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The possible solutions to a given problem
emerge as the leaves of a tree, each node
representing a point of deliberation and

decision.

NIKLAUS WIRTH





Preamble

Machine Learning (ML) is an Artificial Intelligence (AI) subfield in which
computer programs can learn to perform a task without being explicitly
programmed. It relies on the analysis of past event scenarios to predict
the future. Machine learning produces impressive results even for com-
plex tasks. It has become an integral part of our lives and can even solve
problems that are difficult for humans. However, the significant pres-
ence of machine learning models in our daily lives can have some draw-
backs. Obviously, it is not possible to design infallible models. There
are several reasons for this, including the following: (1) the high com-
plexity of real-life problems leading to (2) the difficulty of collecting
training data that are perfectly representative of the task at hand and
(3) the sensitivity of the models to certain types of noise. These obvious
problems can cause models to produce bad results in sensitive areas in-
volving human life. Thus, in some critical areas, it may be dangerous to
rely completely on machine learning predictions.

The ideal in machine learning would be to learn models that never
make mistakes. Unfortunately, this is impossible for the above reasons.
A good compromise would be to learn interpretable models. These are
models that can explain the elements that underlie their results. In this
case, humans would be able to understand them and judge for them-
selves whether or not to use them. Such models already exist. One of
the most popular ones that we have studied during this thesis are Deci-
sion Trees (DTs). An example of a decision tree is shown in Figure 1.
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Figure 1: Decision tree with 3 internal nodes, 4 leaf nodes, depth = 2 and
size = 7
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The principle of a decision tree is to generate, through its paths, a
set of rules based on the features of training data. Each rule describes
a set of instances in the training data, and the tree associates a predic-
tion with these instances. Therefore, decision trees are perfect examples
of interpretable models. It is natural and intuitive to understand the
predictions of a decision tree. Unfortunately, the crucial problem with
interpretable models and thus with decision trees is their performance.
Although decision trees offer reasonable performance, they sometimes
perform poorly on complex problems. Traditional algorithms [Bre+84;
Qui86; Qui93] for learning decision trees are heuristic and often pro-
duce a high error rate when they are limited by a maximum depth.
They infer decision trees in a top-down fashion, iteratively dividing the
data into subsets using heuristic criteria to choose the “best” splits. In
order to reduce the error in such trees, deep trees must be generated,
and in this case, they become complex and less interpretable. A possi-
ble solution to this problem, which we have investigated in this thesis,
is Optimal Decision Trees (ODTs) [BB96]. More specifically, we have
studied optimal binary decision trees. These are binary decision trees
that allow to reduce as much as possible the error that could be pro-
duced for a given depth. The error reduction proposed by the optimal
decision trees allows the building of better performing trees with lower
depths, thus being also more interpretable. This was shown in 2017
by Bertsimas and Dunn [BD17]. Since then, several new approaches
have been proposed to learn optimal binary trees. However, Laurent
and Rivest proved in 1976 that finding an optimal binary tree under a
size constraint is an NP-complete problem. This explains why most of
the proposed algorithms struggle to learn optimal decision trees in a
reasonable time. This thesis describes our contribution to facilitate the
learning of optimal binary trees.

Part I of this thesis is divided into 3 chapters that present the im-
portant theories underlying the different algorithms that we propose in
the following. Chapter 1 further defines what a decision tree is and
presents two (2) well-known traditional algorithms (CART, C4.5) for
learning decision trees. Chapter 2 presents a popular concept in data
mining, Frequent Itemset Mining (FIM), that is used in the algorithms
we propose in this thesis. Finally, Chapter 3 introduces an important
data structure that is also used in our algorithms.

Part II of the thesis shows the main approaches proposed to effi-
ciently learn optimal decision trees. Chapter 4 presents an efficient al-
gorithm for learning optimal binary classification trees under a support
constraint. This algorithm is a search algorithm combined with dynamic
programming and the branch-and-bound concept. Its execution time
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outperforms its predecessors by several orders of magnitude. One of
the important elements that allows the proposed algorithm to achieve
record execution times is the use of a cache structure, due to its dynamic
programming aspect. Unfortunately, this also represents its weakness,
since the number of elements to store when learning optimal trees is ex-
ponential. In Chapter 5, we propose a memory cleaning algorithm that
we embed into the algorithm proposed in Chapter 4. This algorithm
acts as a garbage collector that takes care of automatically removing
from the cache, after a certain limit, some stored elements that at the
wipe time are not considered as part of the final solution and that are
less likely to be useful further in the search.

Part III of this thesis is devoted to the different applications that our
optimal tree learning algorithm could have. In Chapter 6, the basic
algorithm proposed in Chapter 4 is modified to handle the training data
with weighted instances. We show that this new algorithm is capable of
solving problems that were impossible to solve beforehand. In the case
of our thesis, we use it to solve the problem of optimal forests. With
this new algorithm, we were able to solve existing mathematical models
of optimal forests that could not be solved to optimality beforehand.
This allows one to evaluate the relevance of these models that were
intended to prove the intuition of the success of the boosting algorithms.
In Chapter 7, we show that our algorithm is suitable for solving several
other machine learning tasks and optimizing other objective functions
besides those of Chapter 4. We then define the type of problems that
can be solved with our algorithm and show how user-specific problems
can be defined. Finally, Chapter 8 concludes this thesis.

All algorithms proposed in this thesis are made available through an
open source library available at https://github.com/aia-uclouvain/pydl8.
5. It is compatible with the scikit-learn1 library and can be installed from
PyPI2 with the command pip install pydl8.5. The documentation is
available at https://pydl85.readthedocs.io/en/latest/.

1https://scikit-learn.org/
2https://pypi.org

https://github.com/aia-uclouvain/pydl8.5
https://github.com/aia-uclouvain/pydl8.5
https://pydl85.readthedocs.io/en/latest/
https://scikit-learn.org/
https://pypi.org
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4 Chapter 1. Decision Trees

1.1 Introduction

Decision trees are basically visual and intuitive flowcharts that help to
make decisions. They describe a process to perform prediction tasks.
Figure 1.1 shows an illustrative decision tree that can identify whether
an animal is a bird. Note that a decision tree is built on the elements
that describe the problem to which it applies. In Figure 1.1, these ele-
ments are the physical aspects of an animal. As can be seen, a decision
tree is made up of nodes that test certain descriptive elements that are
called tests. From these nodes, branches emerge that suggest different
values or ranges of values for the tests. These nodes are internal nodes.
An example of an internal node in Figure 1.1 is the root node, testing
the Height of the animal. At the end of each path of the tree, there is
a terminal node that contains one of the decisions to make. They are
called leaf nodes. They are represented by rectangular nodes in the fig-
ure. The association of the internal nodes with their branches is called
splits.

Height

No bird nFeet

No bird Fly

Bird Feather

Bird No bird

No bird

≥ 3m < 3m

0 2

yes no

yes no

4

Figure 1.1: Decision tree to predict if an animal is a bird

When a decision tree is built, it is used to associate decisions with
some objects whose decisions were unavailable during the training pro-
cess. For each object, depending on the value of the elements tested, a
path is followed through the branches until a leaf node is encountered.
The leaf node provides the decision suggested by the tree for the object.
For example, the tree in Figure 1.1 states that an animal with height
equal to 5 meters is not a bird, since its height is greater than or equal
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to 3 meters.

In the context of machine learning, a decision tree is a great diagram
that is used as a model to predict the targets of unseen data, based
on training data. In concrete terms, an algorithm is run on previous
observations and produces a decision tree based on these observations.
Each internal node in the decision tree selects a feature on which a
value check should be performed. The branches rising from the internal
nodes are related to possible values or ranges of values for the tested
features, while the predictions are associated with leaf nodes. To predict
the target of an unseen instance, the instance is passed through the tree,
from the root node to a leaf node, guided by the branches representing
its values for each tested feature. The choice of the splits that form
the tree as well as the predictions associated with leaf nodes by the
algorithm are crucial in order to make predictions close to the reality. In
order to learn accurate decision trees, the well-known algorithms rely
on a top-down process using heuristics to determine the best splits and
a specific function to choose the predictions at the leaf nodes.

In the remainder of this chapter, we will present in Section 1.2 the
major notations that will be used in the thesis. Section 1.3 presents the
top-down procedure used in the well-known classification tree learning
algorithms, while highlighting the specificity of CART and C4.5. In Sec-
tion 1.4, we present other kinds of problems that can be solved using
decision trees.

1.2 Notation

In the remainder of this thesis, we will use numerous notations that need
to be introduced. Here, we will define the ones that will be frequently
encountered. The specific ones will be defined when they are needed.

A dataset is denoted D and is represented by D = {(x, y)}n, with
n being the number of instances. Each instance is denoted as a pair
(xi, yi). xi = (xi1, . . . , xim) is described by a set F = {F1, . . . , Fm}
of m features. The features are also called attributes. Each value yi is
the target associated with xi. In classification problems, the targets are
finite. In this case, the targets are also called labels or classes. We thus
denote C the set of classes involved in the dataset D.

Each model in this thesis can be represented by a hypothesis h(x)
andH is defined to be the set of all possible models that can be produced
given a problem.
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1.3 Top-down learning of decision trees

In the context of machine learning, the aim is to build models able to
predict targets close to reality, based on previous observations. More
specifically, in supervised learning, the previous observations are made
up of feature vectors describing the instances, associated to targets to
predict. The task is then to learn from these observations to build mod-
els able to predict the targets associated with unseen instances based
only on their feature vectors.

Given a dataset D = {(x, y)}n, the generic procedure used by
the well-known top-down algorithms to learn classification trees is
presented in the pseudocode of the Algorithm 1. Note that the CART
and C4.5 algorithms notably follow this procedure.

Algorithm 1: Generic top-down learning decision tree
input : xn, a set of feature vectors
input : yn, a set of targets associated with xn

1 feat_splits← splitsPerFeature(xn)
2 return buildSubtree(xn, yn, feat_splits)

3 Procedure buildSubtree(x′m, y′m, splits)
4 if stoppingConditions(x′m, splits) then
5 return buildLeafNode(prediction(y′m))

6 best_split← selectBestSplit(splits)
7 node← buildInternalNode(best_split)
8 remain_splits← splits∖ best_split
9 foreach subset x∗k, y∗k fallen in each branch of best_split do

10 node.addChild(buildSubtree(x∗k, y∗k, remain_splits))

11 return node

The algorithm takes as input the training dataset, represented by
the feature matrix and the target vector. The idea of the algorithm is to
iteratively choose the different splits that will constitute the final deci-
sion tree. For this reason, the different possible splits are enumerated
per feature, based on the different feature vectors (line 1). The splits
are considered differently given the learning algorithm. This will be ex-
plained in more details later. Once the splits are enumerated, the best is
chosen to be used as the root node. Then, iteratively, the splits that are
used as the children of the considered nodes are identified. This is high-
lighted in the algorithm as a recursive process represented by the func-
tion buildSubtree(). This function is responsible for selecting the good
split at a certain point in the decision tree building process (lines 6-7).
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There exist multiple criteria to select the best split. We will discuss them
further below. Furthermore, the buildSubtree() function recursively
launches the subroutine to identify child splits (line 10). Notice that the
function buildSubtree() receives as arguments the feature matrix, the
target vector, and the available splits. These parameters have not the
same values at each call to the function buildSubtree(). Based on the
different branches of the best split selected, the original dataset is re-
fined to keep only the subset that satisfies the feature value required by
the selected split (line 9). Moreover, the splits passed to each call of the
buildSubtree() function are updated in order to remove the splits that
have already been chosen. This prevents us from considering more than
once a split in a decision path (line 8). When building the decision tree,
if for any reason represented by the function stoppingConditions(),
a split cannot be chosen, a leaf node is built based on the targets of
the instances falling in the current path, and a class is predicted using
the function prediction(). Generally, in classification tasks, the pre-
dicted class is the majority class. More formally, given a data subset
D′ = {(x′, y′)}n and a set C of values in y′n, the predicted class is:

argmax
c∈C

|{(x′, y′) ∈ D′ : y′ = c}| (1.1)

1.3.1 Splits assessment

When learning decision trees, the idea is to infer the best tree so that
the predictions in the leafs match the best with the real decisions. Based
on a training dataset, the DT learning algorithms, like other machine
learning algorithms, infer models that reflect at a certain point the labels
in the training dataset. The labels are then used to predict on unseen
data. The process of building a decision tree can be seen as a process
to accurately identify the relevant node splits that are part of the tree.
Each algorithm defines the splits in its own way.

A split is a feature associated with some values or range of values.
In a decision tree, splits occur in nodes and define which branches arise
from the node to the child nodes. The main differences observed in
the splits considered in DT learning algorithms is about the number of
branches in which the feature values are divided. This depends on the
type of the feature, and mostly on the type of the DT inferred by the
algorithm. Some algorithms infer binary decision trees, while others
infer multiway trees. The splits in binary decision trees result in nodes
splitting into two features values or ranges of values. The introductory
decision tree depicted in Figure 1.1 shows three binary splits. The root
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node shows a split on the feature Height, divided into two ranges of
values, and the deepest test node shows a split on the feature Feather
into two values (yes/no). On the contrary, a multiway tree uses splits
related to more than 2 branches. The node involving the feature nFeet
shows a split into three values {0, 2, 4}.

Binary features These features contain only two values; generally
0/1, yes/no, or true/false. It can also be categorical features with
only two possible values. It is intuitive to split these features into two
branches. Therefore, only binary splits are considered for them.

Categorical features These are features which contain multiple (more
than 2) values, and there is no order relation between these values. Let
us assume a feature with k distinct values. In a multiway decision tree,
the split considered by existing algorithms involves dividing the internal
nodes into k branches, one per feature value. On the other hand, in the
context of binary decision trees, the feature should be broken down into
several binary splits. Each binary split involves a set of at most k − 1
possible values for a branch, while the second is related to values that
are not involved in the first branch. The maximum number of possible
splits is 2k−1 − 1.

Numerical features These features contain multiple values with an
order relation between them. In case of a numerical feature F with a
finite set of k distinct values, multiway decision tree learning algorithms
consider a split with k branches as for categorical features. This con-
trasts with binary decision tree learning algorithms that consider k − 1
binary splits. Each split acts as an interval cut between the k values.
Each split results in two branches {feature ≤ a, feature > a}, with
a ∈ F .

Note that the CART [Bre+84] algorithm produces binary trees be-
cause these are more interpretable than multiway ones in which the
number of branches can be huge, given the distribution of values in fea-
ture vectors. On the other hand, C4.5 [Qui93], which is an improvement
of ID3 [Qui86] proposed by the same author (Quinlan), in its default
mode, uses binary splits for numerical features and multiway splits for
categorical features. The splitting is inherited from ID3. After enumer-
ating the possible splits, the learning algorithms choose at each step of
the algorithm, the best split to consider as node. Note that the choice
of the best split depends mainly on the problem being solved. In the
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case of classification, the goal of learning algorithms is to minimize the
misclassification error on the training dataset. This error is seen as the
number of training instances incorrectly classified by the learned tree.
As a decision tree splits the datasets into multiple subsets falling in leaf
nodes, the misclassification error of a tree is the sum of the misclassifi-
cation errors over the different leafs. Given a path p ending in a leaf ℓ in
a decision tree DT which covers a data subset Dℓ, the misclassification
error is denoted leaf_error(ℓ), leaf_error(Dℓ), or leaf_error(p) and is
expressed as:

|Dℓ| −max
c∈C
|{(x, y) ∈ Dℓ : y = c}|, (1.2)

where C is the set of classes in the target of the dataset. Therefore, the
misclassification error in the whole tree is:

tree_error(DT ) =
∑

ℓ∈leafs(DT )

leaf_error(Dℓ), (1.3)

where leafs(DT ) is the set of leafs in the tree DT . This error measures
the amount of heterogeneity of the different classes in the leafs of the
decision tree. To learn trees that produce a low misclassification error,
the traditional algorithms use a greedy approach. They all define an
evaluation criterion that they use as a heuristic to decide at each step of
the building process the best split to choose in order to build a tree that
reduces the misclassification rate on the training data. Several criteria
have been defined in the literature. In this thesis, we will present only
the most popular ones. These are the Gini criterion and the Gain Ra-
tio, respectively, proposed by CART and C4.5. They aim at finding the
split that increases the homogeneity in class distributions according to
different data subsets that arrive from the parent node.

Gini criterion or Gini index Assume a dataset D is splittable into a
set S of splits. A Gini criterion is expressed as:

Gini(D) =
∑
c∈C

pc(1− pc) = 1−
∑
c∈C

p2c , (1.4)

where pc is the proportion of class c in the target vector of D. This value
expresses the heterogeneity amount of classes in D. As D can be divided
into different splits, for each split Si, the dataset is split into k subsets
Si1, . . . , Sik respectively associated with data subsets DSi1 , . . . ,DSik

. A
Gini criterion is then computed for each split Si in order to pick the one
that decreases the most the heterogeneity in the class distributions of
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D. This is performed by computing the following gap value for each
possible split Si:

∆Gini(Si|D) = Gini(D)−
∑

Sik∈Si

|DSik
|

|D|
Gini(DSik

)

= Gini(D)−Gini(DSi)

(1.5)

The first term of this formula computes the Gini criterion for the
datasetD while the second computes the Gini criterion ofD split into Si.
This last term is computed by summing the Gini criterion of each data
subset falling in each branch of the split Si, weighted by its proportion
in D.

In case of binary splits, a simplified Gini criterion is presented in
CART [Bre+84] and is called Twoing criterion. It is expressed as:

∆Twoing(Si|D) =
p0 · p1

4
(
∑
c∈C
|p0c − p1c|)2, (1.6)

where pk = |DSik
|/|D| is the proportion of data in the branch k of the

split Si of the dataset D. pkc = |{x, y ∈ DSik
: y = c}|/|DSik

| is the
proportion of class c in the data subset DSik

.

Information Gain (IG) and Gain Ratio C4.5 uses the Gain Ratio cri-
terion to compare and choose the best split. This criterion relies on the
Information Gain criterion, which was introduced by ID3. The idea of
the Information Gain criterion is based on Shannon entropy [Sha48],
which is defined as the degree of uncertainty of a random variable. Its
value is minimal in a distribution made up of a unique value. On the
other hand, it reaches its highest value when the variable distribution
contains an equal proportion of distinct values. This metric can then be
used to quantify the homogeneity in a distribution. The entropy of a
dataset D is computed as:

Entropy(D) = −
∑
c∈C

pc log pc (1.7)

Similarly to the Gini index, the entropy is computed for each split
Si and the one that most significantly decreases the heterogeneity of
the class distribution in D is chosen. The expression that computes the
reduction of heterogeneity is called Information Gain and is expressed
as:
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∆InfoGain(Si|D) = Entropy(D)−
∑

Sik∈Si

|DSik
|

|D|
∑
c∈C

Entropy(DSik
) (1.8)

Although the use of Information Gain produces good results in prac-
tice, Quinlan noticed that the IG measure is biased towards multiway
splits made up of a large number of branches. For this reason, he pro-
posed a normalized version of IG called the Gain Ratio and used it in
the C4.5 algorithm. The idea is to divide the IG of each split by a value
called split information and expressed as:

splitInfo(Si) = −
∑

Sik∈Si

|DSik
|

|DSi |
log
|DSik

|
|DSi |

(1.9)

This expression is an entropy computed on the proportions of the
data subsets in each split. Then it is used to normalize the IG. Therefore,
the gain ratio of a split Si of a dataset D is expressed as:

∆GainRatio(Si) =
∆InfoGain(Si|D)

splitInfo(Si)
(1.10)

1.3.2 Stopping conditions

During the learning of a decision tree, the algorithms select at each step
of the process the best split to use as node. Sometimes, it appears that
there is no need to further split the data subset that arrives from the
parent node. These cases are stopping conditions of the recursive call of
selectBestSplit() in Algorithm 1. They prevent to call the recursive
subroutine which is in charge of finding the best split. In this case, a leaf
node is created, and a class is associated according to the equation 1.1.
An obvious stopping condition is the case in which all instances arriving
from the parent node belong to the same class. Indeed, the idea of a
decision tree is to split the dataset into homogeneous groups in order to
predict a class without ambiguity. Therefore, when all the instances of
a group belong to the same class, there is no need to split them more.
However, the use of this only stopping condition would lead to very large
trees induction. After trying different stopping conditions which caused
overpruning, the only one used by CART and C4.5, in addition to the
class purity, is the fact that each split would lead to at least 2 branches
with a minimum number of instances falling into each branch.

In addition to default CART and C4.5 stopping conditions, many im-
plementations of these algorithms add a stopping condition related to a
maximum depth specified as a hyper-parameter.
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As these default stopping conditions of CART and C4.5 still lead to
large trees, they suffer from overfitting. Their authors proposed post-
pruning techniques to mitigate the overfitting issue.

1.3.3 Overfitting mitigation

After building a decision tree with soft stopping conditions, the tree
might be very large and might overfit the data. The problem of such
overfitted trees is double:

■ the final tree is not interpretable,

■ the tree perform poorly on unseen data.

The authors of well-known DT learning algorithms noticed that large
trees do not generally provide a great increase of accuracy compared to
shallow ones, while shallow trees prevent from overfitting. They thus
proposed different approaches to post-prune the trees in order to make
them shallow without sacrificing too much accuracy. To do so, most of
them use a bottom-up approach in which they evaluate the impact of
each subtree and replace them by a leaf when they are considered not
so impactful. To assess the relevance of the subtrees, they generally use
a dataset different from the training set and/or specific criteria different
from the one used to build the tree. Below, we describe the techniques
used by CART and C4.5 to perform post-pruning.

Error Complexity Pruning (CART) The way that the CART algorithm
prunes the tree after the learning process is based on multiple steps.
This is explained in Algorithm 2.

Notice that the algorithm takes a dataset as input. Indeed, when
a training dataset is passed to CART algorithm, it is split into two (2)
parts: one used for the learning and the second for the post-pruning. It
is the second dataset which is considered in the current algorithm.

