 
  Before we designed this algorithm, structured overlay networks 

would break irreversibly when the network partitioned 
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The merge algorithm (2) 
  The algorithm has two parts 

  Automatic detection of when to merge 
  Each node maintains a passive list of nodes without communication 
  These nodes are pinged periodically 

  Simple ring unification algorithm 
  Assume node a detects node b on another ring 
  Node a calls mlookup(b) to find b’s place in the ring 
  When b is adjacent, then call trymerge(cpred, csucc) to insert the node 
  Recursive call to mlookup; stops when mlookup to itself 

  Optimized versions of the algorithm use gossip to 
achieve logarithmic time 
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SON 1 

b 

a 

mlookup(a) 

mlookup(b) 

SON 2 

a:trymerge 

b:trymerge 

trymerge 

trymerge 
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SON 1 
SON 2 

b 

b:trymerge 

trymerge 

c 

c.succ 

mlookup(r.succ) 

mlookup(c) 

c:trymerge 

trymerge 

trymerge 

c.succ:trymerge 
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Physical analogy 
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Phase transitions? 
  A phase is a set of states of a macroscopic physical system that have 

relatively uniform chemical composition and physical properties (i.e. density, 
crystal structure, index of refraction, and so forth). 
  A phase is a region in the parameter space of thermodynamic variables in which 

the free energy is analytic; between such regions there are abrupt changes in the 
properties of the system, which correspond to discontinuities in the derivatives of 
the free energy function. 

  Our structured overlay network shows characteristics reminiscent of phases 
and phase transitions 
  At low failure suspicion rates, the ring is a perfect ring where each node has a 

fixed set of neighbors (solid phase?) 
  At higher failure suspicion rates, the ring has a bushy structure that is always 

changing; each node has a varying set of neighbors (liquid phase?) 
  At yet higher failure suspicion rates, the ring degenerates into several 

disconnected rings, and at highest failure suspicion (failed communication), each 
node is a ring of size 1 (gaseous phase?) 
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Water/ice/steam phase diagram 
Phase Diagram: Water - Ice - Steam
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Phases in the relaxed ring 
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  The relaxed ring has (at least) three phases 
  We are studying its behavior to understand how the ring reacts to 

external parameters (including phase transitions) 



Some remarks 
  Analytic study of Chord shows three phases with transitions as network 

delays increase [Krishnamurthy and Ardelius, 2008] 
  Chord is an idealized structured overlay network with simple algorithms 
  Three phases: (1) a region of efficient lookup, (2) a region of inefficient lookup 

(long fingers are dead), (3) a region of disconnected ring 
  The inefficient lookup is due to a positive feedback effect: incorrect fingers lead to 

longer lookup, which at some point cannot be fixed since lookup is too slow to 
allow fixing the fingers (the network has changed in the meanwhile) 

  In our own situation, things are not so simple 
  Input network parameters: size n (number of nodes), successor list redundancy f 

(small integer), failure suspicion rate r (0≤r≤1), churn c (0≤c≤1, rate of node 
turnover) 

  n and f are imposed by system structure, r and c are imposed by environment 
  Output network parameters: perfection p (0≤p≤1), entropy s (0≤s≤nln(n)), lookup 

efficiency e (e≥1, as compared to best fingers), lookup inconsistency rate i (0≤i≤1) 
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Simulation study 

 We are currently performing simulations to 
study the behavior of practical structured 
overlay networks 
  Chord: simplest system, uses locking and periodic 

stabilization 
  P2PS: relaxed ring with merge algorithm, uses no 

locking 
 This is work in progress in the SELFMAN 

project 
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Design methodology 
  Design software systems as a set of interacting feedback loops 

  Each feedback loop controls part of the system 
  The feedback loops interact to manage the overall system 
  Phase transitions will occur naturally as a result of external parameters  

  Design software systems so that phase transitions are reversible 
  They will “self heal” when the external stress causing the transition is removed 
  This may require the design of specialized algorithms (e.g., structured overlay 

network with merge algorithm) 
  What design methodology should we use? 

  We need to design for a desired system behavior 
  Analytic study is prohibitive and simulation is only indicative 

  Research agenda: create a methodology usable in practical software 
development 
  First approach (intuitive): study existing systems and derive design rules 
  Second approach (rigorous): prove correctness of design rules by using 

translations to process calculi Sept. 2008 26 



Some conclusions 
  To increase robustness and adaptiveness, software can be 

designed as interacting feedback loops 
  By analogy from the physical and biological sciences 

  Phase transitions are a natural consequence of feedback loop 
architectures 
  For robustness, we need to design reversible phase transitions 

  We need a methodology for designing these systems 
  How to design a feedback loop structure to achieve desired 

robustness 
  How to achieve the desired phases and phase transitions 
  There is a research agenda here 
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