
Advances in Discrete
Optimization with Decision

Diagrams: Dominance, Caching
and Aggregation-Based

Heuristics

Vianney Coppé

Thesis submitted in partial fulfillment of the requirements for
the Degree of Doctor in Applied Sciences

January 2024

ICTEAM
Louvain School of Engineering

UCLouvain
Louvain-la-Neuve

Belgium

Thesis Committee:
Pr. Pierre Schaus (Advisor) UCLouvain, Belgium
Pr. Yves Deville UCLouvain, Belgium
Pr. Siegfried Nijssen UCLouvain, Belgium
Pr. Peter Van Roy UCLouvain, Belgium
Pr. Quentin Louveaux Université de Liège, Belgium
Pr. Louis-Martin Rousseau Polytechnique Montréal, Canada
Pr. Willem-Jan van Hoeve Carnegie Mellon University, USA

Advances inDiscrete OptimizationwithDecisionDiagrams:
Dominance, Caching and Aggregation-Based Heuristics
by Vianney Coppé

© Vianney Coppé 2024
ICTEAM
UCLouvain
Place Sainte-Barbe, 2
1348 Louvain-la-Neuve
Belgium

Abstract

The branch-and-bound algorithm based on decision diagrams introduced by
Bergman et al. in 2016 is a framework for solving discrete optimization prob-
lems with a dynamic programming formulation. It works by compiling a se-
ries of bounded-width decision diagrams that can provide lower and upper
bounds for any given subproblem. Eventually, every part of the search space
will be either explored or pruned by the algorithm, thus proving optimality.
This thesis presents new ingredients to speed up this search algorithm. First,
it describes how dominance rules can be utilized during the compilation of de-
cision diagrams to detect and filter dominated nodes. The second contribution
is a caching mechanism that fully exploits the structure of dynamic program-
ming models and the way their state space is explored by the branch-and-
bound algorithm. Its key idea is to prevent the repeated expansion of nodes
corresponding to the same dynamic programming state by querying expan-
sion thresholds cached throughout the search. These thresholds are based on
dominance relations between partial solutions previously found and on the
pruning inequalities of the filtering techniques introduced by Gillard et al. in
2021. Finally, a procedure for deriving dual bounds and node selection heuris-
tics through aggregate dynamic programming is detailed. Assuming a maxi-
mization problem, relaxed decision diagrams provide upper bounds through
state merging while restricted decision diagrams obtain lower bounds by ex-
cluding states to limit their size. As the selection of states to merge or delete
is done locally, it is very myopic to the global problem structure. This can
be better captured by the proposed bounds and heuristics because they are
acquired by pre-solving a so-called aggregate version of the problem. Ex-
tensive computational experiments show that the pruning brought by these
additional filtering techniques and heuristics allows reducing the number of
nodes expanded by the algorithm significantly and finding quality solutions
earlier in the search. This results in more benchmark instances of difficult op-
timization problems being solved in less time, and in tighter optimality gaps
when instances cannot be solved under the given time limit.

i

Acknowledgments

If the doctoral journey is often perceived as a very solitary experience, its
achievement is undoubtedly the fruit of multiple ingredients which cannot
come together without a community around it, namely: support, encourage-
ment, advice, exchange of ideas and knowledge. With these few words, I
would like to thank all the people who constituted this community for me,
and contributed in one way or another to the success of my journey.

First, I would like to thank Pierre, my advisor, who sparked my interest in
research before I even considered pursuing a Ph.D., and managed to get me
on board with this adventure. Furthermore, his support and guidance were
instrumental in making me believe in my work when it seemed futile, and in
channeling my ideas when they were going in too many directions.

My second thank you goes to my colleague and collaborator Xavier, who
laid a very solid foundation for easily experimenting with decision diagrams,
always knew how to challenge my ideas, and helped me on many occasions
when I felt lost with his favorite programming language.

Next, I would like to thank all my colleagues in the INGI department for
fostering a friendly environment. In particular, those with whom I shared an
office –Auguste, Benoît, Gaël, Hélène andNicolas – always in a relaxedmood.
Moreover, those among Achille, Alexander, Alexandre, Auguste, Augustin,
Benoît, Charles, Damien, Donatien, François, Guillaume, Harold, Hélène, Ma-
gali, Mathias, Nicolas, Lucile and Xavier withwhom I had good timeswhether
playing spikeball, music, card games, doing crosswords, sharing drinks, or en-
joying local culture during conferences. I would like to extend my gratitude
to the administrative and technical staff of the department who facilitated
countless procedures and continuously maintained a reliable infrastructure
for our computational experiments.

My thanks also go to all the wonderful housemates with whom I have had
the chance to live over the last four years, and to all my other close friends
who gravitate around. Thank you for the fun, sporty and caring atmosphere
that surely helped me maintain my balance.

Finally, I would like to thank my parents, my brothers and their beauti-
fully growing families, for their everlasting support and love, which brought
me to where I am now. This of course also applies to Eléonore, whose pres-
ence by my side brightens my days and whose natural curiosity has always
been interested in my work.

iii

Contents

Abstract i

Acknowledgments iii

Table of Contents v

1 Introduction 1
1.1 Context . 1
1.2 Research Goals . 2
1.3 Contributions . 3
1.4 Publications . 4
1.5 Outline . 4

2 Preliminaries 7
2.1 Discrete Optimization . 7
2.2 Dynamic Programming . 8
2.3 Decision Diagrams . 9

2.3.1 Compilation . 10
2.3.2 Restricted DDs . 12
2.3.3 Relaxed DDs . 13
2.3.4 Rough Upper Bound Pruning 15

2.4 Branch-and-Bound . 15
2.4.1 Exact Cutsets . 16
2.4.2 Local Bounds . 17
2.4.3 Algorithm . 19

2.5 Variants and Heuristics for Compilation 21
2.5.1 Node Selection Heuristic 21
2.5.2 Variable Ordering . 22
2.5.3 Long Arcs . 22
2.5.4 Alternative Compilation Schemes 23

2.6 The DDO Library . 24

3 Dominance Rules 25
3.1 Introduction . 25
3.2 Definitions and Modeling Ingredients 26
3.3 Filtering the Search Using Dominance Rules 28

v

vi Contents

3.4 Applications . 31
3.4.1 Traveling Salesman Problem with Time Windows . . . 32

3.4.1.1 Dynamic Programming Formulation 32
3.4.1.2 Relaxation 33
3.4.1.3 Rough Lower Bound 34
3.4.1.4 Dominance Rule 34
3.4.1.5 Experimental Setting 34

3.4.2 Aircraft Landing Problem 35
3.4.2.1 Dynamic Programming Formulation 35
3.4.2.2 Relaxation 37
3.4.2.3 Rough Lower Bound 37
3.4.2.4 Dominance Rule 37
3.4.2.5 Experimental Setting 38

3.4.3 Longest Common Subsequence Problem 38
3.4.3.1 Dynamic Programming Formulation 38
3.4.3.2 Relaxation 40
3.4.3.3 Rough Upper Bound 40
3.4.3.4 Dominance Rule 41
3.4.3.5 Experimental Setting 41

3.4.4 0–1 Knapsack Problem 41
3.5 Computational Experiments 41

3.5.1 Number of Benchmark Instances Solved 42
3.5.2 Number of Node Expansions 42
3.5.3 Quality of the First Solution 42
3.5.4 Memory Consumption 45

3.6 Conclusion . 47

4 Caching 49
4.1 Introduction . 49
4.2 Caveats of DD-based Branch-and-Bound 50
4.3 Branch-and-Bound with Caching 51

4.3.1 Dominance Thresholds 52
4.3.2 Pruning Thresholds . 55
4.3.3 Expansion Thresholds 59
4.3.4 Filtering the Search Using the Cache 62

4.4 Limitations . 64
4.4.1 Memory Consumption 64
4.4.2 Variables Orderings . 65

4.5 Applications . 66
4.5.1 Pigment Sequencing Problem 66

4.5.1.1 Dynamic Programming Formulation 67
4.5.1.2 Relaxation 68

Contents vii

4.5.1.3 Rough Lower Bound 68
4.5.1.4 Experimental Setting 69

4.5.2 Talent Scheduling Problem 69
4.5.2.1 Dynamic Programming Formulation 69
4.5.2.2 Relaxation 70
4.5.2.3 Rough Lower Bound 70
4.5.2.4 Experimental Setting 71

4.6 Computational Experiments 71
4.6.1 Impact of the Caching Mechanism 71
4.6.2 Synergy with the Dominance Rules 77
4.6.3 Memory Consumption 78

4.7 Conclusion . 81

5 Aggregate Dynamic Programming-Based Bounds and Heuris-
tics 83
5.1 Introduction . 83
5.2 Aggregate Dynamic Programming for Decision Diagrams . . . 84

5.2.1 Preprocessing: Problem Instance Aggregation 85
5.2.2 State Aggregation and Upper Bound 88
5.2.3 Solution Disaggregation and Node Selection Heuristic 91

5.3 Restricted Branch-and-Bound 94
5.4 Applications . 95

5.4.1 Talent Scheduling Problem 96
5.4.2 Pigment Sequencing Problem 96
5.4.3 Aircraft Landing Problem 97

5.5 Computational Experiments 98
5.5.1 Number of Benchmark Instances Solved 100
5.5.2 End Gap . 100
5.5.3 Quality of the First Solution 102

5.6 Conclusion . 103

6 The Constrained Single-Row Facility Layout Problem 105
6.1 Introduction . 105
6.2 Problem Definition . 106

6.2.1 SRFLP . 106
6.2.2 cSRFLP . 108

6.3 Mixed-Integer Programming Model 108
6.4 Dynamic Programming Formulation 110

6.4.1 SRFLP . 110
6.4.2 cSRFLP . 112
6.4.3 Relaxation . 113
6.4.4 Rough Lower Bound 114

viii Contents

6.4.4.1 Free departments layout cost 116
6.4.4.2 Cost with respect to fixed departments . . . 117

6.5 Computational Experiments 118
6.5.1 Number of Benchmark Instances Solved 118
6.5.2 Evolution of Performance with the Number of Con-

straints . 120
6.5.3 End Gaps . 120

6.6 Conclusion . 122

7 Conclusion 123
7.1 Summary of the Contributions 123
7.2 Perspectives . 124

7.2.1 Reducing Memory Consumption 124
7.2.2 Alternative Relaxation Schemes 125
7.2.3 Integration in CP Solvers 126
7.2.4 Learning Node Selection Heuristics 126

Introduction 1
1.1 Context

Combinatorial optimization plays a crucial role in addressing some of the
most complex challenges in the world across various domains such as logis-
tics, transportation, manufacturing, healthcare and energy production and
distribution. It provides a set of efficient and reliable tools to assist and facil-
itate decision-making processes when facing problems that are too complex
or cumbersome for us humans to solve. Several optimization paradigms have
been widely adopted to tackle real-world problems, namely Mixed-Integer
Programming (MIP), Constraint Programming (CP) and Boolean satisfiability
(SAT).Dynamic programming (DP) is another popular technique tomodel and
solve difficult combinatorial problems. Although this resolution technique
is appealing, the process of memorizing all solved subproblems rapidly be-
comes infeasible in terms of memory, as the required memory size can grow
exponentially with the input size, rendering the computation intractable. Dis-
crete optimization with decision diagrams (DDs) is a recent framework for
addressing the memory issue for solving constraint optimization problems
using their DP formulation. Apart from offering new modeling perspectives,
this technique can exploit the compactness of DP models within an adapted
branch-and-bound (B&B) algorithm introduced by [Ber+16]. In addition to
conducting the search within the DP state space, the strength of DD-based
B&B lies in its dedicated approach to deriving lower and upper bounds. Both
are obtained by compiling bounded-width DDs, respectively called restricted
and relaxed DDs – assuming a maximization problem. Those approximate
DDs each have their own strategy for limiting their size, which works either
by removing or merging excess nodes.

The DDs used today in the field of discrete optimization originate from
compact encodings of Boolean functions, first known as binary decision pro-
grams [Lee59] and later as binary decision diagrams (BDDs) [Ake78; Bry86].
Multi-valued decision diagrams (MDDs) were then suggested by [KB90] as an
extension of BDDs to variables and functions taking values from discrete sets.
These different variants of DDswere successfully applied in different domains
such as formal verification [Hu95], model checking [CGL94], computer-aided
design [Min95] and optimization [LPV94; HS97; Bec+05; HH06; HH07]. More

1

2 Chapter 1. Introduction

recently, [And+07] introduced relaxed DDs that act as a constraint store for
constraint programming solvers. These DDs can represent a superset of the
feasible variable assignments and their size can be controlled by bounding
their width to balance computational cost and the filtering strength. Relaxed
DDs were then adapted by [Ber+14a] as a mean of deriving upper bounds for
discrete optimization problems that can be modeled with DP [Hoo13]. They
were followed closely by their lower bounding counterparts called restricted
DDs [Ber+14b], which represent a subset of the solution space.

Several improvements to the B&B algorithm based on these two ingredi-
ents have been suggested since its introduction: [Gil+21] proposed additional
bounding procedures named local bounds and rough upper bounds to enhance
the pruning of the B&B and thus speed up the search. When the relaxed
DDs are compiled by separation in the B&B algorithm, [RCR22; RCR23] ex-
plained how intermediate relaxed DDs could be stored in the B&B queue to
avoid compiling them from scratch at each iteration. The bounds provided
from approximate DDs can also be improved by discovering variable order-
ings that yield more compact DDs. [Cap+22] designed a reinforcement learn-
ing approach to perform this task while [KH22] proposed different portfolio
mechanisms to dynamically select the best ordering among a predefined set of
alternatives. Finally, another promising research direction is the integration
of DD-based optimization components to CP solvers, as driven by the Had-
dock modeling language and constraint store [GMH20; GMH22; GMH23].
For a complete overview of the latest theoretical contributions and applica-
tions of DDs in the field of discrete optimization as a whole, we refer the
reader to the survey by [CCB22].

1.2 Research Goals

In this thesis, we aim to further enhance the capabilities of the DD-based
discrete optimization paradigm by investigating additional filtering mecha-
nisms. By generating extra pruning during the top-down compilation of ap-
proximate DDs throughout the search, the B&B algorithm needs to actually
explore a smaller part of the search space in order to find and prove the opti-
mal solution. In addition, the DDs generated are sparser and therefore require
less computation time to obtain. Furthermore, restricted DDs have a better
chance of finding good solutions quickly, and the bounds derived from re-
laxed DDs are tighter, since those approximate DDs cover a smaller portion
of the search space. Because better primal and dual bounds only intensify the
pruning power of the B&B algorithm, this creates a virtuous circle, which we
wish to further strengthen.

Our quest for supplementary filtering procedures revolved around the fol-
lowing research questions:

1.3. Contributions 3

■ Can DD-based optimization benefit from simple dominance rules?

■ Is the amount of DP states that are visited bymultiple approximate DDs
during the search significant? Can we reduce it? How does it impact
the B&B algorithm?

■ Can aggregate dynamic programming be used to derive information
that would efficiently guide and tighten the approximate DDs, com-
pared to existing heuristics and relaxation schemes?

1.3 Contributions

The main contributions of this thesis include several ingredients that partic-
ipate in advancing the field of discrete optimization with decision diagrams,
following the line of research described in the previous section, and the ap-
plication of these to a wide range of combinatorial optimization problems,
namely:

■ a formalism for defining dominance rules arising in DP models and a
procedure for systematically exploiting them within the DD compila-
tion algorithm and the B&B as a whole.

■ a problem-agnostic caching mechanism that takes full advantage of the
information discovered inside the successive relaxed DDs compiled to
derive and store expansion thresholds that condition the future expan-
sion of nodes associated with already reached DP states.

■ a node selection heuristic for restricted DDs and a complementary re-
laxation scheme that leverage aggregate dynamic programming to bet-
ter capture the general structure of a problem, and a formalism for spec-
ifying an aggregation for each given problem.

■ the extension of a DP model for the Single-Row Facility Layout Problem
that handles several types of additional constraints very efficiently, as
well as a rough lower bound for this problem.

■ the implementation of all the above contributions inside the open source
DD-based optimization solver DDO [GSC21], and the specification of
multiple problem formulations via its modeling interface. This allowed
performing extensive experiments for various optimization problems
and configurations of the solver with the same code base.

4 Chapter 1. Introduction

1.4 Publications

Most of the contributions presented in this thesis have been developed in
separate research papers, mentioned here in the order in which they will be
discussed:

■ V. Coppé, X. Gillard, and P. Schaus. “Decision Diagram-Based Branch-
and-Boundwith Caching for Dominance and Suboptimality Detection”.
In: (2023). arXiv: 2211.13118. This paper introduces a specialized
caching mechanism for the DD-based B&B algorithm. It is currently
under review.

■ V. Coppé, X. Gillard, and P. Schaus. “Boosting Decision Diagram-Based
Branch-And-Bound by Pre-Solving with Aggregate Dynamic Program-
ming”. In: 29th International Conference on Principles and Practice of
Constraint Programming (CP 2023). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik. 2023. It explains how the aggregate dynamic program-
ming principle can be applied to theDD-based optimization framework,
in the form of node selection heuristics and complementary relaxation
scheme.

■ V. Coppé, X. Gillard, and P. Schaus. “Solving the Constrained Single-
Row Facility Layout Problem with Decision Diagrams”. In: 28th In-
ternational Conference on Principles and Practice of Constraint Program-
ming (CP 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2022.
This paper presents a MIP and a DD-based approach for solving the
Constrained Single-Row Facility Layout Problem. It also describes a breadth-
first B&B algorithm and explains its benefits over the classical best-first
variant.

This thesis also led to the following publication: V. Coppé and P. Schaus.
“A Conflict Avoidance Table for Continuous Conflict-Based Search”. In: Pro-
ceedings of the International Symposium on Combinatorial Search. Vol. 15.
1. 2022, pp. 264–266, in which we generalize a key component of the best-
performing solvers for the Multi-Agent Path Finding problem in discrete time
and space to the more realistic case of continuous time and space. It will not
be discussed here as it falls outside of otherwise coherent research efforts
about discrete optimization with decision diagrams.

1.5 Outline

The thesis begins with a general introduction in Chapter 2 about DDs and
how, given a DP model, they can encode solutions to a discrete optimization

https://arxiv.org/abs/2211.13118

1.5. Outline 5

problem. It culminates with a detailed description of the DD-based B&B algo-
rithm introduced by [Ber+16], and of the improvements presented in [Gil+21].
Chapter 3 then describes how dominance rules can be consistently formulated
for DP models, and how the DD compilation algorithm can be adapted to effi-
ciently detect dominated nodes and filter them. Computational results cover-
ing four optimization problems and demonstrating the importance of domi-
nance rules conclude the chapter. Another filtering mechanism is introduced
in Chapter 4, based on the caching of an expansion threshold for DP states
reached by exact nodes of relaxed DDs. This expansion threshold provides a
condition on the minimum path length required so that new paths reaching
previously visited DP states have a chance to improve on the best solution
currently found. This ingredient is evaluated on the four problems studied in
Chapter 3 as well as two additional problems, and is shown to significantly
decrease the number of node expansions needed for the B&B algorithm to ter-
minate the search, resulting in considerable speedups. In Chapter 5, a frame-
work for incorporating aggregate dynamic programming into the DD-based
B&B is proposed. It explains how node selection heuristics and dual bounds
can be obtained by solving an aggregate – i.e. relaxed and easier — version
of the problem. The framework is applied to three of the optimization prob-
lems tackled in the previous chapters, and its impact in terms of solution
quality and additional pruning is discussed. Throughout the first chapters
mentioned, all the concepts introduced are illustrated with a single Bounded
Knapsack Problem instance. Finally, Chapter 6 presents two approaches for
solving a constrained facility layout problem with MIP and DDs, and com-
pares their effectiveness in handling different types of constraints. Chapter 7
then steps back and reflects on the contributions of this thesis, as well as on
some open questions and perspectives for future investigations.

Preliminaries 2
This chapter provides an overview of the DD-based discrete optimization
framework. It starts with a reminder on how discrete optimization problems
can be modeled with dynamic programming (DP). Next, the exact and inex-
act representation of a DP formulation by DDs is explained. In particular,
restricted and relaxed DDs are defined as well as the top-down compilation
algorithm used to obtain them. The chapter continues with a description of
the DD-based B&B algorithm exploiting the lower and upper bounds derived
from these approximate DDs. Finally, the more advanced pruning techniques
introduced in [Gil+21] are recalled. A toy example of the Bounded Knapsack
Problem is developed throughout the chapter to illustrate how the modeling
components are formulated and provide a visual depiction of the algorithms.

2.1 Discrete Optimization

A discrete optimization problem P involves finding the best possible solu-
tion 𝑥∗ from a finite set of feasible solutions 𝑆𝑜𝑙 (P) = D ∩ C. This set is
determined by the domain D = D0 × · · · × D𝑛−1 from which the variables
𝑥 = (𝑥0, . . . , 𝑥𝑛−1) each take on a value, i.e. 𝑥 𝑗 ∈ D𝑗 , and by a set C modeling
all the constraints that solutions need to satisfy. The quality of the solutions
is evaluated according to an objective function 𝑓 (𝑥) that must be maximized.
Formally, the problem is defined asmax {𝑓 (𝑥) | 𝑥 ∈ D ∩ C} and any optimal
solution 𝑥∗ must satisfy 𝑥∗ ∈ 𝑆𝑜𝑙 (P) and ∀𝑥 ∈ 𝑆𝑜𝑙 (P) : 𝑓 (𝑥∗) ≥ 𝑓 (𝑥).

Example 2.1.1. Given a set of items 𝑁 = {0, . . . , 𝑛 − 1} with weights𝑊 =

⟨𝑤0, . . . ,𝑤𝑛−1⟩, values𝑉 = ⟨𝑣0, . . . , 𝑣𝑛−1⟩ and quantities𝑄 = ⟨𝑞0, . . . , 𝑞𝑛−1⟩, the
goal of the Bounded Knapsack Problem (BKP) is to choose the number of copies
of each item to include in the knapsack so that the total value is maximized, and
the total weight is kept under a given capacity𝐶 . A classical MIP formulation of
this problem would rely on a vector of integer variables 𝑥 = (𝑥0, . . . , 𝑥𝑛−1) where
𝑥 𝑗 corresponds to the decision of including 𝑥 𝑗 copies of item 𝑗 in the knapsack.
Therefore, the domain of each variable 𝑥 𝑗 is D𝑗 =

{
0, . . . , 𝑞 𝑗

}
. Furthermore,

the only constraint of the problem is to respect the capacity of the knapsack, so
C =

{
𝑥 | ∑𝑛−1

𝑗=0 𝑥 𝑗𝑤 𝑗 ≤ 𝐶
}
. Finally, the objective function is the total value of

the selected items, given by 𝑓 (𝑥) = ∑𝑛−1
𝑗=0 𝑥 𝑗𝑣 𝑗 .

7

8 Chapter 2. Preliminaries

2.2 Dynamic Programming

DP is a divide-and-conquer strategy introduced by Bellman [Bel54] for solv-
ing discrete optimization problems with an inherent recursive structure. It
works by recursively decomposing the problem into smaller and overlapping
subproblems. The cornerstone of the approach is the caching of intermedi-
ate results that allows each distinct subproblem to be solved only once. A
DP model of a discrete optimization problem P can be defined as a labeled
transition system consisting of:

■ a vector of control variables 𝑥 = (𝑥0, . . . , 𝑥𝑛−1) with domain D = D0 ×
· · · × D𝑛−1 such that 𝑥 𝑗 ∈ D𝑗 with 𝑗 ∈ {0, . . . , 𝑛 − 1}.

■ a state space S partitioned into 𝑛 + 1 sets S0, . . . ,S𝑛 that correspond
to distinct stages of the DP model. In particular, S𝑗 contains all states
having 𝑗 variables assigned. Several special states are also defined: the
root 𝑟 , the terminal 𝑡 and the infeasible state 0̂.

■ a set 𝑡 of transition functions s.t. 𝑡 𝑗 : S𝑗 ×D𝑗 → S𝑗+1 for 𝑗 = 0, . . . , 𝑛− 1
taking the system from one state 𝑠 𝑗 to the next state 𝑠 𝑗+1 based on the
value 𝑑 assigned to variable 𝑥 𝑗 , or to ⊥ if assigning 𝑥 𝑗 = 𝑑 is infeasible.
These functions should never allow one to recover from infeasibility,
i.e. 𝑡 𝑗 (0̂, 𝑑) = 0̂ for any 𝑑 ∈ D𝑗 .

■ a set ℎ of transition value functions s.t. ℎ 𝑗 : S𝑗 × D𝑗 → R representing
the immediate reward of assigning some value 𝑑 ∈ D𝑗 to the variable
𝑥 𝑗 for 𝑗 = 0, . . . , 𝑛 − 1.

■ a root value 𝑣𝑟 to account for constant terms in the objective.

If those elements can be defined for P, then finding the optimal solution
is equivalent to solving:

maximize 𝑓 (𝑥) = 𝑣𝑟 +
𝑛−1∑︁
𝑗=0

ℎ 𝑗 (𝑠 𝑗 , 𝑥 𝑗)

subject to 𝑠 𝑗+1 = 𝑡 𝑗 (𝑠 𝑗 , 𝑥 𝑗), for all 𝑗 = 0, . . . , 𝑛 − 1, with 𝑥 𝑗 ∈ D𝑗

𝑠 𝑗 ∈ S𝑗 , 𝑗 = 0, . . . , 𝑛 and 𝑥 ∈ C.

Example 2.2.1. The BKP has a well-known DP formulation that we recall here.

■ Like in the MIP formulation of the problem, it uses one variable 𝑥 𝑗 ∈{
0, . . . , 𝑞 𝑗

}
for each item 𝑗 ∈ 𝑁 that decides the number of copies of it to

include in the knapsack.

2.3. Decision Diagrams 9

■ The states simply contain the remaining capacity of the knapsack. Indeed,
when taking the decisions sequentially, the exact same sets of items can
be added to all partial solutions with the same remaining capacity, inde-
pendently of the items selected before. The state space is thus defined as
𝑆 = [0,𝐶], with the root state 𝑟 = 𝐶 starting at maximum capacity.

■ The transition functions are given by:

𝑡 𝑗 (𝑠 𝑗 , 𝑥 𝑗) =
{
𝑠 𝑗 − 𝑥 𝑗𝑤 𝑗 , if 𝑥 𝑗𝑤 𝑗 ≤ 𝑠 𝑗 ,
0̂, otherwise.

It means that the weight of item 𝑗 is subtracted from the remaining ca-
pacity as many times as the number of copies selected. If the transition
violates the capacity constraint, the transition is redirected to the infeasi-
ble state 0̂.

■ The transition value functions ℎ 𝑗 (𝑠 𝑗 , 𝑥 𝑗) = 𝑥 𝑗𝑣 𝑗 simply add the value of
item 𝑗 for each copy included in the knapsack.

■ The root value is 𝑣𝑟 = 0.

2.3 Decision Diagrams

In the context of discrete optimization, a DD is a graphical representation
of the set of solutions to a given problem P. DDs are well suited to encode
and manipulate compact formulations such as DP models, due to their abil-
ity to preserve the uniqueness of overlapping subproblems. In mathemati-
cal terms, a decision diagram B = (𝑈 ,𝐴, 𝜎, 𝑙, 𝑣) is a layered directed acyclic
graph consisting of a set of nodes 𝑈 that are connected by a set of arcs 𝐴.
Each node is mapped to a DP state by the function 𝜎 . The set of nodes𝑈 can
be partitioned into layers 𝐿0, . . . , 𝐿𝑛 corresponding to the successive stages of
the DP model, each containing one node for each distinct state of the corre-
sponding stage. Therefore, arcs 𝑎 = (𝑢 𝑗

𝑑−→ 𝑢 𝑗+1) connect nodes of consec-
utive layers 𝑢 𝑗 ∈ 𝐿 𝑗 , 𝑢 𝑗+1 ∈ 𝐿 𝑗+1 and represent the transition between states
𝜎 (𝑢 𝑗) and 𝜎 (𝑢 𝑗+1). The label 𝑙 (𝑎) = 𝑑 of an arc encodes the decision that
assigns the value 𝑑 ∈ D𝑗 to variable 𝑥 𝑗 . The value 𝑣 (𝑎) of the arc stores the
transition value. Both the first and last layer – 𝐿0 and 𝐿𝑛 – contain a sin-
gle node, respectively the root 𝑟 and the terminal node 𝑡 . Each 𝑟 ⇝ 𝑡 path
𝑝 = (𝑎0, . . . , 𝑎𝑛−1) that traverses the DD from top to bottom through arcs
𝑎0, . . . , 𝑎𝑛−1 represents a solution 𝑥 (𝑝) = (𝑙 (𝑎0), . . . , 𝑙 (𝑎𝑛−1)) to P. Its objec-
tive value is given by the accumulation of the arc values along the path and
the root value: 𝑣 (𝑝) = 𝑣𝑟 +

∑𝑛−1
𝑗=0 𝑣 (𝑎 𝑗). Finally, the set of all solutions appear-

ing in the DD is defined as 𝑆𝑜𝑙 (B) = {𝑥 (𝑝) | ∃𝑝 : 𝑟 ⇝ 𝑡, 𝑝 ∈ B} and B is said

10 Chapter 2. Preliminaries

𝑉 𝑊 𝑄

2 4 1
3 6 1
6 4 2
6 2 2
1 5 1
𝐶 = 15

Table 2.1: A BKP instance.

exact if it perfectly represents the set of solutions of the corresponding prob-
lem, i.e. 𝑆𝑜𝑙 (B) = 𝑆𝑜𝑙 (P) and 𝑣 (𝑝) = 𝑓 (𝑥 (𝑝)),∀𝑝 ∈ B. For convenience, all
nodes 𝑢 and paths 𝑝 appearing in a DD B can be accessed respectively with
the notation 𝑢 ∈ B and 𝑝 ∈ B.

Example 2.3.1. Let us consider the BKP instance given by Table 2.1 with 5
items and a knapsack capacity of 15. The exact DD obtained by developing
the DP model introduced in Example 2.2.1 for this instance is represented on
Figure 2.1. The bold path is the longest path of the DD and corresponds to the
optimal solution 𝑥∗ = (0, 0, 2, 2, 0) with value 𝑓 (𝑥∗) = 24.

Before detailing the DD compilation algorithm, let us provide some addi-
tional elements of notation. We denote by 𝑝∗(𝑢1 ⇝ 𝑢2 | B) an optimal path
between nodes𝑢1 and𝑢2 in a DDB and by 𝑣∗(𝑢1⇝ 𝑢2 | B) its value. For a DD
B rooted at a node 𝑢𝑟 , we assume that an exact 𝑟 ⇝ 𝑢𝑟 path 𝑝 (𝑢𝑟) = 𝑝∗(𝑟 ⇝
𝑢𝑟 | B′) was found and attached to𝑢𝑟 during the prior compilation of another
DD B′. For conciseness, we denote by 𝑝∗(𝑢 | B) = 𝑝 (𝑢𝑟) · 𝑝∗(𝑢𝑟 ⇝ 𝑢 | B) an
optimal path connecting the root node 𝑟 of the problem and node𝑢 within the
DD B, with · the concatenation operator. The value of this path is given by
𝑣∗(𝑢 | B) = 𝑣 (𝑝 (𝑢𝑟) · 𝑝∗(𝑢𝑟 ⇝ 𝑢 | B)) = 𝑣 (𝑝 (𝑢𝑟)) + 𝑣∗(𝑢𝑟 ⇝ 𝑢 | B). Further-
more, we write 𝑝∗(B) = 𝑝∗(𝑡 | B), 𝑣∗(B) = 𝑣∗(𝑡 | B) and 𝑥∗(B) = 𝑥 (𝑝∗(B))
to refer to one of the longest 𝑟 ⇝ 𝑡 paths in B, its value and the correspond-
ing variable assignment. Finally, we define the successors of a node 𝑢 ∈ B
as the set of nodes reachable from 𝑢 in B, including 𝑢 itself: 𝑆𝑢𝑐𝑐 (𝑢 | B) =
{𝑢} ∪ {𝑢′ | (𝑢 ⇝ 𝑢′) ∈ B}.

2.3.1 Compilation

Given the subproblem P|𝑢𝑟 that restricts P to paths traversing some node 𝑢𝑟 ,
Algorithm 1 details the top-down compilation of a DD rooted at𝑢𝑟 , given that
𝜎 (𝑢𝑟) is a state at the 𝑖-th stage of the DP model. The notations utilized in
the algorithms are deliberately less formal to make the explanations easier to
understand.

2.3. Decision Diagrams 11

0 2

0 03 3

0 6 0
0

12 6 6 0
12

12 6

0 6 12 0 6 012 06 612 012 6 012 06

01 0
1 0

1 0 1 0 1 0
1 0 0

150

150 112

150 112 93 55

150 116 93 712 59 314 115

150 136 1112 912 718 518 324 121

𝑡24

𝐿0

𝐿1

𝐿2

𝐿3

𝐿4

𝐿5

𝑥0

𝑥1

𝑥2

𝑥3

𝑥4

Figure 2.1: The exact DD for the BKP instance of Table 2.1. The value inside
each node corresponds to its state – the remaining capacity – and the annota-
tion on the left gives the value of the longest path that reaches it. For clarity,
only arc values are present. The longest path is highlighted in bold.

The algorithm begins by initializing a layer 𝐿𝑖 that only contains the root
node 𝑢𝑟 , assuming its state 𝜎 (𝑢𝑟) belongs to the 𝑖-th stage of the DP model.
The subsequent layers of the DD are then constructed sequentially by apply-
ing each valid transition of the DP model to every node of the last completed
layer at lines 7 to 13, until all variables are assigned. Once the DD is fully
unrolled, line 14 merges all nodes of the terminal layer into a single terminal
node 𝑡 . At line 4, the width of the current layer is computed and compared
against a parameter 𝑊 called the maximum width. When the layer width
exceeds𝑊 , the algorithm yields approximate DDs by either restricting or re-
laxing the layer at line 5. In order to obtain an exact DD, one can simply set
𝑊 = ∞. As the reader might have guessed, the compilation of an exact DD for
a combinatorial optimization problem suffers from the curse of dimensional-
ity as much as the corresponding DP model. This is why DD-based discrete
optimization rarely relies on exact DDs but rather on restricted and relaxed

12 Chapter 2. Preliminaries

Algorithm 1 Compilation of DD B rooted at node 𝑢𝑟 with max. width𝑊 .
1: 𝑖 ← index of the layer containing 𝑢𝑟
2: 𝐿𝑖 ← {𝑢𝑟 }
3: for 𝑗 = 𝑖 to 𝑛 − 1 do
4: if |𝐿 𝑗 | >𝑊 then
5: restrict or relax the layer to get𝑊 nodes with Algorithm 2
6: 𝐿 𝑗+1 ← ∅
7: for all 𝑢 ∈ 𝐿 𝑗 do
8: if 𝑣∗(𝑢 | B) + 𝑣𝑟𝑢𝑏 (𝜎 (𝑢)) ≤ 𝑣 then // RUB pruning
9: continue
10: for all 𝑑 ∈ D𝑗 do
11: create node 𝑢′ with state 𝜎 (𝑢′) = 𝑡 𝑗 (𝜎 (𝑢), 𝑑)

or retrieve it from 𝐿 𝑗+1

12: create arc 𝑎 = (𝑢 𝑑−→ 𝑢′) with 𝑣 (𝑎) = ℎ 𝑗 (𝜎 (𝑢), 𝑑) and 𝑙 (𝑎) = 𝑑
13: add 𝑢′ to 𝐿 𝑗+1 and add 𝑎 to 𝐴
14: merge nodes in 𝐿𝑛 into terminal node 𝑡

DDs. These two variants of DDs are both capable of maintaining the width
of all layers under a given maximum width but rely on different strategies to
reduce the width of a layer. The former one yields lower bounds and feasible
solutions while the latter can be used to derive upper bounds.

A note about reduced DDs A DD is reduced [Bry86; Weg00] if it does not
contain any equivalent subgraphs, that is, isomorphic subgraphs where cor-
responding nodes belong to the same layer and corresponding arcs share the
same labels. DD reduction is very important for many applications, since it
produces a unique DD of minimal size for a given variable ordering. However,
weighted DDs used for optimization are less amenable to reduction since arc
values further restrict which arcs can be superimposed. [Hoo13] explained
how transition cost functions of DP models can be rearranged to allow com-
piling reduced weighted DDs. Yet, this transformation is not always possible
nor necessary since DDs are already reduced in some sense, indeed, they are
derived from DPmodels that superimpose equivalent subproblems by design.

2.3.2 Restricted DDs

The compilation of a restrictedDD can be seen as a beam search in theDP state
space. At line 5 of Algorithm 1, restriction is thus synonymous with removing
surplus nodes. As detailed by Algorithm 2, the least promising nodes of the
layer are selected according to a heuristic and simply dropped before resum-
ing the compilation as normal. As a result, the compilation of a restricted DD

2.3. Decision Diagrams 13

Algorithm 2 Restriction or relaxation of layer 𝐿′𝑗 with maximum width𝑊 .
1: while |𝐿 𝑗 | >𝑊 do
2: M ← select nodes from 𝐿′𝑗
3: 𝐿 𝑗 ← 𝐿 𝑗 \M
4: create node 𝜇 with state 𝜎 (𝜇) = ⊕(𝜎 (M)) // for relaxation only

and add it to 𝐿 𝑗
5: for all 𝑢 ∈ M and arc 𝑎 = (𝑢′ 𝑑−→ 𝑢) incident to 𝑢 do
6: replace 𝑎 by 𝑎′ = (𝑢′ 𝑑−→ 𝜇) and set 𝑣 (𝑎′) = ΓM (𝑣 (𝑎), 𝑢)

will produce a subset of the solutions of the problem, those remaining solu-
tions being feasible since the transitions were left untouched. For a restricted
DD B, we thus have 𝑆𝑜𝑙 (B) ⊆ 𝑆𝑜𝑙 (P) and 𝑣 (𝑝) = 𝑓 (𝑥 (𝑝)),∀𝑝 ∈ B.

Example 2.3.2. Figure 2.2(a) shows the result of compiling a restricted DD for
the BKP instance of Table 2.1 with a maximum width of 3. By applying the
greedy heuristic that deletes nodes with the lowest prefix values, the best solution
that the restricted DD thus compiled contains is 𝑥 = 𝑥∗(B) = (0, 1, 1, 2, 0), which
gives a lower bound of 𝑣 = 𝑣∗(B) = 21.

2.3.3 Relaxed DDs

As opposed to restricted DDs that encode a subset of the solutions, the pur-
pose of relaxed DDs is to represent all solutions of the problem. This is
achieved by locally relaxing the problem by merging nodes together. By do-
ing so, no feasible solutions will be removed, but infeasible ones might be
introduced. It requires defining problem-specific merging operators to merge
the corresponding DP states. IfM is the set of nodes to merge and 𝜎 (M) =
{𝜎 (𝑢) | 𝑢 ∈ M} the corresponding set of states, the operator ⊕(𝜎 (M)) gives
the state of themerged node. The resulting state should encompass all merged
states and preserve all their outgoing transitions. In Algorithm 2, this opera-
tor is used at line 4 to create a single meta-node and at lines 5 to 6, the arcs
pointing to the merged nodes are redirected to it.

A second operator denoted ΓM can be specified to adjust the value of the
arcs incident to the merged node at line 6. As the merging operator gives a
relaxed representation of all merged states, it can introduce infeasible out-
going transitions. In addition, merging nodes 𝑢1, 𝑢2 allows combining any
𝑟 ⇝ 𝑢1 path with any 𝑢2 ⇝ 𝑡 path and vice-versa. Given a valid relax-
ation operator, we can write for any relaxed DD B that 𝑆𝑜𝑙 (B) ⊇ 𝑆𝑜𝑙 (P) and
𝑣 (𝑝) ≥ 𝑓 (𝑥 (𝑝)),∀𝑝 ∈ B. To correctly explore the search space, we distin-
guish exact nodes from relaxed nodes. A node𝑢 in a DD B rooted at node𝑢𝑟 is
said exact if, for any 𝑟 ⇝ 𝑢𝑟 ⇝ 𝑢 path in B, applying all transitions specified

14 Chapter 2. Preliminaries

0 2

03 3

6

0

12
12

6

0 6 0
12

06

0
1 0 0

150

150 112

112 93 55

59 314 115

59 315 121

𝑡21

(a) Restricted DD

0 2

00 3 3

0
6

0

0 6 12
12

6

0
6

0

0 6 12
12

00 10
1

150

150 112

152 93 55

159 714 115

1520 1121 326

𝑡26

(b) Relaxed DD

Figure 2.2: (a) A restricted and (b) a relaxed DD for the BKP instance of Ta-
ble 2.1(a), as compiled with Algorithm 1 with𝑊 = 3. (b) Relaxed nodes are
colored in gray and merged nodes are circled twice.

by its arcs recursively from the root leads to the state 𝜎 (𝑢). All nodes that do
not meet this criterion are called relaxed.

Example 2.3.3. As explained in Example 2.2.1, the states of the DP model
for the BKP are identified by the remaining capacity of the knapsack. In or-
der to create a relaxed representation of the states to merge, it suffices to keep
the maximum remaining capacity among them. This is formally written as:
⊕(𝜎 (M)) = max𝑠∈𝜎 (M) 𝑠 . For this simple formulation, the operator ΓM can be
defined as the identity function since there is no need to modify the arc values.

Given these relaxation operators, one can obtain the relaxed DD of width 3
that is represented on Figure 2.2(b). The longest path in this diagram corresponds
to the solution𝑥 = 𝑥∗(B) = (1, 0, 2, 2, 0) for a value of 26 and a total weight of 16.
This solution thus violates the capacity constraint, which was allowed to happen
because the only effect of the merging operators given above is precisely to relax

2.4. Branch-and-Bound 15

this constraint. Nevertheless, the value of this infeasible solution provides an
upper bound 𝑣 = 𝑣∗(B) = 26 for the problem.

2.3.4 Rough Upper Bound Pruning

Before presenting how approximate DDs are embedded in a B&B scheme, this
section covers the last modeling component that affects the compilation algo-
rithm. The rough upper bound (RUB) introduced by [Gil+21] aims at identify-
ing suboptimal nodes as early as during the compilation of approximate DDs.
It does so by computing a cheap problem-specific upper bound 𝑣𝑟𝑢𝑏 (𝜎 (𝑢))
for every node at line 8 of Algorithm 1, which can help pruning many nodes
before even generating their successors by comparing it with a known lower
bound 𝑣 obtained from an initial solution. The RUB can be specified for the
states of a given DP model, such that 𝑣𝑟𝑢𝑏 (𝜎 (𝑢)) ≥ 𝑣∗(𝑢 ⇝ 𝑡 | B) for any
node 𝑢 in B the exact DD for problem P. Since the RUB is computed for each
node of the approximate DDs, it needs to be computationally cheap. How-
ever, a tight RUB has the potential both to focus the compilation of restricted
DDs on promising parts of the search space and to strengthen the bounds
obtained through relaxed DDs.