The global idea of CART pruning algorithm is to successively trans-
form some subtrees of the original tree into leaf nodes until there is no
more subtree (only a root node remains) (lines 3-8). The intermediary
trees obtained after each subtree replacement are saved. The variable
trees is used for this purpose in the algorithm (lines 1 and 7). In order to
select the subtree that will be replaced by a leaf, a measure is computed
for each internal node of the tree. Then the subtree rooted by the node
having the lowest score is replaced. The calculated measure is called
error complexity. Given a node m covering a data subset Dm and which
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Algorithm 2: CART post-pruning of decision tree
input : D = {x, y}n, a dataset used for pruning
input : DT , the decision tree previously learnt

1 trees← list()
2 new_tree← clone(DT )
3 while true do
4 if trees is not empty then new_tree← clone(trees.last())
5 nodes← getInternalNodes(new_tree)

// data(m) returns the data covered by the node m
6 argminm∈nodes error_complexity(m)← buildLeafNode(data(m))
7 trees.add(new_tree)
8 if |nodes| = 1 then break

9 t0 ← argmint∈trees tree_errorD(t)
10 error0 ← tree_errorD(t0)
11 se← standard_error(error0)
12 end_trees← {t ∈ trees : tree_errorD(t) ∈ [error0, error0 + se]}
13 return argmint∈end_trees size(t)

roots a subtree with a set leafs of leaf nodes, the error complexity is
expressed as:

error_complexity =
leaf_error(Dm)−

∑
ℓ∈leafs leaf_error(ℓ)

|leafs| − 1
(1.11)

This error measures the complexity of the subtree rooted by m. More
specifically, it measures the error reduction provided by the subtree on
the dataset Dm, over the size of the subtree needed for this reduction.
The higher the complexity, the more impactful the subtree. So at each
iteration of the algorithm, the less impactful subtree is removed and
replaced by a leaf node. At the end of this process, one of the inter-
mediary trees obtained from the subtree replacement processes should
be used as the final tree. To accomplish this task, CART uses each of
the trees found to predict on the unused data D provided as input of
the algorithm and selects the one with the lowest classification error
(line 9). Its error is then used to compute the standard error expressed

as standard_error =
√

E0(1−E0)
|trees| , where E0 is the lowest misclassifica-

tion error and trees are the different intermediary trees. The final tree
outputted by the algorithm is the one with the lowest size and having
its error within the range [E0, E0 + standard_error] (lines 12-13).
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Pessimistic Error Pruning (C4.5) In C4.5 algorithm, the technique
to post-prune the trees is different. It does not require an additional
dataset. It relies on a principle used by other algorithms [Qui86; Nib87].
The idea is to make a bottom-up traversal of internal nodes of the tree
and compare them to their children on the basis of a measure. When
the internal node score is better than the child scores, then the subtree
rooted by the node is removed and the node is turned into a leaf node.
In order to compare the internal nodes with their children, C4.5 used
a measure called pessimistic error. It is based on a binomial distribu-
tion confidence interval. At each node, the number of instances and
the proportion of these instances not belonging to the majority class are
considered as a statistic sample of N trials with p events. Then an ex-
pected error rate can be derived in the population (unseen data) using
a binomial distribution confidence interval. To increase the chance of
pruning, Quinlan uses 25% as confidence level and uses the upper limit
of the confidence interval as the expected proportion of error for the
node when classifying unseen data. This measure for each node is com-
pared to those of the children nodes. To compute the measure for the
children nodes, a sum weighted by the proportion of instances in each
child node is performed. When the parent reaches a lower expected er-
ror than the children, the subtree rooted by the parent is removed, and
the parent node is turned into leaf. Otherwise, the parent node is kept
and the bottom-up process continues.

1.4 Other type of decision trees

In the previous section, we presented the generic algorithm to learn a
classification decision tree. Then, we emphasized how CART and C4.5
implement the subroutines of the generic learning algorithm. In this
section, we present how the decision trees are used to perform other
tasks than classification based on the reduction of misclassification error.

1.4.1 Regression

In supervised learning, the idea is to learn from existing observations
in order to predict unseen ones. In the first part of this chapter, we
considered the predictions to be categorical values. However, they can
also be numerical values. A well-known example of this problem is the
prediction of house sales price. This is called regression problems. In
this kind of problem, all the possible values of the target variable are
not necessarily present in the training data. The idea is thus to learn
the relation between the feature vectors of the instances and the target
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vector. This allows to predict the real value of an unseen instance even
if its value is not present in the training dataset. Numerous algorithms
have been proposed to solve this task. In the context of this thesis, we
explain how classification DT learning algorithms are adapted to infer
decision trees capable of handling regression problems.

The most used error function when learning a regression model is
the Mean Squared Error (MSE). Given a dataset D and a decision tree
DT represented by a function h(x), the MSE is computed using:

MSE(D) = 1

|D|
∑

x,y∈D
(h(x)− y)2 (1.12)

As each node covers a subset of the training dataset, the MSE can
be computed for each node and the total MSE of a tree is the sum over
the MSEs of each leaf of the tree. The task of regression tree algorithms
is thus to find trees that reduce the MSE. The closer the target vector
values of a data subset, the lower is their MSE. The idea is thus to find
splits that group the datasets into a closer distribution of target values.
In order to choose the best splits to constitute the final decision tree,
the well-known algorithms do not use a particular splitting criteria as in
classification problems. Instead, they use the MSE score as a heuristic.
Concretely, each possible split is assessed and the one that reduces the
most the MSE is chosen as the best split. The MSE of a split is computed
by summing the MSE of datasets falling in each branch of the split.
Note, however, in Equation 1.12 that the value h(x) predicted by the
tree is needed to compute the MSE value. In each leaf of a decision
tree, the predicted value h(x) is chosen in order to reduce the MSE. The
value h(x) predicted by well-known algorithms is the mean of the target
values of instances falling in a node.

1.4.2 Descriptive clustering

Most of the clustering algorithms in the literature do not provide insight
into how clusters have been created. They are based on inter-cluster
and/or intra-cluster distance metrics that they try to optimize using dif-
ferent greedy algorithms. Although the different distance measures op-
timized are well-known metrics, there is no way to assess the relevance
of results produced by the different algorithms because, unlike super-
vised learning problems, there is no ground truth (target vector). It is
also impossible to compare the different metrics to each other because
they produce values that belong to different ranges. An approach to
assess the relevance of clusters is to use reduction dimensionality algo-
rithms [AW10; GR71; BG98] to make 2D or 3D visualizations. However,
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the relationship between the clusters and the features is broken and pre-
vents the clusters from being assessed by domain experts.

In order to make clustering interpretable as some supervised learn-
ing algorithms, Blockeel et al. proposed in 1998 an algorithm to learn
clustering trees. The idea is to learn a decision tree as in classification
or regression. The only difference is that the leafs do not predict any
categorical or numerical values. Instead, the leafs of the clustering trees
represent clusters. The tree structure is used to describe the different
clusters found by the tree. This allows the clusters to be interpretable
and easily reviewable by domain experts. To achieve this result, they
used logic programming to build trees represented by first-order logic
rules. In addition, they used the maximized inter-cluster distance as a
splitting criterion to choose the best split at each step of the algorithm.

1.4.3 Compact trees

The traditional way to learn a decision tree is to first grow it and then
prune it to avoid overfitting. In contrast to the post-pruning process
of CART which requires the generation of multiple intermediary trees,
and the one of C4.5 which can sometimes preserve many nodes of the
learned tree, another type of pruning emerged that is based on a spe-
cific criterion: Minimum Description Length (MDL) [Ris78; Ris87]. The
MDL criterion focuses mainly on the length of information needed to de-
scribe a data. As a result, several researchers have used the MDL [RW88;
QR89; WP93; VW94] criterion to reduce the tree size during the pruning
phase. The idea was to use the MDL criterion to find a good balance be-
tween compact trees that make some errors and larger trees with lower
errors. Rissanen and Wax [RW88] used the MDL criterion to derive
splitting and pruning criteria, while Volf and Willems [VW94] also used
it to determine in a recursive algorithm the good compact tree without
necessarily performing a pruning process.

In this chapter, we only considered traditional top-down algorithms
to learn decision trees. The second class of algorithms are the optimal
algorithms. We discuss them in detail in Chapter 4.
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2.1 Introduction

Advances in science and industry have resulted in the digitization of
many services. The functioning of these services is mainly based on the
use of data; either to store or to exchange information. The amount
of data generated through digital tools is increasing exponentially. This
is mainly due to the multiplication of dematerialized services and espe-
cially because of the services that require a maximum of information in
order to offer a better user experience.

Traditionally, in order to offer a service or solve a problem, one relies
on existing data about the task to solve, assuming that each situation is
unique. Today, with the great storage capacity of computers, which has
led to the storage of a huge amount of data, it is obvious that there could
be elements of similarities shared by a few or even multitudes of events.
Thus, the study of these similarities could allow to have a better un-
derstanding of certain events. In addition, the new learned knowledge
could be used to enrich the knowledge base of other problems and fa-
cilitate their resolution. Also, it may allow one to predict certain future
behaviors or phenomena.

In data mining, one of the main tasks is to find patterns in databases
that can be shared by several transactions of the databases: this is called
pattern mining. These patterns can be of several forms: texts, graphs,
trees, etc. The multiplicity of items present in a database and the total
number of transactions can strongly influence the time needed to ex-
plore the different patterns in order to retain the most interesting ones.
Several techniques have been proposed in the literature to reduce the
time required to find interesting patterns. In our thesis, we rely on
patterns mining to propose efficient optimal decision tree learning algo-
rithms. More precisely, we focus on the Frequent Itemset Mining (FIM)
problem.

In this chapter, we introduce in Section 2.2 the different notations
that will be used, and we define concretely the problem of frequent
itemsets mining. In Section 2.3, we present Apriori, the first algorithm
to find frequent itemsets in a database. Sections 2.4, 2.5 and 2.6 present
some optimizations to speed up the discovery of frequent itemsets. Fi-
nally, in Section 2.7, we present frequent closed itemsets and why they
are interesting.

2.2 Notation and problem definition

Consider the illustrative database represented in Table 2.1. Table 2.1a
shows a database made up of several lines. Each line is a transaction
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Table 2.1: Illustrative database

tid Items
t1 {B}
t2 {E}
t3 {A, C}
t4 {A, E}
t5 {B, C}
t6 {D, E}
t7 {C, D, E}
t8 {A, B, C}
t9 {A, B, E}
t10 {A, B, C, E}

(a) Transactional database

tid A B C D E
t1 0 1 0 0 0
t2 0 0 0 0 1
t3 1 0 1 0 0
t4 1 0 0 0 1
t5 0 1 1 0 0
t6 0 0 0 1 1
t7 0 0 1 1 1
t8 1 1 1 0 0
t9 1 1 0 0 1
t10 1 1 1 0 1

(b) Boolean matrix

of the database and is indexed with tid, where id is the identifier of the
transaction. Each transaction is represented by a set of items belonging
to the transaction. This set of items is called itemset. For readability, we
will interpret each line of the database as: some items are present/selected
in a transaction. For example, in the transaction t4, the items A and E
have been selected, and we can note that {A,E} ⊆ t4. The set of all
transactions is denoted with T . Here, T = {t1, . . . , t10}. On the other
hand, the set of all the items present in the database is denoted I. In the
illustrative example, I = {A,B,C,D,E}. More formally, the database is
denoted D and can be seen as a collection {(tid, I)|I ⊆ I} of transaction
identifiers coupled to the itemset selected in the transactions.

The transactional database shown in Table 2.1a can be converted to a
Boolean matrix format as presented in Table 2.1b. For each transaction,
there is a column for each item. The value (0/1) of the item in the
transaction indicates whether the item is selected in the transaction or
not. This equality between the two representations will be used later in
our optimal decision tree learning algorithms. In order to explain the
problem of frequent itemset mining, there are some concepts that need
to be introduced.

Cover Given an itemset I ⊆ I, cover(I) is the set of transactions that
include the items present in the itemset I. It is expressed as {t′id ∈
T | (t′id, I ′) ∈ D ∧ I ⊆ I ′}, where I ′ is the itemset selected in the
transaction t′id. In the example of Table 2.1, the cover of the itemset
{B} is cover({B}) = {t1, t5, t8, t9, t10} while the itemset {A,C} covers
the transactions {t3, t8, t10}.
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Support The support of an itemset I is defined as the number of trans-
actions in the cover of the itemset. We note it as Support(I) and it is
formally formulated as Support(I) = |cover(I)|. In the same way as
the examples provided for the definition of the cover, Support({B}) =
|{t1, t5, t8, t9, t10}| = 5 while Support({A,C}) = 3.

Frequent Itemsets The frequent itemsets of a database are the item-
sets whose support is greater than or equal to a threshold θ. The value
of the threshold is user-defined.

The problem of frequent itemsets mining is therefore the task of find-
ing the set {I ⊆ I | Support(I) ≥ θ} of all possible itemsets of D whose
support is greater than or equal to θ. The problem has been introduced
by Agrawal et al. in 1993 [AIS93]. For example, given a threshold θ = 2,
the itemset {A,E} is frequent, as it appears in the transactions t4, t9, t10.
Its support is thus equal to 3.

2.3 Apriori

The Apriori algorithm [AS+94] is the first well-known algorithm to find
frequent itemsets from a database. Notice that the problem of finding
frequent itemsets is a non-trivial problem. In fact, the number of possi-
ble itemsets given a database D is exponential. As an itemset is simply a
set of items present in the database, there is no precedence relation in an
itemset. Therefore, an itemset {A,B} is exactly equivalent to an itemset
{B,A}. More specifically, any permutation of items in an itemset leads
to the same itemset. This reduces the number of possible itemsets given
the set I of items in D. However, this number is still huge and is equal
to 2|I|. Due to the orderless character of items in an itemset, the search
space of all possible itemsets given a database can be represented as
a lattice. Figure 2.1 shows the search space of the itemsets given the
database of Table 2.1.

In order to find the frequent itemsets given a database D and a
threshold θ, a naïve approach would consist in exploring all the item-
sets of the search space and for each of them, counting the number of
transactions containing the itemset and checking if it is frequent. How-
ever, this approach would be very time-consuming. In order to reduce
the part of the search space to explore, the Apriori algorithm relies on
an important property of itemsets: anti-monotonicity.
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Figure 2.1: Itemsets search space and Apriori execution

Anti-monotonicity The anti-monotonicity property states that for two
itemsets I and I ′ such that I ⊆ I ′, the set T ′ of transactions covered by
I ′ is also covered by I. Formally, it means that T ′ ⊆ T ⇐⇒ I ⊆ I ′, with
I and I ′ covering T and T ′ respectively. The intuition of this property
is that when an itemset I ′ is present in some transactions, any itemset I
which is a subset of I ′, is at least present in all transactions containing I ′.
For example, the itemset {A,B} is present in transactions {t8, t9, t10} of
the database of Table 2.1. Notice that the itemset {A} which is a subset
of {A,B}, is also present in {t8, t9, t10}. In addition, it is also present in
transactions {t3, t4}.

The principle of anti-monotonicity gives a clue about the frequency
of some itemsets. Precisely, the anti-monotonicity property entails that
I ⊆ I ′ ⇐⇒ Support(I) ≥ Support(I ′). Therefore, knowing that the
itemset I ′ is frequent implies that I is also frequent. The opposite is
also true. This implies that: if an itemset I is known to be infrequent,
all its supersets are also infrequents. For example, the itemset {C,D,E}
is present only in the transaction t7. Therefore, its support is 1. Notice
that all its supersets {A,C,D,E}, {B,C,D,E}, {A,B,C,D,E} are also
infrequent and all have their support equal to 0.

This property avoids exploring all children nodes of an itemset in
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the search space when it appears that the itemset is infrequent. Con-
cretely, the Apriori algorithm relies on the anti-monotonicity property to
avoid evaluating some useless itemsets. Its pseudocode is presented in
Algorithm 3.

Algorithm 3: Apriori
input : D, a database of transactions
input : θ, the minimum support used for the frequency

1 F1 ← compute_1-itemsets() // frequent itemsets of size = 1
2 F2 ← compute_2-itemsets() // frequent itemsets of size = 2
3 k ← 3
4 while Fk−1 is not empty do
5 Generate candidates Ck of k-itemsets using joins on Fk−1

6 Prune Ck
7 Fk ← {I ∈ Ck | Support(I) ≥ θ}
8 k ← k + 1

9 return ∪k−2
i=1 Fi

The term k-itemset is used to indicate an itemset whose size is k, i.e.
it contains k items while Fk represents the set of frequent k-itemsets.
Notice in the algorithm that Apriori is a level-wise algorithm. It com-
putes the frequent itemsets by iteratively computing the k-itemsets for
each level k. In order to compute efficiently the frequent itemsets, it
uses the anti-monotonicity property to avoid checking some itemsets.
The tricks used for this reduction of the search space cannot be applied
to 1-itemsets and 2-itemsets. In Algorithm 3, some procedures (lines 1-
2) are used to state that the frequent 1-itemsets and 2-itemsets are com-
puted differently. For this computation, a naive approach would consist
of enumerating every 1-itemset and 2-itemset and passing through the
database D to compute their support and compare them with θ. How-
ever, an efficient approach has been explored in the literature [AAP01]
to compute these specific itemsets.

Starting from the level k = 3, the Apriori algorithm uses a special
trick to reduce the number of candidates to consider when looking for
the frequent itemsets. The trick is based on the anti-monotonicity prop-
erty. As the property states that all subsets of a frequent itemset are also
frequents, the Apriori algorithm does not allow in the candidates Ck of
potential frequent k-itemsets, some itemsets whose any subset was not
known to be frequent at level k−1. To accomplish this task, it computes
the candidates Ck by performing a joining operation. The idea is to join
pairs of frequent itemsets found at level k−1 to compute the candidates
Ck. This removes from the candidates Ck the itemsets whithout any fre-
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quent subsets by ensuring that each itemset of Ck has at least 2 frequent
subsets. For example, if we have two itemsets {i1, i2, i3} and {i1, i2, i4}
in F3, the itemset {i1, i2, i3, i4} that comes from the join of the two item-
sets becomes a valid candidate and is placed in C4. To avoid duplicates
of itemsets in Ck (different itemsets joined can lead to the same candi-
date), the joining of pairs of itemsets in Fk−1 is performed only for pairs
sharing the same first k− 2 items, assuming that the itemsets are sorted
using a specific order. This is why this process starts from k = 3.

After computing the candidate itemsets Ck, Apriori does not count
directly the support of the candidates. As the counting operation of
each itemset is an expensive operation, the Apriori algorithm uses a
technique to prune the candidate itemsets. As anti-monotonicity states
that all subsets of a frequent itemset should also be frequent, the Apriori
algorithm prunes some itemsets from the set Ck when all their subsets
are not present in Fk−1. This reduces the number of itemsets to consider
in Ck.

After pruning Ck, the support of the remaining candidates is counted,
and those whose support is greater than or equal to θ are considered as
members of Fk. A naive approach to count the supports is to perform
a loop over the items of each transaction of the database. [AS+94]
presents a more interesting technique to compute the supports based on
the use of a hash tree data structure. The Apriori algorithm stops when
there is a k for which Fk is empty. The algorithm then returns the union
of sets F1 up to Fk−1. Figure 2.1 shows an execution trace of the Apri-
ori algorithm using the introductory database and θ = 2. Note that, al-
though the great candidate generation process and the pruning of these
candidates, the Apriori algorithm still spends a considerable time count-
ing the support of the remaining candidate itemsets. Many researchers
have proposed some techniques to reduce the impact of support count-
ing on the frequent itemset mining algorithms. In the next sections, we
will present some of them.

2.4 Projection-based algorithms

In order to reduce the time required to count supports in the frequent
itemset mining algorithms, Zaki et al. [Zak+97] propose an idea which
is also used by Agarwal et al. in DepthProject [AAP00] and TreeProjec-
tion [AAP01] algorithms to simplify this operation. Even if the idea
of these algorithms is a bit complex, in this thesis, we will simplify it
to give just an overview of the main approach used to facilitate the sup-
port counting. In these works, they consider the search space of possible
itemsets as a lexicographic tree (also called trie for re-trie-val tree) by
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defining order between the items. Figure 2.2 shows an example of the
trie used as the search space when considering the introductory exam-
ple.

CDEBDEBCEBCDADEACEACDABEABDABC

BCDEACDEABDEABCEABCD

ABCDE

DECECDBEBDBCAEADACAB

EDCBA

Figure 2.2: Lexicographic tree as itemset search space

To explore the search space, they use tree-based search algorithms
like breadth-first search (BFS) or depth-first search (DFS) to explore it.
By using these algorithms to explore the search space, they ensure that
each node in the trie is explored before its children. In other words, they
ensure that each itemset is checked before its supersets. Remember that
according to the anti-monotonicity property, the transactions containing
a superset of an itemset are a subset of the transactions containing the
itemset itself. The idea of the technique proposed is thus to reduce
the database needed to be used to count the support of itemsets as the
search progresses. In this case, there is no need to pass multiple times
through the whole database. The technique is called database projection.

As the search space is explored using a tree-based search algorithm,
each time a node is explored, it corresponds to an itemset, and the
database projection occurs to filter the part of the database needed to
be used by the children of the itemset. The Table 2.2 shows an exam-
ple of the database projection technique. Let us assume that we ini-
tially have the database shown in Table 2.2a then the search algorithm
branches on the node representing the itemset {A}. At this point, notice
that the itemset {A} is not present in the transactions {t1, t2, t5, t6, t7}.
Therefore, these transactions become useless to be considered by the
supersets of the itemset {A}. The database projection will then create
a conditional database without these transactions. The new database
will be stored in the node of itemset {A} and will be used for the count-
ing processes of the child itemsets. The resulting database is shown in
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Table 2.2: Illustrative database

tid Items
t1 {B}
t2 {E}
t3 {A, C}
t4 {A, E}
t5 {B, C}
t6 {D, E}
t7 {C, D, E}
t8 {A, B, C}
t9 {A, B, E}
t10 {A, B, C, E}

(a) Original database

tid Items
t3 {A, C}
t4 {A, E}
t8 {A, B, C}
t9 {A, B, E}
t10 {A, B, C, E}

(b) Relevant transactions

tid Items
t3 {C}
t4 {E}
t8 {B, C}
t9 {B, E}
t10 {B, C, E}

(c) Relevant items

Table 2.2b.
Moreover, the database projection operation goes beyond the simple

building of conditional databases. As the support counting is performed
by checking each item in each transaction, the projection of the database
also aims to reduce the number of items per transaction to decrease the
number of checks required to perform the counts. For this, after filter-
ing the relevant transactions, all the items that cannot be added to the
current itemset to create a frequent itemset are removed for the condi-
tional database. The final result for the example we are considering is
shown in Table 2.2c. The item {A} is removed. The others are preserved
because the itemsets {A,B}, {A,C} and {A,E} have at least a support
greater than or equal to the value of θ which is 2. The final reduced
database is therefore the one passed to the child nodes. This allows to
reduce the complexity of the support counting.

The algorithm used to guide the search can be a BFS or a DFS. This
is agnostic to the size of the search space explored and does not affect
the run time of the algorithm. However, there is a considerable problem
with the BFS strategy according to the memory complexity. The number
of nodes needed to be kept in memory is considerable in BFS and can
be problematic for tasks involving a large database.