Example 2.3.4. A naive RUB for the BKP can simply add the maximum quan-
tity of all remaining items to the knapsack, disregarding the capacity constraint.
This can be written as 𝑣𝑟𝑢𝑏 (𝑠 𝑗) =

∑𝑛−1
𝑘=𝑗

𝑞𝑘𝑣𝑘 . Of course, a better choice could be
to use the LP bound introduced by [Dan57].

Figure 2.3 shows a relaxed DD for the BKP instance of Table 2.1 compiled
from the root with𝑊 = 3, using RUB and LocB pruning this time. Given the
lower bound of 𝑣 = 21 obtained in Example 2.3.2, RUB pruning can successfully
discard nodes 𝑐1, 𝑐2, 𝑐3, 𝑑1 and𝑑2. For instance, the RUB for all nodes of the fourth
layer is given by 𝑣𝑟𝑢𝑏 (𝜎 (𝑢)) = 𝑞3𝑣3 +𝑞4𝑣4 = 2×6+1×1 = 13. This pruning im-
proves the quality of the relaxed DD as only one layer resorted to node merging,
compared to three for the relaxed DD of Figure 2.2(b).

2.4 Branch-and-Bound

The ingredients presented in Section 2.3 allow building a DD-only B&B al-
gorithm, as introduced in [Ber+16]. Restricted DDs are used to quickly find
quality feasible solutions from any starting node while relaxed DDs recur-
sively decompose the problem at hand and provide bounds for the subprob-
lems thus generated. The heart of the algorithm lies in the concept of exact
cutset that dictates how to exhaustively explore the entire search space.

16 Chapter 2. Preliminaries

0 2

00 3 3

0 6 012 6 0
12

6

0 06 6
12

12
0

0 0

150
26

150
24 𝑎1 112

24 𝑎2

152
24 93

18 55
12

152
−∞

2 + 13 ≤ 21

𝑐1 118
−∞

8 + 13 ≤ 21

𝑐2 93
−∞

3 + 13 ≤ 21

𝑐3 714
12 59

12
9 + 12 ≤ 21

𝑐4 115
0

714
−∞

14 + 1 ≤ 21

𝑑1 520
−∞

20 + 1 ≤ 21

𝑑2 326
0 121

0
21 + 0 ≤ 21

𝑑3

𝑡26
0

Figure 2.3: A relaxed DD for the BKP instance of Table 2.1(a), as compiled
with Algorithm 1with𝑊 = 3 and RUB and LocB pruning enabled. The LocBs
are annotated in gray on the left of each node. Pruning decisions are detailed
below the filtered nodes.

2.4.1 Exact Cutsets

As explained in Section 2.3.3, relaxed DDs offer a way to derive an upper
bound for any given subproblem from which the compilation is initiated.
They can, however, serve a second purpose when aiming to solve problems to
optimality. Considering a relaxed DD B rooted at a node 𝑢𝑟 , the divide-and-
conquer nature of the underlying DP model suggests that the corresponding
subproblem P|𝑢𝑟 can be decomposed in a set of other subproblems given by
its direct successors in B. In other words, solving all these subproblems sep-
arately is equivalent to solving the subproblem in 𝑢𝑟 . By transitivity, an exact
decomposition of𝑢𝑟 can be formed by exact nodes belonging to layers further
down the diagram. This decomposition principle is formalized by the notion
of exact cutset (EC) of B.

Definition 2.4.1 (Exact cutset). An exact cutset 𝐸𝐶 (B) of a relaxed DD B

2.4. Branch-and-Bound 17

rooted at node 𝑢𝑟 is a set of exact nodes such that any 𝑢𝑟 ⇝ 𝑡 path crosses at
least one of them.

As a result, we can state that solving P|𝑢𝑟 is equivalent to solving P|𝑢 for
all 𝑢 ∈ 𝐸𝐶 (B). In the B&B algorithm, ECs can thus be used to identify which
subproblems must still be processed as to enumerate – or prune – all possible
solutions. However, there can exist many sets of exact nodes conforming to
the above definition for a given relaxed DD B. In [Ber+16], three different
strategies to identify an EC are described.

■ Traditional branching: if 𝑢𝑟 belongs to layer 𝐿𝑖 , traditional branching
(TB) decomposes𝑢𝑟 into the subproblems obtained by assigning all pos-
sible values to variable 𝑥𝑖 , and thus consists of all the nodes in the fol-
lowing layer 𝑇𝐵(B) = 𝐿𝑖+1.

■ Last exact layer : the last exact layer (LEL) is the deepest layer in B that
contains only exact nodes.

𝐿𝐸𝐿(B) = 𝐿 𝑗 ′ where 𝑗 ′ = argmax
𝑗=𝑖,...,𝑛

∀𝑢 ∈ 𝐿 𝑗 : 𝑢 is exact

■ Frontier cutset: the frontier cutset (FC) contains all exact nodes at the
frontier between exact and relaxed nodes in B.

𝐹𝐶 (B) =
{
𝑢 ∈ B | 𝑢 is exact ∧ ∃𝑎 = (𝑢 𝑑−→ 𝑢′) such that 𝑢′ is relaxed

}
Example 2.4.1. Using both TB and LEL, the EC of the relaxed DD of Figure 2.3
would contain nodes 𝑎1 and 𝑎2. The FC would consist of node 𝑎1, 𝑎2, 𝑐4 and 𝑑3
since they all have one relaxed direct successor.

2.4.2 Local Bounds

Equally important as the EC are the upper bounds prescribing whether a sub-
problem is worth exploring. In the original DD-based B&B algorithm pre-
sented in [Ber+14a], the only criterion for filtering a node retrieved from the
EC of a relaxed DD B was the comparison between single upper bound given
by 𝑣∗(B) and the best known lower bound 𝑣 . The local bounds (LocBs) pre-
sented by [Gil+21] refine this reasoning by computing a distinct upper bound
for each node 𝑢 in B, given by the value of the longest 𝑢 ⇝ 𝑡 path in B.

Definition 2.4.2 (Local bound). Given B a relaxed DD for problem P and a
node 𝑢 ∈ B, the local bound 𝑣𝑙𝑜𝑐𝑏 (𝑢 | B) of 𝑢 within B is given by:

𝑣𝑙𝑜𝑐𝑏 (𝑢 | B) =
{
𝑣∗(𝑢 ⇝ 𝑡 | B), if (𝑢 ⇝ 𝑡) ∈ B,
−∞, otherwise.

18 Chapter 2. Preliminaries

Algorithm 3 Computation of the local bound of every node 𝑢 in B.
1: 𝑖 ← index of the root layer of B
2: (𝐿𝑖 , . . . , 𝐿𝑛) ← 𝐿𝑎𝑦𝑒𝑟𝑠 (B)
3: 𝑣𝑙𝑜𝑐𝑏 (𝑢 | B) ← −∞
4: 𝑚𝑎𝑟𝑘 (𝑢) ← false for each node 𝑢 ∈ B
5: 𝑣𝑙𝑜𝑐𝑏 (𝑡 | B) ← 0
6: 𝑚𝑎𝑟𝑘 (𝑡) ← true
7: for 𝑗 = 𝑛 down to 𝑖 do
8: for all 𝑢 ∈ 𝐿 𝑗 do
9: if 𝑚𝑎𝑟𝑘 (𝑢) then
10: for all arc 𝑎 = (𝑢′ −→ 𝑢) incident to 𝑢 do
11: 𝑣𝑙𝑜𝑐𝑏 (𝑢′ | B) ← max

{
𝑣𝑙𝑜𝑐𝑏 (𝑢′ | B), 𝑣𝑙𝑜𝑐𝑏 (𝑢 | B) + 𝑣 (𝑎)

}
12: 𝑚𝑎𝑟𝑘 (𝑢′) ← true

Example 2.4.2. In Figure 2.3, below the value of the longest path shown next
to each node, we add the LocB in gray. Given the incumbent solution computed
in Figure 2.2(a) and supposing an FC is used, the LocBs allow to deduce that
𝑐4 and 𝑑3 are not worth exploring further. Indeed, for each of them we have
𝑣∗(𝑢 | B) + 𝑣𝑙𝑜𝑐𝑏 (𝑢 | B) = 21 ≤ 𝑣 = 21.

LocBs can be computed efficiently by performing a bottom-up traversal
of B, as formalized by Algorithm 3. In the algorithm, the 𝑚𝑎𝑟𝑘 flags are
propagated to all nodes that have at least one path reaching the terminal node
𝑡 . In parallel, the value 𝑣∗(𝑢 ⇝ 𝑡 | B) of each marked node 𝑢 is computed
by accumulating the arc values traversed upwards. At the terminal node,
𝑣𝑙𝑜𝑐𝑏 (𝑡 | B) is set to zero at line 5. For all other nodes, the value 𝑣𝑙𝑜𝑐𝑏 is
updated by their direct successors at line 11.

To simplify the exposition of the B&B algorithm and of the concepts in-
troduced in Chapter 4, we define the upper bound 𝑣 (𝑢 | B) that combines the
RUB and the LocB obtained after compiling a relaxed DD B and with respect
to a known lower bound 𝑣 .

𝑣 (𝑢 | B) =
{
𝑣𝑟𝑢𝑏 (𝜎 (𝑢)), if 𝑣∗(𝑢 | B) + 𝑣𝑟𝑢𝑏 (𝜎 (𝑢)) ≤ 𝑣 ,
min

{
𝑣𝑟𝑢𝑏 (𝜎 (𝑢)), 𝑣𝑙𝑜𝑐𝑏 (𝑢 | B)

}
, otherwise.

In the case where the RUB caused the node to be pruned during the compi-
lation at line 8 of Algorithm 1, the value of the RUB is kept. Otherwise, the
minimumof both upper bounds is retained tomaximize the pruning potential.

2.4. Branch-and-Bound 19

Algorithm 4 The DD-based branch-and-bound algorithm.
1: 𝐹𝑟𝑖𝑛𝑔𝑒 ← {𝑟 } // a priority queue ordered by decreasing 𝑣 (𝑢) + 𝑣 (𝑢)
2: 𝑥 ← ⊥, 𝑣 ← −∞ // incumbent solution and its value
3: while 𝐹𝑟𝑖𝑛𝑔𝑒 is not empty do
4: 𝑢 ← best node from 𝐹𝑟𝑖𝑛𝑔𝑒 , remove it from 𝐹𝑟𝑖𝑛𝑔𝑒

5: if 𝑣 (𝑢) + 𝑣 (𝑢) ≤ 𝑣 then
6: continue
7: B ← 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 (𝑢) // compile restricted DD with Algorithm 1
8: if 𝑣∗(B) > 𝑣 then // update incumbent
9: 𝑥 ← 𝑥∗(B), 𝑣 ← 𝑣∗(B)
10: if B is not exact then
11: B ← 𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (𝑢) // compile relaxed DD with Algorithm 1
12: compute LocBs with Algorithm 3 applied to B
13: for all 𝑢′ ∈ 𝐸𝐶 (B) do
14: 𝑣 (𝑢′) ← 𝑣∗(𝑢′ | B), 𝑣 (𝑢′) ← 𝑣 (𝑢′ | B), 𝑝 (𝑢′) ← 𝑝∗(𝑢′ | B)
15: if 𝑣 (𝑢′) + 𝑣 (𝑢′) > 𝑣 then
16: add 𝑢′ to 𝐹𝑟𝑖𝑛𝑔𝑒
17: return (𝑥, 𝑣)

2.4.3 Algorithm

The B&B algorithm is formalized by Algorithm 4 and illustrated by Figure 2.4.
It relies on a priority queue – referred to as the Fringe – that maintains the
set of open nodes throughout the search. The Fringe is initialized with the
root node 𝑟 corresponding to the root state of the DP model 𝜎 (𝑟) = 𝑟 . Then,
line 3 loops over the nodes contained in the Fringe and for each of them, a
restricted DD B is compiled at line 7. It may provide a solution with value
𝑣∗(B) improving the current best, in which case the incumbent is updated
at lines 8 to 9. If B is exact, meaning that no nodes were removed from the
DD, then this subproblem can be considered as fully explored. Otherwise, a
relaxed DD B must be developed at line 11 as to decompose the node into
smaller subproblems given by the EC of B. Thanks to the RUB and LocB
computations, an upper bound 𝑣 (𝑢) is derived for each node 𝑢 ∈ 𝐸𝐶 (B). It is
then used to discard nodes that are guaranteed to lead to solutions of value
worse or equal to 𝑣 . This check is performed at line 15 before adding a node
to the Fringe and is repeated at line 5 when a node is selected for exploration.
In addition to the upper bound 𝑣 (𝑢), line 14 also attaches to each cutset node
𝑢 the longest 𝑟 ⇝ 𝑢 path 𝑝 (𝑢) = 𝑝∗(𝑢 | B) and its value 𝑣 (𝑢) = 𝑣∗(𝑢 | B).
The cutset nodes having passed the pruning test are then added to the Fringe
in order to pursue the exhaustive exploration of the search space, and this
whole process is repeated until the Fringe is emptied.

20 Chapter 2. Preliminaries

Putrootin
Fringe

Start

Is
Fringe

em
pty?

End

𝑎2
𝑎1

𝑎2

Fringe

Pop
bestnode

from
Fringe

Can
the

node
be

pruned?

IsB
exact?

𝑥
=
(0,1,1,2,0)

,𝑣
=
21

Incum
bent

a.Com
pile
B

from
node

(A
lg.1)

0
3

6
12

6

6
12

0
6

0

0 1
0

0

11
2

𝑎
2

11
2

5
5

7
8

3
14

1
11

5
14

3
20

1
20

𝑡
20

b.U
pdate

incum
bentif

𝑣 ∗(B
)
>
𝑣

a.Com
pile
B

from
node

(A
lg.1)

0
3

0
6

0
12

6

0
0

6
12

6
0

0
0

1
0 1

11
2

𝑎
2

11
2

5
5

11
8

3
14

1
11

11
14

7
20

1
20

𝑡
21

b.Com
pute

localbounds(A
lg.4)

c.Extract
𝐸
𝐶
(B
)

Prune
nodesof

𝐸
𝐶
(B
)

A
dd

nodesto
Fringe

N
Y

Y

N

N
Y

Figure
2.4:Flow

chartofthe
D
D
-based

B
&
B
algorithm

.Itdepicts
the

state
ofthe

algorithm
after

nodes
𝑎
1 and

𝑎
2 have

been
added

to
the

Fringe
from

the
FC

of
the

relaxed
D
D
of

Figure
2.3

and
node

𝑎
2
is
selected

for
exploration.

2.5. Variants and Heuristics for Compilation 21

Example 2.4.3. Figure 2.4 illustrates the execution of the main loop of the B&B
algorithm after having added the FC of the relaxed DD of Figure 2.3 to the Fringe.
As mentioned in Example 2.4.1, this FC consists of nodes 𝑎1, 𝑎2, 𝑐4 and 𝑑3 but
recall from Example 2.4.2 that 𝑐4 and 𝑑3 can be pruned thanks to their LocB and
the lower bound derived from Figure 2.2(a). Among the Fringe, node 𝑎2 has the
best upper bound and is selected for exploration. Indeed, 𝑣 (𝑎2) +𝑣 (𝑎2) = 2+24 =
26 whereas 𝑣 (𝑎1) + 𝑣 (𝑎1) = 0 + 24 = 24. Since 𝑎2 cannot be pruned, the left part
of the flowchart shows the compilation of a restricted DD from this node, which
fails to find a solution with a better value than 21. As the restricted DD is not
exact, a relaxed DD is developed and shown in the right part of the flowchart.
The upper bound given by this relaxed DD is 𝑣∗(B) = 21, which is equal to the
incumbent value. It is thus unnecessary to enqueue any node from the EC.

2.5 Variants and Heuristics for Compilation

Section 2.4 concluded the overview of the DD-based B&B framework intro-
duced in [Ber+16] and of the extensions proposed in [Gil+21]. This section
provides more details about some components of the algorithm, and about
the variants that exist in the literature.

2.5.1 Node Selection Heuristic

In the DD compilation algorithm, a heuristic decision must be made about
which nodes to remove or merge when a layer exceeds the maximum width
allowed – this occurs at line 2 of Algorithm 2. The most commonly used
strategy is the MinLP heuristic that selects nodes with the minimum longest
path value. It was introduced in [Ber+14a] and shown to yield much tighter
bounds than a random strategy as well as a problem-specific heuristic for the
Maximum Independent Set Problem (MISP).

While the MinLP strategy is well suited for the compilation of restricted
DDs, it may be ineffective in the case of relaxed DDs. Indeed, it is completely
oblivious to the similarity, or rather the dissimilarity, between the states that
will be merged. To address this issue, [FR20] suggested node merging pro-
cedures incorporating state similarity measures and longest path values, and
that were shown to perform well on the MISP and the Set Cover Problem.

Another strategy for increasing the similarity of nodes merged together
was proposed in [Hor+21; HR21], using a problem-specific node labeling func-
tion that conditions which nodes can be merged together. Different labeling
strategies were shown to produce very different results in terms of bound
quality, DD size and compilation time for a prize-collecting scheduling prob-
lem and for the Multiple Longest Common Subsequence Problem (MLCS).

22 Chapter 2. Preliminaries

2.5.2 Variable Ordering

So far, we assumed that DDs are compiled by considering the variables in
their natural ordering 𝑥0, . . . , 𝑥𝑛−1. For some DP models such as those for se-
quencing problems [Hoo17; Hoo19], this ordering is imposed by the way the
recursion is formulated. However, for some other problems, nothing prevents
from tweaking the variable ordering so that decisions about crucial elements
of a problem are made first. We distinguish two types of variable orderings:

■ a static variable ordering is a permutation of the ordering of the vari-
ables that remains fixed throughout the whole algorithm,

■ a dynamic variable ordering dynamically selects the next variable to
assign when developing a new layer in the DD compilation algorithm.
This means that the approximate DDs compiled during a given execu-
tion do not necessarily consider the variables in the same order.

[Ber+12; Ber+14a] presented several static and dynamic variable orderings for
the MISP and showed that they greatly impact the size of the DDs compiled
and the quality of their bounds. Another promising research direction is to
automatically discover good variable orderings for a given class of problems.
Recently, [Cap+22] designed a reinforcement learning approach to perform
this task while [KH22] proposed different portfolio mechanisms to dynami-
cally select the best ordering among a predefined set of alternatives.

Example 2.5.1. For the BKP, considering the variables associated to the items
with the best value-to-weight ratio first yields much better results.

2.5.3 Long Arcs

Another simplification made in this chapter is that transitions concerning a
variable 𝑥 𝑗 are applied to all nodes of the previous layer 𝐿 𝑗 indistinctively,
creating an arc and a successor node for each valid variable assignment. Long
arcs allow modeling transitions that skip some variables having no impact on
the state associated with a given node [Ber+14a] For problems that allow it,
long arcs reduce the size of the DDs since they represent multiple transitions.
However, as discussed in detail in [Gil22], bounding the number of nodes
generated when compiling DDs with long arcs is not straightforward. Indeed,
while each layer can be reduced to a maximum of𝑊 nodes, the size of the set
of nodes that are skipping a given is unbounded. [Gil22] discusses this issue
in detail and provides the adapted DD compilation algorithm that supports
long arcs.

Example 2.5.2. When developing a layer by applying transitions concerning
variable 𝑥 𝑗 of the BKP, nodes for which the remaining capacity is insufficient to

2.5. Variants and Heuristics for Compilation 23

insert a single copy of item 𝑗 can be put aside until reaching the next item that
fits, i.e. variable 𝑥 𝑗 is skipped for node 𝑢 if 𝜎 (𝑢) < 𝑤 𝑗 .

2.5.4 Alternative Compilation Schemes

In Section 2.3, we recalled the top-downDD compilation procedure used in the
original DD-based B&B paper [Ber+16], and reproduced here by Algorithm 1.
Although this procedure is the only one capable of producing both restricted,
relaxed and exact DDs, there exist other techniques for compiling relaxed
or exact DDs. Namely, the so-called compilation by incremental refinement
[Had+08; HHH10] relies on node separation instead of nodemerging. It starts
with a dummy relaxed DD of width one that contains all the solutions to
the problem and potentially also many infeasible solutions. The algorithm
then iteratively refines each layer by filtering infeasible outgoing arcs and
by splitting nodes associated with relaxed states, until all possible splits are
performed, or the maximumwidth is reached. Incremental refinement proves
particularly valuable in scenarios where new constraints or assignments must
be incorporated iteratively, because it suffices to initiate a new refinement
pass to include those new requirements into the DD.

■ For instance, [And+07] suggested relaxed DDs acting as a variable do-
main store for CP solvers. By applying propagation algorithms for mul-
tiple constraints on a single DD, their filtering strength can be com-
bined. TheHaddock language and system [GMH20; GMH22; GMH23]
provides a unified and extensible framework for specifying and em-
ploying DD-based constraints within CP solvers.

■ More recently, column elimination [Hoe20; KH23] was proposed as an
alternative to column generation. Whereas column generation operates
on a restricted set of variables – corresponding to columns – that is it-
eratively extended, column elimination uses a relaxed set of columns,
compactly represented by a relaxed DD. This set of columns is itera-
tively reduced by adding new constraints to the relaxed DD as long as
inconsistencies can be found in the solution. Very promising results
were presented for the Graph Coloring Problem and the Capacitated Ve-
hicle Routing Problem.

■ Incremental refinement can also be used to compile relaxed DDs within
DD-based B&B solvers. Moreover, [RCR22; RCR23] recognized that if
relaxed DDs are stored in the Fringe instead of nodes, then the compila-
tion of a subsequent relaxed DD can be warm-started by extracting the
subgraph rooted at a chosen cutset node from a previously compiled
relaxed DD – an operation referred to as peeling.

24 Chapter 2. Preliminaries

Closer to the top-down compilation procedure, [Hor+21; HR21] proposed
an A* compilation scheme that expands nodes in a best-first fashion. By pro-
ceeding in this way, relaxed DDs are not developed layer by layer, and one
cannot simply limit the width of each layer. Instead, the size of the A*-like
open list is bounded, and an adaptedmergingmechanism that allowsmerging
nodes across layers is used when the open list grows too large. This alterna-
tive compilation scheme is shown to produce tighter bounds than the other
techniques mentioned so far. [Hor+21] also explained how the information
contained in a previously obtained relaxed DD can help steer the compilation
of a restricted DD.

Additionally, a local search framework for compiling relaxedDDswas pre-
sented in [RCR18], combining ingredients from top-down compilation and in-
cremental refinement. Through sequences of elementary manipulations that
respect the maximum width of the DD, the approach iteratively tightens the
bound by splitting nodes along the current longest path.

Finally, [GS22] added new ingredients to the top-down compilation al-
gorithm to perform large neighborhood search with restricted DDs. It allows
generating new solutions in the neighborhood of the best known solution by
preserving the corresponding path during the compilation, while introduc-
ing some randomization when deciding which nodes to remove from a layer
exceeding the maximum width.

2.6 The DDO Library

DDO [GSC21] is an open source1, generic and efficient implementation of the
DD-based B&B algorithm written in Rust. It was and is still developed by
Xavier Gillard, who described the architecture of the library and its imple-
mentation details in great depth in [Gil22]. It provides several simple mod-
eling interfaces that allow formulating new problems easily, and solving them
without needing to re-implement or actually fully understand thewhole solver.
Furthermore, it abstracts many of the heuristic decisions that arise in the B&B
and DD compilation algorithms. Therefore, different configurations can be
created and tested smoothly without encroaching on the solver code. Finally,
DDOwas implemented with concurrency in mind and allows to distribute the
computational load to multiple threads without any additional effort needed
from the user. The theoretical contributions presented in the coming chapters
of this thesis have all been implemented and evaluated inside DDO.

1Available at https://github.com/xgillard/ddo.

https://github.com/xgillard/ddo

Dominance Rules 3

This chapter presents the integration of dominance rules
to the DD compilation algorithm, and to the DD-based
B&B algorithm as a whole. This is currently unpublished
work, yet this ingredient is essential to solve certain prob-
lems efficiently, as the reader will be able to realize.

3.1 Introduction

As shown in [Gil+21] with the RUB, filtering techniques that prune nodes a
priori during the top-down compilation of approximate DDs can greatly im-
pact the performance of the B&B algorithm. On the one hand, restricted DDs
produce better solutions because they are guided towards promising parts of
the search space. On the other hand, the pruning performed inside relaxed
DDs helps to obtain deeper ECs, as illustrated by Example 2.3.4. This results in
fewer cutset nodes being enqueued in the Fringe, which means the algorithm
can solve the same problem by exploring much fewer nodes overall.

Dominance rules are another well-known ingredient that can reduce the
size of the search tree by filtering subproblems leading to redundant solu-
tions. They were first formalized in [KS74; Iba77] in the general case of a
B&B framework. Several optimization paradigms successfully applied them,
includingMIP [FS10], CP [CS15; MD15; LZ23] andDP [Cha+91; BMR93; RS09;
HPS17]. In any of those technologies, dominance rules play a crucial role in
facilitating the solving process when applicable. Therefore, it is a very natural
step to incorporate this ingredient inside DD-based B&B solvers.

This chapter is, to the best of our knowledge, the first to fill this gap
for this particular field of research. It starts by providing general definitions
about dominance rules within the context of DD-based optimization in Sec-
tion 3.2, and describe how dominance rules can be formulated for DP models.
Section 3.3 then explains how they can be exploited to systematically detect
and prune dominated nodes during the search. The BKP running example of
Chapter 2 is pursued to illustrate the proposed modeling components and the
associated filtering procedure. Finally, we present in Sections 3.4 and 3.5 the
modeling and the experimental evaluation of the integration of dominance
rules for the 0–1 Knapsack Problem (KP), the Traveling Salesman Problem with

25

26 Chapter 3. Dominance Rules

TimeWindows (TSPTW), the Aircraft Landing Problem (ALP) and theMultiple
Longest Common Subsequence problem (MLCS).

3.2 Definitions and Modeling Ingredients

Let us first formally define the concept of node dominance in the DD-based
optimization context. Note that the following definitions only concern exact
nodes. Indeed, because relaxed nodes give an approximate representation of
multiple nodes, they would not produce valid dominance relations.

Definition 3.2.1 (Node Dominance). Let 𝑢1 ∈ B1 and 𝑢2 ∈ B2 be two exact
nodes respectively obtained in DDs B1 and B2 compiled for a problem P, and
whose states belong to the 𝑗-th stage of the corresponding DP model, meaning
that 𝜎 (𝑢1), 𝜎 (𝑢2) ∈ S𝑗 . We say that 𝑢1 dominates 𝑢2 – written as 𝑢1 ≻ 𝑢2
– if for any partial assignment

(
𝑥 𝑗 , . . . , 𝑥𝑛−1

)
∈ D𝑗 × · · · × D𝑛−1 such that

𝑥2 = 𝑥∗(𝑢2 | B2) ·
(
𝑥 𝑗 , . . . , 𝑥𝑛−1

)
∈ 𝑆𝑜𝑙 (P), we also have that 𝑥1 = 𝑥∗(𝑢1 |

B1) ·
(
𝑥 𝑗 , . . . , 𝑥𝑛−1

)
∈ 𝑆𝑜𝑙 (P) and either:

■ 𝜎 (𝑢1) ≠ 𝜎 (𝑢2) and 𝑓 (𝑥1) ≥ 𝑓 (𝑥2),

■ or, 𝜎 (𝑢1) = 𝜎 (𝑢2) and 𝑓 (𝑥1) > 𝑓 (𝑥2).

If we are interested in finding a single optimal solution to the problem and
that such dominance relation exists between nodes𝑢1 and𝑢2, then clearly the
exploration of node 𝑢2 can be avoided. For some DP models, dominance rules
that systematically identify scenarios where this kind of node dominance re-
lation exists can be derived. That is, they provide a simple criterion to detect
dominated nodes without needing to expand them in the first place and de-
termine algorithmically whether such dominance relation arises. We define
such dominance rules through two components:

■ The dominance key operator 𝜅 : S → S′ that maps each state of the
state space S of a DP model to a reduced state in a reduced state space
S′. This operator partitions the state space S in equivalence classes
S0, . . . ,S𝑀 such that ∀𝑠1, 𝑠2 ∈ S𝑚 : 𝜅 (𝑠1) = 𝜅 (𝑠2) for all𝑚 = 0, . . . , 𝑀 .
The dominance key typically contains a subset of the original state def-
inition and the equivalence classes group states that are eligible for a
dominance relation.

■ Furthermore, the partial dominance utility operator𝜓 : S → R𝑘 trans-
forms each state into a vector of 𝑘 coordinates. Given a node𝑢 ∈ B, we
also define the dominance utility operator Ψ(𝑢) = (𝑣∗(𝑢 | B)) ·𝜓 (𝜎 (𝑢))
that concatenates the node value with the partial utility vector, pro-
ducing a vector in R𝑘+1 that must characterize the utility of the corre-
sponding node.

3.2. Definitions and Modeling Ingredients 27

0 3

0 6 012 6 12

0 6 12 0

0

150 𝑎1

150 93

150

0 + 13 ≤ 21

𝑐1 116

6 + 13 ≤ 21

𝑐2 93

(3, 9) ≺ (6, 11)

𝑐3 712 𝑐4 59

(9, 5) ≺ (12, 7)

𝑐5 115 𝑐6

712

12 + 1 ≤ 21

518

18 + 1 ≤ 21

324 115

(15, 1) ≺ (18, 5)

𝑡24

𝐿1

𝐿2

𝐿3

𝐿4

𝐿5

Figure 3.1: An exact DD compiled from node 𝑎1 of Figure 2.3 and exploiting
the dominance rule for this problem. The dominance relation is given below
each node pruned successfully.

The following definition formalizes the connection between those oper-
ators and Definition 3.2.1, and the necessary condition for those modeling
components to constitute a valid dominance rule. It assumes that, given two
vectors 𝑥,𝑦 ∈ R𝑘+1, we write 𝑥 ≥ 𝑦 if 𝑥𝑖 ≥ 𝑦𝑖 for 𝑖 = 0, . . . , 𝑘 and 𝑥 ≠ 𝑦.

Definition 3.2.2 (Dominance Rule). The operators𝜅 and𝜓 define a valid dom-
inance rule for a given DPmodel if, for any two exact nodes𝑢1 ∈ B1 and𝑢2 ∈ B2
obtained in the 𝑗-th layer of DDs B1 and B2, having 𝜅 (𝜎 (𝑢1)) = 𝜅 (𝜎 (𝑢2)) and
Ψ(𝑢1) ≥ Ψ(𝑢2) implies that 𝑢1 ≻ 𝑢2 holds.

Example 3.2.1. In the case of the BKP, a node 𝑢1 having both higher value and
higher remaining capacity than another node𝑢2 will always produce better solu-
tions. This dominance rule can be formulated through the following dominance
operators:

■ The dominance key of a state 𝑠 is a zero-dimensional vector 𝜅 (𝑠) = 0 since
there are no other restrictions than comparing states of the same DP stage.

■ The partial dominance utility is the identity function𝜓 (𝑠) = 𝑠 so that for
a node 𝑢 ∈ B, the dominance utility operator compares both the value

28 Chapter 3. Dominance Rules

and the remaining capacity Ψ(𝑢) = (𝑣∗(𝑢 | B)) · 𝜓 (𝜎 (𝑢)) = (𝑣∗(𝑢 |
B), 𝜎 (𝑢)).

Figure 3.1 shows an exact DD compiled from node 𝑎1 of Figure 2.3, obtained
by performing dominance checks using the rule defined above during the compi-
lation. Three dominated nodes can be pruned, resulting in a DD of width 2 only
when ignoring the pruned nodes. For instance, node 𝑐3 is dominated by 𝑐2 since
𝜅 (𝑐3) = 𝜅 (𝑐2) = 0 and Ψ(𝑐3) = (3, 9) ≤ Ψ(𝑐2) = (6, 11).

3.3 Filtering the Search Using Dominance Rules

Now that we have described how dominance rules can be modeled and how a
dominance relation between two nodes can be identified, we explain how to
systematically detect and prune dominated nodes within the DD-based B&B
algorithm. In this regard, we propose two strategies that both fall in the cat-
egory of memory-based dominance relations [Mor+16].

■ The first is to perform dominance checks exclusively for nodes belong-
ing to the same layer of the same DD. This way, no extra memory is
required and the number of nodes for which dominance relations are
checked is kept small.

■ On the other hand, the second strategy maintains a persistent collec-
tion of non-dominated nodes during the whole search algorithm, and
exploits it to also detect dominance relations across DD compilations.

Preliminary experiments convinced us to pursue the second strategy because
of its much stronger pruning capacities and relatively small – or even positive
– impact on the memory consumption of the algorithm, as will be discussed
in Section 3.5. This way of enforcing the dominance rules involves storing all
non-dominated nodes found at any stage of the B&B algorithm. We propose
to use a hash table denoted by 𝐹𝑟𝑜𝑛𝑡𝑠 𝑗 for each DD layer 𝑗 . Each of these
hash tables stores key-value pairs of the form ⟨𝜅, 𝐹𝑟𝑜𝑛𝑡⟩ that associate each
dominance key 𝜅 with a Pareto front denoted 𝐹𝑟𝑜𝑛𝑡 containing the set of
non-dominated nodes. These fronts are initialized at line 2 of the adapted
B&B given by Algorithm 5, which is otherwise unchanged. The adapted DD
compilation procedure given by Algorithm 6 is also mostly untouched, except
that each layer is filtered through the dominance checks before expanding
each of its nodes. The 𝑝𝑟𝑢𝑛𝑒𝑑 set collects the pruned nodes of the layer and
is used to define 𝐿′𝑗 at line 6, a clone of the 𝑗-th layer from which the pruned
nodes have been removed. In the rest of the algorithm, the pruned layer 𝐿′𝑗
is employed instead of 𝐿 𝑗 to prevent generating any outgoing transition from
the pruned nodes.

3.3. Filtering the Search Using Dominance Rules 29

Algorithm 5 The DD-based branch-and-bound algorithm.
1: 𝐹𝑟𝑖𝑛𝑔𝑒 ← {𝑟 } // a priority queue ordered by decreasing 𝑣 (𝑢) + 𝑣 (𝑢)
2: 𝐹𝑟𝑜𝑛𝑡𝑠 𝑗 ← ∅ for 𝑗 = 0, . . . , 𝑛 // hash tables of dom. keys to Pareto fronts
3: 𝑥 ← ⊥, 𝑣 ← −∞ // incumbent solution and its value
4: while 𝐹𝑟𝑖𝑛𝑔𝑒 is not empty do
5: 𝑢 ← best node from 𝐹𝑟𝑖𝑛𝑔𝑒 , remove it from 𝐹𝑟𝑖𝑛𝑔𝑒

6: if 𝑣 (𝑢) + 𝑣 (𝑢) ≤ 𝑣 then
7: continue
8: B ← 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 (𝑢) // compile restricted DD with Algorithm 6
9: if 𝑣∗(B) > 𝑣 then // update incumbent
10: 𝑥 ← 𝑥∗(B), 𝑣 ← 𝑣∗(B)
11: if B is not exact then
12: B ← 𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (𝑢) // compile relaxed DD with Algorithm 6
13: compute LocBs with Algorithm 3 applied to B
14: for all 𝑢′ ∈ 𝐸𝐶 (B) do
15: 𝑣 (𝑢′) ← 𝑣∗(𝑢′ | B), 𝑣 (𝑢′) ← 𝑣 (𝑢′ | B), 𝑝 (𝑢′) ← 𝑝∗(𝑢′ | B)
16: if 𝑣 (𝑢′) + 𝑣 (𝑢′) > 𝑣 then
17: add 𝑢′ to 𝐹𝑟𝑖𝑛𝑔𝑒
18: return (𝑥, 𝑣)

Algorithm 6 Compilation of DD B rooted at node 𝑢𝑟 with max. width𝑊 .
1: 𝑖 ← index of the layer containing 𝑢𝑟
2: 𝐿𝑖 ← {𝑢𝑟 }
3: for 𝑗 = 𝑖 to 𝑛 − 1 do
4: 𝑝𝑟𝑢𝑛𝑒𝑑 ← ∅
5: perform dominance pruning using Algorithm 7
6: 𝐿′𝑗 ← 𝐿 𝑗 \ 𝑝𝑟𝑢𝑛𝑒𝑑
7: if |𝐿′𝑗 | >𝑊 then
8: restrict or relax the layer to get𝑊 nodes with Algorithm 2
9: 𝐿 𝑗+1 ← ∅
10: for all 𝑢 ∈ 𝐿′𝑗 do
11: if 𝑣∗(𝑢 | B) + 𝑣𝑟𝑢𝑏 (𝜎 (𝑢)) ≤ 𝑣 then // RUB pruning
12: continue
13: for all 𝑑 ∈ D𝑗 do
14: create node 𝑢′ with state 𝜎 (𝑢′) = 𝑡 𝑗 (𝜎 (𝑢), 𝑑)

or retrieve it from 𝐿 𝑗+1

15: create arc 𝑎 = (𝑢 𝑑−→ 𝑢′) with 𝑣 (𝑎) = ℎ 𝑗 (𝜎 (𝑢), 𝑑) and 𝑙 (𝑎) = 𝑑
16: add 𝑢′ to 𝐿 𝑗+1 and add 𝑎 to 𝐴
17: merge nodes in 𝐿𝑛 into terminal node 𝑡

30 Chapter 3. Dominance Rules

Algorithm 7 Dominance-based filtering of layer 𝐿 𝑗 of a DD B.
1: sort nodes 𝑢 in 𝐿 𝑗 in reverse lexicographic order of Ψ(𝑢)
2: for all 𝑢 ∈ 𝐿 𝑗 do
3: if 𝑢 is relaxed then
4: continue
5: if 𝐹𝑟𝑜𝑛𝑡𝑠 𝑗 .𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝜅 (𝜎 (𝑢))) then
6: 𝐹𝑟𝑜𝑛𝑡 ← 𝐹𝑟𝑜𝑛𝑡𝑠 𝑗 .𝑔𝑒𝑡 (𝜅 (𝜎 (𝑢)))
7: 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒

8: for all Ψ′ ∈ 𝐹𝑟𝑜𝑛𝑡 do
9: if Ψ(𝑢) ≤ Ψ′ then // exit if Ψ(𝑢) is dominated
10: 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒

11: break
12: if Ψ(𝑢) ≥ Ψ′ then // remove entries that Ψ(𝑢) dominates
13: 𝐹𝑟𝑜𝑛𝑡 ← 𝐹𝑟𝑜𝑛𝑡 \ {Ψ′}
14: if 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 then
15: 𝑝𝑟𝑢𝑛𝑒𝑑 ← 𝑝𝑟𝑢𝑛𝑒𝑑 ∪ {𝑢}
16: else // add to front if non-dominated
17: 𝐹𝑟𝑜𝑛𝑡 ← 𝐹𝑟𝑜𝑛𝑡 ∪ {Ψ(𝑢)}
18: else // initialize if first with given key
19: 𝐹𝑟𝑜𝑛𝑡 ← {Ψ(𝑢)}
20: 𝐹𝑟𝑜𝑛𝑡𝑠 𝑗 .𝑖𝑛𝑠𝑒𝑟𝑡 (⟨𝜅 (𝜎 (𝑢)), 𝐹𝑟𝑜𝑛𝑡⟩)

Algorithm 7 describes the actual dominance detection procedure, which
also takes care of updating the Fronts. It begins by sorting the nodes of layer
in reverse lexicographic order of dominance utilities Ψ at line 1. This ensures
that if there exist two exact nodes𝑢1, 𝑢2 ∈ 𝐿 𝑗 such that𝑢1 ≻ 𝑢2, then𝑢1 will be
processed before 𝑢2 since Ψ(𝑢1) ≥ Ψ(𝑢2). Then, the algorithm loops over all
nodes of the layer and first determines whether a front already exists for the
dominance key of the current node. If not, it is simply initialized at lines 18
and 20 as a front containing the utility of the current node only. Otherwise,
the existing front is retrieved as Front at lines 5 and 6 and the dominance
check with respect to this front is initiated. By comparing the utility of the
current node against those of the non-dominated nodes found so far, the node
is declared dominated or not. In the dominated case, it is added to the pruned
set at line 15, and otherwise to the Front at line 17. Along the way, every entry
that the current node dominates is removed from the Front with line 13, so
that its size is kept as small as possible.

Note that this process is performed both for restricted and relaxed DDs.
It means that both types of DD benefit from this filtering mechanism. In
addition, the exploratory nature of restricted DDs can play an important role
in quickly finding strong non-dominated nodes, as these will then impact the

3.4. Applications 31

compilation of relaxed DDs and facilitate their divide-and-conquer role by
pruning nodes that would otherwise have been explored.

Example 3.3.1. Let us apply this procedure for layer 𝐿3 of the exact DD given
by Figure 3.1, assuming it has already been filled with the utilities of the nodes
reached by the approximate DDs of Figures 2.2 and 2.3. Before starting the dom-
inance check, we thus have that 𝐹𝑟𝑜𝑛𝑡𝑠3 = {⟨0, {(15, 1), (14, 3), (9, 5), (3, 9)}⟩}.
We first compute the utility – given by Ψ(𝑢) = (𝑣∗(𝑢 | B), 𝜎 (𝑢)) – of each node
in 𝐿3: Ψ(𝑐1) = (0, 15),Ψ(𝑐2) = (6, 11),Ψ(𝑐3) = (3, 9),Ψ(𝑐4) = (12, 7),Ψ(𝑐5) =
(9, 5) and Ψ(𝑐6) = (15, 1), and then order the nodes by reverse lexicographic
order of those, which produces: {𝑐6, 𝑐4, 𝑐5, 𝑐2, 𝑐3, 𝑐1}.

■ The utility of node 𝑐6 is already present in the front, so by definition 𝑐6
cannot be dominated.

■ Node 𝑐4 is not dominated by any utility in the front and is thus added
to the front. Moreover, it dominates the utility (9, 5) stored in the front,
since Ψ(𝑐4) = (12, 7) ≥ (9, 5), so that previously non-dominated utility is
removed from the front. After these two operations, we have: 𝐹𝑟𝑜𝑛𝑡𝑠3 =

{⟨0, {(15, 1), (14, 3), (12, 7), (3, 9)}⟩}.

■ The utility of node 𝑐5 is equal to the one we just removed from the front,
so it is dominated by node 𝑐4 and added to the 𝑝𝑟𝑢𝑛𝑒𝑑 set.

■ Node 𝑐2 is not dominated and dominates the utility (3, 9) since Ψ(𝑐2) =
(6, 11) ≥ (3, 9). It thus replaces it in the front, which becomes: 𝐹𝑟𝑜𝑛𝑡𝑠3 =
{⟨0, {(15, 1), (14, 3), (12, 7), (6, 11)}⟩}.

■ Again, node 𝑐3 has the same utility as the one we just removed from the
front, so it is dominated by node 𝑐2 and added to the 𝑝𝑟𝑢𝑛𝑒𝑑 set.