2.5 Vertical Representations

In this section, we introduce another technique used in literature to
speed up the support counting. The technique is based on a vertical
representation of the database and intersection operations. The tech-
nique has been proposed by Holsheimer et al. [Hol+95]. It was based
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on the Monet1 database management system (DBMS). To perform the
support counting, the transactional database is loaded in the DBMS and
the instructions provided by the DBMS are used to perform the different
operations needed to find the frequent itemsets. Concretely, the idea
is based on the conversion of the original transactional database into a
vertical representation. Table 2.3 shows an example of the vertical rep-
resentation of a database. That vertical representation is supported by
the Monet DBMS.

Table 2.3: Horizontal vs Vertical representation

tid Items
t1 {B}
t2 {E}
t3 {A, C}
t4 {A, E}
t5 {B, C}
t6 {D, E}
t7 {C, D, E}
t8 {A, B, C}
t9 {A, B, E}
t10 {A, B, C, E}

(a) Horizontal database

Items tid-list
A t3, t4, t8, t9, t10
B t1, t5, t8, t9, t10
C t3, t5, t7, t8, t10
D t6, t7
E t2, t4, t6, t7, t9, t10

(b) Vertical database

In the classic representation of a transactional database, also called
horizontal representation, each row represents a transaction listing the
set of items contained in it. On the other hand, in the vertical transac-
tion, each row represents an item associated to the list of the identifiers
of the transactions in which the item is present. The list of transaction
identifiers is called tid-set or tid-list.

Once the database representation has been turned into vertical and
loaded into the DBMS, it becomes straightforward to find all the trans-
actions covered by each item. Therefore, it is enough to count the size
of the tid-list per item to find all the frequent 1-itemsets. The count
operation was ensured by the DBMS. After this operation, the rows of
infrequent items are removed from the database. To find the transac-
tions covered by the 2-itemsets, an intersection operation is performed
between the tid-lists of the frequent 1-itemsets using the DBMS. For ex-
ample, to find the tid-list of {A,B}, the intersection {t3, t4, t8, t9, t10} ∩
{t1, t5, t8, t9, t10} of the tid-lists of the itemsets {A} and {B} is per-
formed. This results to {t8, t9, t10}. A count operation is thus performed
on the resulting 2-itemsets and the infrequent itemsets are removed

1https://www.monetdb.org/

https://www.monetdb.org/


2.6. Bitwise operations 27

from the DBMS while the frequent ones are kept. The intersection op-
eration provides the set of transactions covered by an itemset and aims
at reducing the number of transactions after each call. To find frequent
3-itemsets two possibilities were considered in [Hol+95]: the intersec-
tion between 2-itemsets and 1-itemsets or the intersection between two
2-itemsets. For example, the itemset {A,B,C} can be built by intersect-
ing {A,B} and {C} or by intersecting {A,B} and {A,C}. The advan-
tage of the last technique is that both intersected itemsets are generated
from another intersection, and their tid-list is thus reduced. This speeds
up the intersection process. Moreover, from a memory perspective, af-
ter the frequent 2-itemsets found, there is no need for the 1-itemsets
and they can be removed from the DBMS. The process is level-wise like
the Apriori algorithm. Therefore, all rows of the DBMS representing the
k-itemsets can be dropped after computing the frequent (k+1)-itemsets.

After the introduction of the vertical representation and the inter-
section operations, Zaki et al. proposed the Eclat[Zak+97] algorithm.
In this algorithm, they incorporate the vertical representation and the
intersection operations into a tree-based algorithm. The use of a DBMS
as an operation performer has been dropped by Zaki et al. [Zak+97].
Eclat algorithm has been designed to be a standalone algorithm explor-
ing a lexicographic tree to find the frequent itemsets. The dataset is
read and saved in memory as a vertical database, and the intersection
operations during the exploration of the search space allows the reduc-
tion of the database subset used to count the supports. Eclat uses a BFS
to explore the search space. Because the algorithm explores a tree, the
database obtained after each intersection is stored at each node for the
child nodes and this has an impact on the memory usage. In order to
reduce this impact, Zaki and Gouda propose dEclat [ZG03] algorithm.
It is an improvement of Eclat which is based on a DFS strategy. This
reduces the number of nodes to be kept in memory. Moreover dEclat
uses a concept called diffsets to reduce the size of the tid-lists stored in
the nodes of the search space. The idea is to store for each node of the
search space, the difference between its tid-list and that of its parent.
This is proven to considerably save the memory usage of the algorithm.

2.6 Bitwise operations

In addition to the vertical representation of the databases, Burdick et
al. propose another variation of the database representation [BCG01].
The idea still relies on the vertical representation. However, instead of
maintaining for each item, a tid-list recording the set of the identifiers
of transactions covered by the item Burdick et al. maintain a bit vector.
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The idea is to keep for each item of a database D, a bit vector of size
|D|. Each bit at index i in the bit vector has the value 1 or 0 and this
expresses whether the transaction ti is covered or not by the item. The
bit vector of each itemset is a binary representation of its cover. The first
idea was to reduce the memory consumption of the algorithm. Even
when the number of elements kept by the bit vector is larger than the
tid-list, the memory consumption of the bit vector is low. In fact, the
number of identifiers maintained by the tid-list reduces as long as we go
deep in the search, but in case of bit vectors, the number of elements
maintained is still |D|. However, the identifiers maintained by the tid-list
are integers and need generally 32 bits to store each of them. On the
other hand, the bit vector uses only 1 bit to indicate the coverage or not
of a transaction.

In the context of bit vectors, the support counting is performed by
counting the number of bits set to 1. In the same way as for vertical rep-
resentation algorithms, the cover of (k+1)-itemsets is obtained by inter-
secting the bit vector representing the cover of k-itemsets or 1-itemsets.
When the itemsets to evaluate during the search are long, many trans-
actions of the database are no longer covered by the long itemsets. In
the case of the tid-lists, the list reduces as long as the itemsets becomes
longer, but the size of the bit vector remains unchanged, and it becomes
time-consuming to count the support by taking into account transac-
tions which are not covered. To reduce this impact, [BCG01] perform
a database projection in the nodes for which their parent reaches a cer-
tain support. This operation removes the bits of the transactions not
covered, but it requires a specialized data structure to keep the indices
of transactions not removed to perform reliable intersections. The pro-
jection operation reduces the cost of intersections and counting but adds
a non-negligible overhead.

In 2017, Schaus et al. shows that recent advances in computer tech-
nology lead to a great performance of bitwise operations. Concretely,
they showed that bitwise operations are efficient when performed by
computers of 64 bits architecture on bit vectors of 64 bits. This speeds
up the counting and intersection processes. They rely on this advance to
propose an efficient algorithm to find frequent itemsets using bit vec-
tors and constraint programming [SAG17]. The algorithm proposed
does not perform a concrete projection operation as in [BCG01]. How-
ever, they rely on a specialized data structure, the Reversible Sparse Bit-
set [Dem+16], to avoid performing some useless operations. Moreover,
the used data structure reduces the memory consumption because a
unique instance of the data structure is used to maintain the bit vectors
along all the nodes of the search space. We will detail the Reversible



2.7. Frequent closed itemsets 29

Sparse Bitset data structure in the next chapter, as we rely on it to build
the algorithms we propose in this thesis.

2.7 Frequent closed itemsets

In the pattern mining literature, there is a lot of research on the com-
pression of frequent itemsets. Concretely, the objective is to find a lim-
ited set of patterns that can be used to retrieve the whole set of itemsets
without loss of information. Pasquier et al. propose the concept of fre-
quent closed itemsets. These are itemsets that do not have any superset
that has the same support as them. More formally, an itemset I ⊆ I
is a closed itemset iff ∄i ∈ I | Support(I ∪ {i}) = Support(I). This
itemset is frequent if its support is greater than or equal to the thresh-
old θ. An interesting characteristic of closed itemsets is that, given a
database, all frequent itemsets and their corresponding supports can be
derived from the complete set of the frequent closed itemsets. Another
characteristic of closed itemsets is that there is only one closed itemset
that covers a specific set of transactions. Therefore, a closed itemset can
be used to uniquely represent a set of transactions. There exist many al-
gorithms [Pas+99; PHM+00; ZH02; Wan+05] to find frequent closed
itemsets, but in this section, we intentionally do not provide any details
on these algorithms. The idea here is just to describe what a closed
itemset is, as we will talk about it later in the thesis.
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3.1 Introduction

In discrete optimization problems, the aim is to assign discrete values of
specific domains to some variables in order to optimize a specific func-
tion which relies on the variables. The well-known algorithms that show
impressive results in solving discrete optimization problems are mostly
based on specialized techniques. These techniques are mostly based
on search algorithms. Among these techniques, we can cite Dynamic
Programming (DP), Branch-and-Bound (BnB), Constraint Programming
(CP), etc. Apart from the interesting properties used by these techniques
to solve combinatorial problems, the implementation of the algorithms
using these techniques is crucial to show great performance in terms of
space/time complexities. For this reason, many of the implementations
of the algorithms that rely on these techniques use specific algorithmic
techniques to increase their performance. Generally, they use tailored
data structures that can cover the specific problem at hand. Some of
these data structures are generic enough to cover other kinds of prob-
lems than the one for which they were designed. This is the case of the
Reversible Sparse Bitsets (RSBS) [Dem+16] data structure designed by
Demeulenaere et al. for CP solvers to efficiently solve the well-known
table constraint or extensional constraint [BR97; Gen+07]. We use the
RSBS data structure in this thesis to speed up the learning of ODTs.

In the next sections of this chapter, we describe the RSBS data struc-
ture and highlight the cases in which it can be used.

3.2 Bitsets as state representation

Most of the algorithms designed to solve combinatorial problems till
optimality rely on search algorithms. These algorithms generally ex-
plore a search space represented as a tree, in which each node in a path
represents an assignment of a value to a variable of the problem. The
state of a node in the search space generally depends on its ancestor
states. Therefore, to ensure the consistency of the results found from
the search, a certain number of parameters needs to be maintained at
each node during the search so that the child nodes can use them. An
example of a parameter generally maintained in the search algorithms
is the set of remaining values to explore for each variable of the prob-
lem. There are many other kinds of parameters that can be maintained
during a search. This depends mainly on the problem to solve. Let us
consider a parameter p that contains a list of integer values and that
should be maintained. Assume also that different operations can be per-
formed on p to remove some of its elements depending on the point
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where we are in the search. It is important to use the right data struc-
ture to represent p. Since the set of possible values of p is discrete, an
intuitive way to represent it is an array. The RSBS provides a way to rep-
resent this kind of parameter. However, it does not use a classic array
for its implementation. Instead, an RSBS represents the list of integers
as a bitset.

An array containing elements from a finite set can easily be turned
into a bitset. Figure 3.1 shows an example of equivalency between an
array and a bitset. In this example, we assume that the finite domain
Ω to which any value of p should belong is Ω = {1, . . . , 8}, that is, p
can contain only integers ranging from 1 to 8. We also assume that p
currently contains all values of Ω. In Figure 3.1a, an array is used to
keep the list of the eight integer values of p, while a bitset holds a list
of eight bits related to each value in Ω (Figure 3.1b). For each bit at the
index i in the bitset, the value 1 denotes that the integer at the index i
in Ω is contained in p. The value 0 means the opposite. Note that the
indices are considered starting from 0.

Array: 1 2 3 4 5 6 7 8

(a) Array structure

Bitset: 1 1 1 1 1 1 1 1

(b) Bitset structure

Figure 3.1: Array vs Bitset

When after some operations, some values are no longer possible to
be considered in p, the array structure is reduced to a shorter one that
contains only valid values. This is shown in Figure 3.2a where the values
5 and 7 are removed from p. On the other hand, the bitset shown in
Figure 3.2b still has the same size as Ω but the bits at the indices of the
values 5 and 7 are turned into 0, denoting that the elements at these
indices in Ω are no longer present in p.

Array: 1 2 3 4 6 8

(a) Array structure

Bitset: 1 1 1 1 0 1 0 1

(b) Bitset structure

Figure 3.2: Filtered array and bitset

The first advantage of using bitsets instead of arrays is the memory
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usage. Even when some values are removed from p as long as the search
evolves, the memory required to store the array of integers is generally
higher than that required for a bitset when the sets are large. In fact,
each integer in an array requires 32 bits in the common programming
language implementations to be stored. In the worst case, it can require
64 bits. On the other hand, a bitset only requires 1 bit to denote the
presence of an integer. The parameter p would contain at least 32 times
fewer values than Ω for the array to be a good option. But in practice, it
is generally less memory-consuming to use a bitset than an array.

Due to the representation of bitsets, they are more suitable for the
cases in which the number of elements maintained is more relevant than
the data itself. This is why they are used to represent transactions in
many frequent itemsets mining algorithms [BCG01], where the aim is
to find itemsets that cover a certain number of transactions. The bitsets
provide very efficient instructions to perform bitwise operations such as
the count. A count of the number of elements in an array is performed
in O(n), where n is the size of the array. In case of bitsets, the struc-
ture encodes a one-hot encoding of the array. Therefore, the count of
the number of elements is equivalent to a count of the number of bits
set to 1. In most of the programming languages, this operation is per-
formed efficiently on 64-bitset (bitsets of size 64), by using the CPU
instruction popcnt when available. Otherwise, it is performed using a
pre-populated lookup table loaded in the CPU cache. These instructions
provided by the programming languages or the CPUs allow the count
operation to be performed in constant or approximately constant time
on 64 bits at once. This is due to the fact that the basic data unit ma-
nipulated by 64 bits CPUs is data of 64 bits. Similarly, many other bit-
wise operations, such as the intersection (∩) or the union (∪) are also
optimized to be performed on 64 bits at once. This makes the bitsets
relevant to store parameters that require these kinds of operations.

To benefit from these optimizations, most of the data structures that
rely on bitsets implement them as an array of bitsets of size 64. Each 64-
bitset in the array is called a word. The number of words needed is thus
the ceiling of the size of the domain divided by 64. Figure 3.3 shows an
illustrative example. Assuming a list of 128 values from 1 to 128 in Ω and
p, an array of size 128 is needed, while a bitset-based implementation
uses an array of 2 64-bitsets.

3.3 Sparse Bitsets

An important element to take into account when counting the number
of elements in a set is the size of the set. When using arrays, the size
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Array: 1 2 . . . . . . 127 128

(a) Array structure

Bitsets array: 1 . . . . . . 1 1 . . . . . . 1︸ ︷︷ ︸
word 0: 64 bits

︸ ︷︷ ︸
word 1: 64 bits

(b) Bitset structure

Figure 3.3: Array vs array of bitsets

of the structure corresponds exactly to the number of elements that are
included. In contrast, the bitsets structure always has the same size as
Ω, even when some values are no longer considered. For this reason,
even when there exist efficient bitwise functions to perform operations,
the fact of considering many more elements than a classic array can be
problematic if Ω is large. This situation occurs in the Mafia [BCG01] al-
gorithm that converts transactions into bitsets to find frequent itemsets.
As the number of elements present in the set is getting low, it becomes
less efficient to consider a bitset containing a large number of bits in-
stead of an array of few values. To mitigate this drawback of bitsets,
[BCG01] considers the option of removing the bits set to 0 when they
become numerous. However, this requires additional operations to per-
form the filtering and to maintain the list of indices of remaining bits.

In the case of RSBS, the fact that the operations are performed per
word of 64 bits provides better performance over Mafia. Moreover, the
bitsets are implemented as sparse bitsets. The idea is to integrate in the
data structure, a variable that keeps information on regions where there
are a bunch of 0s in order to avoid operating on them when necessary.
To facilitate the identification of these regions, the RSBS uses the slicing
of bitsets into an array of words. The words that have all their bits set
to 0 are those identified as empty regions. Figure 3.4 shows an example
of what a sparse bitset looks like.

word 0︷ ︸︸ ︷ word 1: all bits set to 0︷ ︸︸ ︷ word 2︷ ︸︸ ︷
Bitsets array: 1 . . . . . . 1 0 . . . . . . 0 0 . . . . . . 1

Valid words: 0 2

Figure 3.4: Sparse bitset

Notice the presence of an additional array denoting the indices of
non-zero words to consider. Keeping information about empty regions
is interesting, as it prevents from operating on these regions in the case
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of some operations like the count. Indeed, it is useless to check the
number of bits set to 1 in a region where all bits are set to 0. Moreover,
the sparsity introduced is also relevant for the intersection operation,
where it is known that the intersection of a 0 bit and any other one
always results in a 0.

3.4 Reversibility

Even though the use of a sparse bitset often reduces the memory con-
sumption compared to a classic array and also shows interesting per-
formance in terms of time, it still shares an important drawback with
arrays. Specifically, in search algorithms, many parameters stored at a
node are passed to the child nodes to preserve the consistency of the
search. Generally, a copy of the relevant parameters is made from the
parent node and is passed to the children so that the children can op-
erate on them. This copy generates a non-negligible overhead as it is
performed each time a node is expanded. Using a sparse bitset instead
of an array does not avoid this copy. To prevent this behavior, the RSBS
uses a technique generally used in CP solvers: the reversibility.

In constraint programming, many data structures are implemented
in a reversible way. This allows the structures to recover their previous
states after different changes. This is useful when the structures are
maintained at the different nodes of the search. In this case, only one
instance of the data structure is required during the whole search. At
each step of the search, different changes can be applied to the unique
instance. However, when another path of the search has to be explored,
the structure can roll back its state so that another path can be explored
without inconsistency. This mechanism is often used in CP solvers and
is called the trailing [MSV17]. The principle is simplified here for our
purposes.

Specifically, the reversible structures are implemented as a stack. Do-
ing this, the different changes appear as successive layers added on top
of the initial state. When a backtracking is performed, the top layers
are popped so that the old states are retrieved. This is straightforward
when the structure is just an integer. However, it becomes more com-
plex when the reversible structure is a set and its successive states can
remove some elements from the previous ones, as for the empty words
in a sparse bitset.

Algorithm 4 shows the RsparseBitset class provided to implement
a reversible sparse bitset data structure. Only the methods useful for
the ODTs learning are shown here. The others can be implemented by
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Algorithm 4: RsparseBitset

1 words : array of stack of 64-bitsets // layers of bitset arrays
2 nonZeroIndices : array of int // the array used for the sparsity
3 limit : stack of int // last index of non-zero words in nonZeroIndices

4 Method intersect(mask : array of 64-bitsets)
5 cLimit← limit.top()
6 for i from 0 to cLimit do
7 realIndex← nonZeroIndices[i]
8 newWord← words[realIndex].top() & mask[realIndex]
9 words[realIndex].push(newWord)

// update the list and number of empty words
10 if newWord = 064 then
11 nonZeroIndices[cLimit]← nonZeroIndices[i]
12 nonZeroIndices[i]← realIndex
13 cLimit← cLimit− 1

14 limit.push(cLimit)

15 Method backtrack()
16 limit.pop()
17 for i from 0 to limit.top() do
18 realIndex← nonZeroIndices[i]
19 words[realIndex].pop()

20 Method countSetBits()
21 val← 0
22 for i from 0 to limit.top() do
23 realIndex← nonZeroIndices[i]
24 val← val + words[realIndex].popcnt()

25 return val

performing a loop over each word of the bitset array. The class requires
3 variables:

(1) words This variable represents the current state of the reversible
sparse bitset. It is similar to the sparse bitset array presented in the
previous section. The main difference is that each word in the bitset
array is implemented as a stack. This allows the words to be reversible,
as a stack can pop the top elements to recover the previous ones. Each
stack of the words is initialized by the successive words of the first bitset
array used as the initial state.
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(2) nonZeroIndices This variable is the same as the array of valid
words shown in Figure 3.4. It maintains the list of the indices of words
that are not equal to 0. It is required to implement the sparsity. The fact
of keeping this list allows one to avoid operations on useless regions of
the bitset array. It is initialized by the indices of the non-empty words
of the initial bitset array and is updated as long as the state of the bitset
array changes.

(3) limit This value is a stack of integers, where the integer k on the
top states that it is only the indices from 0 to k in nonZeroIndices which
contain the current non-empty words of the bitset array. It is also ini-
tialized by the information of the initial state and updated each time the
state changes.

Figure 3.5 shows an example of the initial state of a reversible sparse
bitset. The variable words is initialized with a sparse bitset. Notice that
in the initial state, the word at the index 1 is empty. For this reason, the
index 1 is not in the list of the nonZeroIndices variable. The variable
limit keeps the information about the last index in nonZeroIndices
which contains empty words for the current state. In fact, as long as
the state of the RSBS changes, the number of empty words increases
and the nonZeroIndices variable is updated. But in reality, as the RSBS
needs to roll back to previous states, the indices in nonZeroIndices
are not removed when empty words appear. Instead, the indices in
nonZeroIndices are reordered so that the indices of empty words for
the current state are placed at the beginning of the list, and the variable
limit keeps track of the last index where ends up the empty words of
the current state. As the initial state keeps track only of non-empty
words, all the indices in nonZeroIndices are valid. Thus, the limit
variable is set to the maximum index, here 2.

word 0︷ ︸︸ ︷ word 1: empty︷ ︸︸ ︷ word 2︷ ︸︸ ︷ word 3︷ ︸︸ ︷
words: 1 . . . 0 0 . . . 0 1 . . . 1 0 . . . 1

nonZeroIndices: 0 2 3

↑ current limit index = 2
limit: 2

Figure 3.5: Example of initial state of a reversible sparse bitset

When an intersection occurs between a RSBS and another bitset,
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some operations need to be ensured to preserve the consistency of the
RSBS. This is described by the method intersect() (lines 4-13) of Al-
gorithm 4. The intersection is performed only on the non-empty words,
as the intersection of 0 bits with another one will not change its state.
When the intersection of a word leads to a new word with all its bits
set to 0 (064), the nonZeroIndices is updated. For this, a swap is made
between the current index and the last one. Then the current limit is
updated by decreasing its value by one, denoting that the current index
is no longer valid. The new limit obtained after looping over all non-
empty words is added on top of the limit stack. An example is shown
in Figure 3.6. Consider that its previous state is the one shown in Fig-
ure 3.5.

word 0: empty︷ ︸︸ ︷ word 1: empty︷ ︸︸ ︷ word 2︷ ︸︸ ︷ word 3︷ ︸︸ ︷
words:

0 . . . 0 0 . . . 1 0 . . . 1

1 . . . 0 0 . . . 0 1 . . . 1 0 . . . 1

nonZeroIndices: 3 2 0

↑ current limit index = 1

limit:
1

2

Figure 3.6: A reversible sparse bitset state after an intersection

During the intersection, there is no operation performed on the word
1 which was empty. Moreover, the word at the index 0 leads to an
empty word after the intersection. Therefore, its index 0 is swapped
with the last index 3 and the current limit of non-empty words indices
is decreased and set to 1. The 1 is thus pushed on top of the limit stack
denoting that only the indices 3 and 2 contain non-empty words at the
current state.