■ Finally, node 𝑐1 is added to the front because it has the largest remain-
ing capacity and is therefore non-dominated. The final front is given by
𝐹𝑟𝑜𝑛𝑡𝑠3 = {⟨0, {(15, 1), (14, 3), (12, 7), (6, 11), (0, 15)}⟩}.

3.4 Applications

This section details the DP models and dominance rules of the four optimiza-
tion problems that will be used for our computational experiments, as well as
the benchmark instances and the settings used in each case. Some of these
problems are minimization problems, so a rough lower bound (RLB) will be
described instead of an RUB. Moreover, whereas the given definition of the
dominance utility assumes that greater is better, the opposite rule is applied
when minimizing.

32 Chapter 3. Dominance Rules

3.4.1 Traveling Salesman Problem with Time Windows

The Traveling Salesman Problem with Time Windows (TSPTW) is a variant
of the well-known Traveling Salesman Problem (TSP) where the cities are re-
placed by a set of customers 𝑁 = {0, . . . , 𝑛 − 1} that must each be visited
during a given time window TW𝑖 = (𝑒𝑖 , 𝑙𝑖). The first customer is a dummy
customer that represents the depot where the salesman must begin and end
its tour. In this variant of the TSPTW, we are given an asymmetrical distance
matrix 𝐷 that contains in each entry (𝑖, 𝑗) the distance 𝐷𝑖 𝑗 separating cus-
tomers 𝑖 and 𝑗 . In addition to the time windows controlling the earliest and
latest time when the salesman can visit the customers, the horizon 𝐻 limits
the time at which the salesman must return to the depot. The objective is
to find a tour that visits all customers during their time window and comes
back to the depot at the earliest possible time. We thus consider themakespan
variant of the problem, that looks to minimize the sum of the travel time and
the waiting time accumulated when the salesman arrives early at some cus-
tomers. However, only the transition value functions need to be adapted to
solver the travel time objective.

3.4.1.1 Dynamic Programming Formulation

The DP model recalled here is the one presented in [Gil22], except for the
transition functions for which additional checks are introduced. It is based
on the DP model for the TSP from [HK62] that successively decides the next
customer to visit, and defines states with the set of customers that still must
be visited along with the current position of the salesman. For the TSPTW,
this state representation is extended to a tuple ⟨𝐿, 𝑡, 𝑀, 𝑃⟩, where 𝐿 (locations)
and 𝑡 (time) respectively represent the set of locations where the salesman
might be and the minimum time to reach one of these locations. The set 𝑀
(must) contains the visits that must still be completed, while 𝑃 (possible) are
the visits that can possibly be done in addition to the ones in 𝑀 . This set of
possible visits 𝑃 is useful for tightening the relaxation of the relaxed DD, as
explained next. 𝑀 and 𝑃 are disjoint sets of customers that must or might
be visited in order to close the tour even in case of relaxed states. We now
describe the full DP model:

■ Control variables: 𝑥 𝑗 ∈ 𝑁 with 𝑗 ∈ 𝑁 decides which customer is visited
in 𝑗-th position.

■ State space: S = {⟨𝐿, 𝑡, 𝑀, 𝑃⟩ | 𝐿,𝑀, 𝑃 ⊆ 𝑁,𝑀 ∩ 𝑃 = ∅, 0 ≤ 𝑡 ≤ 𝐻 }. The
root state is 𝑟 = ⟨{0} , 0, 𝑁 , ∅⟩ and the terminal states are all states
⟨{0} , 𝑡, ∅, 𝑃⟩ with 0 ≤ 𝑡 ≤ 𝐻 .

3.4. Applications 33

■ Transition functions:

𝑡 𝑗 (𝑠 𝑗 , 𝑥 𝑗) =

〈
𝑡𝐿𝑗 (𝑠 𝑗 , 𝑥 𝑗), 𝑡𝑡𝑗 (𝑠 𝑗 , 𝑥 𝑗), 𝑡𝑀𝑗 (𝑠 𝑗 , 𝑥 𝑗), 𝑡𝑃𝑗 (𝑠 𝑗 , 𝑥 𝑗)

〉
,

if 𝑥 𝑗 ∈ 𝑠 𝑗 .𝑀 and 𝑠 𝑗 .𝑡 +min𝑖∈𝑠 𝑗 .𝐿 𝐷𝑖𝑥 𝑗 ≤ 𝑙𝑥 𝑗 ,〈
𝑡𝐿𝑗 (𝑠 𝑗 , 𝑥 𝑗), 𝑡𝑡𝑗 (𝑠 𝑗 , 𝑥 𝑗), 𝑡𝑀𝑗 (𝑠 𝑗 , 𝑥 𝑗), 𝑡𝑃𝑗 (𝑠 𝑗 , 𝑥 𝑗)

〉
,

if 𝑥 𝑗 ∈ 𝑠 𝑗 .𝑃 and 𝑠 𝑗 .𝑡 +min𝑖∈𝑠 𝑗 .𝑃 𝐷𝑖𝑥 𝑗 ≤ 𝑙𝑥 𝑗 and |𝑀 | < 𝑛 − 𝑗,
0̂, otherwise.

where
𝑡𝐿𝑗 (𝑠 𝑗 , 𝑥 𝑗) =

{
𝑥 𝑗
}

𝑡𝑡𝑗 (𝑠 𝑗 , 𝑥 𝑗) = max
{
𝑒𝑥 𝑗 , 𝑠

𝑗 .𝑡 +min𝑖∈𝑠 𝑗 .𝑃 𝐷𝑖𝑥 𝑗
}

𝑡𝑀𝑗 (𝑠 𝑗 , 𝑥 𝑗) = 𝑠 𝑗 .𝑀 \
{
𝑥 𝑗
}

𝑡𝑃𝑗 (𝑠 𝑗 , 𝑥 𝑗) = 𝑠 𝑗 .𝑃 \
{
𝑥 𝑗
}

Transitions are only allowed if they respect the time window constraint
𝑙𝑥 𝑗 . Since the salesman can be at multiple different positions in relaxed
states, the minimum distance is used to compute the arrival time. The
second condition in the transition functions ensures that no customers
are selected from the possible set 𝑃 when there remains enough stops
only for the customers in the must-set𝑀 .

■ Transition value functions: ℎ 𝑗 (𝑠 𝑗 , 𝑥 𝑗) = min𝑖∈𝑠 𝑗 .𝐿 𝐷𝑖𝑥 𝑗 .

■ Root value: 𝑣𝑟 = 0.

3.4.1.2 Relaxation

The merging operator is defined as follows:

⊕(M) = ⟨⊕𝐿 (M), ⊕𝑡 (M), ⊕𝑀 (M), ⊕𝑃 (M)⟩

where
⊕𝐿 (M) =

⋃
𝑠∈M 𝑠 .𝐿,

⊕𝑡 (M) = min𝑠∈M 𝑠 .𝑡,

⊕𝑀 (M) =
⋂
𝑠∈M 𝑠 .𝑀,

⊕𝑃 (M) = (⋃𝑠∈M 𝑠 .𝑀 ∪ 𝑠 .𝑃) \ (⋂𝑠∈M 𝑠 .𝑀) .
These operators ensure that all transitions are preserved and that the tran-
sition values are not increased. Indeed, the set of possible current location
includes all possible locations that appear in the merged states. Similarly, the
set of customers that must be visited is defined as the customers that must be
visited in all states to merge, and the set of customers that can possibly be vis-
ited as those that can be visited in some states to merge. Note that the𝑀 and
𝑃 sets are disjoint so that 𝑃 contains customers that must or might be visited

34 Chapter 3. Dominance Rules

in some states, but no customers that must be visited in all states. Finally, the
merging operator optimistically keeps the minimum time among the states to
merge. The relaxed transition value operator is simply the identity function
ΓM (𝑣,𝑢) = 𝑣 .

3.4.1.3 Rough Lower Bound

The RLB shown in Equation (3.1) computes an estimate of the remaining dis-
tance to cover in order for the salesman to finish his tour and return to the
depot. For all customers 𝑖 in𝑀 , the distance of the cheapest edge incident to 𝑖
is added. Then, 𝑛− 𝑗 − |𝑀 | customers from 𝑃 must be visited in order to com-
plete the tour. Since this is a lower bound computation, we create a vector
𝐶 containing the cheapest edge incident to each customer in 𝑃 and select the
𝑛 − 𝑗 − |𝑀 | shortest ones. We denote by 𝑋<,𝑖 the 𝑖-th smallest element from a
vector 𝑋 .

𝑣
𝑟𝑙𝑏
(𝑠 𝑗) =

∑︁
𝑖∈𝑠 𝑗 .𝑀

𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡𝑖 +
𝑛− 𝑗−|𝑀 |∑︁
𝑖=1

𝐶<,𝑖 (3.1)

A check is also added to detect states where it is impossible to visit indepen-
dently all of the customers from 𝑀 and at least 𝑛 − 𝑗 − |𝑀 | customers from
𝑃 , given the current time and the time windows of the remaining customers.
Plus, if the estimate provided by Equation (3.1) prevents the salesman from
returning to the depot within the time constraint, a RLB of ∞ is returned,
effectively discarding the corresponding states.

3.4.1.4 Dominance Rule

If two states represent the salesman at the same location and having visited
the same set of customers, then the one arriving earlier is always preferred.
This dominance rule can be expressed by specifying the following dominance
key: 𝜅 (𝑠) = (𝑠 .𝐿, 𝑠 .𝑀, 𝑠.𝑃). Note that as the dominance rule is only applied
to exact nodes, we will always have that 𝑠 .𝑀 is a singleton and 𝑠 .𝑃 is empty.
Then, the utility of a state is given by the elapsed time: 𝜓 (𝑠) = 𝑠 .𝑡 . We could
also simply have𝜓 (𝑠) = 0 since the elapsed time is also captured by the node
value. However, the first operator is also valid for the travel time version of
the TSPTW.

3.4.1.5 Experimental Setting

All configurations of the DD-based solver were tested on a classical set of
benchmark instances introduced in the following papers [Asc96; Dum+95;
Lan+93; Pes+98; PB96]. A dynamic width was used, where the maximum

3.4. Applications 35

width for layers at depth 𝑗 is given by 𝑛 × (𝑗 + 1) × 𝛼 with 𝑛 the number of
variables in the instance.

3.4.2 Aircraft Landing Problem

The Aircraft Landing Problem (ALP) requires to schedule the landing of a set
of aircraft 𝑁 = {0, . . . , 𝑛 − 1} on a set of runways 𝑅 = {0, . . . , 𝑟 − 1}. The
aircraft have a target time 𝑇𝑖 that gives the earliest landing time, and latest
landing time 𝐿𝑖 . Moreover, the set of aircraft is partitioned in disjoint sets
𝐴0, . . . , 𝐴𝑐−1 corresponding to different aircraft classes in 𝐶 = {0, . . . , 𝑐 − 1}.
For each pair of aircraft classes 𝑎, 𝑏 ∈ 𝐶 , a minimum separation time 𝑆𝑎,𝑏
between the landings is given. The goal is to find a feasible schedule that
contains all the aircraft and minimizes the total waiting time of the aircraft
– the delay between their target time and scheduled landing time – while
respecting their latest landing time.

3.4.2.1 Dynamic Programming Formulation

We reproduce here the DP model presented in [LBS15] – except for the RLB
introduced this section and a slightly different dominance rule – where states
are pairs (𝑄, 𝑅𝑂𝑃), with 𝑄 a vector that gives the remaining number of air-
craft of each class to schedule and 𝑅𝑂𝑃 a runway occupation profile: a vector
containing pairs (𝑙, 𝑐) that respectively give the time and aircraft class of the
latest landing scheduled on each runway. To initialize the root state and to
formulate the relaxation, we denote by ⊥ either a dummy aircraft class or a
dummy runway.

■ Control variables: we use pairs of variables (𝑥 𝑗 , 𝑦 𝑗) ∈ (𝐶×𝑅)∪{(⊥,⊥)}
with 0 ≤ 𝑗 < 𝑛 that represent the decision to place an aircraft of class
𝑥 𝑗 on runway 𝑦 𝑗 , or to schedule nothing at all in case of (⊥,⊥).

■ State spaces: valid states are contained in the following state space:

S = {(𝑄, 𝑅𝑂𝑃) |∀𝑖 ∈ 𝐶 : 0 ≤ 𝑄𝑖 ≤ |𝐴𝑖 |,
∀𝑘 ∈ 𝑅 : 𝑅𝑂𝑃𝑘 .𝑙 ≥ 0, 𝑅𝑂𝑃𝑘 .𝑐 ∈ 𝐶 ∪ {⊥}}.

The root state is 𝑟 = (⟨|𝐴0 |, . . . , |𝐴𝑐−1 |⟩ , ⟨(0,⊥), . . . , (0,⊥)⟩) and the
terminal states are of the form (⟨0, . . . , 0⟩ , 𝑅𝑂𝑃).

■ Transition functions: if 𝐴𝑘𝑖 gives the aircraft from class 𝑖 that must be
scheduled when there are 𝑘 aircraft left from this class, we can define
the function computing the earliest landing time given a state 𝑠 , a class

36 Chapter 3. Dominance Rules

𝑥 and a runway 𝑦:

𝐸 (𝑠, 𝑥,𝑦) =

𝑇
𝐴
𝑠.𝑄𝑥
𝑥

, if 𝑠 .𝑅𝑂𝑃𝑦 .𝑙 = 0 and 𝑠 .𝑅𝑂𝑃𝑦 .𝑐 = ⊥,

max
{
𝑇
𝐴
𝑠.𝑄𝑥
𝑥

, 𝑠 .𝑅𝑂𝑃𝑦 .𝑙 + 𝑆𝑠.𝑅𝑂𝑃𝑦 .𝑐,𝑥
}
,

if 𝑠 .𝑅𝑂𝑃𝑦 .𝑙 > 0 and 𝑠 .𝑅𝑂𝑃𝑦 .𝑐 ≠ ⊥,

max
{
𝑇
𝐴
𝑠.𝑄𝑥
𝑥

, 𝑠 .𝑅𝑂𝑃𝑦 .𝑙 +min𝑖∈𝐶 𝑆𝑖,𝑥
}
, otherwise.

The first case concerns a runway where no aircraft has been scheduled
yet, and therefore uses the aircraft target time as the earliest landing
time. The second case deals with runways having an aircraft previously
scheduled and that must respect the separation time between the two
consecutive aircraft. Lastly, if the landing of an aircraft was scheduled
on the runway but its class is unknown, the minimum separation time
before making an aircraft of class 𝑥 land is used in the formula. This
allows us to define the transition functions as:

𝑡 𝑗 (𝑠 𝑗 , 𝑥 𝑗 , 𝑦 𝑗) =

(𝑡𝑄
𝑗
(𝑠 𝑗 , 𝑥 𝑗 , 𝑦 𝑗), 𝑡𝑅𝑂𝑃𝑗 (𝑠 𝑗 , 𝑥 𝑗 , 𝑦 𝑗)),

if 𝑥 𝑗 ≠ ⊥ and 𝑠 𝑗 .𝑄𝑥 𝑗 > 0 and 𝐸 (𝑠 𝑗 , 𝑥 𝑗 , 𝑦 𝑗) ≤ 𝐿
𝐴
𝑠 𝑗 .𝑄𝑥𝑗
𝑥𝑗

,

(𝑡𝑄
𝑗
(𝑠 𝑗 , 𝑥 𝑗 , 𝑦 𝑗), 𝑡𝑅𝑂𝑃𝑗 (𝑠 𝑗 , 𝑥 𝑗 , 𝑦 𝑗)),

if 𝑥 𝑗 = ⊥ and
∑
𝑖∈𝐶 𝑠

𝑗 .𝑄𝑖 = 0,

0̂, otherwise.

where

𝑡
𝑄

𝑗
(𝑠 𝑗 , 𝑥 𝑗 , 𝑦 𝑗) =

{ 〈
𝑠 𝑗 .𝑄0, . . . , 𝑠

𝑗 .𝑄𝑥 𝑗 − 1, . . . , 𝑠 𝑗 .𝑄𝑐−1
〉
, if 𝑥 𝑗 ≠ ⊥

𝑠 𝑗 .𝑄, otherwise.

𝑡𝑅𝑂𝑃𝑗 (𝑠 𝑗 , 𝑥 𝑗 , 𝑦 𝑗) =

〈
𝑠 𝑗 .𝑅𝑂𝑃0, . . . , (𝐸 (𝑠 𝑗 , 𝑥 𝑗 , 𝑦 𝑗), 𝑥 𝑗), . . . , 𝑠 𝑗 .𝑅𝑂𝑃𝑟−1

〉
,

if 𝑥 𝑗 ≠ ⊥
𝑠 𝑗 .𝑅𝑂𝑃, otherwise.

The first condition of the transition function ensures that there remains
at least one aircraft of the chosen class and that its earliest landing time
is not greater its latest landing time. The second condition only allows
us to schedule dummy aircraft when there are no aircraft left to sched-
ule. The state is updated by decrementing the remaining number of
aircraft to schedule for the selected class, and by storing the time and
aircraft class of the scheduled landing.

■ Transition value functions: the waiting time of the aircraft is computed
as:

ℎ 𝑗 (𝑠 𝑗 , 𝑥 𝑗 , 𝑦 𝑗) =
{
𝐸 (𝑠 𝑗 , 𝑥 𝑗 , 𝑦 𝑗) −𝑇

𝐴
𝑠 𝑗 .𝑄𝑥𝑗
𝑥𝑗

, if 𝑥 𝑗 ≠ ⊥,

0, otherwise.

3.4. Applications 37

■ Root value: 𝑣𝑟 = 0.

Because the runways are identical and independent, there are many symme-
tries in this model. This can be mitigated by sorting the ROP of every state by
increasing latest landing time, breaking ties according to the previous aircraft
class scheduled.

3.4.2.2 Relaxation

The merging operator is again defined separately for each component of the
states: ⊕(M) = (⊕𝑄 (M), ⊕𝑅𝑂𝑃 (M)). First, the minimum remaining quan-
tity of aircraft for each class is stored in the merged state:

⊕𝑄 (M) =
〈
min
𝑠∈M

𝑠 .𝑄0, . . . ,min
𝑠∈M

𝑠 .𝑄𝑐−1

〉
.

For the ROP, the minimum latest landing time on each runway is kept and
the last aircraft classes scheduled are reset to ⊥:

⊕𝑅𝑂𝑃 (M) =
〈
(min
𝑠∈M

𝑠 .𝑅𝑂𝑃0.𝑙,⊥), . . . , (min
𝑠∈M

𝑠 .𝑅𝑂𝑃𝑟−1.𝑙,⊥)
〉
.

The relaxed transition value operator is the identity function ΓM (𝑣,𝑢) = 𝑣 .

3.4.2.3 Rough Lower Bound

Assuming the separation matrix respects the triangle inequality, if for a given
state, the next aircraft of any class cannot be scheduled on time on any of
the runway, then this state cannot lead to feasible solutions. Indeed, if the
triangle inequality is verified, the earliest landing time of the aircraft can only
be delayed by other transitions. If such scenario occurs, an RLB of ∞ can be
returned to prune the state.

3.4.2.4 Dominance Rule

For a fixed remaining number of aircraft to schedule for each class and a
same aircraft class previously scheduled on each runway, it is always better
to have an earlier previous landing time if it comes with a better or equal
objective function. This is expressed by the following dominance key and
dominance utility vector: 𝜅 (𝑠) = (𝑠 .𝑄, ⟨𝑠 .𝑅𝑂𝑃0.𝑐, . . . , 𝑠 .𝑅𝑂𝑃𝑟−1.𝑐⟩) and𝜓 (𝑠) =
⟨𝑠 .𝑅𝑂𝑃0.𝑙, . . . , 𝑠 .𝑅𝑂𝑃𝑟−1.𝑙⟩.

38 Chapter 3. Dominance Rules

3.4.2.5 Experimental Setting

A set of 720 random instances was generated, with the number of aircraft
given by 𝑛 ∈ {25, 50, 75, 100}, the number of runways by 𝑟 ∈ {1, 2, 3, 4}, and a
fixed number of aircraft classes 𝑐 = 4. The target landing times were gener-
ated according to a Poisson arrival process with a mean inter-arrival time of
40/𝑟 , instances with more runways thus require producing denser schedules.
The separation matrices were created by sampling 𝐾 ∈ {2, 3, 4} reference
points uniformly in a 2-dimensional spaces with bounds [0, 100]2. Each air-
craft class 𝑖 ∈ 𝐶 is then associated with one of these reference points (𝑥,𝑦) –
the aircraft classes are distributed equally among the reference points – and
assigned a neighboring point 𝑝𝑖 = (𝑥 + Δ𝑥 , 𝑦 + Δ𝑦) with Δ𝑥 and Δ𝑦 sampled
according to a Gaussian distribution of mean 𝜇 = 0 and standard deviation
𝜎 ∈ {10, 20, 30}. The separation matrix is then obtained by computing the
Manhattan distance 𝑆𝑖, 𝑗 = |𝑝𝑖 .𝑥 − 𝑝 𝑗 .𝑥 | + |𝑝𝑖 .𝑦 − 𝑝 𝑗 .𝑦 | between each pair of
points 𝑝𝑖 , 𝑝 𝑗 with 𝑖, 𝑗 ∈ 𝐶 and 𝑖 ≠ 𝑗 . Finally, since realistically the separation
time between two aircraft of the same class is non-zero, it is arbitrarily set to
𝑆𝑖,𝑖 =

3
4 min𝑗∈𝐶\{𝑖 } 𝑆𝑖, 𝑗 . A fixed width of𝑊 = 100 is used for all experiments

concerning the ALP.

3.4.3 Longest Common Subsequence Problem

In the Longest Common Subsequence Problem (LCS), we are given a set of 𝑚
input strings 𝑆 = {𝑆0, . . . , 𝑆𝑚−1} composed of characters from a given alpha-
bet Σ. The goal is to find the longest subsequence appearing in all strings,
that can be obtained by removing some characters from each input string.
With 𝑛 is defined as 𝑛 = max {|𝑆𝑖 | | 𝑆𝑖 ∈ 𝑆}, there exists a well-known DP
model for solving this problem with complexity O(𝑛𝑚) [Gus97]. It was al-
ready employed in a DD-based formulation in [HR21] for generating tight
upper bounds with relaxed DDs. This section reproduces this formulation
almost identically, but using notations consistent with the other DP models
covered.

3.4.3.1 Dynamic Programming Formulation

Before specifying the DP model, we define additional matrices that simplify
the formulas, and also reduce the complexity of the operators if they are pre-
computed. The (|𝑆𝑖 | + 1) × |Σ| matrices 𝑁𝑖 for each string 𝑆𝑖 are defined such
that 𝑁 𝑐,𝑗

𝑖
gives the position of the next character 𝑐 occurring in string 𝑖 af-

ter position 𝑗 . They can be computed by applying the following backward

3.4. Applications 39

recurrence for each 𝑖 = 0, . . . ,𝑚 − 1, 𝑐 ∈ Σ and 𝑗 = |𝑆𝑖 |, . . . , 0:

𝑁
𝑐,𝑗

𝑖
=

⊥, if 𝑗 = |𝑆𝑖 |,
𝑗, if 𝑆𝑖 [𝑗] = 𝑐 ,
𝑁
𝑐,𝑗+1
𝑖

, otherwise.

Similarly, the (|𝑆𝑖 | + 1) × |Σ| matrices 𝑅𝑐,𝑗
𝑖

gives the remaining number of
occurrences of character 𝑐 in string 𝑖 after position 𝑗 , and can be computed by
applying the following backward recurrence for each 𝑖 = 0, . . . ,𝑚 − 1, 𝑐 ∈ Σ
and 𝑗 = |𝑆𝑖 |, . . . , 0:

𝑅
𝑐,𝑗

𝑖
=

0, if 𝑗 = |𝑆𝑖 |,
𝑅
𝑐,𝑗+1
𝑖
+ 1, if 𝑆𝑖 [𝑗] = 𝑐 ,

𝑅
𝑐,𝑗+1
𝑖

, otherwise.

Since the length of the LCS is bounded by the length of the shortest string
in 𝑆 , we assume that the strings are ordered by increasing length |𝑆0 | ≤ |𝑆1 | ≤
· · · ≤ |𝑆𝑚−1 | and therefore reason about the characters contained in 𝑆0. In-
deed, when constructing a subsequence from left to right while keeping track
of the current position in each string with a vector ⟨𝑝0, . . . , 𝑝𝑚−1⟩, if a char-
acter 𝑐 of string 𝑆0 is appended to the subsequence, it suffices to select the
leftmost occurrence of 𝑐 after position 𝑝𝑖 in each string 𝑆𝑖 . Therefore, we de-
fine 𝑛 = |𝑆0 | = min {|𝑆𝑖 | | 𝑆𝑖 ∈ 𝑆}. Given those additional definitions, the DP
model for the LCS can be formulated as follows.

■ Control variables: a first possibility is to use variables 𝑥 𝑗 ∈ {0, 1} with
𝑗 = 0, . . . , 𝑛′ − 1 that decide whether the character at position 𝑗 of
string 𝑆0 is added to the subsequence. However, a more compact model
can be obtained by defining alternative variables 𝑥 ′𝑗 that decide which
character is appended to the subsequence, or whether the subsequence
is ended. Formally, this is modeled by using long arcs, meaning that
with variable 𝑥 ′𝑗 ∈ Σ ∪ {END}, the assignment 𝑥 ′𝑗 = 𝑐 corresponds to(
𝑥 𝑗 , . . . , 𝑥𝑝′

)
= (0, . . . , 0, 1) with 𝑝′ = 𝑁

𝑐,𝑗

0 , i.e. all characters between
positions 𝑗 and 𝑝′ − 1 of string 𝑆0 are ignored and the first occurrence
of character 𝑐 after position 𝑗 is selected.

■ State space: the states contain the current position in each string S =

{⟨𝑝0, . . . , 𝑝𝑚−1⟩ | 0 ≤ 𝑝𝑖 ≤ |𝑆𝑖 |}. The root state is 𝑟 = ⟨0, . . . , 0⟩ and the
terminal stated are of the form ⟨|𝑆0 |, 𝑝1, . . . , 𝑝𝑚−1⟩.

40 Chapter 3. Dominance Rules

■ Transition functions:

𝑡 𝑗 (𝑠 𝑗 , 𝑥 𝑗) =

〈
𝑁
𝑐,𝑠

𝑗

0
0 + 1, . . . , 𝑁 𝑐,𝑠

𝑗

𝑚−1
𝑚−1 + 1

〉
, if 𝑥 𝑗 ∈ Σ and

𝑅
𝑐,𝑠

𝑗

𝑖

𝑖
> 0,∀𝑖 = 0, . . . ,𝑚 − 1,

⟨|𝑆0 |, . . . , |𝑆𝑚−1 |⟩ , if 𝑥 𝑗 = END,

0̂, otherwise.

In the above equation, a transition with character 𝑐 is allowed if each
string 𝑆𝑖 still contains one occurrence of it after position 𝑠 𝑗

𝑖
. Alterna-

tively, any state can transition to the terminal state by deciding to end
the subsequence.

■ Transition value functions: the objective value is incremented each
time a character is appended to the subsequence, i.e.:

ℎ 𝑗 (𝑠 𝑗 , 𝑥 𝑗) =
{
1, if 𝑥 𝑗 ∈ Σ,
0, otherwise.

■ Root value: 𝑣𝑟 = 0.

3.4.3.2 Relaxation

A valid relaxation can be defined by computing the minimum current posi-
tion in each string among the states to merge. The merging operator is thus:
⊕(M) = ⟨min𝑠∈M 𝑠0, . . . ,min𝑠∈M 𝑠𝑚−1⟩. The relaxed transition value opera-
tor is the identity function ΓM (𝑣,𝑢) = 𝑣 .

3.4.3.3 Rough Upper Bound

The RUB used in [HR21] combines two optimistic estimates of the number
of characters that can still be added to the subsequence for a given state.
The first one simply sums the minimum remaining number of occurrences
of each character among all strings: 𝑈𝐵1(𝑠 𝑗) =

∑
𝑐∈Σ min𝑖=0,...,𝑚−1 𝑅𝑐,𝑗𝑖 . The

second one is based on the fact that the LCS can be solved very efficiently
with DP for 𝑚 = 2. Therefore, the LCS of each consecutive pair of strings
can be precomputed and the corresponding DP table stored. An estimate can
then be obtained by finding the length of the shortest LCS among the con-
secutive pairs of strings, given the current position in each string: 𝑈𝐵2(𝑠 𝑗) =
min𝑖=0,...,𝑚−2 𝐿𝐶𝑆 (𝑆𝑖 [𝑗 :], 𝑆𝑖+1 [𝑗 :]). The final RUB is given by the tighter es-
timate: 𝑣𝑟𝑢𝑏 (𝑠 𝑗) = min

{
𝑈𝐵1(𝑠 𝑗),𝑈 𝐵2(𝑠 𝑗)

}
.

3.5. Computational Experiments 41

3.4.3.4 Dominance Rule

Given states with the same current position in string 𝑆0 – i.e. at the same DD
layer. It is always better to have both lower positions and a greater objec-
tive value. This is expressed by the following dominance key and dominance
utility vector: 𝜅 (𝑠) = 0 and𝜓 (𝑠) = 𝑠 .

3.4.3.5 Experimental Setting

We used the following classical benchmark instances for the LCS: BB [BB07],
BL [BF16], Rat, Virus and Random [ST09], Poly and Abstract [Nik+21],
but limited to instances with 𝑚 < 10. A fixed width of 100 is used for all
experiments concerning the LCS. Moreover, the Pooled DD implementation
described in [Gil22] is used to compile DDs with long arcs.

3.4.4 0–1 Knapsack Problem

The KP is equivalent to the BKP when all items have unit quantities. We thus
solve the KP with all the ingredients presented in Chapters 2 and 3. In ad-
dition, variables are ordered so that the items are considered in decreasing
profit-to-weight ratios and the LP bound of [Dan57] is used as the RUB. A set
of benchmark instances constituting of a random selection of 2% of the in-
stances from [Pis05] (636 instances) and 10% of the instances from [SCM21]
(530 instances). Again, a fixed width of 100 is used for all experiments con-
cerning the KP.

3.5 Computational Experiments

In this section, we wish to experimentally evaluate the impact of the integra-
tion of dominance rules within the DD-based optimization approach. To this
end, the four DP formulations described in Section 3.4 were all implemented
through the modeling interfaces of DDO [GSC21] and were applied to solve
the associated benchmark instances. We also performed experiments for the
TSPTW with the MIP model referred to as Formulation (1) in [HT18]. It is
solved with Gurobi 9.5.2 [Gur22] using a single thread and otherwise default
settings. DDO is also executed on a single thread and uses the MinLP node
selection heuristic. For all problems, the solvers were given 600 seconds to
solve each instance to optimality. These configurations will remain fixed for
all computational experiments presented in this thesis. In the experiments of
this particular chapter, DDO always employs LEL cutsets. The server used to
run all the experiments of this thesis is equipped with Intel Xeon Platinum
8160 processors with base frequency 2.10GHz. Moreover, the code is available
on GitHub at https://github.com/vcoppe/ddo/tree/thesis_xp.

https://github.com/vcoppe/ddo/tree/thesis_xp

42 Chapter 3. Dominance Rules

3.5.1 Number of Benchmark Instances Solved

In the following, we will refer to the classical B&B algorithm as DDO, and
when exploiting dominance rules as DDO+D. Figure 3.2 shows the number of
instances solved by each solver and configuration with respect to the solving
time. For all four problems considered, DDO+D solves more instances than
DDO, and by a large margin except for the KP. As a result, we can confidently
say that the integration of dominance rules has a very positive impact on the
performance of the B&B algorithm. In the case of the KP, this low perfor-
mance gain can be attributed to the fact that, when using the profit-to-weight
ratio variable ordering and the LP bound, many unpromising partial solu-
tions are quickly discarded and thus fewer dominance relations arise. For the
TSPTW, DDO and DDO+D perform respectively slightly and far better than
Gurobi, which underlines the strength of a recursive formulation for such a
constrained problem.

3.5.2 Number of Node Expansions

The impact of the dominance rules can also be measured in terms of the to-
tal number of nodes expanded during the successive DD compilations. This
measure accounts for all nodes expanded during top-down compilation of
both restricted and relaxed DDs. This is represented for each problem by
Figure 3.3, which exhibits very similar trends to Figure 3.2. Indeed, it ap-
pears that the increase in the number of instances solved within the time
limit when comparing DDO and DDO+D is caused by a decrease in the num-
ber of node expansions needed to solve each given instance. Moreover, it
clearly shows the magnitude of the filtering brought by the dominance rules,
since for many instances that are unsolved by DDO, DDO+D requires only
a negligible amount of node expansions to close them. For the KP, however,
it seems that the decrease in node expansions is more significant than the
decrease in time. This is probably due to the formulation of the dominance
rule that needs to perform dominance checks for all pairs of nodes belonging
to the same layer, and there can be many of them for instances with many
different unique item weights.

3.5.3 Quality of the First Solution

Another important dimension for a solver is the quality of the first solution
found, which captures its anytime behavior. We expect it to be improved
when exploiting dominance rules as they are able to filter many less promis-
ing solutions during the top-down compilation of restricted DDs. Figure 3.4
compares the value of the first solution found by DDO and DDO+D for each
instance, as well as the iteration – in terms of B&B nodes – at which this

3.5. Computational Experiments 43

0 100 200 300 400 500 600
time (s)

150

175

200

225

250

275

300

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity
TSPTW

0 100 200 300 400 500 600
time (s)

100

200

300

400

500

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

ALP

0 100 200 300 400 500 600
time (s)

0

20

40

60

80

100

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

LCS

0 100 200 300 400 500 600
time (s)

600

700

800

900

1000

1100

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

KNAPSACK

DDO DDO + Dominance MIP

Figure 3.2: Number of instances solved over time by DDO, DDO+D and
Gurobi for four different problems.

44 Chapter 3. Dominance Rules

0 1 2 3 4 5
nodes expanded 1e8

150

175

200

225

250

275

300

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity
TSPTW

0 1 2 3 4 5
nodes expanded 1e8

100

200

300

400

500

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

ALP

0.0 0.5 1.0 1.5 2.0 2.5
nodes expanded 1e8

0

20

40

60

80

100

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

LCS

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
nodes expanded 1e9

600

700

800

900

1000

1100

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

KNAPSACK

DDO DDO + Dominance

Figure 3.3: Number of instances solved by DDO and DDO+D with respect to
the number of DD nodes expanded for four different problems.

3.5. Computational Experiments 45

solution is found for the TSPTW and the ALP. Indeed, those problems both
have time window constraints and therefore restricted DDs might not pro-
duce feasible solutions at each compilation. This comparison allows us to
make several observations for each problem:
■ TSPTW: the quality of the first solution found is only moderately im-
pacted by the addition of dominance rules. DDO+D finds a better first
solution than DDO in 26 cases, against 7 cases in the other direction.
However, when looking at the iteration at which this first solution is
found, we can see that DDO+D obtains it slightly earlier in the search
for many instances, and much earlier for a few of them. DDO+D ob-
tains a solution earlier than DDO for 42 instances, whereas the opposite
is true for only 3 instances.

■ ALP: we can observe that the quality of the first solution found by
DDO+D is in general slightly better than the one obtained by DDO
when both configurations find a feasible solution. Furthermore, for 197
instances, DDO does not manage to find a single feasible solution to
the problem whereas DDO+D finds one for 69 of those – this does not
include some instances that are actually infeasible, which is proven by
either configuration for 127 instances. In addition, when comparing the
iteration at which the first solution is found, it appears that DDO+D
finds many of them at the first iteration and most of them within 20000
iterations. On the other hand, DDO needs up to 60000 iterations to find
a first solution for instances where DDO+D found a solution after just
a few iterations, or simply fails to do so in many cases.

■ LCS and KP: they are bothmaximization problems, so this time DDO+D
compares better for data points located above the diagonal line. This
occurs for 201 LCS instances, whereas DDO finds a better first solution
in 93 cases. Although it is difficult to distinguish the solution values
for the KP on Figure 3.4, DDO+D actually finds a slightly better solu-
tion than DDO in 230 cases, compared to only 20 cases in the opposite
direction.

Integrating dominance rules therefore not only accelerates the B&B algo-
rithm, but also contributes to quickly producing quality solutions by moving
the compilation of restricted DDs away from parts of the search space that
are not worth spending time on. This is a very important improvement for
applications that use restricted DDs only as a primal heuristic, e.g. [OH19].

3.5.4 Memory Consumption

To conclude this experimental analysis, we discuss the memory footprint of
maintaining the Fronts used to continually derive dominance relations with

46 Chapter 3. Dominance Rules

0.00 0.75 1.50 2.25
first sol. value (DDO)

0.00

0.75

1.50

2.25

fir
st

 s
ol

. v
al

ue
 (D

D
O

 +
 D

om
in

an
ce

)

TSPTW

0 250 500 750
first sol. iter. (DDO)

0

250

500

750

fir
st

 s
ol

. i
te

r.
(D

D
O

 +
 D

om
in

an
ce

)

TSPTW

0 10500 21000 31500
first sol. value (DDO)

0

10500

21000

31500

fir
st

 s
ol

. v
al

ue
 (D

D
O

 +
 D

om
in

an
ce

)

ALP

0 20000 40000 60000
first sol. iter. (DDO)

0

20000

40000

60000

fir
st

 s
ol

. i
te

r.
(D

D
O

 +
 D

om
in

an
ce

)

ALP

0 200 400 600
first sol. value (DDO)

0

100

200

300

400

500

600

700

fir
st

 s
ol

. v
al

ue
 (D

D
O

 +
 D

om
in

an
ce

)

LCS

0 1 2 3 4 5
first sol. value (DDO) 1e10

0

1

2

3

4

5

fir
st

 s
ol

. v
al

ue
 (D

D
O

 +
 D

om
in

an
ce

)

1e10 KNAPSACK

Figure 3.4: Comparison of the value of the first solution obtained for each
instance by DDO and DDO+D, and of the iteration at which this solution is
found for TSPTW and ALP.

3.6. Conclusion 47

respect to non-dominated exact nodes previously found. Figure 3.5 represents
the number of instances solved by each configuration for each problem, with
respect to the peak amount of memory used during the search. For all of
them, we observe that DDO solves more instances than DDO+D for very low
amount of memory. When both configurations exceed respectively around
3MB, 7MB and 50MB for the TSPTW, ALP and LCS, DDO+D starts solving
more instanceswith the same amount ofmemory – under the given time limit.
Therefore, storing non-dominated nodes ends up reducing the size of DDs, of
their ECs and of the Fringe in such a way that DDO+D uses less memory to
solve some instances. For the KP, both configurations solve approximately the
same number of instances when the peak memory is above 100MB. Even if
the dominance rules are less impactful for this problem, they do not penalize
the algorithm in terms of memory consumption.

3.6 Conclusion

In this chapter, we provided a formalism for specifying dominance rules of
DP models. We also explained how they can be exploited within the DD
compilation algorithm, as well as for the B&B algorithm as whole by intro-
ducing a persistent data structure used to detect dominance relations across
DD compilations. The modeling of the dominance rules was illustrated on
four optimization problems and its impact was evaluated through extensive
computational experiments. The results clearly highlighted the interest of
this additional ingredient, which significantly reduced the number of node
expansions required by the algorithm to close the instances. This is directly
reflected by the corresponding solving times, and leads to the resolution of
a large number of instances previously unsolved by DDO. Moreover, the ex-
periments demonstrated the beneficial effect that dominance rules have in
the ability of the algorithm to quickly find quality solutions, especially when
the problem is highly constrained. Finally, we discussed the memory foot-
print of implementing such an exhaustive dominance checking strategy. It
appears that the extra memory required by the Fronts largely compensated
by its filtering capacity that eliminates redundant parts of the search space.

48 Chapter 3. Dominance Rules

10 2 10 1 100 101 102 103 104

memory (mb)

0

50

100

150

200

250

300

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity
TSPTW

10 1 100 101 102 103

memory (mb)

0

100

200

300

400

500

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

ALP

101 102 103

memory (mb)

0

20

40

60

80

100

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

LCS

100 101 102 103 104

memory (mb)

0

200

400

600

800

1000

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

KNAPSACK

DDO DDO + Dominance

Figure 3.5: Number of instances solved by DDO and DDO+D with respect to
the peak amount of memory used for four different problems.

Caching 4

This chapter is largely based on the following paper
currently under review: V. Coppé, X. Gillard, and P.
Schaus. “Decision Diagram-Based Branch-and-Bound
with Caching for Dominance and Suboptimality Detec-
tion”. In: (2023). arXiv: 2211 . 13118. It presents
a caching mechanism that collects expansion thresholds
throughout the B&B algorithm, which are used to avoid
expanding multiple nodes with the same DP state when
proved unnecessary. This chapter presents an extended
version of the approach that allows it to coexist with the
dominance rules of Chapter 3.

4.1 Introduction

The contributions of this chapter stem from a simple observation: as opposed
to classical B&B for mixed-integer programming (MIP), the DD-based B&B
does not split the search space into disjoint parts. The reason is that in this
framework, DDs are based on a DP formulation of the discrete optimization
problem at hand, and such kind of model typically contains many overlapping
subproblems. As a result, the B&B may explore some subproblems multiple
times. In addition, the approximate DDs compiled during the algorithm can
repeat a lot of the work done previously because they cover overlapping parts
of the search space. This inability to build on previous computational efforts is
unfortunate, for that is the very strength of the DP paradigm. A first attempt
to address this problem was made in [CGS22] by changing the ordering of
the nodes in the B&B. By employing a breadth-first ordering, it is guaranteed
that at most one B&B node corresponding to each given subproblem will be
explored. However, this approach sacrifices the benefits of best-first search –
always exploring the most promising node to try to improve the incumbent
solution and tighten the bounds at the same time – and leaves the issue of
overlapping approximate DDs unsolved.

In this chapter, the same problem is tackled while allowing a best-first
ordering of the B&B nodes. In the same fashion that a closed list prevents the
re-expansion of nodes in shortest-path algorithms, we propose to maintain a

49

https://arxiv.org/abs/2211.13118

50 Chapter 4. Caching

Cache that stores an expansion threshold for each DP state reached by an exact
node of any relaxed DD compiled during the B&B. These expansion thresh-
olds combine dominance and pruning thresholds that exploit the information
contained in relaxed DDs to the fullest extent. The former detect path dom-
inance relations between partial solutions – a subset of the dominance rela-
tions covered in Chapter 3 –while the latter extrapolate the pruning decisions
related to nodes filtered by the RUBs and LocBs introduced by [Gil+21], and
by the dominance checks described in Chapter 3. By consulting the expansion
thresholds stored in the Cache, many partial solutions are guaranteed to be
either dominated by other partial solutions previously found, or suboptimal
with respect to bounds already obtained, and can therefore be pruned during
the compilation of subsequent approximate DDs.

In the same line of research, [RCR22; RCR23] suggested inserting open
relaxed DDs directly in the B&B queue instead of open nodes, and described a
peeling operation that splits a relaxed DD into two parts: the first containing
all the paths traversing a chosen node and the second containing the rest.
The peeling operation permits two things when used as a replacement for
classical branching procedures: it allows warm-starting the compilation of
subsequent relaxed DDs, and it strengthens the bounds of the relaxed DD
on which the peeling was conducted. This mechanism helps in reducing the
overlap between the approximate DDs compiled during the search but does
not fully address the issue. These improvements could thus be combined with
the techniques hereby introduced.

This chapter begins with a discussion of the caveats that we try to address
in Section 4.2. Next, Section 4.3 presents the expansion thresholds through its
two components – the dominance and pruning thresholds – as well as their
computation and integration into both the B&B algorithm and the approxi-
mate DD compilation procedure. Section 4.4 then discusses the limitations of
the techniques introduced in the chapter. Finally, experimental results on six
different discrete optimization problems are reported and discussed in Sec-
tion 4.6 before concluding.

4.2 Caveats of DD-based Branch-and-Bound

As explained in Chapter 2, DD-based B&B enables solving discrete optimiza-
tion problems by taking advantage of the compactness of DP models. Never-
theless, a few observations suggest that all the properties of this type of model
have not yet been exploited. First, we point out that branching does not split
the search space into disjoint parts. Indeed, the very nature of DP models
is the ability to solve a large problem by recursively dividing it into smaller
overlapping subproblems. Yet, vanilla DD-based B&B processes subproblems
as if they were completely independent. To give a better intuition of why

4.3. Branch-and-Bound with Caching 51

this might cause the algorithm to waste computational effort, we propose to
look at DD-based B&B as a classical shortest-path algorithm performed on
the graph induced by a DP model – in case of directed acyclic graphs, the
shortest-path and longest-path problems are equivalent. DD-based B&B can
be seen as a combination of best-first search at the B&B level with a sort
of breadth-first search up to the EC of relaxed DDs, coupled with dedicated
bounding and pruning procedures. However, while it sharesmany similarities
with shortest-path algorithms like A* [HNR68], it lacks one of their impor-
tant ingredients: the closed list. This data structure collects nodes expanded
throughout the search and is used to check whether a given node was already
expanded, to avoid expanding it again or adding it to the set of open nodes.

Due to the absence of such data structure, both levels of the B&B algo-
rithm end up performing some computations multiple times. At the B&B
level, nothing prevents from adding multiple nodes with the same DP state
to the Fringe of Algorithm 4 nor triggering the compilation of approximate
DDs for several of them at different stages of the search. Moreover, at the
lower level, the approximate DDs can significantly overlap, even when rooted
at nodes associated with different DP states. For instance, suppose we would
compute exact DDs for the two subproblems contained in the FC of Figure 2.3,
respectively rooted at 𝑎1 and 𝑎2. As one can observe on Figure 2.1, they re-
spectively contain 18 and 15 nodes, among which 11 nodes appear in both
DDs. Therefore, if these two DDs are compiled successively within the B&B,
most of the work done for the first DD is repeated to compile the second one
while many transitions could actually yield a value worse or equal than the
one obtained before. In general, the structure of DP state transition systems
causes such scenarios to occur very frequently.

The aim of this chapter is thus to integrate some form of closed list into
DD-based B&B in order to mitigate the amount of duplicate computations
at both levels of the algorithm. Unfortunately, a simple closed list cannot
be used since DP states are not expanded purely in best-first order. In other
words, given a relaxed DD B and an exact node 𝑢 ∈ B, nothing guarantees
that 𝑝∗(𝑢 | B) – the longest path to reach 𝑢 within B – is the longest path to
reach a node with state 𝜎 (𝑢) within the complete exact DD.

4.3 Branch-and-Bound with Caching

In this section, we explain how the caveats mentioned in Section 4.2 can be
addressed. Our idea is to augment DD-based B&B with a caching mechanism
that associates each DP state to an expansion threshold that conditions the
need for future expansion of nodes with the same DP state. Formally, after
compiling a relaxed DD B, an expansion threshold 𝜃 (𝑢 | B) can be derived
for each exact node 𝑢 ∈ B by exploiting the information contained in B. It

52 Chapter 4. Caching

is then stored as a key-value pair ⟨𝜎 (𝑢), 𝜃 (𝑢 | B)⟩ in an associative array
referred to as the Cache. When compiling a subsequent approximate DD B, if
a node 𝑢′ happens to be generated such that 𝜎 (𝑢′) corresponds to an existing
key in the Cache, the expansion of node 𝑢′ is skipped if its longest path value
𝑣∗(𝑢′ | B) is not strictly greater than the expansion threshold stored. This
filtering is carried out when calling Algorithm 10 within the DD compilation
procedure of Algorithm 9.

Concerning the value of these expansion thresholds, a classical DP caching
strategywould keep track of the longest path value obtained for eachDP state,
i.e. by having 𝜃 (𝑢 | B) = 𝑣∗(𝑢 | B) for each exact node𝑢 ∈ B. In this section,
we show how stronger expansion thresholds can be obtained by exploiting
all the information contained in relaxed DDs. To give a better intuition on
the origin of the expansion thresholds, we split their computation into two
distinct thresholds that each cover a specific scenario requiring the expansion
node associated with an already visited DP state. The dominance thresholds
detect path dominance relations between partial solutions found throughout
the search, while the pruning thresholds extrapolate successful past pruning
decisions. Dominance thresholds can work alone if the RUB, LocB and dom-
inance pruning rules are not used, but must be complemented by pruning
thresholds whenever these extensions are involved. In the general case, they
are thus combined into a single expansion threshold that covers both scenar-
ios concomitantly.

After giving a formal definition of the aforementioned thresholds, we ex-
plain how they can be computed efficiently for all exact nodes visited during
the compilation of relaxed DDs before being stored in the Cache. Finally, we
describe how the B&B and the compilation of approximate DDs can be mod-
ified to benefit from the expansion thresholds.

4.3.1 Dominance Thresholds

As explained in Section 2.4, the compilation of a relaxed DD B rooted at node
𝑢𝑟 allows decomposing the corresponding subproblem into a set of subprob-
lems given by nodes in 𝐸𝐶 (B). By extension, any exact node 𝑢1 ∈ B is also
decomposed into a set of subproblems, given by nodes in 𝐸𝐶 (B) that belong
to its successors 𝑆𝑢𝑐𝑐 (𝑢1 | B). For example, an exact decomposition of node
𝑐2 of Figure 4.1(a) is given by 𝑆𝑢𝑐𝑐 (𝑐2 | B) ∩ 𝐸𝐶 (B) = {𝑑1}. Among these
nodes, only those that pass the pruning test at line 15 of Algorithm 4 are then
added to the Fringe of the B&B. For simplicity, let us denote this set of nodes
by

𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 | B) =
{
𝑢 ∈ 𝑆𝑢𝑐𝑐 (𝑢1 | B) ∩ 𝐸𝐶 (B) | 𝑣∗(𝑢 | B) + 𝑣 (𝑢 | B) > 𝑣

}

4.3. Branch-and-Bound with Caching 53

where 𝑣 is the value of the incumbent solution. Because we are solving opti-
mization problems, we are only interested in one of the longest 𝑟 ⇝ 𝑢2 paths
for each node𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢𝑟 | B), and other paths with lower or equal value
can safely be ignored. As a result, we can infer path dominance relations be-
tween the paths obtained within relaxed DDs, and use them later to detect
non-dominated paths that are thus still relevant to find the optimal solution
of the problem.

Definition 4.3.1 (Path dominance). Given a 𝑟 ⇝ 𝑢1 path 𝑝1 and a 𝑟 ⇝ 𝑢2
path 𝑝2 such that 𝜎 (𝑢1) = 𝜎 (𝑢2), 𝑝1 is said to dominate 𝑝2 – formally denoted
𝑝1 ≻ 𝑝2 – if and only if 𝑣 (𝑝1) > 𝑣 (𝑝2). If 𝑣 (𝑝1) ≥ 𝑣 (𝑝2), then 𝑝1 weakly
dominates 𝑝2, expressed as 𝑝1 ⪰ 𝑝2.

Path dominance thus corresponds to node dominance in the case where
the two nodes considered have the same DP state. Given a relaxed DD B
and three exact nodes 𝑢1 ∈ B, 𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 | B) and 𝑢′1 ∉ B such that
𝜎 (𝑢′1) = 𝜎 (𝑢1). The first scenario that requires the expansion of node 𝑢′1
happens when it is possible that the concatenation 𝑝1 · 𝑝2 of a prefix path
𝑝1 : 𝑟 ⇝ 𝑢′1 with a suffix path 𝑝2 : 𝑢1 ⇝ 𝑢2 dominates the longest path
𝑝∗(𝑢2 | B) found for the cutset node𝑢2 during the compilation ofB. Formally,
the dominance relation imposes that 𝑢′1 be expanded if 𝑝1 · 𝑝2 ≻ 𝑝∗(𝑢2 | B).
This property leads to the definition below.

Definition 4.3.2 (Individual dominance threshold). Given a relaxed DD B
and two exact nodes 𝑢1 ∈ B, 𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 | B), the individual dominance
threshold of 𝑢1 with respect to 𝑢2 is defined by:

𝜃𝑖𝑑 (𝑢1 | 𝑢2,B) = 𝜃𝑖𝑑 (𝑢2 | 𝑢2,B) − 𝑣∗(𝑢1⇝ 𝑢2 | B), (4.1)

𝜃𝑖𝑑 (𝑢2 | 𝑢2,B) = 𝑣∗(𝑢2 | B) . (4.2)

Proposition 4.3.1. Given a relaxedDDB, exact nodes𝑢1 ∈ B,𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 |
B), 𝑢′1 ∉ B such that 𝜎 (𝑢′1) = 𝜎 (𝑢1), and a path 𝑝1 : 𝑟 ⇝ 𝑢′1, if 𝑣 (𝑝1) >

𝜃𝑖𝑑 (𝑢1 | 𝑢2,B) then 𝑝1 · 𝑝∗(𝑢1 ⇝ 𝑢2 | B) ≻ 𝑝∗(𝑢2 | B). Inversely, if
𝑣 (𝑝1) ≤ 𝜃𝑖𝑑 (𝑢1 | 𝑢2,B) then 𝑝1 · 𝑝∗(𝑢1⇝ 𝑢2 | B) ⪯ 𝑝∗(𝑢2 | B).

Proof. By Definition 4.3.2, we have 𝑣 (𝑝1) > 𝜃𝑖𝑑 (𝑢1 | 𝑢2,B) = 𝑣∗(𝑢2 | B) −
𝑣∗(𝑢1⇝ 𝑢2 | B), or equivalently 𝑣 (𝑝1)+𝑣∗(𝑢1⇝ 𝑢2 | B) > 𝑣∗(𝑢2 | B). Using
the path value definition, we obtain 𝑣 (𝑝1) + 𝑣 (𝑝∗(𝑢1 ⇝ 𝑢2 | B)) > 𝑣 (𝑝∗(𝑢2 |
B)). By concatenating the paths 𝑝1 and 𝑝∗(𝑢1 ⇝ 𝑢2 | B), the inequality
becomes 𝑣 (𝑝1 · 𝑝∗(𝑢1 ⇝ 𝑢2 | B)) > 𝑣 (𝑝∗(𝑢2 | B)), which by Definition 4.3.1
is equivalent to 𝑝1 · 𝑝∗(𝑢1 ⇝ 𝑢2 | B) ≻ 𝑝∗(𝑢2 | B). The proof of the second
implication is obtained by replacing each occurrence of > and ≻ respectively
by ≤ and ⪯ in the proof above. As 𝑣∗(𝑢2⇝ 𝑢2 | B) = 0, we also trivially have
that Equation (4.1) and Equation (4.2) are consistent with each other.

54 Chapter 4. Caching

0 3

0 6 012 6

00 6 12 6 0

00 1
0
1

112
𝜃𝑑 = 2 𝑎2

112
𝜃𝑑 = 2 𝑏1 55

𝜃𝑑 = 5 𝑏2

118 314
𝜃𝑑 = 14 𝑐1 111

𝜃𝑑 = 20 𝑐2

1114 720 120
𝜃𝑑 = 20 𝑑1

𝑡21

(a) Relaxed DD rooted at 𝑎2

0 3

0
6 012 6 12

0 6 00 6 12 12 6 12

0 00
1

150 𝑎1

150 93

156 712 59 115

15 ≤ 20

𝑐′2

1518 324 121 𝑑′1

𝑡24

(b) Relaxed DD rooted at 𝑎1

Figure 4.1: Relaxed DDs with𝑊 = 3 for the FC nodes of Figure 2.3, rooted
at (a) 𝑎2 and (b) 𝑎1. Nodes of the relaxed DD (a) are annotated with their
dominance threshold, where applicable. The relaxed DD (b) is compiled with
respect to the dominance thresholds computed in (a).

Expanding 𝑢′1 is required when a 𝑟 ⇝ 𝑢′1 path satisfies the first condition
of Proposition 4.3.1, with respect to any node 𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 | B). There-
fore, we define a dominance threshold for each exact node 𝑢1 ∈ B that simply
computes the least individual dominance threshold with respect to nodes in
𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 | B).

Definition 4.3.3 (Dominance threshold). Given a relaxed DD B, the domi-
nance threshold of an exact node 𝑢1 ∈ B is given by:

𝜃𝑑 (𝑢1 | B) =
{
∞, if 𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 | B) = ∅,
min

𝑢2∈𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 | B) 𝜃𝑖𝑑 (𝑢1 | 𝑢2,B), otherwise.

Example 4.3.1. Let us illustrate the computation of the dominance thresholds
with Figure 4.1(a), showing the relaxed DD compiled from node𝑎2 of our running
example. Note that the dominance thresholds can be used alone here because

4.3. Branch-and-Bound with Caching 55

RUBs and LocBs are disabled, pruning thresholds would otherwise be needed to
obtain correct expansion thresholds. The FC of this relaxed DD consists of the
nodes 𝑏1, 𝑏2, 𝑐1 and 𝑑1. By applying Definition 4.3.3, we have for each of them
that 𝜃𝑑 (𝑢 | B) = 𝜃𝑖𝑑 (𝑢 | 𝑢,B) = 𝑣∗(𝑢 | B). The dominance thresholds of all
other exact nodes can be obtained by bottom-up propagation. For node 𝑐2, we
obtain 𝜃𝑑 (𝑐2 | B) = 𝜃𝑖𝑑 (𝑐2 | 𝑑1,B) = 𝜃𝑖𝑑 (𝑑1 | 𝑑1,B)−𝑣 (𝑐2 → 𝑑1) = 20−0 = 20.

Given those dominance thresholds, Figure 4.1(b) shows the relaxed DD that
would be compiled from node 𝑎1. Two pairs of nodes share the same DP state:
𝑐2, 𝑐

′
2 and 𝑑1, 𝑑

′
1. In (b), node 𝑐′2 is pruned since its value is lower than the domi-

nance threshold computed for 𝑐2 in (a), even though 𝑐′2 has a greater value than
𝑐2. On the other hand, the dominance threshold computed in (a) for 𝑑1 is not
high enough to prevent the expansion of 𝑑 ′1 in (b).

4.3.2 Pruning Thresholds

The second contribution concerns nodes that were pruned either because of
their RUB or their LocB, or because of node dominance. It aims at identifying
cases where a new path could circumvent a pruning decision that was made
during the compilation of a relaxed DD B. For that purpose, we define a
pruning threshold for each node 𝑢1 ∈ B. Similarly to what was done for the
dominance thresholds, we denote by 𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B) the set of successor
nodes of 𝑢1 that have been pruned, i.e.

𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B) =
{

𝑢2 ∈ 𝑆𝑢𝑐𝑐 (𝑢1 | B) | 𝑣∗(𝑢2 | B) + 𝑣 (𝑢2 | B) ≤ 𝑣 or
∃Ψ′ ∈ 𝐹𝑟𝑜𝑛𝑡𝑠𝑙𝑎𝑦𝑒𝑟 (𝑢2) [𝜅 (𝑢2)] such that Ψ′ ≥ Ψ(𝑢2)

}

with 𝑣 the value of the incumbent solution at that point. Formally, given a
relaxed DD B and three exact nodes𝑢1 ∈ B, 𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 | B) and𝑢′1 ∉ B
with 𝜎 (𝑢′1) = 𝜎 (𝑢1), the expansion of node 𝑢′1 is required when it is possible
that the concatenation 𝑝1 · 𝑝2 of a new prefix path 𝑝1 : 𝑟 ⇝ 𝑢′1 with a suffix
path 𝑝2 : 𝑢1 ⇝ 𝑢2 obtains a value sufficient to overcome the past pruning
decision about node 𝑢2. This scenario is captured by the individual pruning
threshold of an exact node𝑢1 ∈ B with respect to a node𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B).

Definition 4.3.4 (Individual pruning threshold). Given a lower bound 𝑣 , a
relaxed DD B, an exact node 𝑢1 ∈ B and a pruned node 𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B),

56 Chapter 4. Caching

the individual pruning threshold of 𝑢1 with respect to 𝑢2 is defined by:

𝜃𝑖𝑝 (𝑢1 | 𝑢2,B) = 𝜃𝑖𝑝 (𝑢2 | 𝑢2,B) − 𝑣∗(𝑢1⇝ 𝑢2 | B), (4.3)

𝜃𝑖𝑝 (𝑢2 | 𝑢2,B) =

𝑣 − 𝑣 (𝑢2 | B), if 𝑣∗(𝑢2 | B) + 𝑣 (𝑢2 | B) ≤ 𝑣 ,
𝑣 ′ − 1, if ∃Ψ′ ∈ 𝐹𝑟𝑜𝑛𝑡𝑠𝑙𝑎𝑦𝑒𝑟 (𝑢2) [𝜅 (𝑢2)],

with Ψ′ = (𝑣 ′) ·𝜓 ′, such that
Ψ′ ≥ Ψ(𝑢2) and𝜓 ′ = 𝜓 (𝑢2),

𝑣 ′, if ∃Ψ′ ∈ 𝐹𝑟𝑜𝑛𝑡𝑠𝑙𝑎𝑦𝑒𝑟 (𝑢2) [𝜅 (𝑢2)],
with Ψ′ = (𝑣 ′) ·𝜓 ′, such that
Ψ′ ≥ Ψ(𝑢2) and𝜓 ′ ≠ 𝜓 (𝑢2).

(4.4)

Proposition 4.3.2. Given a lower bound 𝑣 , a relaxed DD B, a pruned node
𝑢 ∈ B and a node 𝑢′ ∉ B such that 𝜎 (𝑢′) = 𝜎 (𝑢), and a path 𝑝 : 𝑟 ⇝ 𝑢′. If
𝑣 (𝑝) > 𝜃𝑖𝑝 (𝑢 | 𝑢,B), then either:

■ 𝑣 (𝑝) + 𝑣 (𝑢 | B) > 𝑣 , in case node 𝑢 was pruned by its RUB or LocB,

■ or, in case it was pruned by a utility Ψ′ ∈ 𝐹𝑟𝑜𝑛𝑡𝑠𝑙𝑎𝑦𝑒𝑟 (𝑢) [𝜅 (𝑢)] such that
Ψ′ ≥ Ψ(𝑢), then Ψ′ ≱ Ψ(𝑢′).

Inversely, if 𝑣 (𝑝) ≤ 𝜃𝑖𝑝 (𝑢2 | 𝑢2,B), then either:

■ 𝑣 (𝑝) + 𝑣 (𝑢 | B) ≤ 𝑣 , in case node 𝑢 was pruned by its RUB or LocB,

■ or, in case it was pruned by a utility Ψ′ ∈ 𝐹𝑟𝑜𝑛𝑡𝑠𝑙𝑎𝑦𝑒𝑟 (𝑢) [𝜅 (𝑢)] such that
Ψ′ ≥ Ψ(𝑢), then Ψ′ ≥ Ψ(𝑢′).

Proof. Let us prove the first implication in the case where node 𝑢 was pruned
by its RUB or LocB. If we have that 𝑣 (𝑝) > 𝜃𝑖𝑝 (𝑢 | 𝑢,B), then by applying
Equation (4.4), we obtain 𝑣 (𝑝) > 𝑣 − 𝑣 (𝑢 | B) or equivalently 𝑣 (𝑝) + 𝑣 (𝑢 |
B) > 𝑣 . In case node 𝑢 was pruned by a utility Ψ′ = (𝑣 ′) · 𝜓 ′ split as 𝑣 ′ its
value and 𝜓 ′ its partial utility, then 𝑣 (𝑝) > 𝜃𝑖𝑝 (𝑢 | 𝑢,B) can be expanded
using Equation (4.4) as

𝑣 (𝑝) >
{
𝑣 ′ − 1, if𝜓 ′ = 𝜓 (𝑢),
𝑣 ′, otherwise.

If 𝜓 ′ = 𝜓 (𝑢), then 𝑣 (𝑝) > 𝑣 ′ − 1, or evenly 𝑣 (𝑝) ≥ 𝑣 ′, and thus Ψ′ ≱ Ψ(𝑢′).
On the other hand, if 𝜓 ′ ≠ 𝜓 (𝑢), then 𝑣 (𝑝) > 𝑣 ′ and clearly also Ψ′ ≱ Ψ(𝑢′).
The proof of the second implication is obtained by replacing each occurrence
of > by ≤, of ≥ by < and of ≱ by ≥ in the proof above.

Proposition 4.3.3. Given a lower bound 𝑣 , a relaxed DD B, an exact node
𝑢1 ∈ B, a pruned node 𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B), an exact node 𝑢′1 ∉ B such

4.3. Branch-and-Bound with Caching 57

that 𝜎 (𝑢′1) = 𝜎 (𝑢1), and a path 𝑝1 : 𝑟 ⇝ 𝑢′1. If 𝑣 (𝑝1) > 𝜃𝑖𝑝 (𝑢1 | 𝑢2,B) then
𝑣 (𝑝1 · 𝑝∗(𝑢1 ⇝ 𝑢2 | B)) > 𝜃𝑖𝑝 (𝑢2 | 𝑢2,B). Inversely, if 𝑣 (𝑝1) ≤ 𝜃𝑖𝑝 (𝑢1 | 𝑢2,B)
then 𝑣 (𝑝1 · 𝑝∗(𝑢1⇝ 𝑢2 | B)) ≤ 𝜃𝑖𝑝 (𝑢2 | 𝑢2,B).

Proof. By Equation (4.3), we have 𝑣 (𝑝1) > 𝜃𝑖𝑝 (𝑢2 | 𝑢2,B) − 𝑣∗(𝑢1 ⇝ 𝑢2 |
B), or equivalently 𝑣 (𝑝1) + 𝑣∗(𝑢1 ⇝ 𝑢2 | B) > 𝜃𝑖𝑝 (𝑢2 | 𝑢2,B). Using the
path value definition, we obtain 𝑣 (𝑝1) + 𝑣 (𝑝∗(𝑢1 ⇝ 𝑢2 | B)) > 𝜃𝑖𝑝 (𝑢2 |
𝑢2,B). By concatenating the paths 𝑝1 and 𝑝∗(𝑢1 ⇝ 𝑢2 | B), the inequality
becomes 𝑣 (𝑝1 · 𝑝∗(𝑢1 ⇝ 𝑢2 | B)) > 𝜃𝑖𝑝 (𝑢2 | 𝑢2,B). The proof of the second
implication is obtained by replacing each occurrence of > by ≤ in the proof
above. As 𝑣∗(𝑢2⇝ 𝑢2 | B) = 0, we also trivially have that Equation (4.3) and
Equation (4.4) are consistent with each other.

As for the dominance threshold, finding a 𝑟 ⇝ 𝑢′1 path satisfying the first
condition of Proposition 4.3.3 with respect to any node 𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B)
is a sufficient condition to require the expansion of node 𝑢′1. The pruning
threshold of each exact node 𝑢1 ∈ B is thus computed as the least individual
pruning threshold with respect to any node in 𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B).

Definition 4.3.5 (Pruning threshold). Given a lower bound 𝑣 , a relaxed DD B
and an exact node 𝑢1 ∈ B, the pruning threshold of 𝑢1 within B is given by:

𝜃𝑝 (𝑢1 | B) =
{
∞, if 𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B) = ∅,
min

𝑢2∈𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B) 𝜃𝑖𝑝 (𝑢1 | 𝑢2,B), otherwise.

Example 4.3.2. We consider the same scenario as in Example 4.3.1 of a relaxed
DD rooted at node 𝑎2, but this time with RUBs and LocBs enabled. As shown by
Figure 4.2(a), the RUBs and the node dominance relations manage to prune every
path of the DD before reaching the terminal node. Therefore, we can showcase
the pruning thresholds alone, otherwise we should combine them with the dom-
inance thresholds, as will be explained in the next section. For each node pruned
by the RUB, we have by Definition 4.3.5 that 𝜃𝑝 (𝑢 | B) = 𝜃𝑖𝑝 (𝑢 | 𝑢,B) =

𝑣 − 𝑣 (𝑢 | B). For instance, we have 𝜃𝑝 (𝑐1 | B) = 21 − 13 = 8. For nodes pruned
by a utility Ψ′ = (𝑣 ′) ·𝜓 ′, we have for each of them that 𝜓 (𝑢) = 𝜓 ′. Therefore,
we apply the second case of Equation (4.4), i.e. 𝜃𝑝 (𝑢 | B) = 𝑣 ′ − 1. For node 𝑐2,
we obtain 𝜃𝑝 (𝑐2) = 15 − 1 = 14 since it is dominated by Ψ′ = (15, 1).

Once these pruning thresholds are obtained, they can impact the compilation
of a relaxed DD from node 𝑎1, as illustrated by Figure 4.2(b). Among the nodes
that share a common DP state across DDs (a) and (b), 𝑐′1 and 𝑑

′
2 are successfully

filtered by the pruning thresholds computed for 𝑐1 and 𝑑2. Note that, like in
Example 4.3.2, the value obtained for 𝑐′1 in (b) is greater than the one of 𝑐1 in (a).
The expansion of nodes 𝑐′2 and 𝑑

′
1 cannot be avoided. However, a new incumbent

58 Chapter 4. Caching

0
3

0
6

0
12

6

0
6

11
2

𝜃
𝑝
=
2

𝑎
2

11
2

𝜃
𝑝
=
2

5
5

𝜃
𝑝
=
8

11
2

𝜃
𝑝
=
82
+
13
≤
21

𝑐1

7
8

𝜃
𝑝
=
88
+
13
≤
21

5
5

𝜃
𝑝
=
8(5
,5)
≺
(9
,5)

3
14

𝜃
𝑝
=
14

1
11

𝜃
𝑝
=
14
(11
,1)
≺
(15
,1)

𝑐2

3
14

𝜃
𝑝
=
14
(14
,3)
≺
(15
,3)

𝑑
1

1
20

𝜃
𝑝
=
20
(20
,1)
≺
(21
,1)

𝑑
2

(a)Relaxed
D
D
rooted

at
𝑎
2

0
3

0
6

0
12

6
12

0
6

12
0

0

15
0

𝑎
1

15
0

9
3

15
00
+
13
≤
21

11
6

6
≤
8

𝑐 ′1

9
33
+
13
≤
21

7
12

5
9

(9
,5)
≺
(12
,7)

1
15

𝑐 ′2

7
1212
+
1
≤
21

5
1818
+
1
≤
21

3
24

𝑑
′1

1
15

15
≤
20

𝑑
′2

𝑡
24

(b)Relaxed
D
D
rooted

at
𝑎
1

Figure
4.2:

R
elaxed

D
D
s
w
ith

𝑊
=
3
for

the
FC

nodes
of

Figure
2.3,rooted

at
(a)

𝑎
2
and

(b)
𝑎
1 .

N
odes

of
the

relaxed
D
D

(a)are
annotated

w
ith

their
pruning

threshold.T
he

relaxed
D
D
(b)is

com
piled

w
ith

respectto
the

pruning
thresholds

com
puted

in
(a).

4.3. Branch-and-Bound with Caching 59

solution is found after expanding node 𝑑 ′1: 𝑥 = (0, 0, 2, 2, 0) with 𝑣 = 𝑓 (𝑥) = 24,
which is the optimal solution of the problem. This concludes the resolution of
our BKP instance by the B&B algorithm since both diagrams of Figure 4.2 are
exact and 𝑎1 and 𝑎2 were the only two nodes in the EC of Figure 2.3.

4.3.3 Expansion Thresholds

Sections 4.3.1 and 4.3.2 presented the two scenarios that necessitate the ex-
pansion of nodes associated with a DP state previously reached by an exact
node in a relaxed DD, along with the dominance and pruning thresholds used
to detect them. This section explains how these two thresholds are combined
to form an expansion threshold, and provides a proof of correctness of the ac-
companying pruning criterion. It also details the algorithm for computing the
expansion threshold for all exact nodes in a relaxed DD.

Dominance and pruning thresholds each give a sufficient condition for
the expansion of a node with a previously reached DP state. The definition
of the expansion threshold given below simply ensures that the expansion
is triggered if any of those two conditions are met, and inversely that it is
avoided if none of those two conditions are met.

Definition 4.3.6 (Expansion threshold). Given a relaxed DD B, the expansion
threshold of an exact node 𝑢1 ∈ B is defined by:

𝜃 (𝑢1 | B) = min
{
𝜃𝑑 (𝑢1 | B), 𝜃𝑝 (𝑢1 | B)

}
.

Proposition 4.3.4. Given a relaxed DDB, an exact node𝑢1 ∈ B, an exact node
𝑢′1 ∉ B such that 𝜎 (𝑢′1) = 𝜎 (𝑢1), and a path 𝑝1 : 𝑟 ⇝ 𝑢′1, if 𝑣 (𝑝1) ≤ 𝜃 (𝑢1 | B)
then 𝑝1 can be pruned.

Proof. If 𝑣 (𝑝1) ≤ 𝜃 (𝑢1 | B) then by definition of the expansion threshold,
we have 𝑣 (𝑝1) ≤ 𝜃𝑑 (𝑢1 | B) and 𝑣 (𝑝1) ≤ 𝜃𝑝 (𝑢1 | B). For the dominance
threshold inequality, we have by Definition 4.3.3 that ∀𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 |
B) : 𝑣 (𝑝1) ≤ 𝜃𝑖𝑑 (𝑢1 | 𝑢2,B). When applying Proposition 4.3.1, we obtain
∀𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 | B) : 𝑣 (𝑝1 · 𝑝∗(𝑢1 ⇝ 𝑢2 | B)) ⪯ 𝑝∗(𝑢2 | B). The second
inequality, concerning the pruning threshold, can be developed similarly: by
Definition 4.3.5, ∀𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B) : 𝑣 (𝑝1) ≤ 𝜃𝑖𝑝 (𝑢1 | 𝑢2,B). By substi-
tuting with Proposition 4.3.3, ∀𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B) : 𝑣 (𝑝1 · 𝑝∗(𝑢1 ⇝ 𝑢2 |
B)) ≤ 𝜃𝑖𝑝 (𝑢2 | 𝑢1,B). In that case, Proposition 4.3.2 guarantees that either:

■ 𝑣 (𝑝) + 𝑣 (𝑢 | B) ≤ 𝑣 , in case node 𝑢 was pruned by its RUB or LocB,

■ or, in case it was pruned by a utility Ψ′ ∈ 𝐹𝑟𝑜𝑛𝑡𝑠𝑙𝑎𝑦𝑒𝑟 (𝑢) [𝜅 (𝑢)] such
that Ψ′ ≥ Ψ(𝑢), that Ψ′ ≥ Ψ(𝑢′).

60 Chapter 4. Caching

Therefore, if 𝑣 (𝑝1) ≤ 𝜃 (𝑢1 | B) then the concatenation of 𝑝1 with any path
𝑢1⇝ 𝑢2 with 𝑢2 ∈ 𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 | B) ∪ 𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B) is guaranteed to be ei-
ther weakly dominated or pruned. Furthermore, by definition of 𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢1 |
B) and 𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢1 | B), their union covers all successors of 𝑢1 that are in
𝐸𝐶 (B) or that are pruned. It thus constitutes an exhaustive decomposition of
the corresponding subproblem, concluding our argument that 𝑝1 is irrelevant
for the search.

InDefinitions 4.3.2 and 4.3.4, one can notice that the individual dominance
and pruning thresholds 𝜃𝑖𝑑 (𝑢1 | 𝑢2,B) and 𝜃𝑖𝑝 (𝑢1 | 𝑢2,B) only depend on
the value 𝑣∗(𝑢1 ⇝ 𝑢2 | B), apart from the thresholds 𝜃𝑖𝑑 (𝑢2 | 𝑢2,B) and
𝜃𝑖𝑝 (𝑢2 | 𝑢2,B). For a relaxed DD rooted at node 𝑢𝑟 , if those initial individual
thresholds are correctly set for nodes in 𝐿𝑒𝑎𝑣𝑒𝑠𝑑 (𝑢𝑟 | B) and 𝐿𝑒𝑎𝑣𝑒𝑠𝑝 (𝑢𝑟 |
B), the expansion thresholds can thus be computed by performing a single
bottom-up pass on the relaxed DD B, as described by Algorithm 8.

The thresholds are first initialized at line 3 with a default value of ∞ for
all nodes. Then, the loops at lines 4 and 5 iterate through all nodes of the DD,
starting with the nodes of the last layer up to those of the first layer, and prop-
agate threshold values in a bottom-up fashion. Depending on whether they
are pruned or belong to the EC, several nodes require a careful initialization
of their expansion threshold.

■ Pruned by the Cache: line 6 checks whether the Cache already con-
tains an expansion threshold greater than 𝑣∗(𝑢 | B). If so, the node was
pruned and the previously computed threshold can simply be recycled,
as it remains valid throughout the entire algorithm.

■ Pruned by the Fronts or the RUB: when reaching a node 𝑢 pruned
by a node dominance relation at line 9, or with its RUB during the
top-down compilation at line 11, both lines 10 and 12 set its expan-
sion threshold to 𝜃𝑖𝑝 (𝑢 | 𝑢,B) the individual pruning threshold of 𝑢
relative to itself, because it has no other successor.

■ Pruned by LocB: if a node 𝑢 of the EC was pruned because of its LocB
however, the expansion threshold is computed at line 15 as the mini-
mum between 𝜃𝑖𝑝 (𝑢 | 𝑢,B) the individual pruning threshold relative to
𝑢 and the current value of 𝜃 (𝑢 | B), which accounts for the individual
dominance and pruning thresholds relative to successors of 𝑢.

■ EC node: the expansion threshold of each cutset node 𝑢 that will be
added to the Fringe is simply given by 𝜃𝑖𝑑 (𝑢 | 𝑢,B) the individual dom-
inance threshold of 𝑢 relative to itself, as shown at line 17.

4.3. Branch-and-Bound with Caching 61

Algorithm 8 Computation of the threshold 𝜃 (𝑢 | B) of every exact node 𝑢
in a relaxed DD B and update of the Cache.
1: 𝑖 ← index of the root layer of B
2: (𝐿𝑖 , . . . , 𝐿𝑛) ← 𝐿𝑎𝑦𝑒𝑟𝑠 (B)
3: 𝜃 (𝑢 | B) ← ∞ for all 𝑢 ∈ B
4: for 𝑗 = 𝑛 down to 𝑖 do
5: for all 𝑢 ∈ 𝐿 𝑗 do
6: if 𝐶𝑎𝑐ℎ𝑒.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝜎 (𝑢)) and 𝑣∗(𝑢 | B) ≤ 𝜃 (𝐶𝑎𝑐ℎ𝑒.𝑔𝑒𝑡 (𝜎 (𝑢))) then
7: 𝜃 (𝑢 | B) ← 𝜃 (𝐶𝑎𝑐ℎ𝑒.𝑔𝑒𝑡 (𝜎 (𝑢)))
8: else
9: if ∃Ψ′ ∈ 𝐹𝑟𝑜𝑛𝑡𝑠 𝑗 [𝜅 (𝑢)] s.t. Ψ′ ≥ Ψ(𝑢) then // dom. pruning
10: 𝜃 (𝑢 | B) ← 𝑣 ′ − 1 if 𝜓 ′ = 𝜓 (𝑢) else 𝑣 ′ (with Ψ′ = (𝑣 ′) ·𝜓 ′)
11: else if 𝑣∗(𝑢 | B) + 𝑣𝑟𝑢𝑏 (𝜎 (𝑢)) ≤ 𝑣 then // RUB pruning
12: 𝜃 (𝑢 | B) ← 𝑣 − 𝑣𝑟𝑢𝑏 (𝜎 (𝑢))
13: else if 𝑢 ∈ 𝐸𝐶 (B) then
14: if 𝑣∗(𝑢 | B) + 𝑣𝑙𝑜𝑐𝑏 (𝑢 | B) ≤ 𝑣 then // LocB pruning
15: 𝜃 (𝑢 | B) ← min

{
𝜃 (𝑢 | B), 𝑣 − 𝑣𝑙𝑜𝑐𝑏 (𝑢 | B)

}
16: else
17: 𝜃 (𝑢 | B) ← 𝑣∗(𝑢 | B)
18: if 𝑢 is exact then
19: 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 ← false if 𝑢 ∈ 𝐸𝐶 (B) else true
20: 𝐶𝑎𝑐ℎ𝑒.𝑖𝑛𝑠𝑒𝑟𝑡𝑂𝑟𝑅𝑒𝑝𝑙𝑎𝑐𝑒 (𝜎 (𝑢), ⟨𝜃 (𝑢 | B), 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑⟩)
21: for all arc 𝑎 = (𝑢′ 𝑑−→ 𝑢) incident to 𝑢 do
22: 𝜃 (𝑢′ | B) ← min

{
𝜃 (𝑢′ | B), 𝜃 (𝑢 | B) − 𝑣 (𝑎)

}

Lines 21 and 22 then take care of the bottom-up propagation of the ex-
pansion thresholds as to obtain the correct threshold values for all nodes. The
last step at line 20 is to save the expansion threshold computed for each exact
node in the Cache for later use. The Cache is an associative array storing key-
value pairs ⟨𝜎 (𝑢), 𝜃 (𝑢 | B)⟩, implemented as a hash table in practice. Note
that Algorithm 8 can be applied to any type of EC, but an important detail
is that thresholds should not be inserted in the Cache for exact successors of
nodes in the EC to allow for their later expansion. As the FC contains all the
deepest exact nodes, the algorithm can be applied as is. For the LEL however,
a check must be added at line 18.

In addition to the threshold value, a flag called expanded is stored in the
Cache to distinguish two types of expansion thresholds. First, the nodes that
have been added to the Fringe from the EC of a relaxed DD B with 𝜃 (𝑢 |
B) = 𝑣∗(𝑢 | B) and that need to be further explored by the B&B, therefore

62 Chapter 4. Caching

Algorithm 9 Compilation of DD B rooted at node 𝑢𝑟 with max. width𝑊 .
1: 𝑖 ← index of the layer containing 𝑢𝑟
2: 𝐿𝑖 ← {𝑢𝑟 }
3: for 𝑗 = 𝑖 to 𝑛 − 1 do
4: 𝑝𝑟𝑢𝑛𝑒𝑑 ← ∅
5: perform dominance pruning using Algorithm 7
6: perform cached-based pruning using Algorithm 10
7: 𝐿′𝑗 ← 𝐿 𝑗 \ 𝑝𝑟𝑢𝑛𝑒𝑑
8: if |𝐿′𝑗 | >𝑊 then
9: restrict or relax the layer to get𝑊 nodes with Algorithm 2
10: 𝐿 𝑗+1 ← ∅
11: for all 𝑢 ∈ 𝐿′𝑗 do
12: if 𝑣∗(𝑢 | B) + 𝑣𝑟𝑢𝑏 (𝜎 (𝑢)) ≤ 𝑣 then // RUB pruning
13: continue
14: for all 𝑑 ∈ 𝐷 𝑗 do
15: create node 𝑢′ with state 𝜎 (𝑢′) = 𝑡 𝑗 (𝜎 (𝑢), 𝑑)

or retrieve it from 𝐿 𝑗+1

16: create arc 𝑎 = (𝑢 𝑑−→ 𝑢′) with 𝑣 (𝑎) = ℎ 𝑗 (𝜎 (𝑢), 𝑑) and 𝑙 (𝑎) = 𝑑
17: add 𝑢′ to 𝐿 𝑗+1 and add 𝑎 to 𝐴
18: merge nodes in 𝐿𝑛 into terminal node 𝑡

Algorithm 10 Cache-based filtering of layer 𝐿 𝑗 of a DD B.
1: if 𝑗 > 𝑖 then // pruning for the root done in Algorithm 11
2: for all 𝑢 ∈ 𝐿 𝑗 do
3: if 𝐶𝑎𝑐ℎ𝑒.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝜎 (𝑢)) and 𝑣∗(𝑢 | B) ≤ 𝜃 (𝐶𝑎𝑐ℎ𝑒.𝑔𝑒𝑡 (𝜎 (𝑢))) then
4: 𝑝𝑟𝑢𝑛𝑒𝑑 ← 𝑝𝑟𝑢𝑛𝑒𝑑 ∪ {𝑢}

being associated with an expanded flag set to false at line 20 of Algorithm 8.
And second, all exact nodes above the EC of any relaxed DD B in which the
threshold 𝜃 (𝑢 | B) was obtained. In this case, they can be considered as
expanded since all their outgoing paths were either pruned or cross a node
in the EC of B. When those thresholds are inserted in the Cache at line 20 of
Algorithm 8, their expanded flag is thus set to 𝑡𝑟𝑢𝑒 .

4.3.4 Filtering the Search Using the Cache

Now that we have presented how expansion thresholds can be computed for
all exact nodes of relaxed DDs, we can now elaborate on how these values
are utilized within the B&B. There are two places where the Cache might be
beneficial and prune some nodes. As mentioned before, and shown in Exam-
ples 4.3.1 and 4.3.2, the first is in the top-down compilation of approximate

4.3. Branch-and-Bound with Caching 63

Algorithm 11 The DD-based branch-and-bound algorithm with caching.
1: 𝐹𝑟𝑖𝑛𝑔𝑒 ← {𝑟 } // a priority queue ordered by decreasing 𝑣 (𝑢) + 𝑣 (𝑢)
2: 𝐹𝑟𝑜𝑛𝑡𝑠 𝑗 ← ∅ for 𝑗 = 0, . . . , 𝑛 // hash tables of dom. keys to Pareto fronts
3: 𝐶𝑎𝑐ℎ𝑒 ← ∅ // a hash table of states to threshold 𝜎 (𝑢) → ⟨𝜃, 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑⟩
4: 𝑥 ← ⊥, 𝑣 ← −∞ // incumbent solution and its value
5: while 𝐹𝑟𝑖𝑛𝑔𝑒 is not empty do
6: 𝑢 ← best node from 𝐹𝑟𝑖𝑛𝑔𝑒 , remove it from 𝐹𝑟𝑖𝑛𝑔𝑒

7: if 𝑣 (𝑢) + 𝑣 (𝑢) ≤ 𝑣 then
8: continue
9: if 𝐶𝑎𝑐ℎ𝑒.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝜎 (𝑢)) then
10: ⟨𝜃, 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑⟩ ← 𝐶𝑎𝑐ℎ𝑒.𝑔𝑒𝑡 (𝜎 (𝑢))
11: if 𝑣 (𝑢) < 𝜃 or (𝑣 (𝑢) = 𝜃 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑) then
12: continue
13: B ← 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 (𝑢) // compile restricted DD with Algorithm 9
14: if 𝑣∗(B) > 𝑣 then // update incumbent
15: 𝑥 ← 𝑥∗(B), 𝑣 ← 𝑣∗(B)
16: if B is not exact then
17: B ← 𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (𝑢) // compile relaxed DD with Algorithm 9
18: compute LocBs with Algorithm 3 applied to B
19: update 𝐶𝑎𝑐ℎ𝑒 with Algorithm 8 applied to B
20: for all 𝑢′ ∈ 𝐸𝐶 (B) do
21: 𝑣 (𝑢′) ← 𝑣∗(𝑢′ | B), 𝑣 (𝑢′) ← 𝑣 (𝑢′ | B), 𝑝 (𝑢′) ← 𝑝∗(𝑢′ | B)
22: if 𝑣 (𝑢′) + 𝑣 (𝑢′) > 𝑣 then
23: add 𝑢′ to 𝐹𝑟𝑖𝑛𝑔𝑒
24: return (𝑥, 𝑣)

DDs, as described by Algorithm 9. As for the dominance-based filtering intro-
duced in Chapter 3, the cache-based filtering is specified in a separate proce-
dure given by Algorithm 10, and that collects the filtered nodes in the 𝑝𝑟𝑢𝑛𝑒𝑑
set. At line 3 of Algorithm 10, the Cache is queried and whenever the value
𝑣∗(𝑢 | B) of a node𝑢 fails to surpass the threshold 𝜃 , it is added to the 𝑝𝑟𝑢𝑛𝑒𝑑
set. Nodes from the 𝑝𝑟𝑢𝑛𝑒𝑑 set are kept in the original layer 𝐿 𝑗 so that the
threshold computations of Algorithm 8 can be performed correctly.