To roll back to the previous state, the method backtrack() is used.
This function is quite simple. The top value of limit is popped so that
the last limit is revealed. Then, for each non-empty word of the previous
state (found in nonZeroIndices), its previous state is recovered by pop-
ping the bitset on top of the stack. Notice in Figure 3.6 that the order of
nonZeroIndices will not be preserved. However, all the non-empty word
indices are restored.

The count function detailed previously is also described in the algo-
rithm by the method countSetBits(). It performs a loop on the non-
empty words. For each of them, the number of bits set to 1 is efficiently
counted using the CPU instruction popcnt or other instructions provided
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by the programming language. Then a sum is performed over the num-
ber of bits per word and the total is returned.
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ò
This chapter is based on the paper G. Aglin, S. Nijssen, and
P. Schaus. “Learning optimal decision trees using caching
branch-and-bound search”. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence. Vol. 34. 04. 2020, pp.
3146–3153.

4.1 Introduction

Decision trees are among the most widely used machine learning mod-
els. Their success is due to the fact that they are simple to interpret
and that there exist efficient algorithms for learning trees of acceptable
quality.

The most well-known algorithms for learning decision trees, such as
CART [Bre+84] and C4.5 [Qui93], as discussed in Chapter 1, are greedy
in nature: they grow the decision tree top-down, iteratively splitting the
data into subsets.

While in general these algorithms learn models of good accuracy,
their greedy nature, in combination with the NP-hardness of the learning
problem [LR76], implies that the trees that are found are not necessarily
optimal. As a result, these algorithms do not ensure that:

■ the trees found are the most accurate for a given limit on the depth
of the tree; as a result, the paths towards decisions may be longer
and harder to interpret than necessary;

■ the trees found are the most accurate for a given lower bound on
the number of training examples used to determine class labels in
the leaves of the tree;

■ the trees found are accurate while satisfying additional constraints
such as on the fairness of the trees: in their predictions, the trees
may favor one group of individuals over another.

With the increasing interest in explainable and fair models in machine
learning, recent years have witnessed a renewed interest in alternative
algorithms for learning binary decision trees that can provide such opti-
mality guarantees.

Most attention has been given in recent years and in prominent
venues to approaches based on mixed integer programming [BD17;
VZ19; AAV19]. In these approaches, a limit is imposed on the depth
of the trees that can be learned and a MIP solver is used to find the
optimal binary tree under well-defined constraints.

However, earlier algorithms for finding optimal decision trees under
constraints have been studied in the literature, of which we consider the
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DL8 algorithm of particular interest [NF07; NF10]. The existence of this
earlier work does not appear to have been known to the authors of the
more recent MIP-based approaches, and hence, no comparison with this
earlier work was carried out.

DL8 is based on a different set of ideas than the MIP-based ap-
proaches: it treats the paths of a decision tree as itemsets, and uses
ideas from the itemset mining literature [Agr+96] to search through
the space of possible paths efficiently, performing dynamic programming
over the itemsets to construct an optimal decision tree. Compared to the
MIP-based approaches, which most prominently rely on a constraint on
depth, DL8 stresses the use of a minimum support constraint to limit the
size of the search space. It was shown to support a number of different
optimization criteria and constraints that do not necessarily have to be
linear.

In this chapter, we present a number of contributions. We will
demonstrate that DL8 can also be applied in settings in which MIP-
based approaches have been used; we will show that, despite its age, it
outperforms the more modern MIP-based approaches significantly, and
is hence an interesting starting point for future algorithms.

Subsequently, we will present DL8.5, an improved version of DL8
that outperforms DL8 by orders of magnitude. Compared to DL8, DL8.5
adds a number of novel ideas:

■ it uses branch-and-bound search to cut large additional parts of
the search space;

■ it uses a novel caching approach, in which we store also store
information for itemsets for which the search space has been cut;
this allows us to avoid redundant computation later on as well;

■ we consider a range of different branching heuristics to find good
trees more rapidly;

■ the algorithm has been made any-time, i.e. it can be stopped at
any time to report the best tree it has found so far.

In our experiments we focus our attention on traditional decision tree
learning problems with little other constraints, as we consider these
learning problems to be the hardest. However, we will show that DL8.5
remains sufficiently close to DL8 that the addition of other constraints
or optimization criteria is straightforward.

In a recent MIP-based study, significant attention was given to the
distinction between binary and numerical data [VZ19]. We will show
that DL8.5 outperforms this method on both types of data.
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This chapter is organized as follows. The next section presents the
state of the art of optimal decision trees induction. Then we present the
background on which our work relies, before presenting our approach
and our results.

4.2 Related work

In our discussion of related work, we will focus our attention on alter-
native methods for finding optimal decision trees, that is, decision trees
that achieve the best possible score under a given set of constraints.

Most attention has been given in recent years to MIP-based ap-
proaches. Bertsimas and Dunn (2017) developed an approach for
finding decision trees of a maximum depth K that optimize misclassifi-
cation error. They use K to model the problem in a MIP model with a
fixed number of variables; a MIP solver is then used to find the optimal
tree.

Verwer and Zhang (2019) proposed BinOCT, an optimization of this
approach, focused on how to deal with numerical data. To this end, deci-
sion trees need to identify thresholds that are used to separate examples
from each other. A MIP model was proposed in which fewer variables
are needed to find high-quality thresholds; consequently, it was shown
to work better on numerical data.

A benefit of MIP-based approaches is that it is relatively easy from a
modeling perspective to add linear constraints or additional linear op-
timization criteria. Aghaei, Azizi, and Vayanos (2019) exploit this to
formalize a learning problem that also takes into account the fairness of
a prediction.

Verhaeghe et al. (2019) recently proposed a Constraint Program-
ming (CP) approach to solve the same problem. It supports a maximum
depth constraint and a minimum support constraint, but only works for
binary classification tasks. It also relies on branch-and-bound search
and caching, but uses a less efficient caching strategy. The approach in
this chapter is easily implemented and understood without relying on
CP systems.

Another class of methods for learning optimal decision trees is that
based on SAT Solvers [Nar+18; BHO09]. SAT-based studies, however,
focus on a different type of decision tree learning problem than the MIP-
based approaches which is finding a decision tree of limited size that
performs 100% accurate predictions on training data. These approaches
solve this problem by creating a formula in conjunctive normal form, for
which a satisfying assignment would represent a 100% accurate decision
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tree. We believe there is a need for algorithms that minimize the error,
and hence we focus on this setting.

Most related to this work is the work of Nijssen and Fromont (2007;
2010) on DL8, which relies on a link between learning decision trees
and itemset mining. Similarly to MIP-based approaches, DL8 allows to
find optimal decision trees minimizing misclassification error. DL8 does
not require a depth constraint; it does however assume the presence of a
minimum support constraint, that is, a constraint on the minimum num-
ber of examples falling in each leaf. In the next section we will discuss
this approach in more detail. This discussion will show that DL8 can
easily be used in settings identical to those in which MIP and CP solvers
have been used. Subsequently, we will propose a number of significant
improvements, allowing the itemset-based approach to outperform MIP-
based and CP-based approaches.

4.3 Background

4.3.1 Dataset binarization

As the running example to illustrate the optimal decision tree learning
problem, we will use the dataset of Table 4.1. It consists of 3 Boolean
features (or attributes) and 11 examples (also called instances or data
points). Indeed, our algorithm, like most of optimal decision trees learn-
ing algorithms, operates on Boolean data.

Table 4.1: Example database

A B C class
0 1 1 0
1 0 1 1
0 0 1 1
0 1 0 0
1 0 0 1
0 0 0 0
0 0 1 0
1 1 0 1
0 0 0 1
0 0 1 0
0 0 0 1

While it may seem a limitation to propose a learning algorithm that
only operates on Boolean data, there exist ways to transform any tabular
database into a Boolean database. The binarization process consists in
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converting each non-Boolean feature column of a database into columns
of Boolean (0/1) values. To accomplish this task, the process depends
on the feature type.

Categorical features For categorical features, a one-hot encoding can
be performed. A one-hot encoding is a process by which an original fea-
ture column of a dataset is turned into a set of b Boolean columns, with
b equal to the number of distinct values in the original feature column.
The values in the new columns are set to 1 when the original feature
value is equal to the new column name. Values of other features are set
to 0. An illustrative example is provided by Table 4.2. The original color
feature of Table 4.2a is converted into Boolean features (Table 4.2b),
where each feature value denotes whether the data point value for the
original feature is equal to the name of the feature or not. There are 4
distinct values in the original feature. Therefore, the feature has been
converted into 4 Boolean features representing each color. Note that
one-hot encoding prevents information loss while converting a categor-
ical dataset into a binary one.

Table 4.2: One-hot encoding

Color
Red
Red

Yellow
Green
Blue

Yellow

(a) Categorical feature

Red Yellow Green Blue
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

(b) Generated Boolean features

Numerical features In the case of numerical features, the one-hot en-
coding leads to information loss. As the features can take any real value,
considering only values present in the feature column may cause an ig-
noring of other possible values. As shown in Chapter 1, the suitable
binary splits for numerical features are of type feature < threshold.
This means that a split considers all values less than a threshold to be
1 while others are considered as 0. Performing this technique by using
each distinct value of the original feature as a threshold will ensure the
creation of Boolean features without information loss. This technique
is illustrated in Table 4.3. In the original feature column (Table 4.3a),
some height values in meter are shown. For each, a threshold of type
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height < threshold is created. The data point values are thus turned
into 1 for the threshold which requirement is fulfilled while others are
set to 0 (Table 4.3b).

Table 4.3: Binarization of a numerical feature

Height
1.12
1.55
1.23
1.85
1.9
1.6

(a) Numerical feature

< 1.12 < 1.23 < 1.55 < 1.6 < 1.85 < 1.9
0 1 1 1 1 1
0 0 0 1 1 1
0 0 1 1 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 1

(b) Generated Boolean features

4.3.2 Itemset mining for decision trees

DL8 is an algorithm that takes an itemset mining perspective on learn-
ing decision trees. In this perspective, the binary matrix shown in Ta-
ble 4.1 and reminded in Table 4.4a is transformed into the transactional
database of Table 4.4b. The optimal decision tree for this database can
be found in Figure 4.1a.

Table 4.4: Database conversion

A B C class
0 1 1 0
1 0 1 1
0 0 1 1
0 1 0 0
1 0 0 1
0 0 0 0
0 0 1 0
1 1 0 1
0 0 0 1
0 0 1 0
0 0 0 1

(a) Binary matrix

Id items class
1 ¬a, b, c 0
2 a,¬b, c 1
3 ¬a,¬b, c 1
4 ¬a, b,¬c 0
5 a,¬b,¬c 1
6 ¬a,¬b,¬c 0
7 ¬a,¬b, c 0
8 a, b,¬c 1
9 ¬a,¬b,¬c 1
10 ¬a,¬b, c 0
11 ¬a,¬b,¬c 1

(b) Transactional database

Each transaction of the new dataset (Table 4.4b) contains an item-
set describing the presence or absence of each feature in the original
dataset (Table 4.4a). More formally, the transactional database D can
be thought of as a collection D = {(t, I, c) | t ∈ T , I ⊆ I, c ∈ C}, where
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A

1 B

0 C

0 1

1 0

1 0

1 0

(a) Common view

∅

a : 1 ¬a

b : 0 ¬b

c : 0 ¬c : 1

(b) Itemset view

Figure 4.1: Optimal tree corresponding to database of Table 4.4. Max
depth = 3 and minimum examples per leaf = 1

T represents the transaction or rows identifiers, I is the set of possible
items, and C is the set of class labels; within I there are two items (one
positive, the other negative) for each original Boolean feature, and each
itemset I contains either a positive or a negative item for every feature.

Using this representation, every path in a classic decision tree can be
mapped to an itemset I ⊆ I. Therefore, a classic decision tree can be
converted to an equivalent itemset-based decision tree. This is shown in
Figure 4.1b where the classic decision tree in Figure 4.1a is shown with
an itemset view. The last path from left to right in the tree in Figure
4.1a corresponds to the itemset {¬a,¬b,¬c}. Note that multiple paths
can be mapped to the same itemset because the paths are ordered while
itemsets are not.

For every itemset I, we define its cover to be cover(I) = {(t′, I ′, c′) ∈
D | I ⊆ I ′}: the set of transactions in which the itemset is contained.
This is equivalent to the cover concept used in pattern mining. More-
over, pattern mining defines the support to be the number of elements
in a cover. In decision tree problems, the class-based support of an
itemset is defined and is expressed as Support(I, c) = |{(t′, I ′, c′) ∈
cover(I) | c′ = c}|. It can be used to identify the number of examples
for a given class c in a leaf. Based on class-based supports, the error of
an itemset is defined as:

leaf _error(I) =| cover(I) | −max
c∈C

(
Support(I, c)

)
(4.1)

This error of an itemset I is by equivalence the error of a leaf node end-
ing a path mapped by the itemset I. It is called the misclassification rate
of the classification error. Unlike the CP-based approach, our error func-
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tion is also valid for classification tasks involving more than 2 classes.
For each itemset representing a path to a leaf node, a class is associated
using the expression:

maxclass(I ) = argmax
c∈C

(
Support(I , c)

)
(4.2)

The canonical decision tree learning problem that we study in this
work can now be defined as follows using itemset mining notation.
Given a database D, we wish to identify a collection DT ⊆ I of itemsets
such that

■ the itemsets in DT represent a decision tree;

■
∑

I∈DT leaf _error(I) is minimal;

■ for all I ∈ DT : |I| ≤ maxdepth, where maxdepth is the maximum
depth of the tree;

■ for all I ∈ DT : |cover(I)| ≥ minsup, where minsup is a minimum
support threshold.

As stated earlier, in DL8, the maximum depth constraint is not required;
MIP-based approaches ignore the minimum support constraint.

4.3.3 DL8 Algorithm

The optimal tree is calculated recursively by DL8 using the observation
that the best decision tree for a set of transactions can be obtained by
considering all possible ways of partitioning the set of transactions into
two subsets based on the values of different features, and determining
the best subtree for each partition recursively. Specifically, the tree with
the lowest error is computed by recursively looking for the best subtree
at the left split and the best subtree at the right split. To find the best
subtree at each side of a split, all the possible splits are recursively as-
sessed and the one producing the lowest error is picked. Given a dataset
with a set F of features, each splittable in items i and ¬i, the lowest
error can then be computed by using the following recursive formula:

min_error(I) =
{

minF∈F min_error(I ∪ {i}) +min_error(I ∪ {¬i}) if |I| < maxdepth;
leaf _error(I) if |I| = maxdepth,

(4.3)
Figure 4.2 illustrates the search space of itemsets for the dataset of

Table 4.4, where all the possible itemsets are represented.
Intuitively, DL8 starts at the root node of this search space, and cal-

culates the optimal decision tree for the root based on its children.
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edge to infrequent node
pruned edge
edge to visited nodevisited node

pruned node

infrequent node

Figure 4.2: Complete itemset lattice for introduction database and DL8.5
search execution

4.3.4 Caching in DL8

A distinguishing feature of DL8 is its use of a cache. The idea behind
this cache is to store the optimal subtree found for each itemset. Doing
so is effective as the same itemset can be reached by multiple paths in
the search space: itemset ab can be constructed by adding b to itemset
a, or by adding a to itemset b. By storing the result, we can reuse the
same result for both paths. DL8 uses a lexicographic tree also known
as trie or prefix tree, to implement its cache. In fact, in addition to
the number of elements stored in the cache, the memory consumption
of the algorithm depends also on the size of each itemset stored. To
reduce this impact, the trie data structure allows to reduce the number
of items to store to represent all itemsets. Specifically, items shared by
multiple itemsets are represented once in trie. Algorithm 5 shows how
the trie is implemented in DL8. The function insertOrGet() is used to
insert an itemset in the cache and prepare the structure that will hold
the solution for the itemset. It is represented in the pseudocode by the
BestTree data structure. After the insertion of a new itemset, its leaf
error is filled in the solution structure (lines 13-14). However, when
the itemset already exists in the cache, the function outputs the existing
solution for the itemset. DL8 uses a sorted representation of itemsets to
uniquely represent all the itemsets composed of the same items.

Another interesting aspect of this cache is the solution structure that
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Algorithm 5: Class Trie_Cache
1 struct Entry{solution: BestTree; childEntries: HashSet<int, Entry>}
2 struct BestTree{lb : float; feat : int; error : float }
3 rootEntry← Entry(BestTree(0, NO_FEAT,+∞), {})
4 Method insertOrGet(I : array of int) // I: itemset
5 entry← rootEntry

6 for i ∈ I do // foreach item in the itemset
7 if i ∈ entry.childEntries then
8 entry← entry.childEntries.get(i)
9 else

10 childEntry← Entry(BestTree(0, NO_FEAT,+∞), {})
11 entry.childEntries.push({i, childEntry})
12 entry←childEntry

13 if entry.solution.error = +∞ then
14 entry.solution.error← leaf_error(I)

15 return entry

16 Method exploreTree(I : array of int) // I: itemset
17 if I = {} then
18 node← rootEntry

19 else
20 node← insertOrGet(I)

21 F← node.solution.feat
22 while F ̸= NO_FEAT do
23 for items i and ¬i known as splits of feature F do
24 exploreTree(I ∪ i)
25 exploreTree(I ∪ ¬i)

would hold the optimal subtree found as the best for each itemset. No-
tice in the BestTree structure that there is no parameter to hold the
subtree found as solution. Instead, a single integer variable is used to
hold the feature representing the root of the best subtree found for the
itemset. This reduces the impact of the solution storage on the memory
consumption of the algorithm. It is initialized by default for a new item-
set to the value NO_FEAT. This states that it is a new itemset and that no
solution has yet been found for it. The same variable is used to store the
class associated to the itemsets of leaf nodes. As the subtree found as
solution for each itemset is not saved in the solution data structure, DL8
proposes the exploreTree() function to explore in the cache, the nodes
of the optimal tree found at the end of the search. Starting from the
root itemset, the corresponding node is found in the trie (lines 17-20).
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Once the node is found, the feature representing the root of its optimal
subtree is selected (line 21). As long as the feature exists, a DFS is per-
formed to recursively reach the optimal nodes representing the left and
right child nodes (lines 22-25). Note that this function can be used for
instance to print a string representation of the final tree.

4.3.5 Pseudocode of DL8

Pseudocode of the DL8 algorithm is given in Algorithm 6. Essentially, the
algorithm recursively enumerates itemsets using the DL8−Recurse(I)
function. The postcondition of this function is that it returns the optimal
decision tree for the transactions covered by itemset I, together with the
quality of that tree. However, using the caching structure of DL8, only
the root of this decision tree is returned instead of the complete tree.

Algorithm 6: DL8(maxdepth, minsup)
1 cache← Trie_Cache()
2 DL8−Recurse({})
3 return cache.exploreTree({})
4 Procedure DL8−Recurse(I : array of int)

// add to the cache or get from it if it already exists
5 node← cache.insertOrGet(sort(I))
6 solution← node.solution
7 if solution.feat ̸= NO_FEAT then
8 return solution

9 if solution.error = 0 or |I| = maxdepth then
10 solution.feat← maxclass(I)
11 return solution

12 for each feature F splittable in items i and ¬i do
13 if |cover(I ∪ {i})| < minsup or |cover(I ∪ {¬i})| < minsup then
14 continue

15 sol1 ← DL8−Recurse(I ∪ {¬i})
16 if sol1.error < solution.error then
17 sol2 ← DL8−Recurse(I ∪ {i})
18 if sol1.error+ sol2.error < solution.error then
19 solution.feat← F

20 solution.error← sol1.error+ sol2.error

21 return solution

Note that the optimal decision tree for the root can only be calcu-
lated after all its children have been considered; hence, the algorithm
will only produce a solution once the entire search space of itemsets has
been considered.
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The code illustrates a number of optimizations implemented in DL8:

Maximum depth pruning In line 9 the search is stopped as soon as the
itemsets considered are too long;

Minimum support pruning In line 13 an attribute is not considered if
one of its branches has insufficient support. This means that the
path does not fulfill the requirement of the minimum number of
instances per leaf. In our running example, the itemset {a, b, c} is
not considered due to this optimization because its support is 0;

Purity pruning In line 9 the search is stopped if the error for the current
itemset is already 0. If the classification error committed by a path
is null, there is no need to split it more;

Quality bounds In the loop of lines 12–20, the best solution found
among the children is maintained, and used to prune the second
branch for an attribute if the first branch is already worse than the
best solution found so far.

We omit a number of optimizations in this pseudo-code that can
be found in the original publication, in particular, optimizations that
concern the incremental maintenance of data structures. While we will
use most of these optimizations in our implementation as well, we do
not discuss these in detail here for reasons of simplicity.

The most important optimization in DL8 that we do not use in this
chapter is the closed itemset mining optimization. This optimization is
related to the representation used to represent the itemsets stored in
the cache of the algorithm. In addition to the sorted form of items,
DL8 proposes to represent an itemset in the cache by the closed itemset
of its cover. Doing this, all the paths that cover the same subset of
instances are uniquely represented. This optimization of DL8 leads to a
high number of solution reuses in the cache. However, we do not use
it in our approach. The reason for this choice is that this optimization
is not trivial to be combined with a constraint on the maximum depth
of a decision tree. Similarly, while DL8 can be applied to other scoring
functions than misclassification error, as long as the scoring function is
additive, we prioritize in this chapter the accuracy and the depth and
support constraints here as we focus on solving the same problem as
in recent studies. The use of our algorithm to solve other problems is
treated in another chapter.
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4.4 Our approach: DL8.5

As identified in the introduction, DL8 has a number of weaknesses,
which we will address in this section. The most prominent of these
weaknesses is that the size of the search tree considered by DL8 is un-
necessarily large. Reconsider the example of Figure 4.2, in which DL8’s
pruning approach does not prune any node except from one infrequent
itemset (abc). We will see in this section that a new type of caching
branch-and-bound search can reduce the number of itemsets considered
significantly.