Furthermore, theCache can be used when selecting a node for exploration
in the B&B loop. At line 9 of Algorithm 11, the Cache is queried to potentially
retrieve an entry with a threshold value as well as an expanded flag. If a
threshold is indeed present, two cases arise depending on the value of the
expanded flag. If it is True, the node is ignored if its value is less or equal to
the threshold. When False however, the node is only ignored if its value is
strictly less than the threshold, because in case of equality, this node will be

64 Chapter 4. Caching

the first to be expanded with that value. As this filtering happens at the B&B
level, it is not repeated for the root node of approximate DDs, see line 1 of
Algorithm 9.

An interesting implication of the use of expansion thresholds is that dur-
ing the bottom-up traversal of relaxed DDs done to compute LocBs, it is pos-
sible to detect dangling nodes, i.e. nodes with no feasible outgoing transition.
As they have no path to the terminal node, their LocB is −∞ and the ex-
pansion threshold stored is∞. As a result, the bottom-up propagation of the
thresholds permits to detect both suboptimality and infeasibility earlier in the
future compilations of approximate DDs, in addition to dominance relations
discussed before. In terms of complexity, computing the thresholds requires
a single traversal of the relaxed DDs compiled, so it has the same complex-
ity as Algorithm 9 and Algorithm 3 that respectively handle the top-down
compilation and the computation of the LocBs.

4.4 Limitations

The thresholds presented in Section 4.3 offer new pruning perspectives that
will be shown to be very impactful in Section 4.6. Yet, they exhibit two main
limitations that are discussed in this section.

4.4.1 Memory Consumption

In order to apply B&Bwith caching, extra informationmust be stored inmem-
ory. Some effort is done to reduce memory consumption by deleting thresh-
olds as soon as they are no longer required by the algorithm. A sufficient
condition to remove a threshold is when it concerns a node located in a layer
above the first active layer.

Definition 4.4.1 (First active layer). GivenB the exact DD for problem P with
layers 𝐿0, . . . , 𝐿𝑛 . The first active layer of the B&B specified by Algorithm 11 is
defined as the least index 𝑗 such that a node of layer 𝐿 𝑗 is in the Fringe or is
currently selected for exploration at line 6.

Thresholds related to nodes above the first active layer can be safely re-
moved from the Cache as there is no way of reaching the associated DP states
again. If memory consumption was nevertheless an issue, a simple solution
would be to delete an arbitrary subset of the thresholds stored in the Cache.
This does not compromise the optimality guarantees of the algorithm since
the only effect of thresholds is to prevent the expansion of nodes associated
with already visited DP states. However, removing some thresholds decreases
the pruning perspectives of the algorithm. Some memory will therefore be
saved at the cost of speed. One could even imagine using eviction rules based

4.4. Limitations 65

on an activity measure of the thresholds in the Cache. Note that all the al-
gorithms presented in the chapter are written as if the Cache could remove
some thresholds along the way.

An argument that could be held against the use of theCache in the context
of DD-based B&B is that in the worst case, it still might need to accommo-
date as many nodes as there are nodes in the exact DD encoding the problem
being solved. While this argument is true, we would like to point out that the
aforementioned explosive worst-case memory requirement already plagued
the original B&B algorithm as it does not implement anymeasures to limit the
size of the Fringe. Furthermore, we would like to emphasize that maintaining
the Cache is no more costly than maintaining the Fringe and significantly less
expensive than memorizing an actual instantiation of the exact DD. Indeed,
the maintenance of both the Cache and the Fringe is𝑂 (|𝑈 |) – where𝑈 is the
set of nodes in the state space – whereas the requirement to store an actual
instantiation of the exact DD in memory is𝑂 (|𝑈 | + |𝐴|) where 𝐴 is the set of
arcs connecting the nodes in𝑈 . It is also worth mentioning that in that case,
|𝐴| dominates |𝑈 | since by definition of the domains and transition relations,
the size of 𝐴 is bounded by the product of the domain sizes Π 𝑗=0,...,𝑛−1 |𝐷 𝑗 |.

4.4.2 Variables Orderings

Many discrete optimization problems have an imposed variable ordering in
their natural DP model. For instance, DP models for sequencing problems
usually make decisions about the 𝑗-th position of the sequence at the 𝑗-th
stage of the DP model [CH13]. For DP models that allow it, however, it has
been shown that variable orderings can yield exact DDs of reduced size as
well as approximate DDswith tighter bounds [Ber+12; Cap+22; KH22]. When
DDs are used within a B&B algorithm, variable orderings thus constitute an
additional heuristic that can speed up the search. They can be separated in
two categories: static and dynamic variable orderings. The former refers to
a single variable ordering used for all DD compilations during the B&B. The
latter denotes a heuristic that dynamically decides which variable to branch
on when generating the next layer of a DD, based on the states contained in
the current layer. Since the techniques introduced in this chapter are solely
based on the overlapping structure of the DP models, a dynamic variable or-
dering would most likely compromise much of the expected pruning. Indeed,
it seems unlikely that many states would overlap in DDs compiled with dif-
ferent variable orderings, although it ultimately depends on the modeling of
each specific problem.

66 Chapter 4. Caching

4.5 Applications

All the problems used in the experimental study of Chapter 3 are also part
of the experiments of this chapter, using the same benchmark instances and
parameters. There are no additional modeling ingredients to specify for those
problems to apply the caching strategy described in this chapter. This section
provides the complete modeling of two additional problems, and for which
no obvious dominance rule exists.

4.5.1 Pigment Sequencing Problem

The Pigment Sequencing Problem (PSP) is a single-machine production plan-
ning problem that aims to minimize the stocking and changeover costs while
satisfying a set of orders. There are different item types 𝐼 = {0, . . . , 𝑛 − 1}with
a given stocking cost 𝑆𝑖 to pay for each time period between the production
and the deadline of an order. For each pair 𝑖, 𝑗 ∈ 𝐼 of item types, a changeover
cost𝐶𝑖 𝑗 is incurred whenever the machine switches the production from item
type 𝑖 to 𝑗 . Finally, the demand matrix 𝑄 contains all the orders: 𝑄𝑖𝑝 ∈ {0, 1}
indicates whether there is an order for item type 𝑖 ∈ 𝐼 at time period 𝑝 with
0 ≤ 𝑝 < 𝐻 and 𝐻 the time horizon.

To give a better understanding of the problem, we hereby recall the MIP
model denoted PIG-A-1 in [PW06]. Variables 𝑥𝑖𝑝 ∈ {0, 1} decide whether an
item of type 𝑖 is produced at time period 𝑝 . On the other hand, variables
𝑦𝑖𝑝 ∈ {0, 1} decide whether the machine is ready to produce an item of type 𝑖
at time period 𝑝 . Indeed, the machine can be idle at certain periods. Variables
𝑞𝑖𝑝 ∈ N0 accumulate the quantity of items of type 𝑖 stored at period 𝑝 . Finally,
variables 𝜒𝑖, 𝑗𝑝 ∈ {0, 1} capture a changeover between item types 𝑖 and 𝑗 at
period 𝑝 .

min
∑︁
𝑖∈𝐼

𝐻−1∑︁
𝑝=0

𝑆𝑖𝑞
𝑖
𝑝 +

∑︁
𝑖, 𝑗∈𝐼

𝐻−1∑︁
𝑝=0

𝐶𝑖 𝑗 𝜒
𝑖, 𝑗
𝑝 (4.5)

𝑞𝑖𝑝−1 + 𝑥𝑖𝑝 = 𝑞𝑖𝑝 +𝑄𝑖𝑝 ∀𝑖 ∈ 𝐼 , 0 ≤ 𝑝 < 𝐻 (4.6)

𝑞𝑖−1 = 0 ∀𝑖 ∈ 𝐼 (4.7)
𝑥𝑖𝑝 ≤ 𝑦𝑖𝑝 ∀𝑖 ∈ 𝐼 , 0 ≤ 𝑝 < 𝐻 (4.8)∑︁
𝑖∈𝐼

𝑦𝑖𝑝 = 1 ∀0 ≤ 𝑝 < 𝐻 (4.9)

𝜒
𝑖, 𝑗
𝑝 ≥ 𝑦𝑖𝑝−1 + 𝑦𝑖𝑝 − 1 ∀𝑖, 𝑗 ∈ 𝐼 , 0 < 𝑝 < 𝐻 (4.10)

Equation (4.6) models the stocking of the items and consumes them when
needed, with the quantities initialized by Equation (4.7). Then, Equation (4.8)

4.5. Applications 67

ensures that the machine is in the correct mode to produce an item and Equa-
tion (4.9) allows only one mode for each time period. Finally, Equation (4.10)
sets the correct value for the changeover variables.

The PSP was already tackled with a DD-based approach in [GS22; Gil22].
We hereby recall the same formulation, except for a few changes that allow
to solve scenarios that require the machine to be idle for some time periods.

4.5.1.1 Dynamic Programming Formulation

In this DP model, the decisions are made backwards – this allows to define
transition functions that only lead to feasible production schedules. If variable
𝑥 𝑗 decides the type of item to produce at period 𝑗 , the reverse variable ordering
𝑥𝐻−1, . . . , 𝑥0 is thus used. To simplify the definition of the transition functions,
let us denote by 𝑃𝑖𝑟 the time period at which the 𝑟 -th item of type 𝑖 must be
delivered, i.e. 𝑃𝑖𝑟 = min{0 ≤ 𝑞 < 𝐻 | ∑𝑞

𝑝=0𝑄
𝑖
𝑝 ≥ 𝑟 } for all 𝑖 ∈ 𝑁, 0 ≤ 𝑟 ≤∑

0≤𝑝<𝐻 𝑄
𝑖
𝑝 . Moreover, we define a dummy item type ⊥ used for idle periods

and 𝑁 ′ = 𝑁 ∪ {⊥}.
States ⟨𝑖, 𝑅⟩ where 𝑖 is the item type produced at the next time period –

and thus scheduled at the previous transition – and 𝑅 is a vector where 𝑅𝑖
gives the remaining number of demands to satisfy for item type 𝑖 .

■ Control variables: 𝑥 𝑗 ∈ 𝑁 ′ with 0 ≤ 𝑗 < 𝐻 decides the item type to
produce at period 𝑗 .

■ State space: S = {𝑠 | 𝑠 .𝑖 ∈ 𝑁 ′,∀𝑖 ∈ 𝑁, 0 ≤ 𝑠 .𝑅𝑖 ≤
∑

0≤𝑝<𝐻 𝑄
𝑖
𝑝 }. The

root state is given by 𝑟 = ⟨⊥, (∑0≤𝑝<𝐻 𝑄
0
𝑝 , . . . ,

∑
0≤𝑝<𝐻 𝑄

𝑛−1
𝑝)⟩ and the

terminal states are of the form ⟨𝑖, (0, . . . , 0)⟩ with 𝑖 ∈ 𝑁 ′.

■ Transition functions:

𝑡 𝑗 (𝑠 𝑗 , 𝑥 𝑗) =

〈
𝑡𝑖𝑗 (𝑠 𝑗 , 𝑥 𝑗), 𝑡𝑅𝑗 (𝑠 𝑗 , 𝑥 𝑗)

〉
,

if 𝑥 𝑗 ≠ ⊥ and 𝑠 𝑗 .𝑅𝑥 𝑗 > 0 and 𝑗 ≤ 𝑃𝑥 𝑗
𝑠 𝑗 .𝑅𝑥𝑗

,〈
𝑡𝑖𝑗 (𝑠 𝑗 , 𝑥 𝑗), 𝑡𝑅𝑗 (𝑠 𝑗 , 𝑥 𝑗)

〉
, if 𝑥 𝑗 = ⊥ and

∑
𝑖∈𝑁 𝑠

𝑗 .𝑅𝑖 < 𝑗 + 1,
0̂, otherwise.

where

𝑡𝑖𝑗 (𝑠 𝑗 , 𝑥 𝑗) =

{
𝑥 𝑗 , if 𝑥 𝑗 ≠ ⊥
𝑠 𝑗 .𝑖, otherwise.

𝑡𝑅𝑗 (𝑠 𝑗 , 𝑥 𝑗) =

{
(𝑠 𝑗 .𝑅0, . . . , 𝑠 𝑗 .𝑅𝑥 𝑗 − 1, . . . , 𝑠 𝑗 .𝑅𝑛−1), if 𝑥 𝑗 ≠ ⊥
𝑠 𝑗 .𝑅, otherwise.

68 Chapter 4. Caching

In the transition function, the first condition ensures that there remains
at least one item to produce for the chosen type and that the current
time period 𝑗 is earlier than its deadline. The second condition ensures
that idle periods cannot be scheduled when the remaining quantity to
produce is equal to the number of periods left.

■ Transition value functions: the changeover and stocking costs are com-
puted as:

ℎ 𝑗 (𝑠 𝑗 , 𝑥 𝑗) =
{
𝐶𝑥 𝑗𝑠 𝑗 .𝑖 , if 𝑥 𝑗 ≠ ⊥ and 𝑠 𝑗 .𝑖 ≠ ⊥
0, otherwise.

}

+
{
𝑆𝑥 𝑗 · (𝑗 − 𝑃

𝑥 𝑗

𝑠 𝑗 .𝑅𝑥𝑗
), if 𝑥 𝑗 ≠ ⊥

0, otherwise.

}
■ Root value: 𝑣𝑟 = 0.

4.5.1.2 Relaxation

The merging operator is defined as follows:

⊕(M) =
〈
⊥, (min

𝑠∈M
𝑠 .𝑅0, . . . ,min

𝑠∈M
𝑠 .𝑅𝑛−1)

〉
.

As merged states might disagree on the item type produced before, the con-
figuration of the machine is always reset to the dummy item type⊥. For each
item type, the minimum remaining number of items to produce is computed,
meaning that any demand satisfied by a least one state is considered satisfied
in the merged state. As for the TSPTW, the relaxed transition value operator
is the identity function ΓM (𝑣,𝑢) = 𝑣 .

4.5.1.3 Rough Lower Bound

When the changeover costs are ignored, the PSP falls under the Wagner-
Whitin conditions [PW06] that allow to compute the optimal stocking cost
for a given set of remaining items to produce. Conversely, if the stocking
costs and the delivery constraints are omitted, the PSP can be reduced to the
TSP. Therefore, a valid lower bound on the total changeover cost to produce
a remaining set of items is to take the total weight of a Minimum Spanning
Tree computed on the graph of changeover costs limited to item types that
still need to be produced. The optimal weight for all these spanning trees can
be precomputed because the number of items is usually small. As there is no
overlap between the two lower bounds described, the RLB for the PSP can
sum their individual contributions to obtain a stronger lower bound.

4.5. Applications 69

4.5.1.4 Experimental Setting

A set of randomly generated instances was created with the number of items
in 𝑛 ∈ {6, 8, 10}, the number of periods in 𝐻 ∈ {100, 150, 200} and the den-
sity in {0.9, 0.95, 1}. The density is computed as the number of demands
over the number of time periods. To generate instances with diverse propor-
tions between the stocking costs and the changeover costs, we created pairs
of bounds 𝜌 ∈ {(100, 100000), (1000, 10000), (10000, 1000), (100000, 100)} and
for each 𝜌 , the stocking costs were sampled in the interval [0, 𝜌1] and the
pairwise changeover costs in the interval [0, 𝜌2]. Additionally, a parame-
ter 𝐾 ∈ {6, 8, 10} controls the number of groups of item types having sim-
ilar characteristics, and stocking and changeover costs are sampled around a
same value for item types of the same group, similarly to what was done for
the separation matrices of ALP instances, as described in Section 3.4.2.

To generate the demands, item type and time period pairs were selected
uniformly among all possible values and added to the instance as long as it re-
mained feasible. Several fixed widths were used in the experiments following
the formula𝑊 = 𝛼 ×𝑛, where 𝑛 is the number of variables of each particular
instance and 𝛼 ∈ {1, 10, 100} a multiplying factor.

4.5.2 Talent Scheduling Problem

The Talent Scheduling Problem (TalentSched) is a film shoot scheduling prob-
lem that considers a set𝑁 = {0, . . . , 𝑛 − 1} of scenes and a set𝐴 = {0, . . . ,𝑚 − 1}
of actors. Each scene 𝑖 ∈ 𝑁 involves a required set 𝑅𝑖 ⊆ 𝐴 of actors for a du-
ration 𝐷𝑖 ∈ N. Moreover, each actor 𝑘 ∈ 𝑀 has a pay rate 𝐶𝑘 and is paid
without interruption from their first to their last scheduled scene. The objec-
tive of TalentSched is to find a permutation of the scenes that minimizes the
total cost of the film shoot.

4.5.2.1 Dynamic Programming Formulation

ADPmodel for TalentSchedwas introduced in [GSC11] that we slightly adapt
here to make it suitable for the state merging-based relaxation. States of this
model are pairs (𝑀, 𝑃) where𝑀 and 𝑃 are disjoint sets of scenes that respec-
tively must or might still be scheduled. The only case where 𝑃 is non-empty
happens when a state is relaxed.

■ Control variables: 𝑥 𝑗 ∈ 𝑁 with 0 ≤ 𝑗 < 𝑛 decides which scene is shot
in 𝑗-th position.

■ State space: S = {(𝑀, 𝑃) | 𝑀, 𝑃 ⊆ 𝑁,𝑀 ∩ 𝑃 = ∅}. The root state is 𝑟 =
(𝑁, ∅) and the terminal states are of the form (∅, 𝑃).

70 Chapter 4. Caching

■ Transition functions:

𝑡 𝑗 (𝑠 𝑗 , 𝑥 𝑗) =

(𝑠 𝑗 .𝑀 \

{
𝑥 𝑗
}
, 𝑠 𝑗 .𝑃 \

{
𝑥 𝑗
}
), if 𝑥 𝑗 ∈ 𝑠 𝑗 .𝑀 ,

(𝑠 𝑗 .𝑀 \
{
𝑥 𝑗
}
, 𝑠 𝑗 .𝑃 \

{
𝑥 𝑗
}
),
if 𝑥 𝑗 ∈ 𝑠 𝑗 .𝑃 and |𝑠 𝑗 .𝑀 | < 𝑛 − 𝑗 ,

0̂, otherwise.

A scene from 𝑃 can only be selected if there are more spots left than
scenes in𝑀 .

■ Transition value functions: let 𝑎(𝑄) = ∪𝑖∈𝑄𝑅𝑖 be the required set of
actors for a set of scenes 𝑄 . Given a state 𝑠 = (𝑀, 𝑃), the set of actors
that are guaranteed to be on-location is computed as 𝑜 (𝑠) = 𝑎(𝑠 .𝑀) ∩
𝑎(𝑁 \ (𝑠 .𝑀 ∪𝑠 .𝑃)) because they are required both for a scene that must
still be scheduled and for another that is guaranteed to be scheduled.
In the transition value functions, we add all the actors from 𝑅𝑥 𝑗 to this
set and sum the individual costs: ℎ 𝑗 (𝑠 𝑗 , 𝑥 𝑗) = 𝐷𝑥 𝑗

∑
𝑘∈𝑜 (𝑠 𝑗)∪𝑅𝑥𝑗 𝐶𝑘 .

■ Root value: 𝑣𝑟 = 0.

4.5.2.2 Relaxation

Sets of scenes that must and can still be scheduled are merged exactly like the
location sets for the TSPTW. The merging operator is thus defined as

⊕(M) = (⊕𝑀 (M), ⊕𝑃 (M))

where

⊕𝑀 (M) =
⋂
𝑠∈M

𝑠 .𝑀

⊕𝑃 (M) = (
⋃
𝑠∈M

𝑠 .𝑀 ∪ 𝑠 .𝑃) \ (
⋂
𝑠∈M

𝑠 .𝑀) .

The definition of ⊕𝑃 (M) ensures that the resulting set of scenes that might
be scheduled contains any scene that must or might be scheduled in any of
the states, except those that still must be scheduled for all states.

4.5.2.3 Rough Lower Bound

We use the complex lower bound given by Theorem 1 in [GSC11] as an RLB
for our approach, which we do not develop here for conciseness.

4.6. Computational Experiments 71

4.5.2.4 Experimental Setting

We generated a set of 400 random instances with different number of scenes
𝑛 ∈ {22, 24, 26, 28} and actors𝑚 ∈ {10, 15}. A parameter 𝜌 ∈ {0.3, 0.4} con-
trolling the average fraction of actors required for each scene was also used to
generate instances with diverse densities of actors. The scenes were grouped
in 𝐾 ∈ {15, 20, 25} groups among which similar actor requirements are gen-
erated. A fixed width of𝑊 = 100 is used for all experiments concerning the
TalentSched.

4.6 Computational Experiments

This section presents the results of the computational experiments that were
conducted to evaluate the impact of the additional pruning techniques pre-
sented in this chapter. The proposed caching mechanism was coupled to the
two configurations studied in Chapter 3 – DDO and DDO+D – and thus gave
two new configurations DDO+C and DDO+D+C. Again, each solver and con-
figuration was allotted 600 seconds for each benchmark instance of every op-
timization problem discussed. The results presented for DDO and DDO+D
on the TSPTW, the ALP, the LCS and the KP are the same as those analyzed
in Chapter 3. For all the experiments, the best results were obtained by using
FCs when enabling the Cache, and otherwise using LELs. It is worth men-
tioning that the baseline approach already uses duplicate state detection in
the Fringe. For the PSP, the DD-based approach is compared with the MIP
model referred to as PIG-A-3 in [PW06], solved with Gurobi 9.5.2 [Gur22].

4.6.1 Impact of the Caching Mechanism

Figures 4.3 to 4.6 show the results of these experiments, respectively in terms
of computation time and number of DD nodes expanded during the search.
Each graph presents the total number of instances solved under any given
time or nodes expanded. For each of the studied problems, DDO+C is able to
solve significantly more instances than DDO within the time limit. For the
TSPTWand the ALP, DDO+C is almost as performant as DDO+Dwithout any
knowledge of their problem-specific dominance rules. Concerning the LCS,
DDO+C only solves 9more instances than DDO, whereas DDO+D could solve
26 instances that DDO could not. For the KP, however, DDO+C largely out-
performs both DDO and DDO+D. These improvements in terms of solving
time are directly linked to a reduction of the number of nodes expanded by
the algorithm, as can be seen in Figures 4.5 and 4.6. This confirms our intu-
ition that a lot of work is unnecessarily repeated by DDO and shows that the
pruning techniques introduced in this chapter help neutralize much of this

72 Chapter 4. Caching

0 100 200 300 400 500 600
time (s)

140

160

180

200

220

240

260

280

300

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

TSPTW

0 100 200 300 400 500 600
time (s)

100

200

300

400

500

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

ALP

0 100 200 300 400 500 600
time (s)

0

10

20

30

40

50

60

70

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

LCS

DDO DDO + Caching DDO + Dominance DDO + Dominance + Caching MIP

Figure 4.3: Number of instances solved over time by DDO, DDO+C, DDO+D,
DDO+D+C and Gurobi for three different problems.

4.6. Computational Experiments 73

0 100 200 300 400 500 600
time (s)

600

700

800

900

1000

1100

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

KNAPSACK

0 100 200 300 400 500 600
time (s)

0

100

200

300

400

500

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

PSP

0 100 200 300 400 500 600
time (s)

0

50

100

150

200

250

300

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

TALENTSCHED

DDO DDO + Caching DDO + Dominance DDO + Dominance + Caching MIP

Figure 4.4: Number of instances solved over time by DDO, DDO+C, DDO+D,
DDO+D+C and Gurobi for three different problems.

74 Chapter 4. Caching

0 1 2 3 4 5
nodes expanded 1e8

140

160

180

200

220

240

260

280

300

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity
TSPTW

0 1 2 3 4 5
nodes expanded 1e8

100

200

300

400

500

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

ALP

0.0 0.5 1.0 1.5 2.0 2.5
nodes expanded 1e8

0

10

20

30

40

50

60

70

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

LCS

DDO DDO + Caching DDO + Dominance DDO + Dominance + Caching

Figure 4.5: Number of instances solved by DDO, DDO+C, DDO+D and
DDO+D+C with respect to the number of DD nodes expanded for three dif-
ferent problems.

4.6. Computational Experiments 75

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
nodes expanded 1e9

600

700

800

900

1000

1100

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity
KNAPSACK

0.0 0.5 1.0 1.5 2.0 2.5
nodes expanded 1e8

0

100

200

300

400

500

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

PSP

0.0 0.2 0.4 0.6 0.8 1.0 1.2
nodes expanded 1e8

0

50

100

150

200

250

300

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

TALENTSCHED

DDO DDO + Caching DDO + Dominance DDO + Dominance + Caching

Figure 4.6: Number of instances solved by DDO, DDO+C, DDO+D and
DDO+D+C with respect to the number of DD nodes expanded for three dif-
ferent problems.

76 Chapter 4. Caching

0 100 200 300 400 500 600
time (s)

0

100

200

300

400

500

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity
PSP

DDO (= 1)
DDO + Caching (= 1)
MIP

DDO (= 10)
DDO + Caching (= 10)

DDO (= 100)
DDO + Caching (= 100)

Figure 4.7: Number of instances solved over time by DDO, DDO+C, DDO+D
and DDO+D+C for three different problems.

problem. The expansion thresholds allow discarding many transitions dur-
ing the compilation of approximate DDs and avoid repeating previous work.

Moreover, if we look at the performance achieved using different maxi-
mum widths for the PSP on Figure 4.7, one can notice that for DDO, increas-
ing the width helps to solve many more instances: with 𝛼 = 10 and 𝛼 = 100,
DDO respectively closes 44 and 141 additional instances, compared to DDO
with 𝛼 = 1. Indeed, larger DDs allow stronger bounds to be derived and in-
stances to be closed more quickly, as long as they are not too expensive to
compile. Yet, this disparity is much less significant for DDO+C: with 𝛼 = 10
and 𝛼 = 100, DDO+C respectively closes 21 and 37 additional instances, com-
pared to DDO+C with 𝛼 = 1. This perfectly captures the double benefit of the
Cache. The strength of dominance and pruning thresholds allow discarding
many transitions during the compilation of approximate DDs and avoid re-
peating previous work. As a result, narrower DDs can explore and prune the
search space almost as fast while being much cheaper to generate.

Another benefit of the Cache is that it fully exploits the potential of FCs:
as all non-improving transitions are blocked by the Cache, it is only natural to
use the deepest possible exact cutset. The same cannot be said in the case of
DDO because FCs usually contain many nodes, some of which are the parents
of others, and this only exacerbates the caveats mentioned in Section 4.2.

To put these results into perspective, we compare them on Figures 4.3
and 4.7 to those obtained with MIP models solved by Gurobi. For the TSPTW,
Gurobi could only solve 176 instances, which is less than theworst-performing

4.6. Computational Experiments 77

configuration of DDO. On the other hand, it could solve 500 PSP instances
while DDO+C with 𝛼 = 100 solved 378 of them, and DDO performed much
worse, solving only 178 instances with 𝛼 = 100. Therefore, even if the best
results are achieved with the MIP model, using the Cache closed much of the
gap that separates the two techniques.

4.6.2 Synergy with the Dominance Rules

Quite remarkably, Figures 4.3 and 4.5 show that combining the dominance
rules with the caching strategy results in even better performance for the
TSPTW, the ALP and the LCS, compared to those two improvements used
separately. This is a good indication that the bottom-up propagation of the
expansion thresholds introduced in this chapter is able to deduce dominance
and suboptimality pruning criteria that cannot be derived simply through
problem-specific dominance rules and RUBs. Inversely, problem-specific dom-
inance rules allow filtering nodes a priori based on a dominance relation ex-
isting between two nodes reached during the search, for which expansion
expansions would possibly never find a connection. For the KP, we can ob-
serve on Figures 4.4 and 4.6 that DDO+D+C performs better than DDO+D but
worse than DDO+C. This gives further evidence of the limitations described
in Section 3.5 about the dominance rule for the KP.

For the TSPTW and the ALP, we again analyze the quality of the first
solution found by DDO+D and DDO+D+C, and the iteration at which the
solution is found – see Figure 4.8. Indeed, for the other problems where a
solution is guaranteed to be found with the root restricted DD, the Cache has
no influence. For the TSPTW, the first solution found by either configuration
is almost always the same, only in 7 cases DDO+D finds a better solution than
DDO+D+C and in 4 cases in the other direction. However, we can see that
this solution is found later in the search by DDO+D+C in 18 cases, whereas
the inverse occurs only 4 times. This phenomenon can happen when compil-
ing approximate DDs from a given node, because the expansion thresholds
associated with nodes inserted in the Fringe block their exploration unless
a better value is obtained. Therefore, each given restricted DD is confined
to a smaller part of the search space that might remove or make it harder
to find some good solutions, that will eventually be discovered when start-
ing the compilation from another node. Yet, for the ALP, we can see that
DDO+D+C finds a feasible solution for 12 more instances that DDO+D. This
can be attributed to the node reduction brought by the Cache, which allows
exploring the search space faster and thus sometimes reach parts of the search
space that DDO+D could not. The quality of the solutions and the iteration
at which they are found is otherwise similar for both configurations.

78 Chapter 4. Caching

0.00 0.75 1.50 2.25
first sol. value (DDO + Dominance)

0.00

0.75

1.50

2.25

fir
st

 s
ol

. v
al

ue
 (D

D
O

 +
 D

om
in

an
ce

 +
 C

ac
hi

ng
) TSPTW

0 250 500 750
first sol. iter. (DDO + Dominance)

0

250

500

750

fir
st

 s
ol

. i
te

r.
(D

D
O

 +
 D

om
in

an
ce

 +
 C

ac
hi

ng
)

TSPTW

0 10500 21000 31500
first sol. value (DDO + Dominance)

0

10500

21000

31500

fir
st

 s
ol

. v
al

ue
 (D

D
O

 +
 D

om
in

an
ce

 +
 C

ac
hi

ng
) ALP

0 20000 40000 60000
first sol. iter. (DDO + Dominance)

0

20000

40000

60000

fir
st

 s
ol

. i
te

r.
(D

D
O

 +
 D

om
in

an
ce

 +
 C

ac
hi

ng
)

ALP

Figure 4.8: Comparison of the value of the first solution obtained for each
instance by DDO+D and DDO+D+C, and of the iteration at which this solu-
tion is found.

4.6.3 Memory Consumption

The performance improvements discussed in Sections 4.6.1 and 4.6.2 do not
come completely for free, as the Cache must store all the thresholds com-
puted during the B&B algorithm. It is thus important to study the impact of
this technique on the memory consumption of the algorithm. For every in-
stance solved by each algorithm, the peak amount of memory used during the
execution was recorded. Figures 4.9 and 4.10 show the number of instances
solved using a given maximum amount of memory. We can clearly see an
increase in memory consumption when enabling the Cache for most of the
instances solved by all configurations. However, when the peak amount of
memory exceeds around 100MB, DDO+C starts solving more instances of all

4.6. Computational Experiments 79

10 2 10 1 100 101 102 103 104

memory (mb)

0

50

100

150

200

250

300

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity
TSPTW

10 2 10 1 100 101 102 103 104

memory (mb)

0

100

200

300

400

500

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

ALP

101 102 103 104

memory (mb)

0

10

20

30

40

50

60

70

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

LCS

DDO DDO + Caching DDO + Dominance DDO + Dominance + Caching

Figure 4.9: Number of instances solved by DDO, DDO+C, DDO+D and
DDO+D+C for three different problems, with respect to the peak amount of
memory used.

80 Chapter 4. Caching

10 1 100 101 102 103 104 105

memory (mb)

0

200

400

600

800

1000

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity
KNAPSACK

101 102 103 104

memory (mb)

0

100

200

300

400

500

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

PSP

101 102 103

memory (mb)

0

50

100

150

200

250

300

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

TALENTSCHED

DDO DDO + Caching DDO + Dominance DDO + Dominance + Caching

Figure 4.10: Number of instances solved by DDO, DDO+C, DDO+D and
DDO+D+C for three different problems, with respect to the peak amount of
memory used.

4.7. Conclusion 81

problems with a same given amount of memory and under the given time
limit. Thus, even in terms of memory consumption, the cost of maintaining
the Cache seems to be compensated by its pruning effect which causes DDs
to be sparser and the Fringe smaller. Interestingly, for problems with domi-
nance rules, DDO+D+C shows a lower memory consumption than DDO+C,
while also maintaining the Fronts. Indeed, the dominance rules manage to
filter nodes a priori during the compilation of approximate DDs, and thus
sometimes before even computing and storing a threshold for them.

4.7 Conclusion

In this chapter, we first discussed how the DD-based B&B algorithm tends
to repeatedly explore overlapping parts of the search space. Then, we intro-
duced dominance and pruning thresholds with the intention of overcoming
this limitation. The former propagate dominance relations between partial so-
lutions obtained within approximate DDs while the latter allow the approach
to be combined and strengthened by the pruning performed by LocBs, RUBs
and dominance rules. Both types of thresholds are used in a single caching
and pruning mechanism that is able to discard many nodes associated with
previously visited DP states during subsequent DD compilations. Finally, we
presented experimental results that clearly show the impact of the techniques
introduced: B&B with caching vastly outperforms the classical B&B algo-
rithm in terms of instances solved on the six discrete optimization problems
studied in the chapter. Furthermore, the combination of the expansion thresh-
olds with the dominance checking procedures described in Chapter 3 yields
even better results than either ingredient used in isolation. Finally, the ex-
periments showed that the memory consumption induced by the Cache was
either acceptable or even overcompensated by its pruning effect for difficult
instances, as well as mitigated when used in conjunction of dominance rules.

In general, we expect that using the Cache will be beneficial for solving
problems whenever the theoretical search tree of the DP model comprises
isomorphic subtrees, which are normally superimposed in the corresponding
exact DD. That is, we expect that the Cache to be profitable whenever pure
DP would be an efficient – albeit impractical because of memory limitations
– method for solving the problem at hand.

Aggregate Dynamic
Programming-Based
Bounds and Heuristics

5

This chapter is largely based on the following paper: V.
Coppé, X. Gillard, and P. Schaus. “Boosting Decision
Diagram-Based Branch-And-Bound by Pre-Solving with
Aggregate Dynamic Programming”. In: 29th International
Conference on Principles and Practice of Constraint Pro-
gramming (CP 2023). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik. 2023. It translates ideas from aggregate dy-
namic programming to the DD-based optimization frame-
work, and incorporates them as bounds and heuristics that
guide the search.

5.1 Introduction

As discussed in the previous chapters, optimizations techniques based on DP
and DDs can prove highly effective. In some cases, however, the size and
structure of the DP state spaces is prohibitive for the bounds derived from
restricted and relaxed DDs to be tight. This can be imputed either to the node
selection heuristic or to the relaxation scheme. The MinLP heuristic tradi-
tionally used favors keeping nodes with the best prefix values. This locally-
optimal selection policy may result in the elimination of all nodes that lead
to the optimal solution, or even to any feasible solution, particularly in cases
of highly constrained problems. In the latter case, the compilation of a re-
stricted DD is a pure waste of time: no feasible solution is found at the end
of the compilation, and not even a bound on the objective value can be ex-
ploited to reduce the optimality gap. The same phenomenon is detrimental
to the usefulness of compiled relaxed DDs whose bounds might be of low
quality when the node selection heuristic is oblivious to the global structure
of the problem. Indeed, the merging operator yields a loose representation
when applied to an arbitrary set of nodes for most problems. In the absence
of a perfect heuristic, this situation will occur under certain conditions. It
inspired our pursuit of a more globally-focused approach that could enhance

83

84 Chapter 5. Aggregate Dynamic Programming-Based Bounds and Heuristics

the usefulness of the compiled DDs.
This chapter presents a framework for integrating aggregate dynamic pro-

gramming [Axs83; BBS87] ideas with DD-based optimization that aims to ad-
dress some of these shortcomings. The underlying idea of the approach is to
deduce information about an original problem instance by creating and solv-
ing an aggregate – relaxed – version of it. This is achieved by aggregating
the states of the DP model as to obtain a much smaller DP state space. If this
aggregation is adequately specified, one can compute an upper bound for any
original subproblem by finding the optimal solution of its aggregate version.
Furthermore, this optimal aggregate solution can be disaggregated and trans-
posed in the original problem to find good heuristic solutions. In practice,
the aggregation-based upper bounds are used as additional pruning within
the compilation of relaxed and restricted DDs. Moreover, aggregate solutions
are translated into node selection heuristics to steer the compilation of re-
stricted DDs toward resembling solutions to the original problem, which are
thus expected to be good.

All the components of this aggregation-disaggregation framework are in-
troduced in Section 5.2 and illustrated by providing two different aggregation
schemes for the BKP. In Section 5.3, we then explain how the B&B algo-
rithm can be modified to replace the state merging-based relaxation by the
aggregation-based one, and thus avoid compiling relaxed DDs. Section 5.4
then applies the framework to the TalentSched, PSP and ALP. These problems
are then used in Section 5.5 for the experimental evaluation of the framework,
the results of which show that the aggregation-based bound brings additional
pruning and enables solving more instances. Furthermore, the aggregation-
based node selection heuristic improves the quality of the solutions found
early in the search and thus contributes to speeding up the overall resolution.
Finally, we show that a DD-based solver using only the aggregation-based
bound as relaxation performs almost equally well, which is a promising di-
rection for problems for which defining a merging operator is difficult or in-
efficient.

5.2 Aggregate Dynamic Programming for Decision Diagrams

This section introduces all the components needed to integrate aggregate
dynamic programming with DD-based optimizations. An illustration of the
framework is given by Figure 5.1 where we distinguish two phases. First,
the pre-solving phase that transforms a given instance in an aggregate and
relaxed version, as explained in Section 5.2.1, and solves it by compiling the
associated exact DD B′. Then, the exploitation phase refers to the process of
solving the original instance and capitalizing on the precomputed informa-
tion by deriving upper bounds and node selection heuristics that speed up the

5.2. Aggregate Dynamic Programming for Decision Diagrams 85

Pre-solving
phase

Exploitation
phase

Original Aggregate

P P′

B′

𝑠 𝑠′

𝑝′

𝑣 (𝑝′)
𝑥 (𝑝′)

𝑣𝑎𝑔𝑔

𝐷

Problem instance
aggregation Π

Pre-solve

State aggregation 𝜋

Get optimal
path

Disaggregation Δ−1

Figure 5.1: Illustration of the aggregation-disaggregation framework, with
𝑣𝑎𝑔𝑔 and 𝐷 respectively denoting the aggregation-based upper bound and
node selection heuristic.

search. Those two means of guiding the search are presented in Sections 5.2.2
and 5.2.3 respectively.

5.2.1 Preprocessing: Problem Instance Aggregation

The goal of this preprocessing step is to create an aggregate and simpler prob-
lem instance by reducing one or more dimensions of the problem. An instance
aggregation operator Π is defined such that the aggregate problem instance
P′ = Π(P) is a relaxation of the original problem instance P. The aggre-
gate problem instance P′ is associated with a set of 𝑛′ aggregate variables
𝑥 ′0, . . . , 𝑥

′
𝑛′−1 taking values in an aggregate domain D′ = D′0 × · · · × D′𝑛′−1,

and with an aggregate objective function 𝑓 ′. Formally, if we dispose of a so-
lution aggregation operator Δ : D → D′ that maps each assignment of the
original problem to its aggregate equivalent, Π yields a relaxation if and only
if for all 𝑥 ∈ 𝑆𝑜𝑙 (P) we have that Δ(𝑥) ∈ 𝑆𝑜𝑙 (P′) and 𝑓 (𝑥) ≤ 𝑓 ′(Δ(𝑥)).

In practice, assuming the problem reasons over a set of elements, a clus-
tering algorithm can be used to create clusters of such elements. Then, the ag-
gregate problem instance can be obtained by considering aggregate elements
that encompass all elements in a given cluster and by adapting the instance
data accordingly. Formally, if a set 𝐸 of elements is clustered into 𝐾 clusters,

86 Chapter 5. Aggregate Dynamic Programming-Based Bounds and Heuristics

𝑉 𝑊 𝑄

2 4 1
3 4 1
6 4 2
6 2 2
1 4 1
𝐶 = 15

Table 5.1: The aggregate BKP
instance for aggregation (A).

𝑉 𝑊 𝑄

3 4 2
6 2 4
1 5 1
𝐶 = 15

Table 5.2: The aggregate BKP
instance for aggregation (B).

we define two mapping functions: Φ : 𝐸 → {0, . . . , 𝐾 − 1} that gives the clus-
ter for each original element and Φ−1 : {0, . . . , 𝐾 − 1} → 2𝐸 that gives the set
of original elements for a given cluster.

Example 5.2.1. Let us illustrate the problem instance aggregation with our
BKP running example. We provide two different complete aggregation schemes
with different properties, which are representative for the types of formulations
presented in Section 5.4.

Aggregation (A) The first aggregation attempts to create a relaxed and sim-
pler BKP instance by reducing the number of distinct item weights. Indeed,
states of the DP model for the BKP are identified by the remaining capacity
of the knapsack, so having many items with equal weights increases the chances
of having different branches overlap. We will thus create 𝐾 clusters of items
based on their similarity and lower the weight of item to the minimum weight
among the cluster so that all the solutions are preserved. Formally, we specify
Π(P = (𝑁,𝑊 ,𝑉 ,𝑄)) = (𝑁,Π𝑊 (𝑊),𝑉 ,𝑄) with Π𝑊 (𝑊) = 𝑊 ′ with𝑊 ′𝑖 =

min𝑘∈Φ−1 (Φ(𝑖))𝑊𝑖 for all 𝑖 ∈ 𝑁 .
Let us apply this aggregation to the instance of Table 2.1 with 𝐾 = 3 and

the following clustering: Φ(0) = 0,Φ(1) = 1,Φ(2) = 1,Φ(3) = 2,Φ(4) = 0 or
equivalently Φ−1(0) = {0, 4} ,Φ−1(1) = {1, 2} ,Φ−1(2) = {3}. Table 5.1 gives
the aggregate instance with the adapted weights. For instance, the weight of ag-
gregate item 1 is given by:𝑊 ′1 = min {𝑊1,𝑊2} = min {6, 4} = 4. Furthermore,
Figure 5.2(a) depicts the exact DD compiled for this aggregate instance. As one
can notice, this DD has fewer nodes than the exact DD for the original instance
pictured on Figure 2.1. Yet, the best solution found has a value of 24 and gives an
upper bound for the original instance that is actually the optimal value of the
problem.

Aggregation (B) A second strategy consists in reducing the number of items
of the original instance. It decreases the number of variables and the number of

5.2. Aggregate Dynamic Programming for Decision Diagrams 87

0
2

0
3

0
3

0
6

0
12

6
0

12
6

0
6

12
0

6
12

0
6

12
0

6

01
0
1

01
0

1
0

1
0
1

0
0

15
0 24

15
0 24

11
2 18

𝑎
′ 2

15
0 24

11
3 18

𝑏
′ 2

7
5 12

15
0 13

11
6 13

7
12 12

3
15 6

15
0 1

13
6 1

11
12 1

9
12 1

7
18 1

5
18 1

3
24 0

1
21 0

𝑡
24 0

(a
)E

xa
ct
D
D
fo
ra

gg
re
ga
tio

n
(A
)

0
3

6

0
6

12
0

18
6

24
12

0
18

6
24

12
18

01
01

0
1

0
1

0
1

0
1

0
0

15
0 27

15
0 25

11
3 24

7
6 18

15
0 1

13
6 1

11
12 1

9
18 1

7
24 1

5
21 1

3
27 0

1
24 0

𝑑
′ 4

𝑡
27 0

(b
)E

xa
ct
D
D
fo
ra

gg
re
ga
tio

n
(B
)

Fi
gu

re
5.
2:

Ex
ac
tD

D
s
co

m
pi
le
d
fo
r
tw

o
ag

gr
eg

at
e
in
st
an

ce
s
ba

se
d
on

th
e
B
K
P
in
st
an

ce
of

Ta
bl
e
2.
1.

88 Chapter 5. Aggregate Dynamic Programming-Based Bounds and Heuristics

distinct item weights as well. Again, if we create 𝐾 clusters of items based on
their similarity, we can create aggregate items having the lowest weight and the
highest value among the items of in their respective clusters. This is formulated
as follows: Π(P = (𝑁,𝑊 ,𝑉 ,𝑄)) = (Π𝑁 (𝑁),Π𝑊 (𝑊),Π𝑉 (𝑉),Π𝑄 (𝑄)) with
the aggregate items given by Π𝑁 (𝑁) = {0, . . . , 𝐾 − 1}, their weight Π𝑊 (𝑊) =
𝑊 ′ with𝑊 ′

𝑘
= min𝑖∈Φ−1 (𝑘)𝑊𝑖 for all 𝑘 ∈ 𝑁 ′, value Π𝑉 (𝑉) = 𝑉 ′ with 𝑉 ′

𝑘
=

max𝑖∈Φ−1 (𝑘) 𝑉𝑖 for all 𝑘 ∈ 𝑁 ′ and quantity Π𝑄 (𝑄) = 𝑄 ′ with𝑄 ′𝑘 =
∑
𝑖∈Φ−1 (𝑘) 𝑄𝑖

for all 𝑘 ∈ 𝑁 ′.
Assuming the original items are clustered as follows: Φ(0) = 0,Φ(1) =

0,Φ(2) = 1,Φ(3) = 1,Φ(4) = 2 or equivalently Φ−1(0) = {0, 1} ,Φ−1(1) =
{2, 3} ,Φ−1(2) = {4}. Then, the aggregate instance is given by Table 5.2. The
weight of the aggregate item 0 is computed as𝑊 ′0 = min {𝑊0,𝑊1} = min {4, 6} =
4, its value as 𝑉 ′0 = max {𝑉0,𝑉1} = min {2, 3} = 3 and its quantity as 𝑄 ′0 =

𝑄0 + 𝑄1 = 1 + 1 = 2. Figure 5.2(b) shows the exact DD for this aggregate in-
stance, providing an upper bound of 27 for the original problem.

5.2.2 State Aggregation and Upper Bound

A second mapping function accompanies the problem instance aggregation
operator: the state aggregation operator 𝜋 : S → S′ that projects each state
of the state space S of the original problem in the aggregate state space S′.
The role of this operator is to translate each original state to its aggregate
version by adapting the state information to fit the aggregate problem data.
If the aggregation operators Π and 𝜋 a correctly specified, a relaxation of
the subproblem associated with any node 𝑢 in B the exact DD for P can be
obtained by solving its aggregate equivalent 𝜋 (𝜎 (𝑢)).

Proposition 5.2.1. Given B the exact DD for problem P, the aggregation op-
erators Π and 𝜋 define a valid relaxation for every subproblem of P if and only
if for any exact node 𝑢 ∈ B, the compilation of a DD B′

𝑢′ for problem Π(P) and
rooted at 𝑢′ with 𝜎 (𝑢′) = 𝜋 (𝜎 (𝑢)) verifies that for any 𝑢 ⇝ 𝑡 path 𝑝 ∈ B there
exists a path 𝑝′ ∈ B′

𝑢′ such that Δ(𝑥 (𝑝)) = 𝑥 (𝑝′) and 𝑣 (𝑝) ≤ 𝑣 (𝑝′).

Definition 5.2.1 (Aggregation-based upper bound). Given the exact DDB for
a problem P and aggregation operators Π and 𝜋 respecting Proposition 5.2.1, the
aggregation-based upper bound (AggB) of a node 𝑢 ∈ B is given by 𝑣𝑎𝑔𝑔 (𝑢) =
𝑣∗(B′

𝑢′) with B′𝑢′ the exact DD compiled for problem Π(P) from a node 𝑢′ such
that 𝜎 (𝑢′) = 𝜋 (𝜎 (𝑢)).

One way of exploiting this aggregation-based relaxation would be to use
it as a replacement for the state merging scheme in relaxed DDs. Once a layer
with greater width than𝑊 is reached, all the states contained in the nodes
of the layer could be mapped to the aggregate state space to pursue the com-
pilation in a lower dimensional space. Assuming the aggregation operators

5.2. Aggregate Dynamic Programming for Decision Diagrams 89

Algorithm 12 Compilation of DD B rooted at node 𝑢𝑟 with max. width𝑊
and aggregation-based bounds and heuristic.
1: 𝑖 ← index of the layer containing 𝑢𝑟
2: 𝐿𝑖 ← {𝑢𝑟 }
3: 𝐷 ← Δ−1(𝑑) with 𝑑 the optimal decisions for 𝜋 (𝜎 (𝑢𝑟)) // retrieve AggH
4: for 𝑗 = 𝑖 to 𝑛 − 1 do
5: 𝑝𝑟𝑢𝑛𝑒𝑑 ← ∅
6: perform dominance pruning using Algorithm 7
7: perform cached-based pruning using Algorithm 10
8: 𝐿′𝑗 ← 𝐿 𝑗 \ 𝑝𝑟𝑢𝑛𝑒𝑑
9: if |𝐿′𝑗 | >𝑊 then
10: restrict or relax the layer to get𝑊 nodes with Algorithm 13
11: 𝐿 𝑗+1 ← ∅
12: for all 𝑢 ∈ 𝐿′𝑗 do
13: 𝑣𝑟𝑢𝑏 (𝜎 (𝑢)) ← min

{
𝑣𝑟𝑢𝑏 (𝜎 (𝑢)), 𝑣𝑎𝑔𝑔 (𝜋 (𝜎 (𝑢)))

}
// inject AggB

14: if 𝑣∗(𝑢 | B) + 𝑣𝑟𝑢𝑏 (𝜎 (𝑢)) ≤ 𝑣 then // RUB pruning
15: continue
16: for all 𝑑 ∈ D𝑗 do
17: create node 𝑢′ with state 𝜎 (𝑢′) = 𝑡 𝑗 (𝜎 (𝑢), 𝑑)

or retrieve it from 𝐿 𝑗+1

18: create arc 𝑎 = (𝑢 𝑑−→ 𝑢′) with 𝑣 (𝑎) = ℎ 𝑗 (𝜎 (𝑢), 𝑑) and 𝑙 (𝑎) = 𝑑
19: 𝑠𝑐𝑜𝑟𝑒 (𝑎) ← 1 if 𝑑 ∈ 𝐷 𝑗 , 0 otherwise
20: add 𝑢′ to 𝐿 𝑗+1 and add 𝑎 to 𝐴
21: merge nodes in 𝐿𝑛 into terminal node 𝑡

are defined such that the aggregate problem is simple enough, we propose to
pre-solve it exactly, i.e. compile the associated exact DD, and store the solu-
tion of each subproblem – provided by the LocB in the exact DD. By doing so,
the AggB can be retrieved very quickly and thus be incorporated in the RUB
as shown at line 13 of Algorithm 12 so that it is used as often as possible.

Example 5.2.2. We continue to illustrate the framework on the BKP problem
by providing a state aggregation operator for each aggregation scheme started
in Example 5.2.1 and showcasing the effect of the AggB in both cases. To sim-
plify the formulation of the state aggregation operators, we extend the BKP state
definition by including the item to consider next. States are thus pairs ⟨𝑐, 𝑗⟩ with
𝑐 the remaining capacity and 𝑗 the next item. The root state is thus 𝑟 = ⟨𝐶, 0⟩.

Aggregation (A) Since the only effect of the first problem instance aggregation
described in Example 5.2.1 is to modify some item weights, the state aggregation

90 Chapter 5. Aggregate Dynamic Programming-Based Bounds and Heuristics

0
2

0
3

0
6

12

0
6

12

0

15
0

15
0

11
22
+
18
≤
21 𝑎
2

15
0

9
33
+
18
≤
21 𝑏
2

15
00
+
13
≤
21 𝑐1

11
66
+
13
≤
21 𝑐2

7
12

7
1212
+
1
≤
21 𝑑
1

5
1818
+
1
≤
21 𝑑
2

3
24

𝑡
24

(a)Relaxed
D
D
w
ith

A
ggB

(A
)

0
2

0
0

3
3

0
6

0
12

6
0

12
6

0
0

6
6

12
12

0

0

15
026

15
024

11
224

15
224

9
312

5
56

15
2

−∞2
+
13
≤
21

11
8

−∞8
+
13
≤
21

9
3

−∞3
+
13
≤
21

7
1412

5
969
+
6
≤
21

1
15
−∞

7
14
−∞14

+
1
≤
21

5
20
−∞20

+
1
≤
21

3
260

1
21
−∞21

+
0
≤
21 𝑑
4

𝑡
260

(b)Relaxed
D
D
w
ith

A
ggB

(B)

Figure
5.3:R

elaxed
D
D
s
com

piled
for

the
B
K
P
instance

of
Table

2.1,given
the

low
er

bound
of

21
obtained

in
Figure

2.2(a)and
the

A
ggB

of
tw

o
diff

erentaggregations.

5.2. Aggregate Dynamic Programming for Decision Diagrams 91

operator can simply be the identity function: 𝜋 (⟨𝑐, 𝑗⟩) = ⟨𝑐, 𝑗⟩. However, if the
AggB is retrieved from a precomputed exact DD B′ for the aggregate instance
– as given by Figure 5.2(a) – then there might not exist a state in B′ for each
remaining capacity reached in the original problem, because the item weights
have been changed. A workaround is to map each original state to an aggre-
gate state with a greater remaining capacity instead. This will also result in a
valid upper bound, as formally motivated by the dominance rule presented in
Chapter 3. Formally, we write this as

𝜋 (⟨𝑐, 𝑗⟩) = min {⟨𝑐′, 𝑗⟩ | ∃𝑢′ ∈ B′ such that 𝜎 (𝑢′) = ⟨𝑐′, 𝑗⟩ and 𝑐′ ≥ 𝑐} .

Figure 5.3(a) shows the relaxed DD compiled for the BKP instance of Ta-
ble 2.1, using the AggB on top of the RUB and provided the lower bound of 21
obtained in Figure 2.2(a). For each node, the AggB is retrieved by finding the node
with the corresponding aggregate state in Figure 5.2(a). The AggB allows prun-
ing nodes 𝑎2 and 𝑏2 and this additional filtering produces an exact DD, therefore
finding and proving the optimal solution at the root node. The AggB of nodes 𝑎2
and 𝑏2 is respectively given by nodes 𝑎′2 and 𝑏

′
2 of Figure 5.2(a). For node 𝑎2, we

have that 𝜎 (𝑎2) = 𝜎 (𝑎′2). However, Figure 5.2(a) does not contain any node with
state 𝜎 (𝑏2) = ⟨9, 2⟩ at the same layer. Node 𝑏′2 with 𝜎 (𝑏′2) = ⟨11, 2⟩ is thus used
instead and still provides an AggB that allows to prune 𝑏2. For nodes 𝑐1, 𝑐2, 𝑑1
and 𝑑2, the AggB is equal to the RUB and does not generate additional pruning.

Aggregation (B) The state aggregation operator are similar to those of aggre-
gation (A), except that we need to adapt the item that is considered next since
the aggregate instances deals with fewer aggregate items. The aggregate item
to consider next is given by the cluster of the original item to consider next, and
thus:

𝜋 (⟨𝑐, 𝑗⟩) = min {⟨𝑐′,Φ(𝑗)⟩ | ∃𝑢′ ∈ B′ such that 𝜎 (𝑢′) = ⟨𝑐′,Φ(𝑗)⟩ and 𝑐′ ≥ 𝑐} .

An important detail of this aggregation scheme is that only set of consecutive
original items can be clustered together so that the set of remaining items to
consider in the original problem is coherent with the set of aggregate items still
to consider.

Given the AggBs computed from Figure 5.2(b), we can compile the relaxed
DD of Figure 5.3(b). This time, only node 𝑑4 is pruned by the AggB, which is
given by node 𝑑 ′4 at layer Φ(4) = 2 of Figure 5.2(b).

5.2.3 Solution Disaggregation and Node Selection Heuristic

The AggB is not the only information that we can extract from the solution
of an aggregate subproblem. Indeed, besides the value of this solution, the

92 Chapter 5. Aggregate Dynamic Programming-Based Bounds and Heuristics

Algorithm 13 Restriction or relaxation of layer 𝐿 𝑗 with maximum width𝑊 .
1: while |𝐿 𝑗 | >𝑊 do
2: M ← select nodes from 𝐿 𝑗 according to their score
3: 𝐿 𝑗 ← 𝐿 𝑗 \M
4: create node 𝜇 with state 𝜎 (𝜇) = ⊕(𝜎 (M)) // for relaxation only

and add it to 𝐿 𝑗
5: for all 𝑢 ∈ M and arc 𝑎 = (𝑢′ 𝑑−→ 𝑢) incident to 𝑢 do
6: replace 𝑎 by 𝑎′ = (𝑢′ 𝑑−→ 𝜇) and set 𝑣 (𝑎′) = ΓM (𝑣 (𝑎), 𝑢)

aggregate decisions that constitute it can also be recorded. If the correspon-
dence between decisions made for the aggregate problem with decisions for
the original problem is known, then the solution of the aggregate version of a
subproblem can be used to find good heuristic solutions for the original sub-
problem. Concretely, we propose an aggregation-based node selection heuristic
(AggH) that steers the compilation of restricted DDs towards solutions re-
sembling the optimal aggregate one. A last modeling component is needed
for this: the decision disaggregation operator 𝛿−1(𝑑) : D′

𝑘
→ 2D𝑖 × · · · × 2D𝑗

that maps the instantiation of a variable 𝑥 ′
𝑘
in the aggregate problem to a

vector of possible corresponding assignments for variables 𝑥𝑖 , . . . , 𝑥 𝑗 in the
original problem. Finally, we define the path disaggregation operator that
transforms a sequence of decisions in the aggregate problem to a sequence of
sets of possible decisions in the original problem: Δ−1(𝑝 = (𝑑𝑘 , . . . , 𝑑𝑛′−1)) =
𝛿−1(𝑑𝑘) · . . . · 𝛿−1(𝑑𝑛′−1) where 𝑛′ is the supposed number of aggregate vari-
ables. Using this operator, we can compute a score for each decision made
during the compilation of restricted DDs. At line 3 of Algorithm 12, we first
retrieve the optimal value assignment of the aggregate subproblem and apply
the path disaggregation operator on it. Then, a binary score is attributed to
each arc at line 19, depending on its compatibility with the disaggregated so-
lution. At line 2 of Algorithm 13, the maximum score obtained along any path
up to each node can then be used to order nodes from most to least promis-
ing, favoring nodes with incoming paths that are highly compatible with the
disaggregated solution. By doing so, the width of restricted DDs is controlled
in the same way as before, enabling the preference of solutions even when no
feasible solution with the maximum possible score is available.

Example 5.2.3. As for the AggB, we provide a decision disaggregation oper-
ator for each BKP aggregation scheme developed throughout the chapter and
illustrate its use.

Aggregation (A) The decision disaggregation operator yields a single decision
with a single possibility 𝛿−1(𝑑) = ({𝑑}) since there is a one-to-one mapping

5.2. Aggregate Dynamic Programming for Decision Diagrams 93

0 2

0 03

12 6 12 12

0 6 12 0

0
1 0 1 0

150
𝑠𝑐𝑜𝑟𝑒 = 0

150
𝑠𝑐𝑜𝑟𝑒 = 1 112

𝑠𝑐𝑜𝑟𝑒 = 0

150
𝑠𝑐𝑜𝑟𝑒 = 2 112

𝑠𝑐𝑜𝑟𝑒 = 1 93
𝑠𝑐𝑜𝑟𝑒 = 1

712
𝑠𝑐𝑜𝑟𝑒 = 3 314

𝑠𝑐𝑜𝑟𝑒 = 2 115
𝑠𝑐𝑜𝑟𝑒 = 2

712
𝑠𝑐𝑜𝑟𝑒 = 3 518

𝑠𝑐𝑜𝑟𝑒 = 3 324
𝑠𝑐𝑜𝑟𝑒 = 4

𝑡24
𝑠𝑐𝑜𝑟𝑒 = 5

(a) Restricted DD with AggH (A)

0 2

0 0 3

6 012 6 12

12 0 12 0 6

0
1 0 0

150
𝑠𝑐𝑜𝑟𝑒 = 0

150
𝑠𝑐𝑜𝑟𝑒 = 0 112

𝑠𝑐𝑜𝑟𝑒 = 1

150
𝑠𝑐𝑜𝑟𝑒 = 1 112

𝑠𝑐𝑜𝑟𝑒 = 2 55
𝑠𝑐𝑜𝑟𝑒 = 1

116
𝑠𝑐𝑜𝑟𝑒 = 2 712

𝑠𝑐𝑜𝑟𝑒 = 2 314
𝑠𝑐𝑜𝑟𝑒 = 3

718
𝑠𝑐𝑜𝑟𝑒 = 3 324

𝑠𝑐𝑜𝑟𝑒 = 4 120
𝑠𝑐𝑜𝑟𝑒 = 3

𝑡24
𝑠𝑐𝑜𝑟𝑒 = 4

(b) Restricted DD with AggH (B)

Figure 5.4: Restricted DDs compiled for the BKP instance of Table 2.1, given
the AggH of two different aggregations.

between original and aggregate items. Therefore, the optimal solution of the
aggregate instance 𝑥 ′ = (0, 0, 2, 2, 0) obtained in Figure 5.2(a) is disaggregated
as Δ−1(𝑥 ′) = ({0} , {0} , {2} , {2} , {0}). Since it corresponds to the optimal so-
lution of the original problem, using it as a node selection heuristic can guide
the compilation of a restricted DD towards this optimal solution, as shown by
Figure 5.4(a).

Aggregation (B) The decision disaggregation operator for the second aggre-
gation scheme is less simple since a single aggregate decision corresponds to
multiple original items. A possible way to disaggregate a decision 𝑑𝑘 concern-
ing the aggregate item 𝑘 corresponding to the original items 𝑖, . . . , 𝑗 is to se-
lect as many copies of item 𝑖 , then 𝑖 + 1, and so on until having selected 𝑑𝑘
copies in total. Formally, this formulated as follows: 𝛿−1(𝑑𝑘) =

(
{𝑑𝑖} , . . . ,

{
𝑑 𝑗
})

94 Chapter 5. Aggregate Dynamic Programming-Based Bounds and Heuristics

Algorithm 14 The restricted DD-based branch-and-bound algorithm.
1: 𝐹𝑟𝑖𝑛𝑔𝑒 ← {𝑟 } // a priority queue ordered by decreasing 𝑣 (𝑢) + 𝑣 (𝑢)
2: 𝐹𝑟𝑜𝑛𝑡𝑠 𝑗 ← ∅ for 𝑗 = 0, . . . , 𝑛 // hash tables of dom. keys to Pareto fronts
3: 𝐶𝑎𝑐ℎ𝑒 ← ∅ // a hash table of states to threshold 𝜎 (𝑢) → ⟨𝜃, 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑⟩
4: 𝑥 ← ⊥, 𝑣 ← −∞ // incumbent solution and its value
5: while 𝐹𝑟𝑖𝑛𝑔𝑒 is not empty do
6: 𝑢 ← best node from 𝐹𝑟𝑖𝑛𝑔𝑒 , remove it from 𝐹𝑟𝑖𝑛𝑔𝑒

7: if 𝑣 (𝑢) + 𝑣 (𝑢) ≤ 𝑣 then
8: continue
9: if 𝐶𝑎𝑐ℎ𝑒.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝜎 (𝑢)) then
10: ⟨𝜃, 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑⟩ ← 𝐶𝑎𝑐ℎ𝑒.𝑔𝑒𝑡 (𝜎 (𝑢))
11: if 𝑣 (𝑢) < 𝜃 or (𝑣 (𝑢) = 𝜃 ∧ 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑) then
12: continue
13: B ← 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 (𝑢) // compile restricted DD with Algorithm 12
14: if 𝑣∗(B) > 𝑣 then // update incumbent
15: 𝑥 ← 𝑥∗(B), 𝑣 ← 𝑣∗(B)
16: if B is not exact then
17: update 𝐶𝑎𝑐ℎ𝑒 with Algorithm 15 applied to B
18: for all 𝑢′ ∈ 𝐿𝐸𝐿(B) do
19: 𝑣 (𝑢′) ← 𝑣∗(𝑢′ | B), 𝑣 (𝑢′) ← 𝑣𝑟𝑢𝑏 (𝜎 (𝑢′)), 𝑝 (𝑢′) ← 𝑝∗(𝑢′ | B)
20: if 𝑣 (𝑢′) + 𝑣 (𝑢′) > 𝑣 then
21: add 𝑢′ to 𝐹𝑟𝑖𝑛𝑔𝑒
22: return (𝑥, 𝑣)

with {𝑖, . . . , 𝑗} = Φ−1(𝑘) and 𝑑𝑙 = max
{
0,min

{
𝑄𝑙 , 𝑑𝑘 −

∑
𝑚∈Φ−1 (𝑘)
𝑚<𝑙

𝑄𝑚

}}
for

𝑙 = 𝑖, . . . , 𝑗 .
The optimal solution of the aggregate instance 𝑥 ′ = (1, 4, 0) obtained in Fig-

ure 5.2(b) is thus disaggregated as Δ−1(𝑥 ′) = ({1} , {0} , {2} , {2} , {0}). Even if
it does not perfectly correspond to the optimal solution of the problem, it resem-
bles it sufficiently for the corresponding AggH to prevent it from being removed
when compiling a restricted DD, as shown by Figure 5.4(b).

5.3 Restricted Branch-and-Bound

So far, we have suggested that the AggB could be used to complement the
bounds provided by relaxed DDs. Another possibility is to completely re-
place the state merging-based relaxation and only rely on AggBs and RUBs
to provide dual bounds for cutset nodes. In the case where the AggBs are pre-
computed, the B&B algorithm can be revised to only manipulate restricted
DDs. We refer to this variant as the restricted B&B and formally define it with

5.4. Applications 95

Algorithm 15 Computation of the threshold 𝜃 (𝑢 | B) of every node 𝑢 above
the LEL of a restricted DD B and update of the Cache.
1: 𝑖 ← index of the root layer of B, 𝑙𝑒𝑙 ← index of the LEL of B
2: (𝐿𝑖 , . . . , 𝐿𝑛) ← 𝐿𝑎𝑦𝑒𝑟𝑠 (B)
3: 𝜃 (𝑢 | B) ← ∞ for all 𝑢 ∈ B
4: for 𝑗 = 𝑙𝑒𝑙 down to 𝑖 do
5: for all 𝑢 ∈ 𝐿 𝑗 do
6: if 𝐶𝑎𝑐ℎ𝑒.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝜎 (𝑢)) and 𝑣∗(𝑢 | B) ≤ 𝜃 (𝐶𝑎𝑐ℎ𝑒.𝑔𝑒𝑡 (𝜎 (𝑢))) then
7: 𝜃 (𝑢 | B) ← 𝜃 (𝐶𝑎𝑐ℎ𝑒.𝑔𝑒𝑡 (𝜎 (𝑢)))
8: else
9: if ∃Ψ′ ∈ 𝐹𝑟𝑜𝑛𝑡𝑠 𝑗 [𝜅 (𝑢)] s.t. Ψ′ ≥ Ψ(𝑢) then // dom. pruning
10: 𝜃 (𝑢 | B) ← 𝑣 ′ − 1 if 𝜓 ′ = 𝜓 (𝑢) else 𝑣 ′ (with Ψ′ = (𝑣 ′) ·𝜓 ′)
11: else if 𝑣∗(𝑢 | B) + 𝑣𝑟𝑢𝑏 (𝜎 (𝑢)) ≤ 𝑣 then // RUB pruning
12: 𝜃 (𝑢 | B) ← 𝑣 − 𝑣𝑟𝑢𝑏 (𝜎 (𝑢))
13: else if 𝑢 ∈ 𝐿𝐸𝐿(B) then
14: 𝜃 (𝑢 | B) ← 𝑣∗(𝑢 | B)
15: 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 ← false if 𝑢 ∈ 𝐿𝐸𝐿(B) else true
16: 𝐶𝑎𝑐ℎ𝑒.𝑖𝑛𝑠𝑒𝑟𝑡𝑂𝑟𝑅𝑒𝑝𝑙𝑎𝑐𝑒 (𝜎 (𝑢), ⟨𝜃 (𝑢 | B), 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑⟩)
17: for all arc 𝑎 = (𝑢′ 𝑑−→ 𝑢) incident to 𝑢 do
18: 𝜃 (𝑢′ | B) ← min

{
𝜃 (𝑢′ | B), 𝜃 (𝑢 | B) − 𝑣 (𝑎)

}
Algorithm 14. It proceeds exactly like the classical B&B algorithm, except that
no relaxed DDs are compiled and that ECs are thus extracted from restricted
DDs. We only define the LEL type of EC for restricted DDs, which is given by
the deepest layer that was not restricted during the top-down compilation.

The second difference concerns the computation of the expansion thresh-
olds, as described in Algorithm 15. This modified algorithm simply assigns
a dominance or pruning threshold to each node of the LEL and performs the
bottom-up propagation for all nodes above the LEL, as explained in Chapter 4.
Note that the pruning thresholds are only derived from dominance relations
and RUB pruning, as no LocB pruning occurs in restricted DDs.

5.4 Applications

In this section, we provide the aggregation operators for three optimization
problems that will serve to illustrate and evaluate the impact of our proposed
framework.

96 Chapter 5. Aggregate Dynamic Programming-Based Bounds and Heuristics

5.4.1 Talent Scheduling Problem

In [GSC11], it is proved that there always exists an optimal solution to the
problem in which scenes with the same set of actors are scheduled together.
This gives us the opportunity to aggregate the problem by creating𝐾 clusters
of scenes that require a similar set of actors, which is plausible to occur in real
film shoots. Scenes belonging to the same clusters can then be aggregated
by taking the intersection of their actor requirements and adding up their
durations. Formally, this leads to the following aggregation operators.

■ Problem instance aggregation: it is defined as Π(P = (𝑁,𝐴, 𝑅, 𝐷,𝐶)) =
(Π𝑁 (𝑁), 𝐴,Π𝑅 (𝑅),Π𝐷 (𝐷),𝐶) with Π𝑁 (𝑁) = {0, . . . , 𝐾 − 1}. The ag-
gregate actor requirements are computed as Π𝑅 (𝑅) = 𝑅′ with 𝑅′𝑖 =

∩𝑗∈Φ−1 (𝑖)𝑅 𝑗 for all 𝑖 ∈ Π𝑁 (𝑁) and the aggregate durations as Π𝐷 (𝐷) =
𝐷 ′ with 𝐷 ′𝑖 =

∑
𝑗∈Φ−1 (𝑖) 𝐷 𝑗 for all 𝑖 ∈ Π𝑁 (𝑁).

■ State aggregation operator: this operator is less straightforward to de-
fine because aggregate states are only defined in terms of complete ag-
gregated scenes that have yet to be scheduled. Therefore, we restrict
the state aggregation operator to states 𝑠 ∈ S that must still sched-
ule a subset of scenes that exactly corresponds to a subset of aggregate
scenes, i.e. 𝑠 .𝑃 = ∅ and for all 𝑘 = 0, . . . , 𝐾 − 1, either Φ−1(𝑘) ⊆ 𝑠 .𝑀 or
Φ−1(𝑘) ∩𝑠 .𝑀 = ∅. For such states 𝑠 , the state aggregation operator sim-
ply computes the corresponding set of aggregate scenes: 𝜋 (𝑠) = (𝑀 ′, ∅)
with𝑀 ′ =

{
𝑖 ∈ Π𝑁 (𝑁) | Φ−1(𝑖) ⊆ 𝑠 .𝑀

}
.

■ Disaggregation: each aggregate scene corresponds to a set of original
scenes, we thus need to map each aggregate decision to a sequence
of original decisions: 𝛿−1(𝑖) = 𝑉 where 𝑉𝑗 = Φ−1(𝑖) for all 0 ≤ 𝑗 <

|Φ−1(𝑖) |. It corresponds to any of the scenes from the cluster 𝑖 , dupli-
cated |Φ−1(𝑖) | times so that they are all scheduled one after another,
preferably.

5.4.2 Pigment Sequencing Problem

The number of item types considered in a PSP instance dramatically impacts
the size of the state space – for instance, the case with only one item type
can be solved optimally by a greedy algorithm. Therefore, and because it is
not unlikely that the machine will produce several sets of similar items, we
propose to cluster item types that have similar stocking and changeover costs.

■ Problem instance aggregation: the operator is formulated as Π(P =

(𝐼 , 𝑆,𝐶, 𝐻,𝑄)) = (Π𝐼 (𝐼),Π𝑆 (𝑆),Π𝐶 (𝐶), 𝐻,Π𝑄 (𝑄)), where the aggregate
set of item types is given by Π𝐼 (𝐼) = {0, . . . , 𝐾 − 1}. Their stocking

5.4. Applications 97

costs are computed as Π𝑆 (𝑆) = 𝑆 ′ with 𝑆 ′
𝑘

= min𝑖∈Φ−1 (𝑘) 𝑆𝑖 for all
𝑘 ∈ Π𝐼 (𝐼) and the pairwise changeover costs as Π𝐶 (𝐶) = 𝐶′ with
𝐶′
𝑘𝑙

= min𝑖∈Φ−1 (𝑘), 𝑗∈Φ−1 (𝑙) 𝐶𝑖 𝑗 for all 𝑘, 𝑙 ∈ Π𝐼 (𝐼). The aggregate demand
matrix is defined as Π𝑄 (𝑄) = 𝑄 ′ with 𝑄 ′𝑘𝑝 =

∑
𝑖∈Φ−1 (𝑘) 𝑄

𝑖
𝑝 . However,

as the demand matrix is only supposed to contain unit demands, one
must redistribute surplus demands in 𝑄 ′ to the left.

■ State aggregation: if we extend the definition of Φ such that Φ(⊥) = ⊥,
the state aggregation operator can be defined as 𝜋 (𝑠) = (Φ(𝑠 .𝑖), 𝑅) with
𝑅𝑖 =

∑
𝑗∈Φ−1 (𝑖) 𝑠 .𝑅 𝑗 for all 𝑖 ∈ Π𝐼 (𝐼). The item type is projected to its

corresponding aggregate type, and the remaining number of items to
produce for each type is separately accumulated within each cluster.

■ Disaggregation: this operator is straightforward to define for the PSP,
since each decision concerns the production of one unit of a chosen
aggregate item type. It can thus be interpreted as the decision of pro-
ducing one unit of any item type in the corresponding cluster: 𝛿−1(𝑖) =(
Φ−1(𝑖)

)
.

5.4.3 Aircraft Landing Problem

Similarly to the item types of the PSP, the aircraft classes can be aggregated
to reduce the complexity of the problem. We thus propose to cluster them
based on their minimum separation time with other classes and define the
aggregation operators as follows.

■ Problem instance aggregation: it involves defining several components
Π(P = (𝑁, 𝑅,𝐶,𝐴, 𝑆,𝑇 , 𝐿)) = (𝑁, 𝑅,Π𝐶 (𝐶),Π𝐴 (𝐴),Π𝑆 (𝑆),𝑇 ,Π𝐿 (𝐿)).
The set of aircraft, their target landing time and the number of run-
ways is unchanged. The aggregate set of classes is given by Π𝐶 (𝐶) =
{0, . . . , 𝐾 − 1} and their corresponding set of aircraft is computed as
Π𝐴 (𝐴) = 𝐴′ with 𝐴′𝑖 = ∪𝑗∈Φ−1 (𝑖)𝐴 𝑗 for all 𝑖 ∈ Π𝐶 (𝐶). The separation
time between aggregate classes is computed as the minimum separa-
tion time between any two classes belonging to the respective clus-
ters, as formalized by Π𝑆 (𝑆) = 𝑆 ′ with 𝑆 ′

𝑘𝑙
= min𝑖∈Φ−1 (𝑘), 𝑗∈Φ−1 (𝑙) 𝑆𝑖, 𝑗

for all 𝑘, 𝑙 ∈ Π𝐶 (𝐶). Finally, the aggregation operator adapts the latest
landing times of all the aircraft so that any aircraft with a given tar-
get landing time has a greater latest landing time than all other aircraft
of the same class with a smaller target landing time: Π𝐿 (𝐿) = 𝐿′ with
𝐿′𝑖 = max

{
𝐿 𝑗 | Φ(𝑖) = Φ(𝑗),𝑇𝑖 ≤ 𝑇𝑗

}
for all 𝑖 ∈ 𝐴. This property is as-

sumed to hold for the original problem instance, and must be preserved
so that aircraft from the same class can be scheduled sequentially in the
DP model.

98 Chapter 5. Aggregate Dynamic Programming-Based Bounds and Heuristics

■ State aggregation: in the same fashion as for the PSP, assuming Φ(⊥) =
⊥, the state aggregation operator is defined by 𝜋 (𝑠) = (𝑄 ′, 𝑅𝑂𝑃 ′) with
the remaining quantities of aircraft aggregated as 𝑄 ′𝑖 =

∑
𝑗∈Φ−1 (𝑖) 𝑠 .𝑄 𝑗

for all 𝑖 ∈ Π𝐶 (𝐶). For the ROP, one only needs to adapt the class of the
last aircraft scheduled on each runway 𝑅𝑂𝑃 ′𝑖 = (𝑠 .𝑅𝑂𝑃0.𝑙,Φ(𝑠 .𝑅𝑂𝑃0.𝑐))
for all 𝑖 ∈ 𝑅.
In Example 5.2.2, we explained that after pre-solving an aggregate BKP
instance with modified items, states reached during the resolution of
the original instance might always not match the precomputed ones.
The same phenomenon arises for the ALP because separation times
are changed and therefore lead to states with very different previous
landing times on each runway. However, as for the BKP, a lower bound
for an aggregate state 𝑠1 = (𝑄1, 𝑅𝑂𝑃1) can be provided by the solution
of any state 𝑠2 = (𝑄2, 𝑅𝑂𝑃2) such that 𝑄1 = 𝑄2 and 𝑅𝑂𝑃1𝑖 .𝑐 = 𝑅𝑂𝑃2𝑖 .𝑐

and 𝑅𝑂𝑃1𝑖 .𝑙 ≥ 𝑅𝑂𝑃2𝑖 .𝑙 for all 𝑖 ∈ 𝑅.

■ Disaggregation: the only difference with the PSP is that decisions also
contain the runway on which the aircraft is scheduled to land, which
remains the same: 𝛿−1(𝑎, 𝑟) =

〈{
(𝑎′, 𝑟) | 𝑎′ ∈ Φ−1(𝑎)

}〉
.

5.5 Computational Experiments

The impact of the aggregation-based bounds and heuristics was evaluated ex-
perimentally by extending DDO [GSC21] and injecting the modeling of the
three discrete optimization problems presented in Section 5.4. As described
in Sections 3.4 and 4.5, the instance generation tries to emulate an increasing
number of groups of actor requirements, item types and aircraft classes that
lend themselves more or less to aggregation. Each instance was presolved in
its aggregate state space after aggregating its data according to 𝑘-means clus-
tering for PSP and ALP and a custom hierarchical clustering for TalentSched
that tries to maximize the remaining costs induced by the actor requirements.
TalentSched instances can be presolved exactly with 20 aggregate scenes and
PSP instances similarly with 4 aggregate item types. On the other hand, not
all ALP instances reduced to 2 aggregate aircraft classes have a reasonable
number of states so we employ a relaxed DD with maximum width 40000 for
the presolving part instead. Note that the present approach does not com-
pete with the state-of-the-art for TalentSched as it lacks much of the custom
symmetry-breaking logic introduced in [GSC11]. Six different configurations
were created by combining DDO and rDDO – using the restricted B&B –with
the aggregation-based bounds (AggB) and heuristics (AggH). All configura-
tions used the caching mechanism presented in Chapter 4. Ten minutes were
allotted for each configuration to solve each instance.

5.5. Computational Experiments 99

0 100 200 300 400 500 600
time (s)

0

50

100

150

200

250

300

350

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity
TALENTSCHED

0 100 200 300 400 500 600
time (s)

0

100

200

300

400

500

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

PSP

0 100 200 300 400 500 600
time (s)

150

200

250

300

350

400

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

ALP

DDO
rDDO
MIP

DDO + AggB
rDDO + AggB

DDO + AggB + AggH
rDDO + AggB + AggH

Figure 5.5: Number of instances solved over time for each configuration and
problem studied.

100Chapter 5. Aggregate Dynamic Programming-Based Bounds and Heuristics

5.5.1 Number of Benchmark Instances Solved

Figure 5.5 presents the cumulative number of instances solved with respect to
the solving time. For TalentSched, it appears that any configuration of rDDO
performs better than any of DDO. This suggests that the bounds provided by
the relaxed DDs are looser than the RLB while being more expensive to com-
pute. It confirms our intuition that the state merging scheme yields bounds
with a limited impact for some problems, probably because the state infor-
mation gets very dilute when many states are merged together. In this case,
the RLB computation is also not trivial – see [GSC11] – and generates a lot
of pruning. Still, adding the AggB and the AggH to either configuration im-
proves the results by a small margin, especially in the case of the AggH.

For the PSP, the impact of the AggB and AggH is much more significant:
adding the AggB to DDO allows solving 105 additional instances, and when
also activating the AggH, 40 extra instances are solved, which is only 14 fewer
than Gurobi out of the 648 benchmark instances. Moreover, while rDDO
alone yields the worst results, incorporating the AggB leads to results that are
already better than those achieved by DDO. Combining it with the AggH per-
forms even better, and actually almost equally well than DDO+AggB+AggH,
solving 477 instances compared to 486 for DDO+AggB+AggH.

Finally, we can observe that the number of ALP instances solved overall
by all the configurations is not dramatically different. Using the AggB with
DDO helps to solve only one additional instance, and the AggH four more.
This difference is more significant for rDDO, where 19 additional instances
are closed when integrating the AggB, and 5 more with the AggH. Further-
more, rDDO+AggB+AggH solves 13 instances more than DDO+AggB+AggH,
which again shows that relaxed DDsmight not provide bounds whose quality
justifies the computational effort required to obtain them for this particular
DP model. For both variants of the solver, we can also notice that, even if the
total number of instances solved is not very far apart, the AggB allows many
of those instances to be solved more quickly.

5.5.2 End Gap

The impact of the AggB and the AggH can also be measured in terms of the
end gap obtained for all instances, including unsolved ones. The end gap is
computed as: 𝑈𝐵−𝐿𝐵

𝑈𝐵
. The left column of Figure 5.6 compares the end gap

obtained for each instance by DDO and DDO+AggB+AggH. For the large
majority of the instances, the end gap is smaller when using the AggB and
the AggH, which means that DDO+AggB+AggH is closer to terminating the
search much more often than DDO, especially for the PSP.

5.5. Computational Experiments 101

0.00 0.05 0.10 0.15 0.20 0.25
end gap (DDO)

0.00

0.05

0.10

0.15

0.20

0.25

en
d

ga
p

(D
D

O
 +

 A
gg

B
 +

 A
gg

H
)

TALENTSCHED

0 20000 40000 60000 80000 100000
first sol. value (DDO)

0

20000

40000

60000

80000

100000

fir
st

 s
ol

. v
al

ue
 (D

D
O

 +
 A

gg
B

 +
 A

gg
H

)

TALENTSCHED

0.00 0.25 0.50 0.75 1.00
end gap (DDO)

0.0

0.2

0.4

0.6

0.8

1.0

en
d

ga
p

(D
D

O
 +

 A
gg

B
 +

 A
gg

H
)

PSP

0.0 0.5 1.0 1.5 2.0
first sol. value (DDO) 1e8

0.0

0.5

1.0

1.5

2.0

fir
st

 s
ol

. v
al

ue
 (D

D
O

 +
 A

gg
B

 +
 A

gg
H

)

1e8 PSP

0.00 0.25 0.50 0.75 1.00
end gap (DDO)

0.0

0.2

0.4

0.6

0.8

1.0

en
d

ga
p

(D
D

O
 +

 A
gg

B
 +

 A
gg

H
)

ALP

0 10000 20000 30000
first sol. value (DDO)

0

5000

10000

15000

20000

25000

30000

fir
st

 s
ol

. v
al

ue
 (D

D
O

 +
 A

gg
B

 +
 A

gg
H

)

ALP

Figure 5.6: Comparison of the end gap and the value of the first solution
obtained for each instance by DDO and DDO+AggB+AggH.