Algorithm 7: DL8.5(maxdepth, minsup)
1 cache← Trie_Cache()
2 DL8.5−Recurse({},+∞)
3 return cache.exploreTree({})
4 Procedure DL8.5−Recurse(I : array of int, ub : int)

// add to cache or get if exists
5 node← cache.insertOrGet(sort(I))
6 solution← node.solution
7 if solution.feat ̸= NO_FEAT or ub ≤ solution.lb or ((|I| = maxdepth or

time-out is reached) and solution.error > ub) then
8 return solution

9 if solution.error = solution.lb or ((|I| = maxdepth or time-out is
reached) and solution.error ≤ ub) then

10 solution.feat← maxclass(I)
11 return solution

12 for each feature F in a well-chosen order and splittable in items i and ¬i do
13 if |cover(I ∪ {i})| < minsup or |cover(I ∪ {¬i})| < minsup then
14 continue

15 sol1 ← DL8.5−Recurse(I ∪ {¬i}, ub)
16 if sol1.feat = NO_FEAT then
17 continue

18 sol2 ← DL8.5−Recurse(I ∪ {i}, ub− sol1.error)
19 if sol2.feat = NO_FEAT then
20 continue

21 solution.feat← F

22 solution.error, ub← sol1.error+ sol2.error
23 if solution.error = solution.lb then
24 break

25 if solution.feat = NO_FEAT and solution.lb < ub then
26 solution.lb← ub

27 return solution

The pseudo-code of our new algorithm, DL8.5, is presented in Algo-
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rithm 7. DL8.5 inherits a number of ideas from DL8, including the use
of a cache, the recursive traversal of the space of itemsets, and the use
of depth and support constraints to prune the search space. The main
distinguishing feature of DL8.5 concerns its use of bounds during the
search.

Hierarchical upper bound In DL8.5, the recursive DL8.5−Recurse
procedure has an additional parameter, ub, which represents an upper-
bound on the quality of the decision trees that the recursive procedure
is expected to find. If no tree sufficiently better than the upper bound
can be found, the procedure returns the value NO_FEAT as subtree root
to express that there is no solution. Initially, the upper-bound that is
used is +∞ (line 2). However, as soon as the recursive algorithm has
found one decision tree, or has found a better tree than earlier known,
the quality of this decision tree, calculated in line 22, is used as upper-
bound for future decision trees and is communicated to the children in
the search tree (line 15, 18). This is why this upper bound is called
hierarchical upper bound. The upper-bound is used to prune the search
space using a test in line 16; intuitively, as soon as we have traversed one
branch for an attribute, and the quality of that branch is already worse
than accepted by the bound, we do not consider the second branch for
that attribute. Concretely, the satisfaction of the error produced against
the upper bound is really assessed at leaf nodes, i.e. |I| = maxdepth.
When the error produced at leaf node does not satisfy the upper bound
constraint (lines 7-8), the default value (NO_FEAT) set as solution is re-
turned and sent back to ancestor nodes. Otherwise, the class value is set
(lines 9-11). In line 18 we use the quality of the first branch to bound
the required quality of the second branch further.

Infeasibility lower bound An important modification involves the in-
teraction of the bounds with the cache. In DL8, a solution is always
found and saved for an itemset. Therefore, when the same itemset is
encountered through another path in the search space, its solution is
returned. The special value NO_FEAT thus indicates in DL8 that it is the
first time an itemset is encountered. However, in DL8.5, because of the
upper bound, it can happen that there is no solution for an itemset ful-
filling the upper bound constraint. Consequently, in addition to new
itemsets, the value NO_FEAT also indicates in DL8.5 the already assessed
itemsets for which the solution is not found. A naive approach to han-
dle these itemsets would consist of an automatic re-computation of the
solution of all them because they do not have a solution. However, in
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DL8.5, we treat differently these itemsets because they provide impor-
tant information on the search. The first time these itemsets have been
assessed without finding the solution, that was because the upper bound
provided to the call of DL8.5−Recurse is more restrictive than the actual
solution. Based on this information, it can be concluded that the actual
best error is at least equal to the restrictive upper bound provided. This
upper bound is thus used as a lower bound (lines 25-26). The benefit
of this method is that at a later moment, we can reuse the fact that for
a given itemset already evaluated without having found its solution, no
sufficiently good decision tree can be found, without needing to per-
form a new calculation. In particular, in line 7, when the upper bound
is lower than or equal to the inferred lower bound. In the same way,
when during the assessment of an itemset, its error is equal to the lower
bound, then the best solution is found for this itemset. In this case, there
is no need to continue the evaluation of other attributes (lines 9-11 and
lines 23-24).

Other differences from DL8 Other modifications in comparison with
DL8 improve the behavior of the algorithm. In lines 7 and 9 the search
can be interrupted when a time-out is reached, and line 12 offers the
possibility to consider the attributes in a specific heuristic order to dis-
cover good trees more rapidly. Another difference is the number of dif-
ferent heuristics considered when branching on features. In our experi-
ments, we consider three: the original alphabetic order of the attributes
in the data, in increasing and finally in decreasing order of information
gain (such as used in C4.5 and CART).

Our modifications of DL8 drastically improve the pruning of the
search space. Figure 4.2 indicates which nodes are pruned during the
execution of DL8.5 (for an alphabetic order of the attributes). At the
end, 17 nodes over 27 are visited instead of 26 over 27 for DL8.

4.4.1 Illustration of the hierarchical upper bound

Figure 4.3 shows a part of the execution of DL8.5 in more detail to
illustrate the hierarchical upper bound. The initial value of the upper-
bound at node ϕ is +∞ (line 2). The attribute A provides an error of
2; the upper-bound value is subsequently updated from +∞ to 2 in line
22. In the first branch for attribute C, the new value of the upper-bound
is passed down recursively (line 15). Notice that the initial value of
the upper-bound at node ¬c is 2. At this node, the attribute A is first
visited and provides an error of 1 by summing errors of ¬a¬c and a¬c
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....

....... ...
Figure 4.3: Example of pruning

(line 22). The upper-bound for subsequent attributes is then updated to
1 and passed down recursively to the first branch of attribute B. After
visiting the first item ¬b¬c the obtained error is 1 and not lower than the
upper-bound of 1. The second item is pruned as the condition of line 16
is satisfied. So, there is no solution by selecting the attribute B, which
leads to keep unchanged the value NO_FEAT for this itemset. This error
value is represented in Figures 4.2 and 4.3 by the character x.

The reuse of the cache is illustrated for itemset ¬ac (Figure 4.2). The
first time we encounter this itemset, we do so coming from the itemset
¬a for an upper-bound of 1; after the first branch, we observe that no
solution can be found for this bound, and we store NO_FEAT for this
itemset and a lower vound of 1. The second time we encounter ¬ac,
we do so coming from the parent c, again with an upper-bound of 0.
From the cache we retrieve the fact that no solution could be found for
this bound because it is not greater than the lower bound, and we skip
attribute A from further consideration (lines 7-8).

4.4.2 Efficient counting of supports

As explained above, the DL8.5 algorithm performs an exploration of
relevant paths that could be part of the final ODT. It relies on the branch-
and-bound to avoid exploring a considerable number of paths. However,
the assessment of the remaining relies on the observation of the error
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they produce. The computation of these errors is one of the major time-
consuming part of the algorithm. In the context of misclassification rate,
this error computation is based on the supports per class. Therefore, an
efficient technique to count the supports would result in a reduction of
the run time of the algorithm.

In the implementation of DL8 algorithm, the supports per class of
each path is based on a simple loop over the database to identify the
instances covered by the path. Obviously, the part of the database to
explore is reduced as long as we go deep in the search space. However,
this way of counting of supports is perfectible.

At first, in our algorithm, we rely on the same technique as in DL8
but in addition to this technique, we experiment another one. It is the
support counting based on the Reversible Sparse Bitset (RSBS) intro-
duced in Chapter 3. Indeed, this technique has been used in [SAG17] to
propose a frequent itemset algorithm and has shown interesting results.
As explained in Chapter 3, the RSBS data structure is very efficient to
handle the problems of number of valid elements counting.

4.5 Results

In our experiments we answer the following questions:

Q1 How does the performance of DL8.5 compare to DL8, MIP-based
and CP-based approaches on binary data?

Q2 What is the impact of different branching heuristics on the perfor-
mance of DL8.5?

Q3 What is the impact of the infeasibility lower bound in DL8.5?

Q4 How does the RSBS data structure impact the run time of DL8.5?

Q5 How does the performance of DL8.5 compare to DL8, MIP-based
and CP-based approaches on continuous data?

As a representative MIP-based approach, we use BinOCT [VZ19], as it
was shown to be the best performing MIP-based approach at the moment
we were performing this study. The implementations of BinOCT1, DL8
and the CP-based approach2 used in our comparison were obtained from
their original authors, and we use the CPLEX 12.93 and OscaR4 solvers.

1https://github.com/SiccoVerwer/binoct
2https://bitbucket.org/helene_verhaeghe/classificationtree/src/default/

classificationtree/
3https://www.ibm.com/analytics/cplex-optimizer
4https://oscarlib.bitbucket.io

https://github.com/SiccoVerwer/binoct
https://bitbucket.org/helene_verhaeghe/classificationtree/src/default/classificationtree/
https://bitbucket.org/helene_verhaeghe/classificationtree/src/default/classificationtree/
https://www.ibm.com/analytics/cplex-optimizer
https://oscarlib.bitbucket.io
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Experiments were performed on a server with an Intel Xeon E5-2640
CPU, 128GB of memory, running Red Hat 4.8.5-16.

To respect the constraint of the CP-based algorithm all the datasets
used in our experiments have binary classes. We compare our algo-
rithms on 24 binary datasets from CP4IM5, described in the first columns
of Table 4.5.

Similar to Verwer and Zhang (2019), we run the different algorithms
for 10 minutes on each dataset and for a maximum depth of 2, 3 and
4. All the tests are run with a minimum support of 1 since this is the
setting used in BinOCT.

We do not split our datasets in training and test sets since the focus of
this work is on comparing the computational performance of algorithms
that should generate decision trees of the same quality. The benefits of
optimal decision trees were discussed in [BD17].

We compare a number of variants of DL8.5. The following table
summarizes the abbreviations used.

Abbreviation Meaning
d.o. the original order of the attributes in the data is

used as branching heuristic
Asc attributes are sorted in increasing value of infor-

mation gain
Desc attributes are sorted in decreasing value of in-

formation gain
no LB d.o. is used and infeasibility lower bound is dis-

abled
RSBS d.o. is used and reversible sparse bitset is used

to count supports

Table 4.5 shows the results for a maximum depth equal to 4, as we
consider deeper decision trees of computationally more interest. The
first three columns describe respectively the names of the datasets as
well as the number of features and the number of transactions in the
datasets. The remaining columns represent the different algorithms con-
sidered. Each of them is described by two columns representing respec-
tively the objective value and the execution time. If optimality could not
be proven within 10 minutes, this is indicated using TO; in this case,
the objective value of the best tree found so far is shown. Note that we
here exploit the ability of DL8.5 to produce a result when the time limit
imposed is reached. The best solutions and best times are marked in
bold while a star (*) is added to mark solutions proven to be optimal.

5https://dtai.cs.kuleuven.be/CP4IM/datasets/

https://dtai.cs.kuleuven.be/CP4IM/datasets/
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BinOCT solved and proved optimality for only 1 instance within the
timeout; the older DL8 algorithm solved 7 instances and the CP-based
algorithm solved 11 instances. DL8.5 solved 19 (which answers Q1).
The difference in performance is further illustrated in Figure 4.4, which
gives cactus plots for each algorithm, for different depth constraints. In
these plots each point (x, y) indicates the number of instances (x) solved
within a time limit (y). While for lower depth thresholds, BinOCT does
find solutions, the performance of all variants of DL8.5 clearly remains
superior to that of DL8, BinOCT and the CP-based algorithm, obtaining
orders of magnitude better performance.
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Comparing the different branching heuristics in DL8.5, the differ-
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ences are relatively small; however, for deeper trees, a descending order
of information gain gives slightly better results. This confirms the intu-
ition that chosen a split with high information gain is a good heuristic
(Q2).

If we disable DL8.5’s ability to use the infeasibility lower bound, we
see a significant degradation in performance. In this variant (no LB),
only 12 instances are solved optimally, instead of 19, for a depth of 4.
Hence, this optimization is significant (Q3).

Regarding the use of a RSBS data structure to perform the support
counting, it can be noticed in the figure that this variant of DL8.5 is the
most efficient. This can be confirmed in Table 4.5. The implementa-
tion of DL8.5 RSBS that is presented here does not use any branching
heuristic to sort the attributes. For this, its results as well as the results
of DL8.5 d.o. which does not use a branching heuristics are highlighted
in the table to facilitate their comparison. The best approach is under-
lined. Notice that DL8.5 RSBS has always the best performance, even
in comparison with the other variants on most datasets (Q4). Based on
this conclusion, the use of RSBS in DL8.5 is provided as the standard
support counting technique and is enabled each time we refer to DL8.5
in the following.

To answer Q5, we repeat these tests on continuous data. For this,
we use the same datasets as Verwer and Zhang (2019). These datasets
were obtained from the UCI repository6 and are summarized in the first
columns of Table 4.6. Before running DL8, the CP-based algorithm and
DL8.5, we binarize these datasets by creating binary features using the
thresholds splits of numerical features explained in Subsection 1.3.1.
Note that the number of generated features is very high in this case. As
a result, for most datasets most of the algorithms reach a time-out for
maximum depths of 3 and 4, as shown by Verwer and Zhang (2019).
Hence, we focus on results for a depth of 2 in Table 4.6. Even though
BinOCT uses a specialized technique for solving continuous data, the
table shows that DL8.5 outperforms DL8, the CP-based algorithm and
BinOCT. Note that the differences between the different variations of
DL8.5 are small here, which may not be surprising given the shallowness
of the search tree considered.

4.6 Conclusions

In this chapter, we presented the DL8.5 algorithm for learning optimal
decision trees. DL8.5 is based on a number of ideas: the use of itemsets

6https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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to represent paths, the use of a cache to store intermediate results, the
use of bounds to prune the search space, the use of RSBS to efficiently
count supports, the ability to use heuristics during the search, and the
ability to return a result even when a time-out is reached.

Our experiments demonstrated that DL8.5 outperforms previous ap-
proaches by orders of magnitude, including approaches presented at
prominent venues.

In this chapter, we focused our experiments on one particular set-
ting: learning maximally accurate trees of limited depth without support
constraints. This was motivated by our desire to compare our new ap-
proach with other approaches. However, in the following chapters, we
will show that DL8.5 can be modified for use in other constraint-based
decision tree learning problems, using ideas from DL8 [NF10].
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ò
This chapter is based on the paper G. Aglin, S. Nijssen, and
P. Schaus. “Learning Optimal Decision Trees Under Memory
Constraints”. The paper is accepted at the European Con-
ference on Machine Learning and Knowledge Discovery in
Databases (ECML PKDD) 2022 but is not yet published at the
moment this thesis is written.

5.1 Introduction

As we saw in the previous chapter, approaches for finding ODTs can be
put into two categories: (1) the category of approaches based on the use
of mixed integer programming (MIP) solvers [VZ19; AGV21], and (2)
the category of specialized search algorithms that use some form of dy-
namic programming (DP) such as DL8 and DL8.5 [NF07; NF10; ANS20;
Ver+20; HRS19; Lin+20; Dem+22]. Among these two categories, we
saw that DP approaches are significantly faster. Unfortunately, however,
an important drawback of the DP approaches is their high memory con-
sumption: in the worst case, their memory consumption is exponential
in the number of features. MIP approaches, at least theoretically, do not
have this weakness.

The key aim of this chapter is to address this situation. We propose
a new DP-based approach that allows a user to determine the trade-off
between time and space, by introducing a parameter that determines
the amount of memory the algorithm is allowed to use.

The intuition for the good run time performance of DP approaches
is that these approaches do not perform a search for trees, but a search
for paths. As the number of paths is smaller than the number of trees,
this reduces the size of search space in DP algorithms significantly. Their
high memory consumption derives from the fact that the DP-based algo-
rithms store information about paths in a cache, from which they con-
struct ODTs.

The contributions of this chapter are the following:

C1 We study several caching strategies proposed in the literature, iden-
tifying which has the best characteristics when focusing on mem-
ory consumption.

C2 We propose a simple modification of existing DP-based approaches
that amounts to removing, from time to time, elements from the
cache if the cache becomes too large.

However, removing elements from the cache can have two undesirable
consequences: (1) an ODT can no longer be recovered from the cache,
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and (2) search can become slower, as we can no longer use results in
the cache. Our two next contributions address these critical problems:

C3 We propose strategies for the order in which elements are deleted
from the cache.

C4 We present a strategy to recover deleted elements if these are re-
quired to output the ODT.

In the resulting approach, a parameter determines the trade-off between
run time and memory consumption. Our final contribution (C5) is an
experimental evaluation of this trade-off, as well as other dimensions
important for the memory consumption of DP-based algorithms.

This chapter is structured as follows. Section 5.2 presents the state
of the art of different caching architectures used for ODTs learning
and some search techniques used to reduce memory consumption.
Then, Section 5.3 presents the technical details of caching systems
implemented as a trie and a hash table. Section 5.4 introduces our
new size-limited cache. Finally, we present experimental results before
concluding.

5.2 Related Work

There are two classes of approaches for finding ODTs: (1) approaches
that rely on solvers, such as MIP solvers [VZ19; AGV21], and (2) ap-
proaches that rely on dynamic programming [NF07; NF10; ANS20;
Ver+20; HRS19; Lin+20; Dem+22]. The first class of methods relies
on solvers of which the memory use is bounded; however, recent studies
on DP-based approaches showed that the run time performance of these
methods is significantly better. On the other hand, they suffer from a
memory problem related to the use of a cache. Indeed, the size of the
cache increases with the number of features and the depth of the ODT
that needs to be found. For these algorithms it is hence important to
minimize the amount of memory used. In the literature, two types of
memory-based optimization have been studied. The first one focuses
on the caching system itself and concerns the data structure used to
implement the cache and to represent the stored elements. The second
optimization is related to the search, and mainly consists in reducing the
number of cache entries that are stored. Below we provide a high-level
perspective on these optimizations; their details will be discussed in the
next section.
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5.2.1 Caching optimizations

As stated in the previous chapter, some form of exhaustive search needs
to be performed to learn an ODT. A core idea underlying the DP-based
approaches is to store intermediate results during this exhaustive search.
Using a cache key, these intermediate results are then used later on to
avoid repeating the same search twice.

A major distinguishing factor between various approaches is the key
that is used to associate intermediate results in the cache. The first al-
gorithm to take this approach was DL8 [NF07; NF10]. In DL8, a cache
is built in which itemsets serve as the key to which information is asso-
ciated. Here, every path in a decision tree corresponds to an itemset:
an itemset is essentially the set of conditions (tests) on a path. For trees
of limited depths, these keys are short. This technique is also used in
DL8.5, and works in the presence of depth constraints.

An optimization was presented in DL8, in which closed itemsets were
used. A closed itemset in this context is obtained by adding to an item-
set I all other conditions that hold in the same instances in which the
conditions of I are true. It was shown that this leads to more cache
reuse; however, calculating this key takes more time and the key cannot
trivially be used in the presence of depth constraints, consequently, this
optimization was not used in DL8.5.

Keys based on instances were used in the GOSDT [Lin+20] algo-
rithm. Moreover, GOSDT relies on the use of hash tables to represent
the cache structure; it uses bit vectors to represent the sets of identi-
fiers. DL8 and DL8.5, on the other hand, use a trie, aiming to exploit the
overlap between itemsets that are stored in the cache.

None of these systems allow the user to impose a limit on the size of
the cache.

5.2.2 Search optimization

The higher the number of elements to be stored, the larger the cache.
Hence it is important to minimize the number of elements that need to
be stored as much as possible. Various improvements have been studied
to reduce the size of the search space and hence the number of elements
in the cache.

One core idea is to use a form of branch-and-bound search to limit
which parts of the search need to be considered. We propose in Chap-
ter 4 a hierarchical upper bound and an infeasibility lower bound to
avoid exploring some nodes of a search tree over paths. [Lin+20] pro-
poses a similarity lower bound. This bound is inspired by [Ang+17].
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Using better bounds can effectively reduce the number of elements
that need to be stored in the cache, and hence can have an impact on
the memory used by the algorithm. However, while better bounds can
make the search more feasible for larger datasets, they do not resolve
the problem that, for some datasets, the search algorithms will run out
of memory.

5.2.3 MurTree algorithm

After our work on DL8.5 was published, other researchers started work-
ing on different ways to improve the algorithm. To accomplish this task,
the recursive character and the caching of solutions present in the DL8.5
algorithm are reused. Similarly, the branch-and-bound aspect is also
reused. MurTree [Dem+22] is a recent algorithm that relies on DL8.5
and proposes some interesting improvements. Here is an overview of
major improvements proposed by the MurTree algorithm.

Strong infeasibility lower bound The infeasibility lower bound used
in DL8.5 is found when an upper bound is too restrictive to find a so-
lution. The upper bound is therefore used as the minimum value of
the expected error without taking into account the information found
in the part of the search space explored before noticing the infeasibility.
MurTree proposes a strong infeasibility lower bound that uses this infor-
mation. Specifically, for each attribute explored, the error or the lower
bound (when the error is not found) of its items are summed to compute
the attribute lower bound. Then, in case of infeasibility, the minimum of
all attribute lower bounds is used as the infeasibility lower bound. This
value is guaranteed to be always better than using the restrictive upper
bound.

Similarity lower bound This similarity lower bound used in MurTree
is related to the one proposed in GOSDT. It is computed for a node
based on the error already computed for a similar node. The similarity
between two nodes is defined by the fact that the intersection of the set
of instances covered by the two nodes is not an empty set. To compute
the similarity lower bound of a node n2 covering a set D2 using the
error computed for a node n1 covering D1, MurTree proves that the
value lb = error(n1) − |Dout| is a good candidate, where Dout is the set
of instances in D1 and not in D2. This value is computed for each node
and the best with respect to the infeasibility lower bound is used as the
lower bound of the node.
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Dynamic branching In the DL8.5 algorithm, different combinations
of attributes are explored to evaluate the paths in the search space. For
each attribute, two tests corresponding to items are evaluated. These
two tests are considered one after the other in a fixed order. MurTree
proposes a dynamic approach to decide the order in which to explore the
two items produced by each attribute. Concretely, MurTree compares
the real error or the pessimistic error (lower bound) of both items and
decides to explore at first the item producing the higher lower bound.
The idea is that the item with the higher error is more likely to produce
a high error that may violate the upper bound constraint and lead to a
pruning of the second.

Specialized algorithm for ODTs of depth 2 This feature is one of the
main improvements of MurTree. The idea of this specialized algorithm
relies on the reduction of the number of supports needed to be com-
puted to find an ODT of depth 2. In fact, an exhaustive search for an
ODT of depth 2 requires computing for each class, the support of each
item and each pair of items. In MurTree, only a few of these supports
are computed. The others are derived from the few computed. For in-
stances, for any attributes I and J splittable respectively in i,¬i and
j,¬j, MurTree proves that the computation of supports of itemsets i and
ij are sufficient to derive the support of ¬i, i¬j,¬ij,¬i¬j. As shown in
the previous chapter, counting the supports is one of the major time-
consuming operations of the DL8.5 algorithm. By using this technique,
it reduces significantly the time needed to find an ODT of depth 2. Since
this function is called often in the algorithm, it has a significant impact
on reducing the run time.

Another important difference between MurTree and DL8.5 algorithm
is the data structure used to implement the cache structure and the rep-
resentation used as key for cache entries. In MurTree algorithm, the
cache is not implemented as a trie. On the contrary, it is implemented
as a hash table as in GOSDT. Regarding the representation used as key
for the cache entries, MurTree proposes to use a combination of instance
identifiers and path length (of which more details will be provided in the
next section).

The various improvements proposed by MurTree lead to a reduction
in the memory consumption of the algorithm. However, no technique
for limiting the cache size is proposed. In this chapter, the memory
reduction technique proposed is not a search algorithm optimization.
Rather, we propose an improvement to the cache system of DP-based
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algorithms that allows to set an upper bound on the maximum number
of cache entries. Hence, our optimizations are orthogonal to possible
bounds used during the search.

5.3 Caching in DP-based ODT learning

In this section, we describe how the trie and hash table are used to
cache subproblem solutions when learning ODTs in existing algorithms;
while doing so, we also contribute to a comparison that will motivate
our choices in this chapter.

5.3.1 Caching in DP-based algorithms

Let D = {(x, y)}n be a binary dataset of n instances and
F = {F1, . . . , Fm} be the set of m features that describe D. For
each instance x = (x1, . . . , xm) in D, xi takes value in {0, 1}. Because
the approach of this chapter is generic to all DP-based algorithms, the
paths are not mapped into itemsets like in Chapter 4. A decision tree
recursively partitions a dataset into different groups following paths
p ∈ P. A decision tree can be seen as a collection DT ⊆ P of paths,
where each path starts at the root of the tree. While in decision tree,
features are tested in a given order, it is the set of tests that determines
which instances end up in a given node in the decision tree. For this
reason, we will see a path as a set of tests on features. In the context
of binary decision trees, a path p is a set of tests over binary features,
p ⊆

⋃
F∈F tests(F ), where tests(F ) returns the two possible tests for

the feature F , F = 1 (abbreviated with f) and F = 0 (abbreviated with
f); we assume |p ∩ tests(F )| ≤ 1 for all F .

At a high level, dynamic programming-based approaches for solving
the ODT problem are based on recursive equations. For approaches that
use itemsets as keys, this is the recursive equation in its simplest form:

min_error(p) =
{

minF∈F
∑

t∈tests(F )min_error(p ∪ {t}) if |p| < maxdepth;

leaf _error(p) if |p| = maxdepth,

(5.1)
where the recursion starts at min_error(∅). In other words, to deter-
mine the error made by a decision tree of minimal error, we need to pick
the feature in the root of the tree that minimizes error, when summing
up the lowest possible errors for the left-hand and right-hand subtrees.
Note that in a tree the tests are ordered. We can first test A = 1 fol-
lowed by B = 1, or, alternatively, first test B = 1 and then A = 1. This
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order is not important when determining min_error({A = 1, B = 1}).
DP approaches are based on the idea of storing information for p, such
as min_error(p), so that we can reuse the information for all possible
orders in which the tests can be put in a tree.

For the leafs of the tree, we assume a prediction is made, and a class
is associated. In the case of our thesis, the associated class is the majority
class (eq. 4.2), while the associated error is the misclassification rate
defined by leaf _error(p) = |D| − maxc∈C |Dc|, where D is the set of
instances falling in the leaf p and Dc is the subset of D associated with
the class c.

In its more complex form, the recursive equation can take into ac-
count other constraints, and can be rephrased to return the optimal tree
itself as well.

DP-based algorithms perform a depth-first search using the recursive
equation, reusing information that is stored already, and using bounds
to limit the cases for which the recursion is executed.

For approaches that use instances as keys, the recursive equation is
slightly different:

min_error(D, d) =
{

minF∈F
∑

t∈tests(F )min_error(σt(D), d+ 1) if d < maxdepth;

leaf _error(D) if d = maxdepth,

(5.2)
where D is a dataset, σt(D) selects the instances of D which satisfy the
condition in test t and d is the number of conditions in the path which
is being considered and which covers D. By using itemsets, different
paths relying on the same tests are uniquely represented, and the error
computed for one can be used for another. However, there are more
paths having the same solution than those relying on the same tests. In
fact, all the paths that cover the same set of instances have the same
solution, as long the number of conditions to add to the paths to reach
the maximum depth is the same. It is this property that is used in the
recursive equation min_error(D, d). The recursion starts for the full
dataset at depth d = 0. In other words, to determine the error of an
optimal tree for a dataset D, we need to determine which test to put in
the root of the tree, such that error for the datasets resulting from the
split is minimal. Compared to using paths as keys, instances can allow
for more reuse, as multiple paths may select the same set of instances.

In this chapter, our aim is to strictly monitor the memory consump-
tion of DP-based algorithms. Hence it is important to understand which
one of these two approaches leads to better memory use, as earlier stud-
ies did not address this question. We study this in the next subsection.
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5.3.2 Comparison of Caching Strategies

Figure 5.1 shows a comparison of the memory consumption for different
cache implementations for some datasets, when implemented in DL8.5
algorithm. The red curves represent the cache implementation that uses
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Figure 5.1: Comparison of memory use given the cache type

the set of instances as key. The other curves denote the cache imple-
mentations that use paths as key. The difference between the green and
blue curves will be explained in the next subsection. Notice that the
number of cache entries for the instance-based representation is indeed
low compared to the other approach. At the same time, it consumes
much more memory as a key that consists of instance identifiers is much
longer than a key that consists of path tests. The rest of the paper fo-
cuses on the test-based representation, as it requires less memory than
the instance-based one.

5.3.3 Caching data structure

To store the cache, DP-based algorithms require a data structure. Two
implementations of the cache have been used in the literature. GOSDT
and MurTree algorithms use a hash table, while DL8 and DL8.5 use a
trie (or prefix tree).

The difference between these two data structures is illustrated in the
following example, where a path is used as key; here we sort the tests in
the path to obtain an ordered representation for the path. Let us assume
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a dataset with at least 4 features and an ODT learning algorithm for trees
of depth 3. Figure 5.2 shows a part of the search space to explore to find
the ODT. Table 5.1 and Figure 5.3 show cache implementations based
on a hash table and a trie, respectively. In the hash table data structure,
the path is passed through a hash function, but to avoid collisions, every
path needs to be stored with its associated information. In the trie,
nodes are created for every prefix of a path.

The size of these data structures can differ, as illustrated by the ex-
ample. Consider the path abc (in red) during the search. This path is
reached in the search by first considering two other paths: {a, ab}. To
save these three paths {a, ab, abc} in the cache, in the case of a hash
table, an entry is created for each path, and all tests in each path are
saved. This is represented by red entries in Table 5.1: 6 tests must be
saved to store the paths leading to abc. In the case of trie, the tests in
common for parent paths are shared in such a way to avoid saving du-
plicate tests. To store abc and its parent paths, only 3 tests are necessary
for a trie data structure, as the trie uses a compressed way to store paths.

Theoretically, the number of tests that need to be stored can be cal-
culated for both data structures when no pruning strategy is used, and
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the ordered path representation is used as the key for the entries. In the
case of a trie, this number is equal to the number of nodes. For each
depth d, this number is expressed as 2d × C

|F|
d . The term C

|F|
d is the

number of d-combinations in the set F and represents the number of
different possible ordered paths of length d relying on the features in
F . The term 2d represents the two tests (denoting the splits in a binary
tree) of each feature in the path, given that it has a length d. On the
other hand, each path stored for a certain depth d in a hash table, has
the same length as d. Then the number of tests stored for each depth
is d × 2d × C

|F|
d . Thus, the multiplication factor using a hash table is

d. However, note that the expression 2d × C
|F|
d is generally quite large

(given d). Therefore, the impact of the multiplication factor d using a
hash table is significant.

In practice, the memory consumption in Figure 5.1 of the trie data
structure (in blue) is lower than that of the hash table (in green), and
this motivates our choice for a trie in our experiments. However, note
that in terms of the number of paths stored in the cache, the trie can
be larger. For instance, this is the case for the paths leading to ec in
Figure 5.2. While the hash table stores them using two cache entries,
the trie needs three nodes for this operation. This explains why the
number of cache entries in the trie is higher than in the hash table in
Figure 5.1. However, as the hash table stores a complete path per entry,
the memory consumption is higher. We thus choose the representation
with the lower memory consumption.

5.4 Learning ODTs with limited memory resources

In this section, we present our proposal to limit the memory consump-
tion of DP-based learning algorithms.

Our core objective is to make sure the size of the cache is limited,
while making sure that the performance of the search is not affected too
much. Moreover, we wish to do so in a manner that can be integrated
in DP-based algorithms with minimal modifications.

The core idea of our approach is simple: instead of keeping all the
elements in the cache, when necessary we will remove elements from
the cache; when the search algorithm encounters these elements later,
it will recalculate the results.

Hence, limiting the memory size will certainly impact the run time
of the search algorithm, as its speed depends mainly on the reusability
of the cache. The fewer entries in the cache, the less likely it is to find
an existing solution. However, a good strategy specifying the order in
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which entries are deleted can limit the impact on the overall run time. In
the next subsection, we will present our proposal for a bounded cache
based on one deletion strategy. Subsequently, we will introduce addi-
tional deletion strategies and how to integrate them in the maintenance
of the cache.

5.4.1 Implementation of a bounded cache

As the modifications of the DP-based systems we propose only concern
the maintenance of the cache, we focus the description of our contri-
bution to the maintenance of the cache. Pseudo-code for this can be
found in Algorithm 8, for the trie data structure. Later, we explain
how the pseudocode can be adapted to the simpler case of hash ta-
bles. Compared to the cache used by other systems, our new cache
system requires two parameters. The first, maxcachesize, specifies the
maximum number of entries that the cache can store. The second pa-
rameter; wipeFactor defines the percentage of the cache that will be
cleared when the cache is full.

Any DP-based algorithm requires functionality that for a given key
returns the data associated to the key, and if no such information is
available, will add information to the cache; this is performed in Al-
gorithm 8 by the function insertOrGetEntry. This function traverses
the tests in a path, and either finds back the path in the trie, or adds
the necessary nodes. Compared to the original trie-based system DL8.5
(Algorithm 5), there are two differences in the insertion method. First,
there is a condition (line 14) that checks whether there is enough place
in the cache to insert the path being created, otherwise the wipe func-
tion is called; this wipe function is responsible for removing elements
from the cache. Second, each path added to the trie is also added to a
deletion queue (line 17). This queue is maintained to keep track of the
nodes in the cache, which is used when wiping the cache.

Since a node in a trie has a parent that links to it, when a path is
deleted from the cache, it is necessary to delete the edge from its parent
node. For this reason, the entry representing its parent node should be
stored in order to perform the deletion of the edge.

A critical part of our contribution is the wipe function. At its core,
this function sorts the nodes in the cache, and subsequently deletes the
desired number of nodes from the cache according to this order. Of
critical importance is here how the nodes are sorted for removal. To
determine this order, our wipe function first calls a number of functions
to compute necessary information for the entries in the cache. This in-
formation is subsequently used when sorting the nodes. The remaining
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Algorithm 8: Class Bounded_Cache(maxcachesize, wipeFactor)
1 struct PathEntry{ useful: bool; curFeat: int; nDscPaths: int; solution:

BestTree; childEntries: HashSet<int, PathEntry>}
2 struct BestTree {lb : float; feat : int; error : float }
// list of pairs <pathEntry, parentPathEntry>

3 deletionQueue← pair<PathEntry, PathEntry> [maxcachesize]
4 rootEntry, cachesize← newEntry(), 0
5 Method newEntry()
6 return PathEntry(false,0,−1, (0, NO_FEAT,+∞), {})

7 Method insertOrGetEntry(p : array of int) // p: path
8 pEntry← rootEntry

9 for t ∈ p do // foreach test in path
10 if t ∈ pEntry.childEntries then
11 pEntry← pEntry.childEntries.get(t)
12 else // remainingTests() returns the number of tests in
13 // the path which are not in the cache
14 if cachesize+ remainingTests() > maxcachesize then wipe()
15 childEntry← newEntry()
16 pEntry.childEntries.push({t, childEntry})
17 deletionQueue.push({childEntry, pEntry})
18 cachesize, pEntry← cachesize+ 1, childEntry

19 if pEntry.solution.error = +∞ then
20 pEntry.solution.error← leaf_error(p)

21 return pEntry

22 Method wipe()
23 // mark nodes that are required by the current state of the search
24 setCurUsefulTag(rootEntry, {})
25 countDscpaths(rootEntry)
26 setOptiUsefulTag(rootEntry, {})
27 sortDeletionQueue()// desc order with useful nodes at beginning
28 nDel, counter← (int)(maxcachesize ∗ wipeFactor), 0
29 for path, parPath ∈ reverse(deletionQueue) do
30 if counter = nDel or path.useful is true then break
31 parPath.childEntries.remove(path)
32 delete(path)
33 counter, cachesize← counter+ 1, cachesize− 1

34 unSetUsefulTag() // Remove tags

35 Method countDscpaths(pE : PathEntry)
36 pE.nDscPaths← 0
37 for t ∈ pE.childEntries do
38 pE.nDscPaths← pE.nDscPaths+ 1 +

countDscpaths(pE.childEntries.get(t))

39 return pE.nDscPaths

40 Method getChildPathEntries(p : array of int, feat : int)
41 t1, t2 ← tests(feat)
42 return {getEntry(sort(p∪t1)), p∪t1}, {getEntry(sort(p∪t2)), p∪t2}
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43 Method setCurUsefulTag(pEntry : PathEntry, p : array of int)
44 for pE, p ∈ getChildPathEntries(p, pEntry.curFeat) do
45 pE.useful← true; setCurUsefulTag(pE, p)

46 Method setOptiUsefulTag(pEntry : PathEntry, p : array of int)
47 pEntry.useful← true
48 for pE, p ∈ getChildPathEntries(p, pEntry.solution.feat) do
49 setOptiUsefulTag(pE, p)

steps of the wipe function are straightforward. The deletion queue is
traversed from the end to the beginning, and each path entry is deleted
(line 29) until the number of entries to be deleted is reached, or all
possible paths have been deleted (line 30). Note that the number of en-
tries to delete is calculated according to the percentage provided by the
wipeFactor parameter (line 28). Before deleting a path, the edge that
connects it to its parent path is deleted (line 31) to inform the parent
path that its child path no longer exists.

The information that is collected for elements in the cache is the
following.

(1) Information concerning which paths the search is currently con-
sidering. Please remember that DP-based approaches perform a recur-
sive search over paths, by adding tests to paths. In the process of cal-
culating the result for the path p, they assume that path p is present in
the cache. The setCurUsefulTag method is used to mark the paths p
that are currently under evaluation. These paths will be put first in the
order, and will never be deleted. Please note that the number of such
nodes is very small. The setCurUsefulTag method uses a curFeat field
in the entries in the cache. This field is initialized by a small modifi-
cation of the recursive search function. For DL8.5 this is illustrated in
Algorithm 9, where in green the code is indicated that is added in the
recursive search function of DL8.5; parts of the code of DL8.5 that are
not modified are skipped as they are provided in Algorithm 7.

(2) Statistics concerning nodes in the cache. One such statistic which
can be used to order elements, illustrated in our pseudocode, is the
number of descendants a node has in the trie. In the trie case, when we
delete a node from a trie, we also need to delete its children from the
trie to preserve the consistency of the structure. This implies that each
path must be deleted before its parent path. As a parent has more de-
scendants than its children, by ordering nodes on the number of descen-
dants, we can ensure children are deleted before their parents. More-
over, an intuition is that paths with numerous descendants are more ex-
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pensive to evaluate than those with fewer descendant paths, and hence
should be removed less quickly. To count the number of descendant
paths per path, a simple post-order traversal is performed through the
trie using the countDscpaths method. The result is stored in the vari-
able nDscPaths (line 1).

(3) Information concerning which paths are part of the current opti-
mal solution; we will return to this issue later on.

These three information (put in green on line 1) are new compared
to information stored in the cache entry of DL8.5 (Algorithm 5).

5.4.2 Different wipe strategies

In the pseudo-code above, the statistic we used to order nodes was the
number of descendant path entries in the cache. We also consider the
following alternatives.

Number of reuses of solutions The intuition behind the number of
reuses of elements is that a path that has been reused many times is
more likely to be needed again. This strategy removes the less frequently
reused solutions before the more frequently used ones. To calculate the
number of times a path solution has been reused, a variable initialized
to 0 must be added to the path entry structure. Whenever an existing
path is returned from the method insertOrGetEntry, the variable must
be incremented for the path. Note that this deletion criterion does not
satisfy the requirement of deleting the deepest nodes first in a trie. To
enforce this behavior, there are two possibilities. The first is to set the
method sortDeletionQueue so that the sort is performed according to
two parameters. First, the length of the path and then the number of
reuses. Another possibility is to increment the number of reuses for
each ancestor of a path as well. In this work, we use the second option
because it is based solely on the number of reuses, rather than using
an additional criterion. Note that for this strategy, the statistic is not
computed in the wipe method.

All not required paths This strategy, as the name implies, deletes all
paths except from the useful ones, as defined by criteria (1) and (3)
above. No variable needs to be added to the path entry structure, and
the deletion queue is not required. When the cache is full, after set-
ting useful nodes, a post-order traversal is sufficient to delete all nodes
without the useful tag.
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5.4.3 Comparison with a priority queue

In our approach to bound the size of the caching data structures when
learning ODTs, we propose the use of an additional array whose size is
fixed to the maximum cache size allowed. This array is used to compute
the order of deleting cache entries whenever the cache is full and we
need to free up space for new entries. When the order is calculated,
we delete a number of stored entries to make room for new entries. In
contrast to this technique, in most cache size limitation approaches, a
priority queue is used instead of an array with the goal of always delet-
ing in O(1) the worst entry. In this priority queue situation, the worst
entry is replaced by the new entry when there is no more space in the
cache. However, for the criteria we use to order entries, this technique
is not practical. Specifically, the value of the statistics we rely on to de-
cide the order in which to delete entries changes as the search evolves.
In this situation, using a priority queue will result in a permanent re-
structuring operation to correct violated queue properties. Note that
each re-structuring operation is performed in O(log n) when the prior-
ity queue is implemented as a binary heap. This creates a considerable
overhead, especially since some statistics (such as the number of reuses)
lead to the modification of several priority values at once (given that all
itemsets on a path need to be updated).

In addition to the above problem, the insertion and extraction com-
plexities of a priority queue are each O(log n) in the worst case, whereas
these operations are performed in O(1) using an array. The real com-
plexity to consider in our array case is the complexity of the sort that
needs to compute the deletion order. This operation is performed in
O(n log n). Note also that this operation is performed only once when
the cache is full.

Nevertheless, it is still possible to force the use of a priority queue,
so that only the worst entry is replaced whenever an insertion occurs
and the cache is full. However, the statistics to rely on must be static.
An example of a statistic that might work with the priority queue is the
depth of entries. It can also be coupled with a timestamp; whether such
strategies are useful is future work.

5.4.4 Returning an ODT that relies on deleted elements

Until now, our recursive equations focused on returning the error of the
most accurate tree. However, in practice we also wish to return the tree
that obtains this error. As explained in Chapter 4, in DL8 an approach
was proposed that allows to do so with minimal additional memory use:
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Algorithm 9: Bounded-DL8.5(maxdepth, maxcachesize, wipeFactor)
1 cache← Bounded_Cache(maxcachesize, wipeFactor)
2 DL8.5−Recurse({},+∞)
3 while cache.exploreTree() is incomplete do reconstituteWipedNodes({})

4 return cache.exploreTree()
// p is the path whose solution must be found

5 Procedure DL8.5−Recurse(p : array of int, ub : int)
6 pEntry← cache.insertOrGetEntry(sort(p))
7 . . . // if entry exists and has been solved, return its solution
8 for each feature F in a well-chosen order and splittable in tests f and f do
9 pEntry.curFeat← F

10 . . . // compute error of best tree rooted by F

11 pEntry.curFeat← −1
12 . . . // return error and root of the tree with the lowest error

13 Procedure reconstituteWipedNodes(p : array of int, ub : int)
14 pSol← cache.insertOrGetEntry(sort(p)).solution
15 if pSol.feat = NO_FEAT then return void
16 (pE1, p1), (pE2, p2)← cache.getChildPathEntries(p, pSol.feat)
17 foundpE1 ← pE1 ̸= NULL and pE1.solution.feat ̸= NO_FEAT
18 foundpE2 ← pE2 ̸= NULL and pE2.solution.feat ̸= NO_FEAT
19 if foundpE1 is false or foundpE2 is false then
20 if foundpE1 is false and foundpE2 is true then
21 pE1.solution.lb← pSol.error− pE2.solution.error
22 DL8.5−Recurse(p1, pE1.solution.lb+ 1)
23 reconstituteWipedNodes(p2)
24 else if foundpE2 is false and foundpE1 is true then
25 pE2.solution.lb← pSol.error− pE2.solution.error
26 DL8.5−Recurse(p2, pE2.solution.lb+ 1)
27 reconstituteWipedNodes(p1)
28 else
29 pE1.solution.lb← 0
30 DL8.5−Recurse(p1, pSol.error+ 1)
31 pE2.solution.lb← pSol.error− pE1.solution.error
32 DL8.5−Recurse(p2, pE2.solution.error+ 1)

33 else
34 reconstituteWipedNodes(p1)
35 reconstituteWipedNodes(p2)

for every path p, only the feature F is stored in the cache that should
be used to split optimally for p. The observation is that the optimal split
for p ∪ {f} and p ∪ {f} can also be found in the cache. Unfortunately,
if we wipe part of the cache, this strategy can no longer be used: if the
optimal tree relies on a path that is no longer in the cache, we can no
longer recover this tree from the cache.
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One solution could be to associate a complete optimal tree to every
path in the cache, but this would blow up the memory required for the
cache, which we would like to avoid. Hence, a critical contribution of
this work is an alternative solution that works well in practice: it avoids
the use of large amounts of memory, while being fast at the same time.
This solution consists of two components.