102Chapter 5. Aggregate Dynamic Programming-Based Bounds and Heuristics

0 50000 100000 150000
first sol. iter. (DDO)

0

50000

100000

150000

fir
st

 s
ol

. i
te

r.
(D

D
O

 +
 A

gg
B

 +
 A

gg
H

)

ALP

Figure 5.7: Comparison of the iteration at which the first solution is found
by DDO and DDO+AggB+AggH for ALP.

5.5.3 Quality of the First Solution

To validate the relevance of the AggH, we also compare the value of the first
solution found by DDO and DDO+AggB+AggH in the right column of Fig-
ure 5.6. For all problems, the quality of the first solution is almost always
better when using the AggH, and in many cases by a large margin for PSP in-
stances. It is actually better for all 400 TalentSched instances. For the PSP, the
first solution has a better value in 481 cases when using the AggB, and in 166
cases without it. However, we can see on Figure 5.6 that in those cases, the
first solution found with the AggH is never far from the first solution found
without it. For the ALP, a better solution is obtained using the AggH for 300
instances, and a worse one for 142 instances. Unlike for the TalentSched and
the PSP, for which a solution is always found at the first iteration, the landing
time windows of the ALP make it difficult to find a feasible solution. We thus
also compare on Figure 5.7 the iteration at which the first solution is found.
This may be difficult to observe on the graph, but DDO+AggB+AggH finds a
feasible solution earlier than DDO in 174 cases, compared to 64 cases in the
opposite direction. Yet, for 19 instances where DDO manages to find a fea-
sible solution, DDO+AggB+AggH fails to find a single one of them, whereas
there are only 3 instances for which DDO+AggB+AggH could find a solution
and DDO could not. This shows that the AggH can also provide misleading
information that causes restricted DDs tomiss all good solutionswhen the ag-
gregation does not represent the original instance well enough. Still, overall
the AggH proves to be useful much more often than not, and it would suffice
to avoid relying on it for certain restricted DDs to avoid being penalized when
it does not lead to good solutions.

5.6. Conclusion 103

5.6 Conclusion

This chapter explained how ideas from aggregate dynamic programming can
be incorporated in DD-based optimization solvers. We proposed to derive
lower bounds and node selection heuristics from a pre-solved aggregate ver-
sion of the original problem at hand, and explained how these can be seam-
lessly added to the DD-based optimization framework. Computational exper-
iments on three different problems showed that they provide lower bounds
that can further strengthen the current approach, and that could even be used
as a replacement for relaxedDDs in some cases. Furthermore, the aggregation-
based node selection heuristics were shown very valuable as they manage to
steer the compilation of relaxed DDs toward better solutions earlier in the
search. However, there were also a few cases in the experiments where the
aggregate solution did not correspond to original feasible solutions very well,
and thus the aggregation-based node selection heuristic caused the solver
to repeatedly miss good solutions. Nevertheless, these results suggest that
aggregation-based bounds and heuristics can capture global problem struc-
tures well, sometimes much better than the state merging-based relaxation
and the greedyMinLP heuristic classically used to compile approximate DDs.

The Constrained
Single-Row Facility
Layout Problem

6

This chapter is largely based on the following paper: V.
Coppé, X. Gillard, and P. Schaus. “Solving the Con-
strained Single-Row Facility Layout Problem with Deci-
sion Diagrams”. In: 28th International Conference on Prin-
ciples and Practice of Constraint Programming (CP 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2022.
It presents how additional constraints can be added to ex-
isting MIP and DP models for the Single-Row Facility Lay-
out Problem. It also presents an RLB for this problem.

6.1 Introduction

The Single-Row Facility Layout Problem (SRFLP) is an ordering problem con-
sidering a set of departments in a facility, with given lengths and pairwise
traffic intensities. Its goal is to find a linear ordering of the departments min-
imizing the weighted sum of the distances between department pairs. The
SRFLP is applied in different fields to arrange items such as rooms on a corri-
dor in hospitals or offices [Sim69], airplanes and gates in an airport [SGW91],
machines in amanufacture [HK88], books on a shelf and files in disk cylinders
[PQ81]. When all facilities have equal lengths and the traffic intensities are
binary, the problem is known as the Minimum Linear Arrangement Problem
(MinLA). It is a well-known graph layout problem which has been proved to
be NP-hard [GJ79] and consequently, so is the SRFLP.

Due to its difficulty in being solved by exact methods, many heuristic
techniques have been designed to find good quality solutions to the SRFLP
problem [Dre87; Hal70; HA92; KHL95] and more recently [DAF11; GL16;
KG14; Pal17; SE10]. The first attempt to solve the SRFLP optimally was a
B&B algorithm with interesting lower bounds [Sim69]. Later, the DP ap-
proach presented in [KH67] was applied to the SRFLP in [PQ81]. More recent
techniques include non-linear programming [HK91], MIP [Ama06; Ama08;

105

106 Chapter 6. The Constrained Single-Row Facility Layout Problem

LW76], branch-and-cut [Ama09; AL13] and semidefinite programming [AKV05;
AV08; AY09; HR13a; HR13b].

In [KD18], positioning, ordering and relation constraints were suggested
for the SRFLP to model real-life situations. The resulting problem is called
the Constrained Single-Row Facility Layout Problem (cSRFLP). They also pro-
posed a permutation-based genetic algorithm to solve this new problem and
reported very good results, with objective values deviating by only a few per-
cents from the best known solutions to the unconstrained problem for in-
stances with up to 100 departments. In [Liu+21], a MIP model to solve the
cSRFLP is introduced and a constrained improved fireworks algorithm is de-
scribed. The latter is shown to find solutions of better quality than the genetic
algorithm of [KD18].

This chapter begins with a formal definition of the SRFLP in Section 6.2
and of the constraints that constitute the cSRFLP. We then present two novel
exact models to solve the problem. In Section 6.3, we model the constraints of
the cSRFLP on top of the state-of-the-art MIP model for the SRFLP [Ama09].
The almost exact same formulation was presented the same year in [MT23].
Likewise, Section 6.4 recalls the DP model for the SRFLP from [PQ81], shows
how the new constraints can be integrated and describes an RLB for this prob-
lem. In Section 6.5, computational experiments comparing the two MIP mod-
els and the DP model solved with DDO are presented. They show that our
two new models outperform the MIP model from [Liu+21] in terms of solv-
ing time. Other than that, the DD-based approach and the new MIP model
produce similar results. The former seems to handle positioning constraints
better while the latter is particularly efficient for relation constraints. The
chapter concludes with a summary of our contributions and directions for
future work.

6.2 Problem Definition

This section is organized as follows, a formal definition of the SRFLP is given
in Section 6.2.1 which is then completed in Section 6.2.2 with the constraints
that constitute the cSRFLP.

6.2.1 SRFLP

The SRFLP is an ordering problem that aims to place a set of departments
𝑁 = {0, . . . , 𝑛 − 1} on a line. Each department 𝑖 ∈ 𝑁 has a positive length 𝐿𝑖 ,
and the connection between each pair of departments 𝑖, 𝑗 ∈ 𝑁 is described
by a positive traffic intensity 𝐶𝑖 𝑗 . It is imposed that 𝐶𝑖 𝑗 = 𝐶 𝑗𝑖 but it is not a
modeling restriction since a trip in any direction covers the same distance,
the traffic intensities can thus concentrate both directions [Sim69].

6.2. Problem Definition 107

𝐶01 = 8

𝐶02 = 3

𝐶03 = 5

𝐶12 = 1

𝐶13 = 4

𝐶23 = 6

0 1 2 3

𝐿0 = 5 𝐿1 = 3 𝐿2 = 2 𝐿3 = 6
center-to-center

end-to-start

Figure 6.1: An instance of the SRFLP with 4 departments ordered optimally.
The lengths of the departments are noted below themand the pairwise traffic
intensities are given on the edges connecting pairs of departments. Center-
to-center and end-to-start distances between departments 0 and 2 are shown.

The goal is to find a bijection 𝜋 : 𝑁 → 𝑁 that maps each department
to a position on the line, while minimizing the total distance covered in the
facility, which is formulated as follows:

𝑆𝑅𝐹𝐿𝑃 (𝜋) =
𝑛−1∑︁
𝑘=0

𝐿𝑘

𝑛−1∑︁
𝑖=0

𝜋 (𝑖)<𝜋 (𝑘)

𝑛−1∑︁
𝑗=0

𝜋 (𝑘)<𝜋 (𝑗)

𝐶𝑖 𝑗 +
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=𝑖+1

𝐶𝑖 𝑗
𝐿𝑖 + 𝐿 𝑗

2︸ ︷︷ ︸
𝐾

. (6.1)

The second term of Equation (6.1) is a constant that does not depend on the
ordering 𝜋 , which is usually denoted 𝐾 [Sim69]. It accounts for the con-
tributions of the half department lengths in each pairwise center-to-center
distance.

Example 6.2.1. Let us illustrate the computation of the objective function on
the facility given by Figure 6.1. We first compute the value of the constant 𝐾 :

𝐾 = 𝐶01
𝐿0 + 𝐿1

2
+𝐶02

𝐿0 + 𝐿2
2
+𝐶03

𝐿0 + 𝐿3
2
+𝐶12

𝐿1 + 𝐿2
2
+𝐶13

𝐿1 + 𝐿3
2
+𝐶23

𝐿2 + 𝐿3
2

= 8
5 + 3
2
+ 35 + 2

2
+ 55 + 6

2
+ 13 + 2

2
+ 43 + 6

2
+ 62 + 6

2
= 8 × 4 + 3 × 3.5 + 5 × 5.5 + 1 × 2.5 + 4 × 4.5 + 6 × 4 = 114.5

and then the cost of the ordering 𝜋 (𝑖) = 𝑖,∀𝑖 ∈ 𝑁 as shown in Figure 6.1:

𝑆𝑅𝐹𝐿𝑃 (𝜋) = 𝐶01 × 0 +𝐶02𝐿1 +𝐶03(𝐿1 + 𝐿2) +𝐶12 × 0 +𝐶13𝐿2 +𝐶23 × 0 + 𝐾
= 8 × 0 + 3 × 3 + 5 × (3 + 2) + 1 × 0 + 4 × 2 + 6 × 0 + 114.5 = 156.5.

108 Chapter 6. The Constrained Single-Row Facility Layout Problem

6.2.2 cSRFLP

The cSRFLP is obtained by adding three types of constraints to the SRFLP:

■ Positioning constraints: A department is forced to be located at a spe-
cific position within the ordering. These constraints are described by
a function 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 : 𝑁 → 𝑁 ∪ {⊥} which maps positions to their
corresponding department or to ⊥ if there is no constraint on the po-
sition. To simplify the coming equations, we also define the function
𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 : 𝑁 → 𝑁 ∪ {⊥} which is the inverse mapping, between
departments and positions.

■ Ordering constraints: These constraints impose that some department
must come before another one in the ordering. Formally, the function
𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 : 𝑁 → 2𝑁 gives the set of predecessors of each depart-
ment, i.e. all departments that must be placed on the left of the given
department.

■ Relation constraints: Similarly to ordering constraints, relation constraints
impose a relative ordering between a pair of departments. In this case,
however, the two departments are required to be adjacent in the order-
ing. The function 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 : 𝑁 → 𝑁 ∪ {⊥} maps departments to the
department that must be placed right before, or to ⊥ if there is no such
constraint.

6.3 Mixed-Integer Programming Model

In this section, we integrate the constraints of the cSRFLP to the MIP model
for the SRFLP, used within the branch-and-cut framework of [Ama09]. This
model uses betweenness variables 𝜁𝑖 𝑗𝑘 which describe the relative ordering
of departments 𝑖, 𝑗, 𝑘 ∈ 𝑁 in an ordering 𝜋 :

𝜁 𝜋
𝑖 𝑗𝑘

=

{
1, if 𝜋 (𝑖) < 𝜋 (𝑘) < 𝜋 (𝑗) or 𝜋 (𝑗) < 𝜋 (𝑘) < 𝜋 (𝑖)
0, otherwise. (6.2)

Using those variables, the objective function can be formulated as follows:

𝑆𝑅𝐹𝐿𝑃 (𝜁) =
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑁
𝑖< 𝑗

𝐶𝑖 𝑗

∑︁
𝑘∈𝑁

𝜁𝑖 𝑗𝑘𝐿𝑘 + 𝐾 (6.3)

and is to be minimized under the following constraints:

𝜁𝑖 𝑗𝑘 = 𝜁 𝑗𝑖𝑘 ∀{𝑖, 𝑗, 𝑘 | 𝑖 < 𝑗} ⊆ 𝑁 (6.4)
𝜁𝑖 𝑗𝑘 + 𝜁𝑖𝑘 𝑗 + 𝜁 𝑗𝑘𝑖 = 1 ∀{𝑖, 𝑗, 𝑘} ⊆ 𝑁 (6.5)
𝜁𝑖 𝑗𝑑 + 𝜁 𝑗𝑘𝑑 − 𝜁𝑖𝑘𝑑 ≥ 0 ∀{𝑖, 𝑗, 𝑘, 𝑑} ⊆ 𝑁 (6.6)
𝜁𝑖 𝑗𝑑 + 𝜁 𝑗𝑘𝑑 + 𝜁𝑖𝑘𝑑 ≤ 2 ∀{𝑖, 𝑗, 𝑘, 𝑑} ⊆ 𝑁 . (6.7)

6.3. Mixed-Integer Programming Model 109

Equation (6.4) follows from the definition of the betweenness variables in
Equation (6.2). Equation (6.5) states that only one department among 𝑖, 𝑗, 𝑘
lies between the two others. Finally, Equations (6.6) and (6.7) express the fact
that when a department 𝑑 is placed between departments 𝑖 and 𝑘 , then the
department 𝑑 must either lie between departments (a) 𝑖 and 𝑗 or (b) 𝑗 and 𝑘 ,
but not both (a) and (b).

We now present how the constraints of the cSRFLP can be integrated
in the model. A solution to the original model specifies a relative order-
ing of the departments. Yet, it does not impose one extremity to the left of
the arrangement. As we will need this information in the constraints pre-
sented in Section 6.2.2, we solve this issue by adding two dummy depart-
ments 𝐿 and 𝑅. For the cSRFLP, the set of departments is thus defined as
𝑁 = {0, . . . , 𝑛 − 1}∪{𝐿, 𝑅} and departments 𝐿 and 𝑅 also obey Equations (6.2)
to (6.7). We set 𝐿𝐿 = 𝐿𝑅 = 0 and 𝐶𝐿𝑖 = 𝐶𝑖𝐿 = 𝐶𝑅𝑖 = 𝐶𝑖𝑅 = 0,∀𝑖 ∈ 𝑁 so that the
dummy departments have no impact on the objective function. Department
𝐿 and 𝑅 are respectively forced on the left and right side of the arrangement
by adding the constraints:

𝜁𝐿𝑅𝑖 = 1 ∀𝑖 ∈ 𝑁 \ {𝐿, 𝑅} (6.8)
𝜁𝑖 𝑗𝐿 = 0 ∀𝑖, 𝑗 ∈ 𝑁 (6.9)
𝜁𝑖 𝑗𝑅 = 0 ∀𝑖, 𝑗 ∈ 𝑁 . (6.10)

Equation (6.8) imposes that all other departments are placed between de-
partments 𝐿 and 𝑅. Inversely, Equations (6.9) and (6.10) ensure that depart-
ments 𝐿 and 𝑅 are not placed between any two departments.

We can now write the additional constraints of the model for the cSRFLP:

𝑛−1∑︁
𝑘=0

𝜁𝐿𝑖𝑘 = 𝑗 ∀𝑖 ∈ 𝑁, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖) = 𝑗 ≠ ⊥ (6.11)

𝑛−1∑︁
𝑘=0

𝜁𝑖𝑅𝑘 = 𝑛 − 𝑗 − 1 ∀𝑖 ∈ 𝑁, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖) = 𝑗 ≠ ⊥ (6.12)

𝜁𝐿𝑖 𝑗 = 0 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ∈ 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑗) ∨ 𝑖 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (𝑗) (6.13)
𝜁𝐿𝑗𝑖 = 1 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ∈ 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑗) ∨ 𝑖 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (𝑗) (6.14)
𝜁𝑖𝑅 𝑗 = 1 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ∈ 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑗) ∨ 𝑖 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (𝑗) (6.15)
𝜁 𝑗𝑅𝑖 = 0 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ∈ 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑗) ∨ 𝑖 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (𝑗) (6.16)
𝜁𝑖 𝑗𝑘 = 0 ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (𝑗), 𝑘 ∈ 𝑁 \ {𝑖, 𝑗}. (6.17)

Equations (6.11) and (6.12) ensure that 𝑗 departments are located on the
left of department 𝑖 and 𝑛 − 𝑗 − 1 on the right, given that 𝑖 must be placed at
the 𝑗-th position. Equations (6.13) to (6.16) impose that 𝑖 is placed between

110 Chapter 6. The Constrained Single-Row Facility Layout Problem

𝐿 and 𝑗 and that 𝑗 is placed between 𝑖 and 𝑅, when either 𝑖 is a predecessor
of 𝑗 or 𝑖 must be placed right before 𝑗 . Finally, Equation (6.17) is added for
relation constraints to avoid having any departments placed between the two
departments involved in the constraint.

6.4 Dynamic Programming Formulation

Section 6.4.1 recalls an efficient DPmodel for the SRFLP introduced in [PQ81].
We then show in Section 6.4.2 how the constraints can be incorporated in
this model. As a whole, this formulation will be the starting point for our
DD-based approach.

6.4.1 SRFLP

The idea of the DP model is to place the departments one by one on the line
from left to right. From Equation (6.1), it is clear that the individual cost of
placing department 𝑘 at position 𝜋 (𝑘) only depends on the side on which
all other departments are located with respect to 𝑘 . If the state of the DP
model is the subset of departments which remain to be placed – called free
departments from now on, as opposed to fixed departments –we can compute
this individual cost and recursively find the optimal ordering of each subset
of 𝑁 . Formally, the components of the DP model can be defined as follows.

■ Control variables 𝑥 𝑗 ∈ D𝑗 with 𝑗 ∈ {0, . . . , 𝑛 − 1} decide which depart-
ment is placed at position 𝑗 on the line. All variables have the same
domain D𝑗 = 𝑁 since departments can appear anywhere in the order-
ing.

■ The state space S contains all subsets of 𝑁 . In particular, the root state
𝑟 = 𝑁 contains all departments since no departments have been placed,
and inversely, the terminal state 𝑡 = ∅ is reached when all departments
are placed.

■ The transition functions simply remove the selected department from
the state if present, and point to the infeasible state otherwise:

𝑡 𝑗
(
𝑠 𝑗 , 𝑥 𝑗

)
=

{
𝑠 𝑗 \ {𝑥 𝑗 }, if 𝑥 𝑗 ∈ 𝑠 𝑗
0̂, otherwise.

■ The transition value functions are given by:

ℎ 𝑗
(
𝑠 𝑗 , 𝑥 𝑗

)
=

{
𝐿𝑥 𝑗

∑
𝑖∈𝑠 𝑗

∑
𝑘∈𝑠 𝑗 \{𝑥 𝑗 }𝐶𝑖𝑘 , if 𝑥 𝑗 ∈ 𝑠 𝑗

0, otherwise.

6.4. Dynamic Programming Formulation 111

0 0 0 0

24
25

26
3566

50

24 27

54

33
24

18

18 33
5024 27

35
54

24
25

66
26 24

0 0 0 0

114.5

114.5 114.5 114.5 114.5

138.5 140.5 164.5 138.5 147.5 132.5

156.5 162.5 157.5 156.5

156.5

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

Figure 6.2: Exact DD for the SRFLP instance given by Figure 6.1. Free and
fixed departments are respectively represented by empty and filled circles.

This formula immediately follows from Equation (6.1) since 𝑠 𝑗 – the
complement of 𝑠 𝑗 – contains fixed departments placed before position
𝑗 and 𝑠 𝑗 \ {𝑥 𝑗 } contains free departments, which will be placed after
position 𝑗 .

■ The root value is 𝑣𝑟 = 𝐾 from Equation (6.1).

Example 6.4.1. Figure 6.2 shows the exact DD that can be obtained for the
instance described by Figure 6.1 and with the DP model defined in this section.
Let us detail the computation of the transition value between the nodes associated
with states {2, 3} and {3}: ℎ2({2, 3} , 2) = 𝐿2

∑
𝑖∈{0,1}

∑
𝑘∈{2,3}\{2} 𝐶𝑖𝑘 = 𝐿2 ×

(𝐶03 + 𝐶13) = 2 × (5 + 4) = 18. The permutation depicted in Figure 6.1 indeed
corresponds to the longest path in the exact DD and that its value is equal to the
one computed in Example 6.2.1.

112 Chapter 6. The Constrained Single-Row Facility Layout Problem

Speeding up the computation of transition costs We also store in the
states an array containing the cut values of each free department: the sum of
all traffic intensities from the fixed departments and each free department. It
allows to reduce the computational complexity of the transition costs from
O

(
𝑛2
)
to O(𝑛) and will also be useful when designing a lower bound, as

explained in Section 6.4.4. For a state 𝑠 𝑗 and each department 𝑖 ∈ 𝑁 , we
define:

𝑠
𝑗
𝑐𝑢𝑡 [𝑖] =

{ ∑
𝑗∈𝑠 𝑗 𝐶𝑖 𝑗 , if 𝑖 ∈ 𝑠 𝑗

0, otherwise. (6.18)

These cut values can be updated in O(𝑛) during a transition 𝑡 𝑗
(
𝑠 𝑗 , 𝑥 𝑗

)
by

applying:

𝑠
𝑗+1
𝑐𝑢𝑡 [𝑖] =

{
𝑠
𝑗
𝑐𝑢𝑡 [𝑖] +𝐶𝑖𝑥 𝑗 , if 𝑖 ∈ 𝑠 𝑗 \ {𝑥 𝑗 }
0, otherwise.

This allows redefining the transition value functions as:

ℎ 𝑗
(
𝑠 𝑗 , 𝑥 𝑗

)
=

{
𝐿𝑥 𝑗

∑
𝑖∈𝑠 𝑗 \{𝑥 𝑗 } 𝑠

𝑗
𝑐𝑢𝑡 [𝑖], if 𝑥 𝑗 ∈ 𝑠 𝑗

0, otherwise,

with the cut values of the root state initialized at zero: 𝑟𝑐𝑢𝑡 = 0𝑛 .

Example 6.4.2. Considering the instance of Figure 6.1, we compute the cut val-
ues for the state 𝑠 = {2, 3}. We have that 𝑠𝑐𝑢𝑡 [0] = 𝑠𝑐𝑢𝑡 [1] = 0 since departments
0 and 1 are already placed. For the free departments, we apply Equation (6.18)
and obtain: 𝑠𝑐𝑢𝑡 [2] = 𝐶02+𝐶12 = 3+1 = 4 and 𝑠𝑐𝑢𝑡 [3] = 𝐶03+𝐶13 = 5+4 = 9. The
computation made in Example 6.4.1 becomes: ℎ2(⟨{2, 3} , 𝑐𝑢𝑡 = (0, 0, 4, 9)⟩ , 2) =
𝐿2

∑
𝑖∈{2,3}\{2} 𝑐𝑢𝑡𝑖 = 𝐿2 × 𝑐𝑢𝑡3 = 2 × 9 = 18.

6.4.2 cSRFLP

Adding constraints to the DP model is done through the predicates 𝑣𝑎𝑙𝑖𝑑 𝑗 :
𝑆 𝑗 × 𝐷 𝑗 → {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} for 𝑗 = 0, . . . , 𝑛 − 1. They are used in the transition
functions to filter out infeasible solutions:

𝑡 𝑗
(
𝑠 𝑗 , 𝑥 𝑗

)
=

{
𝑠 𝑗 \ {𝑥 𝑗 }, if 𝑥 𝑗 ∈ 𝑠 𝑗 ∧ 𝑣𝑎𝑙𝑖𝑑 𝑗 (𝑠 𝑗 , 𝑥 𝑗)
0̂, otherwise.

For clarity, we split the predicates 𝑣𝑎𝑙𝑖𝑑 𝑗 into several conditions, corre-
sponding each to a specific constraint:

𝑣𝑎𝑙𝑖𝑑 𝑗 (𝑠 𝑗 , 𝑥 𝑗) = 𝑝 𝑗 (𝑠 𝑗 , 𝑥 𝑗) ∧ 𝑜 𝑗 (𝑠 𝑗 , 𝑥 𝑗) ∧ 𝑟 𝑗 (𝑠 𝑗 , 𝑥 𝑗)

6.4. Dynamic Programming Formulation 113

with 𝑝 𝑗 , 𝑜 𝑗 and 𝑟 𝑗 concerning respectively positioning, ordering and relation
constraints:

𝑝 𝑗 (𝑠 𝑗 , 𝑥 𝑗) =(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑥 𝑗) = ⊥ ∧ 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 (𝑗) = ⊥) (6.19)
∨ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑥 𝑗) = 𝑗

𝑜 𝑗 (𝑠 𝑗 , 𝑥 𝑗) =𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (𝑥 𝑗) ⊆ 𝑠 𝑗 (6.20)
𝑟 𝑗 (𝑠 𝑗 , 𝑥 𝑗) =(𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (𝑥 𝑗) = 0 ∧ �𝑘 ∈ 𝑠 𝑗 : 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (𝑘) ∈ 𝑠 𝑗) (6.21)

∨ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (𝑥 𝑗) ∈ 𝑠 𝑗 .

In Equation (6.19), 𝑝 𝑗 checks that either department 𝑥 𝑗 and position 𝑗 are
both unconstrained, or that department 𝑥 𝑗 is constrained to be at position
𝑗 . For ordering constraints, Equation (6.20) verifies that all predecessors of
department 𝑥 𝑗 have already been placed. The predicates 𝑟 𝑗 for relation con-
straints are slightly more complicated. Either 𝑥 𝑗 has no relation constraint,
then it can only be placed if no other free department has a relation constraint
with a fixed department, or 𝑥 𝑗 has a relation constraint and 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 (𝑥 𝑗) must
be a fixed department.

Example 6.4.3. Figure 6.3 shows exact DDs obtained with this extended DP
model for the same instance as for Figure 6.2, but with additional constraints.

(a) We add the following positioning constraint: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(2) = 2. As one
can verify in Figure 6.3(a), transitions concerning department 2 are only
performed between nodes of 𝐿2 and 𝐿3. Moreover, these are the only tran-
sitions occurring between those layers since placing any other department
in this position would violate the constraint.

(b) On top of the positioning constraint 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(2) = 2, an ordering con-
straint is added: 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠 (3) = {0}. As a result, transitions from the
root node of Figure 6.3(b) do not involve department 3 since department 0
has not been placed yet.

In both cases, we can observe that the only effect of adding constraints to the
problem is to remove arcs in the DDs. It generates smaller DDs and thus simpli-
fies the resolution of the problem.

6.4.3 Relaxation

It is quite straightforward to specify relaxation operators for the cSRFLP. In-
deed, one can extend the DP state to contain a set of free departments that
are free in all states to merge, and a set of possibly free departments that are
free in some states to merge, as done with the remaining locations in TSPTW
formulation presented in Section 3.4.1. However, we will not detail such a

114 Chapter 6. The Constrained Single-Row Facility Layout Problem

0 0 0

24 2566 5054 33

18 24 26

0 0 0

114.5

114.5 114.5 114.5

138.5 164.5 147.5

156.5 188.5 173.5

156.5

(a)

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 0

24 2566

18 24

0 0

114.5

114.5 114.5

138.5 180.5

156.5 204.5

156.5

(b)

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

Figure 6.3: Exact DDs for the SRFLP instance given by Figure 6.1 and with
the additional constraints given in Example 6.4.3.

relaxation here because it unnecessarily complicates the explanations of the
DP model and the RLB, while ultimately the restricted B&B variant performs
best for this DP model without involving the state merging relaxation.

6.4.4 Rough Lower Bound

In order to derive the RLB from a node 𝑢, the next theorem shows that the
cost to optimally complete the partial solution of node 𝑢 can be decomposed
in two terms: one solely involving the free departments and the other one
involving the cost between free and fixed departments.

Theorem 6.4.1. Given a node 𝑢 and its state 𝜎 (𝑢) = 𝑠 , let 𝜋∗ |𝑢 be the best

6.4. Dynamic Programming Formulation 115

ordering one can obtain when crossing node 𝑢. For conciseness, we set 𝜋 = 𝜋∗ |𝑢 .
We have the equivalence:

𝑆𝑅𝐹𝐿𝑃 (𝜋)−𝑣∗(𝑢) =
∑︁
𝑖∈𝑠

∑︁
𝑗∈𝑠

𝜋 (𝑖)<𝜋 (𝑗)

𝐶𝑖 𝑗

∑︁
𝑘∈𝑠

𝜋 (𝑖)<𝜋 (𝑘)<𝜋 (𝑗)

𝐿𝑘

︸ ︷︷ ︸
free departments layout cost

+
∑︁
𝑗∈𝑠

𝑠𝑐𝑢𝑡 [𝑗]
∑︁
𝑘∈𝑠

𝜋 (𝑘)<𝜋 (𝑗)

𝐿𝑘

︸ ︷︷ ︸
cost w.r.t. fixed departments

.

Proof.

Δ = 𝑆𝑅𝐹𝐿𝑃 (𝜋) − 𝑣∗(𝑢)

=

𝑛−1∑︁
𝑘=0

𝐿𝑘

𝑛−1∑︁
𝑖=0

𝜋 (𝑖)<𝜋 (𝑘)

𝑛−1∑︁
𝑗=0

𝜋 (𝑘)<𝜋 (𝑗)

𝐶𝑖 𝑗 + 𝐾 −
©«

𝑛−1∑︁
𝑘=0

𝜋 (𝑘)≤ |𝑠 |

𝐿𝑘

𝑛−1∑︁
𝑖=0

𝜋 (𝑖)<𝜋 (𝑘)

𝑛−1∑︁
𝑗=0

𝜋 (𝑘)<𝜋 (𝑗)

𝐶𝑖 𝑗 + 𝐾
ª®®®¬

=

𝑛−1∑︁
𝑘=0

𝜋 (𝑘)> |𝑠 |

𝐿𝑘

𝑛−1∑︁
𝑖=0

𝜋 (𝑖)<𝜋 (𝑘)

𝑛−1∑︁
𝑗=0

𝜋 (𝑘)<𝜋 (𝑗)

𝐶𝑖 𝑗

=

𝑛−1∑︁
𝑘=0

𝜋 (𝑘)> |𝑠 |

𝐿𝑘

©«
𝑛−1∑︁
𝑖=0

𝜋 (𝑖)≤ |𝑠 |

𝑛−1∑︁
𝑗=0

𝜋 (𝑘)<𝜋 (𝑗)

𝐶𝑖 𝑗 +
𝑛−1∑︁
𝑖=0

|𝑠 |<𝜋 (𝑖)<𝜋 (𝑘)

𝑛−1∑︁
𝑗=0

𝜋 (𝑘)<𝜋 (𝑗)

𝐶𝑖 𝑗

ª®®®¬
=
∑︁
𝑘∈𝑠

𝐿𝑘

©«
∑︁
𝑖∈𝑠

∑︁
𝑗∈𝑠

𝜋 (𝑘)<𝜋 (𝑗)

𝐶𝑖 𝑗 +
∑︁
𝑖∈𝑠

𝜋 (𝑖)<𝜋 (𝑘)

∑︁
𝑗∈𝑠

𝜋 (𝑘)<𝜋 (𝑗)

𝐶𝑖 𝑗

ª®®®¬
=
∑︁
𝑘∈𝑠

𝐿𝑘

∑︁
𝑖∈𝑠

∑︁
𝑗∈𝑠

𝜋 (𝑘)<𝜋 (𝑗)

𝐶𝑖 𝑗 +
∑︁
𝑘∈𝑠

𝐿𝑘

∑︁
𝑖∈𝑠

𝜋 (𝑖)<𝜋 (𝑘)

∑︁
𝑗∈𝑠

𝜋 (𝑘)<𝜋 (𝑗)

𝐶𝑖 𝑗

=
∑︁
𝑘∈𝑠

𝐿𝑘

∑︁
𝑗∈𝑠

𝜋 (𝑘)<𝜋 (𝑗)

∑︁
𝑖∈𝑠

𝐶𝑖 𝑗 +
∑︁
𝑖∈𝑠

∑︁
𝑗∈𝑠

𝜋 (𝑖)<𝜋 (𝑗)

𝐶𝑖 𝑗

∑︁
𝑘∈𝑠

𝜋 (𝑖)<𝜋 (𝑘)<𝜋 (𝑗)

𝐿𝑘

=
∑︁
𝑘∈𝑠

𝐿𝑘

∑︁
𝑗∈𝑠

𝜋 (𝑘)<𝜋 (𝑗)

𝑠𝑐𝑢𝑡 [𝑗] +
∑︁
𝑖∈𝑠

∑︁
𝑗∈𝑠

𝜋 (𝑖)<𝜋 (𝑗)

𝐶𝑖 𝑗

∑︁
𝑘∈𝑠

𝜋 (𝑖)<𝜋 (𝑘)<𝜋 (𝑗)

𝐿𝑘

=
∑︁
𝑗∈𝑠

𝑠𝑐𝑢𝑡 [𝑗]
∑︁
𝑘∈𝑠

𝜋 (𝑘)<𝜋 (𝑗)

𝐿𝑘 +
∑︁
𝑖∈𝑠

∑︁
𝑗∈𝑠

𝜋 (𝑖)<𝜋 (𝑗)

𝐶𝑖 𝑗

∑︁
𝑘∈𝑠

𝜋 (𝑖)<𝜋 (𝑘)<𝜋 (𝑗)

𝐿𝑘

Those two terms of the equivalence in Theorem 6.4.1 cannot be evaluated
exactly in a cheap way as this would be as difficult as solving the original

116 Chapter 6. The Constrained Single-Row Facility Layout Problem

problem. Nonetheless, one can compute an efficient lower bound for each
term independently. For a state 𝑠 , the value of the RLB is given by:

𝑣
𝑟𝑙𝑏
(𝑠) = 𝐿𝐵𝑒𝑑𝑔𝑒 (𝑠) + 𝐿𝐵𝑐𝑢𝑡 (𝑠)

where 𝐿𝐵𝑒𝑑𝑔𝑒 (𝑠) is a lower bound on the free departments layout cost and
𝐿𝐵𝑐𝑢𝑡 (𝑠) is a lower bound on the cost induced by the cut values of free de-
partments.

6.4.4.1 Free departments layout cost

The first lower bound 𝐿𝐵𝑒𝑑𝑔𝑒 is an under-approximation of the internal lay-
out cost of free departments. Given a subset of departments, we compute a
lower bound on the cost of its optimal layout by multiplying each pairwise
traffic intensity by an optimistic distance. If we must place 𝑛 departments on
a line, 𝑛 − 𝑘 pairs of departments will have 𝑘 − 1 departments between them
(see Figure 6.1). In order to under-approximate the layout cost, we greedily
multiply the highest traffic intensities by the smallest distance possible. Since
we cannot assume any particular ordering of the free departments, the dis-
tances between pairs of free departments are unknown. Still, we can compute
lower bounds on those distances if we sort the free departments by increasing
length and assume that a separation of 𝑘 departments will be formed by the
𝑘 shortest departments. This lower bound can be seen as a generalization of
the Edges method [Pet03] designed for the MinLA.

In practice, a list containing all pairwise traffic intensities in decreasing
weight order is precomputed, as stated by the precondition of Algorithm 16.
The same is done for the department lengths. We then only need to traverse
those lists and multiply each traffic intensity value by the adequate cumula-
tive length. The complexity of the algorithm is O

(
𝑛2
)
since there are 𝑛 (𝑛−1)

2
pairs in total.

Example 6.4.4. Let us illustrate the computation of this lower bound on the root
state of the DD in Figure 6.2. We first create the list of traffic intensities sorted
decreasingly: 𝑒𝑑𝑔𝑒 = [𝐶01 = 8,𝐶23 = 6,𝐶03 = 5,𝐶13 = 4,𝐶02 = 3,𝐶12 = 1] and
the list of free department lengths sorted increasingly: 𝑙𝑒𝑛𝑔𝑡ℎ = [𝐿2 = 2, 𝐿1 =

3, 𝐿0 = 5, 𝐿3 = 6]. There are 3 pairs of departments with 0 departments in
between, 2 pairs with 1 department in between and 1 pair with 2 departments in
between.

𝐿𝐵𝑒𝑑𝑔𝑒 (𝑟) = 0 ×𝐶01 + 0 ×𝐶23 + 0 ×𝐶03 + 𝐿2𝐶13 + 𝐿2𝐶02 + (𝐿2 + 𝐿1)𝐶12

= 0 × 8 + 0 × 6 + 0 × 5 + 2 × 4 + 2 × 3 + (2 + 3) × 1 = 19

6.4. Dynamic Programming Formulation 117

Algorithm 16 Computation of 𝐿𝐵𝑒𝑑𝑔𝑒 (𝑠).
Require: 𝑒𝑑𝑔𝑒 = 𝑠𝑜𝑟𝑡𝑒𝑑≥

(
{⟨𝑐 : 𝐶𝑖 𝑗 , 𝑑𝑒𝑝1 : 𝑖, 𝑑𝑒𝑝2 : 𝑗⟩ | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}

)
and 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑠𝑜𝑟𝑡𝑒𝑑≤ ({⟨𝑙 : 𝐿𝑖 , 𝑑𝑒𝑝 : 𝑖⟩ | 1 ≤ 𝑖 ≤ 𝑛})

1: 𝑙𝑏 ← 0, 𝑐𝑢𝑚𝑢𝑙_𝑙 ← 0, 𝑖 ← 1, 𝑗 ← 1
2: for 𝑘 ← 1 to |𝑠 | − 1 do
3: for 𝑙 ← 1 to 𝑘 do
4: while 𝑒𝑑𝑔𝑒 [𝑖] .𝑑𝑒𝑝1 ∉ 𝑠 ∨ 𝑒𝑑𝑔𝑒 [𝑖] .𝑑𝑒𝑝2 ∉ 𝑠 do
5: 𝑖 ← 𝑖 + 1
6: 𝑙𝑏 ← 𝑙𝑏 + 𝑐𝑢𝑚𝑢𝑙_𝑙 × 𝑒𝑑𝑔𝑒 [𝑖] .𝑐
7: 𝑖 ← 𝑖 + 1
8: while 𝑙𝑒𝑛𝑔𝑡ℎ[𝑗] .𝑑𝑒𝑝 ∉ 𝑠 do
9: 𝑗 ← 𝑗 + 1
10: 𝑐𝑢𝑚𝑢𝑙_𝑙 ← 𝑐𝑢𝑚𝑢𝑙_𝑙 + 𝑙𝑒𝑛𝑔𝑡ℎ[𝑗] .𝑙
11: 𝑗 ← 𝑗 + 1
12: return 𝑙𝑏

6.4.4.2 Cost with respect to fixed departments

The second term of the RLB is related to the cut values of free departments
and a lower bound is given by the first-generation bound described in [Sim69].
Given a department 𝑖 placed first on the line, the minimum total cost with
respect to 𝑖 is defined as:

𝑀𝑇𝐶 (𝑖) = min
𝜋

𝑛∑︁
𝑗=1
𝑖≠𝑗

𝐶𝑖 𝑗

𝑛∑︁
𝑘=1

𝜋 (𝑘)<𝜋 (𝑗)

𝐿𝑘 (6.22)

and Lemma 6.4.2 tells us how to find the optimal arrangement 𝜋 .

Lemma 6.4.2. Suppose that department 𝑖 is placed in first position on the line.
For every other department 𝑗 compute the cost-to-length ratio 𝑟 𝑗 =

𝐶𝑖 𝑗

𝐿𝑗
. The opti-

mal arrangement, which yields𝑀𝑇𝐶 (𝑖) is obtained by ordering the departments
according to decreasing values of this ratio 𝑟 𝑗 , the department with the greatest
𝑟 𝑗 being adjacent to 𝑖 .

This lower bound can also be used when several departments are placed
in the leftmost positions on the line. We only need to consider all fixed de-
partments as a single department connected to free departments with traffic
intensities given by the respective cut values, exactly as in the second term of
the equivalence given by Theorem 6.4.1. As the free departments need to be
sorted by decreasing cut-to-length ratios, the time complexity of this lower
bound is O(𝑛 log(𝑛)).
Example 6.4.5. We compute the lower bound for the state 𝑠 = {1, 2, 3} with
𝑠𝑐𝑢𝑡 = (0, 8, 3, 5). The departments are first sorted as follows:

𝑜𝑟𝑑𝑒𝑟 =

[
𝑠𝑐𝑢𝑡 [1]
𝐿1

=
8
3
,
𝑠𝑐𝑢𝑡 [2]
𝐿2

=
3
2
,
𝑠𝑐𝑢𝑡 [3]
𝐿3

=
5
6

]
.

118 Chapter 6. The Constrained Single-Row Facility Layout Problem

We then compute the lower bound as the total cost with respect to all fixed de-
partments:

𝐿𝐵𝑐𝑢𝑡 (𝑠) = 0 × 𝑠𝑐𝑢𝑡 [1] + 𝐿1𝑠𝑐𝑢𝑡 [2] + (𝐿1 + 𝐿2)𝑠𝑐𝑢𝑡 [3]
= 0 × 8 + 3 × 3 + (3 + 2) × 5 = 34.

6.5 Computational Experiments

In this section, we draw a comparison between the existing techniques to
solve the cSRFLP to optimality. Namely, the MIP model from [Liu+21], the
MIP model introduced in [Ama09] and extended in Section 6.3 and the DD-
based approach presented throughout the rest of the chapter. In the following,
they are respectively referred to as Liu, Amaral and DDO. The MIP models
were implemented and evaluated using Gurobi version 9.5.2 [Gur22]. The
DD-based approach was implemented with DDO and evaluated with various
configurations discussed in the previous chapters. DDs with a fixed maxi-
mum width𝑊 = 𝑛 were used, with 𝑛 the number of variables in the problem
instance.

The instances used in the experiments are classical SRFLP instances taken
from [Ama06; Ama08; AV08; HK91; Sim69] with up to 25 departments. We
then created admissible sets of constraints for each problem size:

■ constraint sets with 2, 4, 6, 8 and 10 positioning, ordering or relation
constraints.

■ constraint sets with 0, 2, 4, 6, 8 and 10 constraints of each type.

For each of these scenarios, 3 different random sets of constraints were gen-
erated, except for the case with no constraints. Note that an instance with
𝑛 departments can not have more than 𝑛 positioning constraints, and that
similar limits exist for the other types of constraints, we thus have up to 63
sets of constraints for each problem size. The three models were applied to
all combinations of instances and constraints with a time limit of 600 seconds
for each.