First, at the moment that we wipe the cache, using the function
setOptiUsefulTag, we determine which paths in the cache are part
of the currently optimal solution; we do not remove these paths from
the cache. In the best case, this optimal solution does not change any
more and hence we can recover (most of) the solution from the cache.

Unfortunately it cannot be excluded that when the search contin-
ues, we find that a tree with a better quality exists that relies on paths
that have been removed from the cache. In this case, we propose to re-
calculate the optimal tree for these paths. This algorithm is executed at
the end of the original search to avoid making calculations for paths that
later in the search may no longer be considered part of the final solution.
This algorithm is described by the procedure reconstituteWipedNodes

in the Algorithm 9. For each existing path, an attempt is made to ob-
tain its two children paths from the cache (lines 16-18). If they exist
(line 19), the DFS traversal continues (lines 34-35). Otherwise, the
search is restarted. However, an important difference with the original
search is that from the known errors (including the error of the optimal
tree), much better bounds can be deduced than in the original search.
In the case where a right child path exists but a search must be rerun for
the left child path (lines 20-23), a simple subtraction between the errors
of the parent path and the right child path provides the exact error of
the left child path to be found. This error is used as a lower bound and a
small value ϵ is added to it to define the upper bound. In the context of
the misclassification rate, ϵ = 1 is used. The same process is performed
in the case of an existing left child path and a non-existing right child
path (lines 24-27). When both child paths are nonexisting (lines 29-
32), a search is performed for a first child path and the bounds for the
second are derived from its solution. For the first path, the unknown
lower bound is set to 0 while the upper bound is at most the error of the
parent path added to ϵ. This procedure to reconstruct the wiped paths
of the final ODT is very efficient in practice.

5.4.5 Adapting to hash tables

The implementation of the bounded trie-based cache can easily be
adapted to a hash table and is even simpler in this case. In order to sort
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and delete paths in a specific order, the deletion queue no longer needs
to store pointers towards parents. Moreover, non-useful cache entries
can be deleted in any order without hierarchy constraints, leading to
a greater freedom in the choice of deletion criteria. For example, for
the reuses number strategy that we propose, in the case of a hash table,
we can rely only on this number to define the deletion order of paths
without having to increment the reuses number of ancestor paths.

5.5 Results

In this section we answer five main questions:

Q1 Which one of the wipe strategies proposed has the lowest impact
on the run time?

Q2 What is the impact on the memory usage when using a bounded
cache?

Q3 What is the impact of a bounded cache on the run time?

Q4 How fast is the algorithm to recover removed nodes from the
ODT?

Q5 How does the use of a bounded cache compare to a MIP approach?

The implementation of the learning algorithm without cache size re-
striction that we use in our experiments is DL8.5 [ANS20; ANS21b].
This means that the cache system used is a trie. However, we add
some improvements to this DL8.5 implementation to reduce the base-
line memory consumption. These are the improvements proposed by
MurTree and explained above in the chapter. We call the final algorithm
DL8.5 in our experiments because the main search features originate
from DL8.5. Bounded-DL8.5 is the DL8.5 version using our bounded
cache. Experiments were run on a Linux Rocky 8.4 server with an Intel
Xeon Platinum 8160 CPU @ 2.10Ghz and 320GB of memory.

In the first experiment, we use 20 binary datasets from CP4IM1. We
run DL8.5 on these datasets with a time limit of 5 minutes. To avoid
comparing too easy instances, we learned ODTs of depth 5. Then we
run Bounded-DL8.5 with the same parameters until we find the ODT, or
we reach the same point in the search as DL8.5 when the timeout was
raised. We show in Figure 5.4 two ratios of Bounded-DL8.5 over DL8.5:
the run time and the total number of entries (including those created

1https://dtai.cs.kuleuven.be/CP4IM/datasets/

https://dtai.cs.kuleuven.be/CP4IM/datasets/
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Figure 5.4: Time factor of Bounded-DL8.5 per wipe strategy

after they have been removed). Each wipe strategy is considered for
Bounded-DL8.5: the number of descendants (#DescendantsPaths), the
number of reuses (#Reuses) and the paths not required. For the wipe
parameters, we consider 75% and 50% of the memory as value for the
maxcachesize parameter and a wipe factor of 40% and of 30%. Note
that the results shown are representative for the results for other choices
of the parameters. It is interesting to notice that the time spent by the
algorithm is proportional to the number of cache entries created. It can
also be seen that the number of cache entries and the run time increase
as the bound of the cache is restricted. On the other hand, it is difficult
to observe a concrete trend in these values when a change is applied to
the percentage of memory to free at each cache wipe. Note, however,
that it becomes easy to answer Q1 thanks to Figure 5.4. As expected,
the strategy of removing all non useful entries from the cache is the
one increasing the most the run time of Bounded-DL8.5. Instead, the
intuition of keeping as long as possible the entries often reused shows
the best reduction of time impact. It performs better than removing the
paths based on the number of descendants.

After this experiment, we select the best wipe strategy (number of
reuses) to evaluate how Bounded-DL8.5 can impact the memory usage
on situations in which DL8.5 requires a lot of memory to find the ODTs.
To highlight these cases while ensuring reasonable run times, we ex-
perimentally select five specific datasets and depths. In the same way,
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Table 5.2: Comparison of unbounded and bounded caches

Dataset

nF
ea

ts

nI
ns

ts

D
ep

th DL8.5 Bounded−DL8.5 BinOCT

|Cache|
Time(s)

Mem
(GB)

Time(s)
Time
factor

Mem
(GB)

rTime
(ms)

Time Mem
(GB)

Anneal 93 812 8 648M 21907 78.5 65453 2.99 9 2.63 TO 9.8
Diabetes 112 768 7 238M 18890 28 31534 1.67 6.3 0.21 TO 10.5
German-credit 112 1000 6 92M 15198 11 21898 1.44 5.1 0.10 TO 10.1
Kr-vs-Kp 73 3196 8 136M 3865 16.1 6365 1.65 5.3 4.68 TO 35.8
Yeast 89 1484 7 419M 34977 50.5 62483 1.79 7.8 4.70 TO 17.5

we limited the cache size of Bounded-DL8.5 to 30 million (30M) entries
at most and set the percentage of entries to wipe to 40%. The impact
of these values is already discussed above. The results are reported in
Table 5.2. The memory usages are obtained by using the program top
available on Unix operating systems. Notice that the memory needed to
solve the problems using Bounded-DL8.5 never reaches 10GB while up
to 78GB is required using DL8.5. Regarding the dataset anneal, more
than 600 million of entries are created with DL8.5 to find an ODT of
depth 8. The advantage of using Bounded-DL8.5 is that this number
can be reduced to a desired quantity, here 30 million. As an answer
to Q2, this reduces significantly the memory needed to find an ODT.
Note, however, that this reduction depends on the limit on the num-
ber of cache entries. Moreover, it also has an impact on the run time.
The time factor is recorded in Table 5.2 and is defined as the run time
of DL8.5 over Bounded-DL8.5. To answer Q3, notice that our strategy
managed to achieve a time factor less than 1.5 on an instance that lasts
over 3 hours with DL8.5. In the worst case, it almost reaches a time fac-
tor of 3 on an instance that originally required 78GB, which it reduces
to 9GB. Regarding our algorithm ability to recover the nodes of the ODT
that have been removed during the search, the time used by our algo-
rithm is reported in milliseconds in the column rTime. Notice that for
all instances, our algorithm uses less than 5 milliseconds to recover the
removed nodes from the ODT. This answers the question Q4.

To answer Q5, we finally compare Bounded-DL8.5 to a MIP ap-
proach. For this, we use BinOCT2 model. The model is solved using
CPLEX3 22.1.0. As MIP approaches are time consuming, we set a time
limit to 70000 seconds, which is greater than the maximum time used
by Bounded-DL8.5 to solve an instance. Notice in Table 5.2 that BinOCT
does not manage to solve any instance in the allocated time. This is
represented by TO (timeout). Moreover, notice that the memory used

2https://github.com/SiccoVerwer/binoct
3https://www.ibm.com/analytics/cplex-optimizer

https://github.com/SiccoVerwer/binoct
https://www.ibm.com/analytics/cplex-optimizer
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by BinOCT is greater than Bounded-DL8.5 for all instances.

5.6 Conclusions

In this chapter, we address the problem of the huge memory consump-
tion required by caching based algorithms for learning ODTs. We pro-
pose a technique that can be added to existing caches to wipe a desired
number of entries from the cache. This leads to a significant reduction
in memory consumption, with only a small impact on run time. We pro-
pose strategies to reduce the impact of the wipe on the overall run time.
Finally, we show that our approach finds ODTs more quickly than MIP
approaches, while also consuming less memory.
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ò
This chapter is based on the paper G. Aglin, S. Nijssen, and
P. Schaus. “Assessing Optimal Forests of Decision Trees”. In:
2021 IEEE 33rd International Conference on Tools with Arti-
ficial Intelligence (ICTAI). IEEE Computer Society. 2021, pp.
32–39.

6.1 Introduction

Previous work in the literature showed that on many datasets optimal
depth-limited decision trees perform well [BD17]. However, it is well-
known in the machine learning literature that compared to other ma-
chine learning models, the predictive performance of decision trees is
limited. One popular way to build stronger classifiers based on DTs,
is the use of ensemble learning. The principle of ensemble learning is
to combine many “weak" classifiers to build a stronger one. Ensemble
learning techniques have proven for many years to be able to improve
the generalization power of “weak” learners. Even though the ensem-
ble learning concept may apply to any base classifier supporting sample
weights, the most well-known use of ensemble learning is in combina-
tion with decision trees. In the remainder of this chapter, we will only
consider ensemble learning models based on decision trees and call the
resulting models forests or decision forests.

One of the most popular techniques for ensemble learning is boost-
ing. Boosting algorithms learn successively a set of classifiers, each hav-
ing a weight; the weighted prediction of the trees is the prediction of
the overall model. One of the most well-known boosting algorithms is
the Adaboost algorithm [FS97]. In Adaboost, heuristics are iteratively
used to calculate weights for training instances; for each set of weights,
a heuristic decision tree learning algorithm is used to learn a decision
tree that takes these weights into account. In practice, this combination
of heuristics works well.

The heuristic nature of Adaboost makes it very different from many
other popular approaches in machine learning, such as deep learning,
in which a global optimization criterion (or loss function) is defined,
and subsequently an optimization algorithm is used to find a model that
optimizes this criterion. For this reason, it is difficult to explain what the
performance of Adaboost is due to.

To bridge this gap, and to get a better understanding in boosting in
general, researchers have studied the definition of global optimization
criteria for boosting. Accuracy by itself is not a good criterion: it could
lead to very complex models that overfit training data. Hence, these
studies focused on optimization criteria that could also reduce the risk
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of overfitting. This led to the development of new boosting techniques
relying on mathematical models, of which LPBoost [DBS02] and MD-
Boost [SL10] models are the prime examples that we will consider in
this thesis. However, even though both techniques rely on a definition
of a global optimization criterion, to optimize this criterion the authors
of LPBoost and MDBoost still propose to use heuristic techniques; these
techniques do not possess optimality guarantees, as the authors consid-
ered solving these criteria optimally infeasible. As a result, until now
there is no approach to find provably optimal forests. Therefore, there
is no concrete way to assess if the optimization criteria proposed by LP-
Boost and MDBoost could explain the performance of boosting forests.

In this chapter, we will first show that by combining the algorithm
used to solve LPBoost and MDBoost, and recent algorithms for finding
optimal decision trees (ODTs), we can solve the boosting problems pro-
posed in LPBoost and MDBoost till optimality. Hence, ODT techniques
make it possible to evaluate the usefulness of the global optimization
criteria without interference from the heuristics used in the underlying
algorithms till now.

This development makes it possible to answer the following experi-
mental questions:

1. What is the optimization gap between LPBoost and MDBoost us-
ing an optimal decision tree algorithm and a traditional heuristic
algorithm?

2. Does it make a difference in practice on generalization error to
find an optimal ensemble instead of a heuristic one?

3. is the generalization capacity of optimal LPboost and MDBoost
forests similar to heuristic boosting forests?

The answers to these questions are not obvious. Heuristic decision tree
learning algorithms are often used in boosting algorithms, and they are
known to lead to a good performance; it is not obvious what ODT algo-
rithms could add. Moreover, Reyzin and Schapire stated in [RS06] that
it is important that the classification models used in boosting are not
strong; otherwise the ability to generalize towards new data is compro-
mised. It is not clear that ODTs or Optimal Decision Forests meet this
requirement. Our experiments will help to answer these questions.

This chapter is organized as follows. Section 6.2 presents the state-
of-the-art of boosting techniques as well as different intuitions about
why Adaboost performs well. Section 6.3 presents the technical back-
ground related to learning optimal ensembles while Section 6.4 intro-
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duces our methodology to boost ODTs. Finally, section 6.5 presents a
comparison of optimal forests, heuristic approaches and Adaboost.

6.2 Related work

In this section, we discuss previous work related to boosting. Adaboost
[FS97] is one of the most popular boosting algorithms. It produces a
weighted ensemble of several “weak” DTs to build a strong model. The
different DTs are generated successively, each new tree focusing on the
errors of previous trees in the ensemble. For this, the weight of each
instance is re-evaluated after adding a new tree, in such a way that the
next tree focuses on misclassified instances. The resulting approach is
known to work very well in practice. Forests found by Adaboost show
great performance on training set as well as on test set data. The result-
ing model is insensitive to overfitting on many datasets [Bre+98].

Even though Adaboost works well in practice, it is not clear why it
is the case. Many studies have been done on Adaboost to find out the
reason for its success. Breiman argued that Adaboost can be viewed as
minimizing a loss function: exponential loss [Bre97b]. Moreover, Mason
et al. [Mas+99] suggested that Adaboost performs a sort of gradient
descent. This perspective on Adaboost has been shared by other re-
searchers [FHT+00; ORM98; SS99; ROM01; FD98] . However, experi-
ments conducted by Schapire and Freund [SF13] rejected the hypothesis
that the success of Adaboost is only due to exponential loss minimiza-
tion. Indeed, they implemented a gradient descent algorithm which
minimizes the exponential loss, but that generalizes poorly compared to
Adaboost.

Schapire et al. associated the success of Adaboost with a concept
called margin [Sch+98]. This is a confidence score of an instance given
an ensemble of classifiers. While a positive margin indicates a cor-
rect classification contrary to a negative one, a higher margin indicates
a higher confidence in the prediction than a lower one. To support
the margin argument, they showed the cumulative distribution plot of
training instance margins obtained by Adaboost given different num-
bers of iterations. This experiment showed that as the number of it-
erations increases, Adaboost tends to maximize the margin of training
instances: this explains why Adaboost continues adding new trees even
when it reaches a perfect accuracy on a training set. Breiman [Bre97b]
and Rätsch et al. [RW05] proposed respectively the Arc-gv and Ad-
aboost* algorithms in order to maximize the minimum margin of train-
ing instances in a more fundamental manner than Adaboost. After
Breiman [Bre97a] proved that the minimum margin maximization can
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be formulated as a linear program, Grove and Schuurmans [GS98] pro-
posed two algorithms to maximize the minimum margin: LP-Adaboost
and DualLPboost. LP-Adaboost is an Adaboost adaptation in which the
tree weighting part is replaced by a linear program maximizing the min-
imum margin. DualLPboost takes this a step further, and is the first
algorithm relying on a global optimization criterion based on margins;
for the optimization of this criterion, this approach was the first to pro-
pose the use of column generation optimization technique in combina-
tion with a heuristic DT learning algorithm.

Despite an elegant mathematical formulation with a clear optimiza-
tion criterion, these algorithms maximize the minimum margin slightly
worse than Adaboost in practice. Reyzin and Schapire [RS06] looked
at the Arc-gv algorithm to understand why it does not perform as well
as Adaboost. They concluded first that the minimum margin maximiza-
tion leads to the construction of too complex classifiers in the ensemble.
This leads to the overfitting the training data. On the other hand, they
found that the minimum margin maximization sacrifices the margin of
the other instances. In their analysis of DualLPboost, Grove and Schuur-
mans [GS98] reached the conclusion that the hard maximisation of the
minimum margin in DualLPboost could only work if data are linearly
separable.

These observations led to the development of two boosting tech-
niques based on column generation that are the basis of this chapter
[DBS02; SL10]. Demiriz et al. [DBS02] proposed LPBoost, in which
the minimum margin is maximized while also allowing for mistakes by
means of a slack variable for each instance. The minimum margin max-
imization objective is then regularized by the minimization of the sum
of misclassifications. When running their algorithm for a limited num-
ber of iterations, it was found to outperform DualLPboost, but it did not
outperform Adaboost.

To reduce even more the impact of the minimum margin maximiza-
tion on the other margins, Shen and Li [SL10] proposed MDBoost, a
new column generation approach to maximize the margin distribution.
Concretely, this approach maximizes the average of margins and mini-
mizes their variance at the same time. The model includes a regular-
ization parameter to decide whether the algorithm focuses more on the
maximization of the margin distribution or on the minimization of their
variance.

So far, within LPBoost and MDBoost heuristic DT algorithms were
used; the resulting ensemble models are thus not guaranteed to be opti-
mal given the optimization criterion proposed by the authors. Our work
addresses this weakness.
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IPboost [PP20] is a branch-and-price approach to learn boosted
trees with respect to a misclassification rate optimization criterion. Also
within this technique only heuristic DT learning methods are used.
Another approach in the literature is [Miš20]. This work proposes a
MIP model which, for given a predefined ensemble structure, fills in the
features used in the ensemble, taking the misclassification rate as the
optimization criterion. Contrary to our work, this approach limits the
size of the ensemble and the structures of the trees in the ensemble.

6.3 Technical background

In this section, we present the technical background on which our work
relies.

6.3.1 Boosting through margin optimization problem

As mentioned previously, Adaboost performs well in practice and many
studies have been performed to find the reason for its success. Among
the different research axes explored, the one on which we build in
this chapter is the concept of margin maximization. Let {(xi, yi)}, i =
1, . . . ,M be the training data, where xi is the feature vector of an in-
stance, associated to a class yi ∈ {−1,+1}. Let h(x) ∈ H be a function
representing a base classifier that associates to each instance x a class
y ∈ {−1,+1}; in our case H represents the space of all possible decision
trees for a given dataset, possibly under constraints, such as a constraint
on the depth of the trees. The boosting problem consists in finding a
weighted set H′ = {h1(x), . . . , hT (x)} ⊆ H which obtains good classi-
fication accuracy on future data. However, given that we do not have
these instances at training time, we need to find a criterion that can be
applied on training data to avoid overfitting.

There are some common ideas in how heuristic-based boosting ap-
proaches tackle this problem. Based on the prediction and the weight
of each classifier in an ensemble, a prediction score is computed for
each training instance. For a tree t predicting a class ht(x) ∈ {−1,+1}
and associated to a weight wt, the score of a training instance xi is
equal to ϱti = yiht(xi)wt, where yi is the true label according to the
training data. ϱti takes values in {−wt, wt}. The sign of the score de-
notes whether the tree correctly classifies the instance or not while the
value wt denotes the confidence of the decision. For a set of T trees,
let H ∈ RM×T be a matrix where the entry (i, t) of H is Hit = ht(xi).
Hit is the output of the classifier t given the training instance xi. Hi:

is the vector of predictions for the instance xi and H⊤
:t is the vector of
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predictions for all of the training data given a tree t. w = (w1, . . . , wT )
is the vector of weights of different trees. The prediction score for an in-
stance xi given an ensemble of trees is computed by summing its score
for each tree, ϱT i =

∑T
t=1 yiht(xi)wt. This score is the unnormalized

margin of an instance given an ensemble of classifiers. Its vector expres-
sion is ϱT i = yiHi:w. The normalized margin ensuring that the weights
of all classifiers sum to 1 is ρT i = yiHi:w/∥w∥1. The margin score of
an ensemble is a kind of balance between the incorrect decisions and
the correct ones. Each decision having a weight, the final decision will
be correct if trees predicting correctly have a higher weight than the
others and vice versa. Concretely, an instance is predicted as 1 when
its margin is positive and −1 when it is negative. As for a single tree,
the final score expresses how confident the model is about a prediction.
A model with higher margins on data is more confident than one with
lower margins. Schapire et al. [Sch+98] stated that Adaboost performs
a kind of margin maximization, arguing that it continues to increase the
test score by adding new trees even when the training score reaches
100% of accuracy.

Many studies [GZ13; Sch+98] concluded that the success of Ad-
aboost is due to an optimization of the margin distribution on the train-
ing data without concretely stating what a good margin distribution
is. In this chapter, we present LPBoost and MDBoost, two boosting
approaches optimizing the margins in training data but using different
criteria.

The key idea underlying these boosting approaches, is to formalize
the boosting problem as a mathematical programming problem in which
we associate a Boolean variable to each possible decision tree that is al-
lowed to be put in the ensemble; the optimization problem is to assign
truth values to these Boolean variables. Due to the high number of pos-
sible tree given a depth, the model solving will be very time-consuming.
An interesting solving technique to use in this context is the column
generation [Du +99; DDS06].

6.3.2 Column generation

Column generation [Wol20] is a well-known approach to efficiently
solve large-scale optimization problems; i.e., problems with numerous
variables. Despite the large scale of these problems, a few variables
are generally involved in their optimal solution; most variables are
ignored in the optimal solution. Therefore, if we could instantiate a
large-scale optimization problem only for variables that are part of the
optimal solution and would solve the resulting optimization problem,
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the solution would still be optimal. It could not be possible to find
a variable to add to the current solution in such a way as to obtain
a better solution. Column generation is suitable for solving these
problems. Instead of solving the main problem, which is difficult, the
column generation process starts solving the problem by considering
a small set of variables. It will lazily and iteratively add the most
promising variable capable of improving the objective value until no
variable can be found whose addition to the problem still leads to
a better solution. The new variable iteratively added is also called
column. To achieve the goal of column generation, the initial problem,
also called the master problem, is split into 2 problems: the primal (or
restricted master problem) and the pricing.

The primal problem is a restriction of the main problem with all vari-
ables to only some selected variables. The primal problem allows solving
at each iteration of the column generation process, the master problem
using selected variables. On the other hand, the pricing problem allows
generating the new variable capable of improving the objective value of
the current solution.

Concretely, to solve a linear programming problem, an iterative pro-
cess is performed in which some variables are assigned (basis variables)
while others are not (non-basis variables). From one iteration to the
next, a non-basis variable moves to the basis while a basis variable leaves
the basis. Through this process, a new admissible solution is found that
improves the previous one. The process is repeated until the optimal
solution is reached. To find a new variable to introduce in the basis, a
coefficient is computed for each non-basis variable to assess how much
the current objective value will change when its value is increased. This
coefficient is the reduced cost. It should be negative to be a valid can-
didate. Refer to [IC94; Wol20] for further details about the reduced
cost.