6.5.1 Number of Benchmark Instances Solved

Figure 6.4 shows the cumulative number of instances solved by each algo-
rithm over time, for instances where either all types of constraints were ap-
plied, or a single one of them. Our first observation is that the two models
presented in this chapter clearly outperform the one from [Liu+21], which
fails to solve most of the instances under the time limit regardless of the
type of constraints applied. We can also notice that the caching mechanism

6.5. Computational Experiments 119

0 100 200 300 400 500 600
time (s)

150

200

250

300

350

400

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

ALL

0 100 200 300 400 500 600
time (s)

100

150

200

250

300

350

400

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

POSITIONING

0 100 200 300 400 500 600
time (s)

100

150

200

250

300

350

400

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

ORDERING

0 100 200 300 400 500 600
time (s)

100

150

200

250

300

350

400

#
 in

st
an

ce
s

so
lv

ed
 to

 o
pt

im
al

ity

RELATION

DDO DDO + Caching MIP (Amaral) MIP (Liu) rDDO + Caching

Figure 6.4: Number of instances solved by each algorithm for the different
types of constraints.

120 Chapter 6. The Constrained Single-Row Facility Layout Problem

presented in Chapter 4 is once again beneficial for the DD-based approach.
However, the best performing configuration of DDO is by a small margin its
restricted version denoted rDDO+C, showing that the state merging-based
relaxation for the cSRFLP does not necessarily generate a lot of additional
pruning when comparing to the RLB. The comparison between rDDO+C and
Amaral differs from one type of constraint to the other. Indeed, rDDO+C
has a slight advantage when considering all types of constraints at once and
for ordering constraints, solving respectively 7 and 20 additional instances.
For instances with positioning constraints, all DD-based approaches perform
better than Amaral. In particular, rDDO+C manages to solve 338 instances
whereas Amaral could only solve 279 of them. However, Amaral is able to
solve two more instances than rDDO+C when facing relation constraints.

6.5.2 Evolution of Performance with the Number of Constraints

We further discuss how the performance of rDDO+C and Amaral is impacted
by the addition of the different types of constraints by representing the solv-
ing times for each type and number of constraints imposed on Figure 6.5. To
get a sense of this evolution of the performance, we restrict the results cSRFLP
instances created from SRFLP instances that can be solved by both algorithms
when no constraints are considered. Regardless of the type of constraints in-
volved, we notice that the more constraints we add, the faster the DD-based
approach gets. The constraints in the DD formulation are indeed handled
very efficiently because all infeasible solutions are automatically pruned in
the transition functions, which results in a smaller DP graph to explore. The
same cannot be said about Amaral, since some instances with between 2 and
8 positioning constraints take more time to solve than their corresponding
unconstrained instance. This is probably caused by positioning constraints
being modeled with a sum of 𝑛 variables on the left side of an equality – see
Equations (6.11) and (6.12). On the contrary, ordering and relation constraints
are modeled very naturally in Amaral because it uses relative ordering vari-
ables. Adding these types of constraints thus tightens themodel and generally
reduces the execution time. This is especially true for relation constraints, as
they force many assignments with Equation (6.17).

6.5.3 End Gaps

Finally, we compare the end optimality gap reached by the algorithms and
configurations studied in this chapter on Figure 6.6. For the hardest instances,
DDO+C obtains the smallest optimality gap even though it solved fewer in-
stances than rDDO+C. This suggests that the lower bounds derived from re-
laxed DDs can be tighter than those obtained from the RLB, and yet they do
not speed up the algorithm, probably because they are more demanding to

6.5. Computational Experiments 121

0 2 4 6 8 10
number of constraints

0

20

40

60

so
lv

in
g

tim
e

(s
)

ALL

0 2 4 6 8 10
number of constraints

0

200

400

600

so
lv

in
g

tim
e

(s
)

POSITIONING

0 2 4 6 8 10
number of constraints

0

25

50

75

100

125

so
lv

in
g

tim
e

(s
)

ORDERING

0 2 4 6 8 10
number of constraints

0

20

40

60

so
lv

in
g

tim
e

(s
)

RELATION

rDDO + Caching MIP (Amaral)

Figure 6.5: Solving time of instances solved by both Amaral and rDDO+C for
the different types of constraints, with respect to the number of constraints
of each type.

122 Chapter 6. The Constrained Single-Row Facility Layout Problem

0 20 40 60 80 100
percent gap 100*(1-LB/UB)

600

700

800

900

1000

1100

1200

1300

1400

#
 in

st
an

ce
s

so
lv

ed
 w

ith
in

 g
ap

CSRFLP

DDO DDO + Caching MIP (Amaral) MIP (Liu) rDDO + Caching

Figure 6.6: Number of instances solved by all algorithms and configurations
within a given optimality gap.

compute. The end optimality gaps achieved by Amaral are quite poor com-
pared to the DD-based configurations, with 101 of the 129 unsolved instances
having an optimality gap above 80%. For those instances, even Liu reaches a
tighter end gap even though it could not solve most of the instances.

6.6 Conclusion

In this chapter, two novel exact models for the cSRFLP have been presented:
an extension of the MIP model from [Ama09] for the SRFLP and a DD-based
approach starting from the DP model of [PQ81]. The additional positioning,
ordering and relation constraints have been integrated in both approaches
and an RLB was presented for the DD-based one. The computational exper-
iments have shown that these two new formulations perform significantly
better than the only MIP model previously introduced in the literature, and
for all types of constraints considered. Both models introduced have their
strengths, the DD-based approach incorporates the three types of constraints
very efficiently, especially positioning constraints. On the other hand, the
MIP model integrates ordering and relation constraints very well and can be
easily implemented with any MIP solver. The optimality gap analysis shows
that the bounds obtainedwithin theDD-based approach are tighter than those
of Amaral. Therefore, coupling both formulations could constitute a promis-
ing direction for further research.

Conclusion 7
7.1 Summary of the Contributions

In this thesis, we proposed – or showed how to integrate – several additional
filtering mechanisms for the DD-based B&B algorithm, after recalling how it
operates in Chapter 2. The first one was discussed in Chapter 3 and consisted
in incorporating dominance rules in the solver to efficiently detect and discard
redundant parts of the search space, based on problem-specific information
provided through a few simple dominance operators. For the TSPTW, the
ALP, the LCS and the KP, the positive impact of dominance rules was clearly
observed experimentally in terms of number of node expansions required to
solve difficult instances, resulting in shorter execution times without neces-
sarily increasing the memory consumption of the solver. The ability of the
solver to quickly find good solutions was also improved, especially for highly
constrained problems.

Chapter 4 presented a second pruning ingredient based on the caching
of expansion thresholds for DP states visited by the approximate DDs. Its
application does not require any additional problem-specific modeling, as it
exploits the typical structure of DP state graphs. Furthermore, it builds upon
the RUBs and the LocBs introduced in [Gil+21] as well as the dominance rules.
Our experimental evaluation was pursued with two additional optimization
problems – the PSP and the TalentSched – and confirmed our intuition that
many DP states were unnecessarily visited multiple times. Mitigating this is-
sue with the proposed caching strategy again considerably reduced the num-
ber of nodes expanded by the algorithm, and, consequently, also the solving
times. Interestingly, the combination of the dominance detection procedures
with the caching component yielded significantly better results than both im-
provements alone, except for the KP for which dominance rules were less
impactful. However, the memory footprint of maintaining the collection of
expansion thresholds was found to be heavier than the one induced by dom-
inance rules, although not when used together.

Next, we explained in Chapter 5 how aggregate dynamic programming
could be leveraged to construct node selection heuristics and dual bounds
for approximate DDs. For the ALP, the PSP and the TalentSched, the former
were shown to help guide restricted DDs by causing the algorithm to pro-

123

124 Chapter 7. Conclusion

duce better first solutions in a majority of the cases, while the complemen-
tary filtering generated by the latter resulted in more instances being solved.
With both aggregation-based ingredients combined, even more benchmark
instances could be solved and the optimality gap for unsolved instances was
frequently tightened. The validation of those components was further sup-
ported by experimenting with a restricted B&B that does not rely on relaxed
DDs to compute bounds, which achieved similar or even better performance
than the best classical B&B configurations.

Finally, Chapter 6 concerned the application of the DD-based optimiza-
tion framework to a constrained facility layout problem, and its comparison
with a MIP formulation. It showcased the ability of the DD-based approach
to easily integrate additional constraints, both in terms of modeling and res-
olution. Indeed, the constraints are handled by discarding some transitions
and result in a smaller DP state space to explore, whereas they sometimes
complicate the solving process for MIP.

To conclude this summary of our contributions, we would like to stress
that all the proposed filtering mechanisms are compatible with each other,
and that they only reinforce the relevance of those previously developed such
as the RUBs and the LocBs. Moreover, the implementation of the techniques
introduced in Chapters 3 and 4 are now integral parts of the latest release of
the DDO solver. We hope that these theoretical and software contributions
will participate in the success and adoption of the DD-based optimization
framework, and possibly pave the way for future findings.

7.2 Perspectives

This section reflects on the contributions of this thesis and the questions that
remain open, and suggests some directions for future research in the field.

7.2.1 Reducing Memory Consumption

As discussed in Chapter 3, detecting dominance relations between nodes be-
longing to DDs compiled at different stages of the B&B algorithm requires
maintaining a collection of non-dominated node utilities in memory. Simi-
larly, the caching strategy introduced in Chapter 4 involves memorizing an
expansion threshold for each DP state reached by an exact node of any re-
laxed DD. In the worst case, the algorithm might end up storing a utility or
an expansion threshold for every possible DP state of the model. To miti-
gate the memory footprint of these filtering techniques, one possibility is to
bound the size of the associated data structures, i.e. the Fronts and the Cache.
However, this raises several questions:

7.2. Perspectives 125

■ Are there additional criteria that can determine whether a utility or a
dominance threshold has become obsolete? We explained that expan-
sion thresholds above the first active layer could safely be removed.
Furthermore, we can delete expansion thresholds associated with states
that are known to be dominated. Could we also detect cases where the
expansion threshold of a DP state is equivalent to the expansion thresh-
old stored for all its parent states, and thus discard it?

■ What kind of eviction policies do we use to decide which utilities or
thresholds to withdraw? Are those concerning states at early stages
of the DP model more important? Is it relevant to use metrics such as
the number of successful pruning operations generated since they were
introduced?

■ Is there an ideal maximum number of stored entries that best balances
memory consumption and filtering strength?

Note that we can probably use a single data structure to store both types of
information. However, in the current implementation, both mechanisms are
kept separate for clarity and to allow each component to be easily enabled or
disabled.

Besides these considerations regarding the contributions of this thesis, it
is worth mentioning that the original B&B algorithm also suffers from worst-
case space complexity equivalent to storing the complete DP state graph, as
mentioned in Section 4.4. Given that the caching mechanism introduced in
Chapter 4 would still prevent the algorithm from unnecessarily expanding
previously visited DP states, we wonder how a depth-first search at the upper
level of the B&B algorithm would perform. It would remove the need for a
Fringe and thus clearly alleviate the memory requirements of the algorithm.
Combined with bounded-size Fronts and Cache, it could possibly result in an
algorithm that can be effectively bounded in memory.

7.2.2 Alternative Relaxation Schemes

The state merging-based relaxation is a key component of the original DD-
based B&B algorithm, and proved to provide tight bounds for multiple classes
of problem. However, the computational experiments of Chapters 5 and 6
showed that relaxed DDs can fail to generate significantly more pruning than
RUBs for some DP models, e.g. the TalentSched and the cSRFLP. Previous
work has successfully investigated the improvement of the relaxedDDbounds
by applying the state merging to groups of nodes that share similar state in-
formation, as well as strengthening path values by incorporating penalties
for assignments that violate some constraints, obtained through Lagrangian

126 Chapter 7. Conclusion

relaxation [BCH15; Hoo19]. Still, there might exist other generic relaxation
schemes that would be better suited to some specific problems.

Chapter 5 proposed one such alternative that relies on aggregate dynamic
programming and obtained good results, especially on the PSP and the ALP,
evenwhen used in isolation in the restricted B&B variant. While it is a promis-
ing research direction, this relaxation scheme is not applicable to any given
problem, it requires advanced additional modeling, and it may yield poor
bounds if the problem data is not suitable for aggregation at all.

Both the state merging and the aggregation-based relaxation schemes
are closely related to various types of abstraction heuristics introduced in
the classical planning literature [HHH+07; Lar+10; Hel+14; SWH14; SH18].
Therefore, it would be very interesting to clarify their connections, and pos-
sibly transfer some ideas to the field of DD-based optimization. Note that
[KB23] already applied classical search algorithms to combinatorial optimiza-
tion problems, which also calls for unifying the research efforts of these two
communities.

7.2.3 Integration in CP Solvers

Although DD-based optimization is a very efficient technique to solve large
DP models, it is a real challenge to make it widely adopted, as it constitutes
onemore technology for practitioners to learn, and with a modeling style that
is very different from traditional approaches such asMIP andCP. Recently, the
Haddock modeling language and system [GMH20; GMH22; GMH23] trans-
lated most of the DD-based optimization components inside a CP solver, with
DDs acting as constraint stores and propagators. Therefore, it can replicate
the behavior of a DD-based B&B solver while providing a CP-like modeling
interface, which is a very promising direction to make the power of DD-based
optimization available to a larger audience. We believe that some of the con-
tributions of this thesis can be directly integrated into such system, and could
have an impact as significant as that shown in this thesis for the pure DD-
based B&B solver. The dominance rules and the caching strategy are good
candidates for this, although it is unclear whether they can be used as is in
the case of external constraints that are not imposed on the DD. Indeed, if
external constraints invalidate nodes that have been used to derive a domi-
nance relation or to compute an expansion threshold, the associated filtering
procedures might become incorrect.

7.2.4 Learning Node Selection Heuristics

In [Cap+22], reinforcement learning was used to automatically discover good
variable orderings and, in doing so, improve the bounds obtained with ap-
proximate DDs. Another opportunity for integrating learning into the DD-

7.2. Perspectives 127

based optimization framework concerns the node selection heuristics used to
compile restricted DDs. Indeed, it was shown in Chapter 5 that node selec-
tion heuristics infused with knowledge about the global problem structure
can have great impact on the quality of the solutions found, which in turn
can speed up the B&B algorithm. Moreover, a node selection heuristic can
be constructed from any evaluation function that estimates the potential of a
node to lead to the optimal solution, using it to sort the nodes of a layer from
most to least promising and retaining the𝑊 most promising ones. Given the
usually small amount of information contained in DP states and the latest ad-
vances in the field of machine learning, the task of learning such evaluation
function seems approachable. This could also be applied to the selection of
the B&B node to explore next, as done for MIP in [HDE14; LCL22].

Bibliography

[Ake78] S. B. Akers. “Binary Decision Diagrams”. In: IEEE Transactions
on Computers 27.06 (1978), pp. 509–516.

[AKV05] M. F. Anjos, A. Kennings, and A. Vannelli. “A semidefinite opti-
mization approach for the single-row layout problem with un-
equal dimensions”. In: Discrete Optimization 2.2 (2005), pp. 113–
122.

[AL13] A. R. S. Amaral and A. N. Letchford. “A polyhedral approach
to the single row facility layout problem”. In:Mathematical pro-
gramming 141.1-2 (2013), pp. 453–477.

[Ama06] A. R. Amaral. “On the exact solution of a facility layout prob-
lem”. In: European Journal of operational research 173.2 (2006),
pp. 508–518.

[Ama08] A. R. Amaral. “An exact approach to the one-dimensional facility
layout problem”. In: Operations Research 56.4 (2008), pp. 1026–
1033.

[Ama09] A. R. Amaral. “A new lower bound for the single row facility
layout problem”. In: Discrete Applied Mathematics 157.1 (2009),
pp. 183–190.

[And+07] H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. “A
constraint store based on multivalued decision diagrams”. In:
International Conference on Principles and Practice of Constraint
Programming. Springer. 2007, pp. 118–132.

[Asc96] N. Ascheuer. “Hamiltonian path problems in the on-line opti-
mization of flexible manufacturing systems”. PhD thesis. Uni-
versity of Technology Berlin, 1996.

[AV08] M. F. Anjos and A. Vannelli. “Computing globally optimal so-
lutions for single-row layout problems using semidefinite pro-
gramming and cutting planes”. In: INFORMS Journal on Comput-
ing 20.4 (2008), pp. 611–617.

[Axs83] S. Axsäter. “State aggregation in dynamic programming—An ap-
plication to scheduling of independent jobs on parallel proces-
sors”. In: Operations Research Letters 2.4 (1983), pp. 171–176.

129

130 BIBLIOGRAPHY

[AY09] M. F. Anjos and G. Yen. “Provably near-optimal solutions for
very large single-row facility layout problems”. In: Optimization
Methods & Software 24.4-5 (2009), pp. 805–817.

[BB07] C. Blum andM. J. Blesa. “Probabilistic beam search for the longest
common subsequence problem”. In: International Workshop on
Engineering Stochastic Local Search Algorithms. Springer. 2007,
pp. 150–161.

[BBS87] J. C. Bean, J. R. Birge, and R. L. Smith. “Aggregation in dynamic
programming”. In: Operations Research 35.2 (1987), pp. 215–220.

[BCH15] D. Bergman, A. A. Cire, andW.-J. vanHoeve. “Lagrangian bounds
from decision diagrams”. In: Constraints 20 (2015), pp. 346–361.

[Bec+05] B. Becker, M. Behle, F. Eisenbrand, and R. Wimmer. “BDDs in
a branch and cut framework”. In: International Workshop on Ex-
perimental and Efficient Algorithms. Springer. 2005, pp. 452–463.

[Bel54] R. Bellman. “The theory of dynamic programming”. In: Bulletin
of the American Mathematical Society 60.6 (Nov. 1954), pp. 503–
515.

[Ber+12] D. Bergman, A. A. Cire,W.-J. van Hoeve, and J. N. Hooker. “Vari-
able ordering for the application of BDDs to the maximum inde-
pendent set problem”. In: International conference on integration
of artificial intelligence (AI) and operations research (OR) tech-
niques in constraint programming. Springer. 2012, pp. 34–49.

[Ber+14a] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. “Op-
timization bounds from binary decision diagrams”. In: INFORMS
Journal on Computing 26.2 (2014), pp. 253–268.

[Ber+14b] D. Bergman, A. A. Cire, W.-J. van Hoeve, and T. Yunes. “BDD-
based heuristics for binary optimization”. In: Journal of Heuris-
tics 20.2 (2014), pp. 211–234.

[Ber+16] D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. “Dis-
crete optimization with decision diagrams”. In: INFORMS Jour-
nal on Computing 28.1 (2016), pp. 47–66.

[BF16] C. Blum and P. Festa. “Longest common subsequence problems”.
In: Metaheuristics for String Problems in Bioinformatics (2016),
pp. 45–60.

[BMR93] L. Bianco, A. Mingozzi, and S. Ricciardelli. “The traveling sales-
man problem with cumulative costs”. In: Networks 23.2 (1993),
pp. 81–91.

BIBLIOGRAPHY 131

[Bry86] R. E. Bryant. “Graph-based algorithms for boolean function ma-
nipulation”. In: Computers, IEEE Transactions on 100.8 (1986),
pp. 677–691.

[Cap+22] Q. Cappart, D. Bergman, L.-M. Rousseau, I. Prémont-Schwarz,
and A. Parjadis. “Improving Variable Orderings of Approximate
DecisionDiagramsUsing Reinforcement Learning”. In: INFORMS
Journal on Computing 34.5 (2022), pp. 2552–2570.

[CCB22] M. P. Castro, A. A. Cire, and J. C. Beck. “Decision diagrams for
discrete optimization: A survey of recent advances”. In: INFORMS
Journal on Computing 34.4 (2022), pp. 2271–2295.

[CGL94] E. M. Clarke, O. Grumberg, and D. E. Long. “Model checking and
abstraction”. In: ACM transactions on Programming Languages
and Systems (TOPLAS) 16.5 (1994), pp. 1512–1542.

[CGS22] V. Coppé, X. Gillard, and P. Schaus. “Solving the Constrained
Single-Row Facility Layout Problem with Decision Diagrams”.
In: 28th International Conference on Principles and Practice of Con-
straint Programming (CP 2022). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik. 2022.

[CGS23a] V. Coppé, X. Gillard, and P. Schaus. “BoostingDecisionDiagram-
Based Branch-And-Bound by Pre-Solving with Aggregate Dy-
namic Programming”. In: 29th International Conference on Prin-
ciples and Practice of Constraint Programming (CP 2023). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik. 2023.

[CGS23b] V. Coppé, X. Gillard, and P. Schaus. “Decision Diagram-Based
Branch-and-Bound with Caching for Dominance and Subopti-
mality Detection”. In: (2023). arXiv: 2211.13118.

[CH13] A. A. Cire and W.-J. van Hoeve. “Multivalued decision diagrams
for sequencing problems”. In: Operations Research 61.6 (2013),
pp. 1411–1428.

[Cha+91] R. J. Chambers, R. L. Carraway, T. J. Lowe, and T. L. Morin.
“Dominance and decomposition heuristics for single machine
scheduling”. In: Operations Research 39.4 (1991), pp. 639–647.

[CS15] G. Chu and P. J. Stuckey. “Dominance breaking constraints”. In:
Constraints 20 (2015), pp. 155–182.

[CS22] V. Coppé and P. Schaus. “A Conflict Avoidance Table for Contin-
uous Conflict-Based Search”. In: Proceedings of the International
Symposium on Combinatorial Search. Vol. 15. 1. 2022, pp. 264–
266.

https://arxiv.org/abs/2211.13118

132 BIBLIOGRAPHY

[DAF11] D. Datta, A. R. S. Amaral, and J. R. Figueira. “Single row fa-
cility layout problem using a permutation-based genetic algo-
rithm”. In: European Journal of Operational Research 213.2 (2011),
pp. 388–394.

[Dan57] G. B. Dantzig. “Discrete-Variable Extremum Problems”. In: Op-
erations Research 5.2 (1957), pp. 266–277. (Visited on 10/25/2022).

[Dre87] Z. Drezner. “A heuristic procedure for the layout of a large num-
ber of facilities”. In: Management Science 33.7 (1987), pp. 907–
915.

[Dum+95] Y. Dumas, J. Desrosiers, E. Gelinas, and M. M. Solomon. “An op-
timal algorithm for the traveling salesman problem with time
windows”. In: Operations research 43.2 (1995), pp. 367–371.

[FR20] N. Frohner and G. R. Raidl. “Towards improvingmerging heuris-
tics for binary decision diagrams”. In: Learning and Intelligent
Optimization: 13th International Conference, LION 13, Chania, Crete,
Greece, May 27–31, 2019, Revised Selected Papers 13. Springer.
2020, pp. 30–45.

[FS10] M. Fischetti and D. Salvagnin. “Pruning moves”. In: INFORMS
Journal on Computing 22.1 (2010), pp. 108–119.

[Gil+21] X. Gillard, V. Coppé, P. Schaus, andA. A. Cire. “Improving the fil-
tering of branch-and-bound MDD solver”. In: International Con-
ference on Integration of Constraint Programming, Artificial Intel-
ligence, and Operations Research. Springer. 2021, pp. 231–247.

[Gil22] X. Gillard. “Discrete optimization with decision diagrams: de-
sign of a generic solver, improved bounding techniques, and
discovery of good feasible solutions with large neighborhood
search”. PhD thesis. UCL-Université Catholique de Louvain, 2022.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. Books in mathematical
series. W. H. Freeman, 1979.

[GL16] J. Guan and G. Lin. “Hybridizing variable neighborhood search
with ant colony optimization for solving the single row facility
layout problem”. In: European Journal of Operational Research
248.3 (2016), pp. 899–909.

[GMH20] R. Gentzel, L. Michel, and W.-J. van Hoeve. “HADDOCK: A lan-
guage and architecture for decision diagram compilation”. In:
Principles and Practice of Constraint Programming: 26th Interna-
tional Conference, CP 2020, Louvain-la-Neuve, Belgium, Septem-
ber 7–11, 2020, Proceedings 26. Springer. 2020, pp. 531–547.

BIBLIOGRAPHY 133

[GMH22] R. Gentzel, L. Michel, and W.-J. van Hoeve. “Heuristics for MDD
Propagation in HADDOCK”. In: 28th International Conference
on Principles and Practice of Constraint Programming (CP 2022).
2022.

[GMH23] R. Gentzel, L.Michel, andW.-J. vanHoeve. “Optimization Bounds
from Decision Diagrams in Haddock”. In: International Confer-
ence on Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research. Springer. 2023, pp. 150–166.

[GS22] X. Gillard and P. Schaus. “Large Neighborhood Search with De-
cision Diagrams”. In: International Joint Conference on Artificial
Intelligence. 2022.

[GSC11] M. Garcia de la Banda, P. J. Stuckey, and G. Chu. “Solving talent
scheduling with dynamic programming”. In: INFORMS Journal
on Computing 23.1 (2011), pp. 120–137.

[GSC21] X. Gillard, P. Schaus, and V. Coppé. “Ddo, a generic and efficient
framework for MDD-based optimization”. In: Proceedings of the
Twenty-Ninth International Conference on International Joint Con-
ferences on Artificial Intelligence. 2021, pp. 5243–5245.

[Gur22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual.
2022.

[Gus97] D. Gusfield. “Algorithms on stings, trees, and sequences: Com-
puter science and computational biology”. In: Acm Sigact News
28.4 (1997), pp. 41–60.

[HA92] S. S. Heragu and A. S. Alfa. “Experimental analysis of simulated
annealing based algorithms for the layout problem”. In: Euro-
pean Journal of Operational Research 57.2 (1992), pp. 190–202.

[Had+08] T. Hadzic, J. N. Hooker, B. O’Sullivan, and P. Tiedemann. “Ap-
proximate compilation of constraints into multivalued decision
diagrams”. In: International Conference on Principles and Practice
of Constraint Programming. Springer. 2008, pp. 448–462.

[Hal70] K. M. Hall. “An r-dimensional quadratic placement algorithm”.
In: Management science 17.3 (1970), pp. 219–229.

[HDE14] H. He, H. Daume III, and J. M. Eisner. “Learning to search in
branch and bound algorithms”. In: Advances in neural informa-
tion processing systems 27 (2014).

[Hel+14] M. Helmert, P. Haslum, J. Hoffmann, and R. Nissim. “Merge-and-
shrink abstraction: A method for generating lower bounds in
factored state spaces”. In: Journal of the ACM (JACM) 61.3 (2014),
pp. 1–63.

134 BIBLIOGRAPHY

[HH06] T. Hadžić and J. N. Hooker. Postoptimality analysis for integer
programming using binary decision diagrams. Tech. rep. Carnegie
Mellon University, 2006.

[HH07] T. Hadžić and J. N. Hooker. “Cost-Bounded Binary Decision Di-
agrams for 0-1 Programming”. In: Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimiza-
tion Problems. Springer, 2007, pp. 84–98.

[HHH+07] M. Helmert, P. Haslum, J. Hoffmann, et al. “Flexible abstraction
heuristics for optimal sequential planning”. In: (2007).

[HHH10] S. Hoda, W.-J. van Hoeve, and J. N. Hooker. “A systematic ap-
proach toMDD-based constraint programming”. In: International
Conference on Principles and Practice of Constraint Programming.
Springer. 2010, pp. 266–280.

[HK62] M. Held and R. M. Karp. “A dynamic programming approach
to sequencing problems”. In: Journal of the Society for Industrial
and Applied mathematics 10.1 (1962), pp. 196–210.

[HK88] S. S. Heragu and A. Kusiak. “Machine layout problem in flexi-
ble manufacturing systems”. In: Operations research 36.2 (1988),
pp. 258–268.

[HK91] S. S. Heragu and A. Kusiak. “Efficient models for the facility lay-
out problem”. In: European Journal of Operational Research 53.1
(1991), pp. 1–13.

[HNR68] P. E. Hart, N. J. Nilsson, and B. Raphael. “A formal basis for the
heuristic determination of minimum cost paths”. In: IEEE trans-
actions on Systems Science and Cybernetics 4.2 (1968), pp. 100–
107.

[Hoe20] W.-J. van Hoeve. “Graph coloring lower bounds from decision
diagrams”. In: International Conference on Integer Programming
and Combinatorial Optimization. Springer. 2020, pp. 405–418.

[Hoo13] J. N. Hooker. “Decision diagrams and dynamic programming”.
In: International Conference on Integration of Constraint Program-
ming, Artificial Intelligence, and Operations Research. Springer.
2013, pp. 94–110.

[Hoo17] J. N. Hooker. “Job sequencing bounds from decision diagrams”.
In: Principles and Practice of Constraint Programming: 23rd Inter-
national Conference, CP 2017, Melbourne, VIC, Australia, August
28–September 1, 2017, Proceedings 23. Springer. 2017, pp. 565–
578.

BIBLIOGRAPHY 135

[Hoo19] J. N. Hooker. “Improved Job Sequencing Bounds from Decision
Diagrams”. In: Principles and Practice of Constraint Programming.
Ed. by T. Schiex and S. de Givry. Vol. 11802. LNCS. Springer,
2019, pp. 268–283.

[Hor+21] M. Horn, J. Maschler, G. R. Raidl, and E. Rönnberg. “A∗-based
construction of decision diagrams for a prize-collecting schedul-
ing problem”. In: Computers & Operations Research 126 (2021),
p. 105125.

[HPS17] J. T. Haahr, D. Pisinger, and M. Sabbaghian. “A dynamic pro-
gramming approach for optimizing train speed profileswith speed
restrictions and passage points”. In: Transportation Research Part
B: Methodological 99 (2017), pp. 167–182.

[HR13a] P. Hungerländer and F. Rendl. “A computational study and sur-
vey of methods for the single-row facility layout problem”. In:
Computational Optimization and Applications 55.1 (2013), pp. 1–
20.

[HR13b] P. Hungerländer and F. Rendl. “Semidefinite relaxations of or-
dering problems”. In: Mathematical Programming 140.1 (2013),
pp. 77–97.

[HR21] M. Horn and G. R. Raidl. “A∗-Based Compilation of Relaxed De-
cision Diagrams for the Longest Common Subsequence Prob-
lem”. In: International Conference on Integration of Constraint
Programming, Artificial Intelligence, andOperations Research. Springer.
2021, pp. 72–88.

[HS97] G. D. Hachtel and F. Somenzi. “A Symbolic Algorithms for Max-
imum Flow in 0-1 Networks”. In: Formal Methods in System De-
sign 10.2 (1997), pp. 207–219.

[HT18] P. Hungerländer andC. Truden. “Efficient and easy-to-implement
mixed-integer linear programs for the traveling salesperson prob-
lem with time windows”. In: Transportation research procedia 30
(2018), pp. 157–166.

[Hu95] A. J. Hu. “Techniques for efficient formal verification using bi-
nary decision diagrams”. PhD thesis. Stanford University, De-
partment of Computer Science, 1995.

[Iba77] T. Ibaraki. “The power of dominance relations in branch-and-
bound algorithms”. In: Journal of the ACM (JACM) 24.2 (1977),
pp. 264–279.

136 BIBLIOGRAPHY

[KB23] R. Kuroiwa and J. C. Beck. “Domain-independent dynamic pro-
gramming: Generic state space search for combinatorial opti-
mization”. In: Proceedings of the International Conference on Au-
tomated Planning and Scheduling. Vol. 33. 1. 2023, pp. 236–244.

[KB90] T. Y.-k. Kam and R. K. Brayton. Multi-valued decision diagrams.
Electronics Research Laboratory, College of Engineering, Uni-
versity of California, 1990.

[KD18] Z. Kalita and D. Datta. “A constrained single-row facility layout
problem”. In: The international journal of advanced manufactur-
ing technology 98.5 (2018), pp. 2173–2184.

[KG14] R. Kothari and D. Ghosh. “An efficient genetic algorithm for
single row facility layout”. In: Optimization Letters 8.2 (2014),
pp. 679–690.

[KH22] A. Karahalios and W.-J. van Hoeve. “Variable ordering for deci-
sion diagrams: A portfolio approach”. In: Constraints 27.1 (2022),
pp. 116–133.

[KH23] A. Karahalios andW.-J. van Hoeve. “Column Elimination for Ca-
pacitated Vehicle Routing Problems”. In: International Confer-
ence on Integration of Constraint Programming, Artificial Intelli-
gence, and Operations Research. Springer. 2023, pp. 35–51.

[KH67] R. M. Karp and M. Held. “Finite-state processes and dynamic
programming”. In: SIAM Journal on Applied Mathematics 15.3
(1967), pp. 693–718.

[KHL95] K. R. Kumar, G. C. Hadjinicola, and T.-l. Lin. “A heuristic pro-
cedure for the single-row facility layout problem”. In: European
Journal of Operational Research 87.1 (1995), pp. 65–73.

[KS74] W. H. Kohler and K. Steiglitz. “Characterization and theoretical
comparison of branch-and-bound algorithms for permutation
problems”. In: Journal of the ACM (JACM) 21.1 (1974), pp. 140–
156.

[Lan+93] A. Langevin,M. Desrochers, J. Desrosiers, S. Gélinas, and F. Soumis.
“A two-commodity flow formulation for the traveling salesman
and the makespan problems with time windows”. In: Networks
23.7 (1993), pp. 631–640.

[Lar+10] B. Larsen, E. Burns, W. Ruml, and R. Holte. “Searching with-
out a heuristic: Efficient use of abstraction”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 24. 1. 2010,
pp. 114–120.

BIBLIOGRAPHY 137

[LBS15] A. Lieder, D. Briskorn, and R. Stolletz. “A dynamic programming
approach for the aircraft landing problem with aircraft classes”.
In: European Journal of Operational Research 243.1 (2015), pp. 61–
69.

[LCL22] A. G. Labassi, D. Chételat, and A. Lodi. “Learning to compare
nodes in branch and boundwith graph neural networks”. In:Ad-
vances in Neural Information Processing Systems 35 (2022), pp. 32000–
32010.

[Lee59] C.-Y. Lee. “Representation of switching circuits by binary-decision
programs”. In: The Bell SystemTechnical Journal 38.4 (1959), pp. 985–
999.

[Liu+21] S. Liu, Z. Zhang, C. Guan, L. Zhu, M. Zhang, and P. Guo. “An
improved fireworks algorithm for the constrained single-row fa-
cility layout problem”. In: International Journal of Production Re-
search 59.8 (2021), pp. 2309–2327.

[LPV94] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula. “EVBDD-based algo-
rithms for integer linear programming, spectral transformation,
and function decomposition”. In: IEEE Transactions on Computer-
AidedDesign of Integrated Circuits and Systems 13.8 (1994), pp. 959–
975.

[LW76] R. Love and J. Wong. “On solving a one-dimensional space al-
location problem with integer programming”. In: INFOR: Infor-
mation Systems and Operational Research 14.2 (1976), pp. 139–
143.

[LZ23] J. H. Lee and A. Z. Zhong. “Exploiting functional constraints in
automatic dominance breaking for constraint optimization”. In:
Journal of Artificial Intelligence Research 78 (2023), pp. 1–35.

[MD15] C. Mears and M. G. De La Banda. “Towards automatic domi-
nance breaking for constraint optimization problems”. In: Twenty-
Fourth International Joint Conference onArtificial Intelligence. 2015.

[Min95] S.-i. Minato. Binary decision diagrams and applications for VLSI
CAD. Vol. 342. Springer Science & Business Media, 1995.

[Mor+16] D. R. Morrison, S. H. Jacobson, J. J. Sauppe, and E. C. Sewell.
“Branch-and-bound algorithms: A survey of recent advances in
searching, branching, and pruning”. In: Discrete Optimization 19
(2016), pp. 79–102.

138 BIBLIOGRAPHY

[MT23] K. Maier and V. Taferner. “Solving the constrained Single-Row
Facility Layout Problem with Integer Linear Programming”. In:
International Journal of Production Research 61.6 (2023), pp. 1882–
1897.

[Nik+21] B. Nikolic, A. Kartelj, M. Djukanovic, M. Grbic, C. Blum, and G.
Raidl. “Solving the longest common subsequence problem con-
cerning non-uniform distributions of letters in input strings”. In:
Mathematics 9.13 (2021), p. 1515.

[OH19] R. J. O’Neil and K. Hoffman. “Decision diagrams for solving trav-
eling salesman problems with pickup and delivery in real time”.
In: Operations Research Letters 47.3 (2019), pp. 197–201.

[Pal17] G. Palubeckis. “Single row facility layout using multi-start sim-
ulated annealing”. In: Computers & Industrial Engineering 103
(2017), pp. 1–16.

[PB96] J.-Y. Potvin and S. Bengio. “The vehicle routing problem with
time windows part II: genetic search”. In: INFORMS Journal on
Computing 8.2 (1996), pp. 165–172.

[Pes+98] G. Pesant, M. Gendreau, J.-Y. Potvin, and J.-M. Rousseau. “An
exact constraint logic programming algorithm for the traveling
salesman problem with time windows”. In: Transportation Sci-
ence 32.1 (1998), pp. 12–29.

[Pet03] J. Petit. “Experiments on theminimum linear arrangement prob-
lem”. In: Journal of Experimental Algorithmics 8 (2003).

[Pis05] D. Pisinger. “Where are the hard knapsack problems?” In: Com-
puters & Operations Research 32.9 (2005), pp. 2271–2284.

[PQ81] J.-C. Picard and M. Queyranne. “On the one-dimensional space
allocation problem”. In:Operations Research 29.2 (1981), pp. 371–
391.

[PW06] Y. Pochet and L. A.Wolsey. Production planning by mixed integer
programming. Vol. 149. 2. Springer, 2006.

[RCR18] M. Römer, A. A. Cire, and L.-M. Rousseau. “A local search frame-
work for compiling relaxed decision diagrams”. In: International
Conference on the Integration of Constraint Programming, Artifi-
cial Intelligence, andOperations Research. Springer. 2018, pp. 512–
520.

BIBLIOGRAPHY 139

[RCR22] I. Rudich, Q. Cappart, and L.-M. Rousseau. “Peel-And-Bound:
Generating Stronger Relaxed BoundswithMultivalued Decision
Diagrams”. In: 28th International Conference on Principles and
Practice of Constraint Programming (CP 2022). Ed. by C. Solnon.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

[RCR23] I. Rudich, Q. Cappart, and L.-M. Rousseau. “Improved Peel-and-
Bound: Methods for Generating Dual Bounds with Multivalued
Decision Diagrams”. In: Journal of Artificial Intelligence Research
77 (2023).

[RS09] G. Righini and M. Salani. “Decremental state space relaxation
strategies and initialization heuristics for solving the orienteer-
ing problem with time windows with dynamic programming”.
In: Computers & Operations Research 36.4 (2009), pp. 1191–1203.

[SCM21] K. Smith-Miles, J. Christiansen, and M. A. Muñoz. “Revisiting
where are the hard knapsack problems? via instance space anal-
ysis”. In: Computers & Operations Research 128 (2021), p. 105184.

[SE10] H. Samarghandi and K. Eshghi. “An efficient tabu algorithm for
the single row facility layout problem”. In: European Journal of
Operational Research 205.1 (2010), pp. 98–105.

[SGW91] J. K. Suryanarayanan, B. L. Golden, and Q.Wang. “A new heuris-
tic for the linear placement problem”. In: Computers & Opera-
tions Research 18.3 (1991), pp. 255–262.

[SH18] J. Seipp and M. Helmert. “Counterexample-guided Cartesian ab-
straction refinement for classical planning”. In: Journal of Arti-
ficial Intelligence Research 62 (2018), pp. 535–577.

[Sim69] D. M. Simmons. “One-dimensional space allocation: an ordering
algorithm”. In: Operations Research 17.5 (1969), pp. 812–826.

[ST09] S. J. Shyu and C.-Y. Tsai. “Finding the longest common subse-
quence for multiple biological sequences by ant colony opti-
mization”. In:Computers &Operations Research 36.1 (2009), pp. 73–
91.

[SWH14] S. Sievers, M. Wehrle, and M. Helmert. “Generalized label re-
duction for merge-and-shrink heuristics”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 28. 1. 2014.

[Weg00] I.Wegener. “Branching Programs and BinaryDecisionDiagrams:
Theory andApplications”. In:Discrete AppliedMathematics (2000).

	Abstract
	Acknowledgments
	Table of Contents
	Introduction
	Context
	Research Goals
	Contributions
	Publications
	Outline

	Preliminaries
	Discrete Optimization
	Dynamic Programming
	Decision Diagrams
	Compilation
	Restricted DDs
	Relaxed DDs
	Rough Upper Bound Pruning

	Branch-and-Bound
	Exact Cutsets
	Local Bounds
	Algorithm

	Variants and Heuristics for Compilation
	Node Selection Heuristic
	Variable Ordering
	Long Arcs
	Alternative Compilation Schemes

	The DDO Library

	Dominance Rules
	Introduction
	Definitions and Modeling Ingredients
	Filtering the Search Using Dominance Rules
	Applications
	Traveling Salesman Problem with Time Windows
	Dynamic Programming Formulation
	Relaxation
	Rough Lower Bound
	Dominance Rule
	Experimental Setting

	Aircraft Landing Problem
	Dynamic Programming Formulation
	Relaxation
	Rough Lower Bound
	Dominance Rule
	Experimental Setting

	Longest Common Subsequence Problem
	Dynamic Programming Formulation
	Relaxation
	Rough Upper Bound
	Dominance Rule
	Experimental Setting

	0–1 Knapsack Problem

	Computational Experiments
	Number of Benchmark Instances Solved
	Number of Node Expansions
	Quality of the First Solution
	Memory Consumption

	Conclusion

	Caching
	Introduction
	Caveats of DD-based Branch-and-Bound
	Branch-and-Bound with Caching
	Dominance Thresholds
	Pruning Thresholds
	Expansion Thresholds
	Filtering the Search Using the Cache

	Limitations
	Memory Consumption
	Variables Orderings

	Applications
	Pigment Sequencing Problem
	Dynamic Programming Formulation
	Relaxation
	Rough Lower Bound
	Experimental Setting

	Talent Scheduling Problem
	Dynamic Programming Formulation
	Relaxation
	Rough Lower Bound
	Experimental Setting

	Computational Experiments
	Impact of the Caching Mechanism
	Synergy with the Dominance Rules
	Memory Consumption

	Conclusion

	Aggregate Dynamic Programming-Based Bounds and Heuristics
	Introduction
	Aggregate Dynamic Programming for Decision Diagrams
	Preprocessing: Problem Instance Aggregation
	State Aggregation and Upper Bound
	Solution Disaggregation and Node Selection Heuristic

	Restricted Branch-and-Bound
	Applications
	Talent Scheduling Problem
	Pigment Sequencing Problem
	Aircraft Landing Problem

	Computational Experiments
	Number of Benchmark Instances Solved
	End Gap
	Quality of the First Solution

	Conclusion

	The Constrained Single-Row Facility Layout Problem
	Introduction
	Problem Definition
	SRFLP
	cSRFLP

	Mixed-Integer Programming Model
	Dynamic Programming Formulation
	SRFLP
	cSRFLP
	Relaxation
	Rough Lower Bound
	Free departments layout cost
	Cost with respect to fixed departments

	Computational Experiments
	Number of Benchmark Instances Solved
	Evolution of Performance with the Number of Constraints
	End Gaps

	Conclusion

	Conclusion
	Summary of the Contributions
	Perspectives
	Reducing Memory Consumption
	Alternative Relaxation Schemes
	Integration in CP Solvers
	Learning Node Selection Heuristics