Solving the pricing problem in the column generation process al-
lows the generation of a variable that improves the objective value of
the master problem because it provides the variable with the lowest re-
duced cost. Note that finding a variable with a negative reduced cost is
equivalent to finding a variable that violates a constraint of a companion
problem of the primal: the dual problem.

Indeed, the dual problem is a companion problem derived from the
primal problem. For each variable in the primal problem, there is a
corresponding constraint in the dual problem. In the same way, there is
a variable in the dual for each constraint in the primal. Further details
about duality can also be found in [IC94; Wol20].

When no variable violates a constraint of the dual, then there is no
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variable with a negative reduced cost that can enter the basis to improve
the objective value of the master problem. At this point, the optimal
solution of the master problem is found. The pseudocode of the column
generation process can be summarized in Algorithm 10.

Algorithm 10: Column generation

1 variables← initialize a set of variables
2 solution← {}
3 do
4 solution, dual_variables← solve the primal problem

using variables and get dual variables
5 new_variable← solve the pricing problem using

dual_variables
6 variables← variables ∪ {new_variable}
7 while new_variable has an negative reduced cost ;
8 return solution

At the beginning of the algorithm, an initial set of variables is de-
fined (line 1) as a starting point so that the other relevant variables will
be added to it. At each iteration, the primal model solves the restricted
master problem using the selected variables (line 4). The current solu-
tion is thus found. Then, the pricing is solved to find the next variable
to add to the primal to improve the quality of its solution (line 5). When
the reduced cost of the new variable leads to an improving the quality of
the primal solution, it is added to the list of selected variables (lines 6,7).
Otherwise, the iterative process stops, and the solution found at this
stage is optimal and is returned by the algorithm (line 8).

6.3.2.1 Example case: Cutting Stock problem

The cutting stock problem [GG61] is a well-known optimization prob-
lem relevant to illustrate the column generation process. The problem
is formulated as follows:

Given
- a number of large wood boards of a length L
- a number of shelves of various sizes that need to be cut from the

boards
- the demand for each shelf size
Find
- the smallest number of boards to cut in order to meet the demand for

shelves
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Given a set B of all boards and a set S of shelves per board, an
intuitive model to formalize this problem is expressed as follows.

min
y,x

∑
b∈B

yb (6.1)

s.t. Myb ≥ xsb ∀s, b (6.2)∑
s∈S

lsxsb ≤ L ∀b (6.3)∑
b∈B

xsb ≥ db ∀s (6.4)

yb ∈ {0, 1} ∀b (6.5)

xsb ∈ N ∀s, b (6.6)

Equation 6.1 expresses the minimization of the sum of the number yb of
each selected board b. The variable yb is a 0/1 variable stating whether
the board b is selected or not to meet the total demand. The variable xsb
represents the number of shelf s to cut from the board b. Equation 6.2
expresses thus that no shelf cannot be cut from a board if the board is
not selected. The constraint represented in Equation 6.3 is a capacity
constraint: the sum of the length ls of each shelf s cut from a board b
should not exceed the maximum length L of the board. The last con-
straint states that the total number of a shelf s cut from the selected
boards should not be less than the demand ds for the shelf.

This kind of model is easy to understand. However, it may be dif-
ficult to solve using linear programming solvers, especially when the
number of available boards is large. A better solving technique for this
problem is column generation. The optimal solution for this problem
generally involves a few boards. The column generation process allows
only solving the model for these relevant boards (variables). Solving
this problem using column generation comes down to finding the right
boards of specific cutting configurations — a way to cut the board into
shelves — to meet the total demand. Therefore, a primal problem is
defined as in Equation 6.7.

min
x

∑
c∈C

xc

s.t.
∑
c∈C

ncsxc ≥ ds ∀s

xc ∈ N ∀c

(6.7)
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This primal problem assumes a selected set C of boards with specific
cutting configurations. For each configuration c in C, the variable xc de-
notes the number of selected boards of this configuration. The objective
function minimizes the sum of this number for each selected configura-
tion and hence the number of selected boards. The only constraint of
this model is that for each shelf s, the sum of the number ncs of shelf s
in the boards of configuration c should be at least equal to the demand
for this shelf. This model is good but does not state how to find the con-
figurations. Instead of generating all of them manually, a pricing model
using the dual variables is proposed to generate the configurations to
consider in the set C. As stated in Algorithm 10, each time the pricing
is solved, it provides a new configuration to add to C to improve the
objective value of the primal problem. Concretely, the objective func-
tion of the pricing problem is formulated based on the reduced cost.
It is designed to produce a configuration with a negative reduced cost.
Without going into details about the calculation of the reduced cost,
note that a configuration with a negative reduced cost is found for this
problem when the configuration fulfills the condition 1−

∑
s∈S lsns < 0

of the dual problem. In this expression, ns represents the number of
shelf s inside the configuration. The pricing problem is expressed by
Equation 6.8.

min
n

1−
∑
s∈S

lsns

s.t.
∑
s∈S

lsns ≤ L
(6.8)

The new configuration to generate is described by the number ns of
shelf s inside the configuration. The pricing solving leads thus in setting
the value ns for each shelf in the board. In addition to the fact that the
configuration should produce a negative reduced cost, it should fulfil the
capacity constraint; the sum of the length of shelves of the configuration
should not exceed the length of the board.

A new configuration that will improve the primal score is found by
solving this pricing problem. Then, the iterative process of column gen-
eration continues until there is no configuration fulfilling the negative
reduced cost condition. In this example, the column generation pro-
cess stops when the new configuration found respects the condition∑

s∈S lsns ≥ 1. At this point, the optimal solution is found.
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6.3.3 Existing techniques to optimize margins

DualLPboost [GS98] was the first approach to show that it is possible
to solve boosting problems using a column generation approach. In it,
at each iteration, the dual of the optimization problem over selected
variables is solved. The solution of the dual provides new weights for
the samples; these are used to find new trees. The primal is used to
compute the weights of the different trees. The process is repeated for
a fixed number of iterations.

Other approaches aim to correct the earlier discussed weaknesses of
DualLPboost.

6.3.3.1 LPBoost

While LPBoost essentially chooses to maximize the lowest margin value,
similarly to DualLPboost, it uses a soft margin maximization of the min-
imum margin instead of a hard margin maximization:

max
w,ξ,ρ

ρ−D

M∑
i=1

ξi

s.t. yiHi:w + ξi ≥ ρ, i = 1, . . . ,M

T∑
t=1

wt = 1

ξi ≥ 0, i = 1, . . . ,M

wt ≥ 0, t = 1, . . . , T

(6.9)

In this model ρ represents the minimum margin of the solution. The
model includes a slack variable ξi for each instance xi. This value repre-
sents a tolerance to misclassification for each instance because it impacts
the true value of margins. If ξi > 0, an instance is located on the wrong
side of the chosen margin. The sum of the slack variables is minimized in
the objective function, while maximizing the margin. This minimization
is regularized by a parameter D ∈ [0; 1] in order to control the trade-off
between the size of the margin and the extent to which instances are
wrongly positioned w.r.t. this margin. A good value of D is determined
by hyperparameter tuning.

Note that in this model the sum over variables t is over all possible
trees that can be constructed for a given dataset. LPBoost addresses this
using a column generation process. The corresponding dual model al-
lows finding at each iteration of the column generation process, the new
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sample weights u = {u1, . . . , uM} to learn a new tree. The formulation
of the dual is then:

min
r,u

r

s.t.
M∑
i=1

uiyiHit ≤ r, ∀t = 1, . . . , T

M∑
i=1

ui = 1

0 ≤ ui ≤ D, i = 1, . . . ,M

(6.10)

Solving this dual model allows to set weights to the instances based
on the prediction of the current trees. Concretely, an instance i that is
misclassified by a tree t will produce a score −1 for the expression yiHit.
Thus, its corresponding weight ui must be set to a strictly positive value
to reduce the value of the variable r. On the contrary, it must be set to
0 when the expression yiHit is 1. On the other hand, considering all the
trees in the model, some may misclassify an instance while others may
classify it correctly. Their overall impact on r for this instance therefore
depends on the number of trees that predict the instance correctly or
not. The more trees misclassify an instance, the higher its weight will
be. Otherwise, it will have a lower value. Note that the variable ui can
take a value in the interval [0; 1] and that the sum of all variables ui
is equal to 1. The weight of an instance will therefore also depend on
the number of misclassified instances. In practice, an instance correctly
classified by all trees will have a weight equal to 0. Note also that r is
an unbounded variable and will take a value less than 0 as long as there
is a misclassified instance.

After solving this model, the weights representing the misclassifica-
tion costs of instances at the current time are found. These weights are
thus used to learn a new tree, mainly focusing on the misclassified in-
stances. Unfortunately, a traditional decision tree learning algorithm is
used in each iteration to find the decision tree that takes into account
the weights computed for the instances. However, given that these algo-
rithms are heuristic, LPBoost cannot decide at which moment an optimal
ensemble has indeed been found.

6.3.3.2 MDBoost

Reyzin and Schapire [RS06] stated that the minimum margin maxi-
mization is performed at the expense of the other margins. There-
fore MDBoost maximizes the unnormalized average margin and simul-
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taneously minimizes the variance of the margin distribution under the
assumption that the margin distribution follows a Gaussian distribu-
tion [SL10]. The primal objective function of MDBoost for T trees is
max
w

ϱ̄ − 1
2σ

2, s.t. w ≥ 0,1⊤w = D, where ϱ̄ is the mean of the un-

normalized margins over the training data, σ2 is the variance and D is
a regularization parameter which indicates whether the model mostly
concentrates on the average margin maximization or the variance min-
imization. After some transformations, the primal can be rewritten as
follows:

max
w,ϱ

1⊤ϱ− 1

2
ϱ⊤Aϱ

s.t. ϱi = yiHi:w, ∀i = 1, . . . ,M

1⊤w = D

w ≥ 0

(6.11)

A is a symmetric matrix with all entries on the main diagonal set to 1,
and the other values are set to −1

M−1 . This matrix allows the variance
calculation and is positive semidefinite. The model is hence a convex
quadratic problem in ϱ. The corresponding dual model to reweigh the
training samples is then:

min
r,u

r +
1

2D
(u− 1)⊤A−1(u− 1)

s.t.
M∑
i=1

uiyiHit ≤ r, ∀t = 1, . . . , T

(6.12)

Both LPBoost and MDBoost require solving a same pricing problem. In-
deed one can see in their dual formulation (6.10) and (6.12) that iden-
tifying a violated constraint corresponds to finding a decision tree that
minimizes the weight (given by the dual variables considered as fixed)
of correctly classified instances minus the weights of incorrectly classi-
fied ones. The column generation alternates the two steps of 1) solving
the primal problem and collecting the dual values and 2) solving the
pricing problem which amounts of finding an optimal weighted decision
tree that is then added to the set of trees considered by the primal.

6.4 Learning optimal forests

This section describes our approach to learn provably optimal decision
forests.



6.4. Learning optimal forests 105

6.4.1 Problems in the existing approaches

The different approaches we described in the previous sections were all
proposed to achieve better performances than Adaboost by optimizing
a global criterion. Crucially, although the column generation process
used by these approaches allows solving a problem until optimality, two
elements in the solving process annihilate the optimality of solutions
found.

Table 6.1: Example database

A B C class
0 1 1 0
1 0 1 1
0 0 1 1
0 1 0 0
1 0 0 1
0 0 0 0
0 0 1 0
1 1 0 1
0 0 0 1
0 0 1 0
0 0 0 1

Heuristic-based learners The algorithms used by LPBoost and MD-
Boost for the pricing problem at each iteration of the column generation
process are heuristic-based, that is, the algorithm does not provide any
guarantee that it finds a tree to improve the objective, even when one
exists. Consider the example dataset in Table 6.1 and a sample weight
distribution u = (0.05, 0.06, 0.33, 0.02, 0.09, 0.02, 0.22, 0.04, 0.02,
0.08, 0.07). The tree found by the CART implementation of Scikit-learn
[Ped+11] for a maximum depth equal to 1 is represented in Figure 6.1a.
It always predicts the class 1 and thus misclassifies 5 instances. The tree
minimizing the misclassification rate for these weights the most is rep-
resented in Figure 6.1b and misclassifies 4 instances. Therefore, using a
heuristic-based tree in a column generation process does not guarantee
optimality. In this case, if the next tree to be added to the ensemble must
have at least the quality of the optimal tree, the CART algorithm cannot
find it and will stop the process without reaching optimality. To solve
this problem, we have to use an algorithm to learn an optimal decision
tree and taking into account the sample weights.
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1

(a) CART tree

B

0 1

1 0

(b) Optimal tree

Figure 6.1: Tree found for a max depth = 1, given the database of Table 6.1
and the sample weight u.

The number of iterations In the different approaches, a maximum
number of iterations is set after which the column generation process is
stopped and the result at this stage is used. At that moment we have no
guarantee that the result found is optimal. To deal with this problem,
we need to let the algorithm run until no tree can be added, i.e. no tree
can be found violating a dual constraint.

6.4.2 Optimal weighted decision trees (OWDT)

We build on the recent techniques for finding ODTs. However, to the
best of our knowledge, there does not exist any efficient algorithm to
learn ODTs in which instances are weighted. Therefore we adapted the
DL8.5 algorithm from Chapter 4 as it is the most efficient up-to-date
algorithm to learn ODTs. The only important thing to handle in order to
integrate the sample weights in DL8.5 is the way the score is computed
in each leaf. Basically, the formula used in DL8.5 to compute the error
in a leaf covering a set ℓ of instances is:

error(ℓ) =| ℓ | −max
c∈C
| {i; i ∈ ℓ ∧ yi = c} | (6.13)

To handle sample weights, the error function must integrate the
weight of each instance falling in a leaf. The new error is the difference
between the sum of weights of instances in a leaf and the maximum sum
of weights of instances grouped by class. It is expressed as:

weighted_error(ℓ) =
∑
i∈ℓ

wi −max
c∈C

∑
i∈ℓ∧yi=c

wi (6.14)

The error in each leaf of DL8.5 is computed based on counting. This
is efficiently implemented using bit-wise operations and the Reversible
Sparse bitset [Dem+16] data structure (Chapter 3), where each bit in
the structure represents an instance. Unfortunately, the reversible sparse
bitset data structure is more appropriate for counting problems than
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enumeration ones. However, to handle the weighted error, it is impor-
tant to loop on each weight. This data structure needs to be adapted
in our case to iterate over the true bits of the bitsets and collect the
weight of the corresponding instance. Instead of checking each bit of
the reversible sparse bitset, we implement this efficiently using a bit-
wise operation to retrieve the index of the rightmost non-zero bit. This
operation coupled to shift operation allows to iterate only over the cov-
ered instances.

6.4.3 Our approach to learn optimal forests

We summarize our generic algorithm for learning optimal decision
forests, Optiboost, in Algorithm 11. This algorithm can be used for
various optimization criteria, such as the ones proposed in LPBoost
and MDBoost. We call it OptiLPBoost or OptiMDBoost when it is used
respectively with the LPBoost or MDBoost model. The distinguishing
feature of Optiboost is that we use an optimal weighted decision tree
learning algorithm for finding the new trees to add in the column
generation process that respects the customized sample weights.
Moreover, we continue the search until no new tree can be found to
improve the value of the optimization criterion.

Algorithm 11: Optiboost({(xi, yi)}, depth,D)

1 w,H′, r ← 0, {},−∞
2 ui ← 1, i = 1, . . . ,M
3 h← OWDT({(xi, yi)}, depth,u)
4 do
5 H′ ← H′∪ h
6 r,u← solve the dual (6.10) for LPBoost and (6.12) for MDBoost

using D
7 h← OWDT({(xi, yi)}, depth,u)
8 while

∑M
i=1 uiyihxi

> r;
9 w ← solve the primal (6.9) for LPBoost and (6.11) for MDBoost using

D
10 return H′,w

A second distinguishing feature of the algorithm is that we do not
fix the size of the ensemble in advance. Instead, we repeat the column
generation process until the OWDT learning algorithm concludes that
no tree can be added to the ensemble that violates a constraint of the
dual. At that moment, the optimality of the ensemble has been proven
and the weight of each decision tree is returned.
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We start the process with an OWDT with all equal sample weights u
set to 1 (line 2) which means that the first tree added to the ensemble
optimizes its accuracy. The dual is then solved to update the variables
r and the vector u. The next iteration restarts with the new weights. If
the new tree added does not violate any dual constraint, the iteration
stops. At this point the optimal forest is found. The primal model needs
to be solved to find the weight of each tree of the final forest. However,
these weights can be found using a by-product if the solver provides this
feature. The final trees and their weights are returned.

6.5 Experiments

In this section, we answer the two questions:

Q1 What is the impact on the objective value when embedding an ODT
algorithm rather than a greedy one such as CART for solving the
pricing problem in LPBoost and MDBoost?

Q2 Does it make a difference in practice on the generalization error to
use an ODT learning algorithm?

To solve the linear and quadratic models of LPBoost and MDBoost, we
use Gurobi [Gur21] Optimizer 9.1.0 as solver. For the different base
learners, we used the implementation of CART available in Scikit-learn
[Ped+11] as heuristic DT algorithm. For the optimal DT algorithm,
we used our customized DL8.5 [ANS20] algorithm. Experiments were
run on a Red Hat 4.8.5-16 server with an Intel Xeon E5-2640 CPU and
128GB of memory.

To obtain the results in this section, we performed a 5-fold cross val-
idation. As the different models use a regularization parameter, for each
fold, we used grid search coupled to a 4-fold cross validation as hyper-
parameter tuning technique to find the best parameter. The different
regularization parameters tested for LPBoost and MDBoost are respec-
tively {0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1} and {0.5, 1, 3, 6,
12, 25, 50, 100}. The complexity of MDBoost increases as the number
of instances increases. Indeed, the size of the matrix A depends on the
number M of instances. Considering the number of iterations and the
fact that the model must be solved at each iteration and also consider-
ing that the complexity of the OWDT algorithm increases depending on
the size of the dataset, we performed the experiments on 10 well-known
UCI1 datasets having reasonable size. The datasets were already prepro-

1https://archive.ics.uci.edu/ml/datasets.php

https://archive.ics.uci.edu/ml/datasets.php
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cessed and available on the CP4IM2 project website. The different base
learners used for the experiments have a maximum depth equal to 3.

To answer question Q1, we present in Table 6.2 the optimization gap
between ODT (OptiLPBoost, OptiMDBoost) and heuristic (LPBoost and
MDBoost) based algorithms. The first columns of the table describe the
different datasets. nFeat stands for the number of features and nTrans
represents the number of instances in the dataset. To determine the best
value for the hyperparameter D, we performed hyperparameter tuning.
A hyperparameter tuning has been performed for bold columns. The
same value of the hyperparameter is then used for the other approach,
shown in the adjacent column. We notice clearly in Table 6.2 that the
optimal value reached by our approach is better than classic LPBoost
and MDBoost. The optimization value reached is on average improved
by an order of 2.

Table 6.2: Comparison of the objective reached when using the same hy-
perparameters
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anneal 93 812 0.0 0.0 0.0 0.0 44.57 82.15 165.43 103.4

audiology 148 216 0.4 0.62 0.62 0.4 103.57 135.94 142.73 118.32

heart-clev. 95 296 0.11 0.34 0.34 0.11 89.93 122.06 133.29 104.31

hepatitis 68 137 0.29 0.58 0.58 0.29 38.12 69.07 71.11 42.01

lymph 68 148 0.28 0.55 0.55 0.28 46.28 77.57 77.08 47.54

prim.-tum. 31 336 0.0 0.0 0.0 0.0 59.08 79.75 90.1 67.37

soybean 50 630 0.01 0.13 0.13 0.01 104.06 189.68 274.37 171.06

tic-tac-toe 27 958 0.11 0.28 0.28 0.1 105.39 196.59 190.45 104.1

vote 48 435 0.23 0.46 0.46 0.23 154.89 223.69 239.1 179.92

zoo-1 36 101 1.0 1.0 1.0 1.0 80.8 80.8 80.8 80.8

We can also notice in Figure 6.2 and Figure 6.3 how the objective
value evolves as the iterations increase in the boosting process on dif-
ferent folds. We show these plots for the dataset tic-tac-toe as it has the
highest number of instances in our datasets and the resulting graphs
are representative for the results on other datasets as well. For space
reasons, we only show the first three folds of our 5 folds. The same
regularization parameter is used for the different approaches. On these
plots, the parameters used have been tuned for LPBoost and MDBoost.
Notice that the number of iterations reached by our optimal approach
is always greater than the classic approaches. This indicates that the

2https://dtai.cs.kuleuven.be/CP4IM/datasets/

https://dtai.cs.kuleuven.be/CP4IM/datasets/
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heuristic approaches stop without proving the inexistence of trees. Note
that already from the first iterations, the objective value of our approach
is better than the classic LPBoost and MDBoost. Moreover, we can no-
tice that, similarly to Adaboost, the optimization criterion of LPBoost
and MDBoost does not focus on accuracy. The number of trees increases
even when the accuracy on the training set is 100%, trying to increase
the margin of instances.

algo LPBoost OptiLPBoost colour objective test_error train_error
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Figure 6.2: Evolution of objective value with LPBoost on tic-tac-toe dataset
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Figure 6.3: Evolution of objective value with MDBoost on tic-tac-toe
dataset

To answer question Q2, we show in Table 6.3 a performance com-
parison of classic LPBoost and MDBoost against our optimal forest ap-
proaches, where the regularization value is tuned for each approach.
For each approach, we present the number of trees found, the accu-
racy on training set and test set. The best accuracy on the test set is
in bold. The column Adaboost will be discussed later. Not surprisingly,
and as explained above, the number of trees found with OptiLPBoost
and OptiMDBoost are higher than LPBoost and MDBoost. However, this
is not always the case because this number also depends on the value of
the regularization parameter. According to the authors of LPBoost and
MDBoost, increasing the margin of instances should also reduce the gen-
eralization error of the model on unseen instances. The results in Table
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Table 6.3: Comparison of generalization performance
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anneal 14.4 61.43 61.43 2.0 27.15 27.22 88.79 205.0 92.98 88.92 75.8 91.62 87.93 88.79

audiology 31.6 100.0 95.82 21.2 100.0 93.96 93.53 43.2 99.77 93.5 25.2 99.08 94.89 93.53

heart-clev. 119.2 100.0 78.02 55.8 100.0 78.36 79.39 89.4 96.03 78.36 23.2 93.41 81.41 79.39

hepatitis 55.2 100.0 82.49 29.2 100.0 80.32 82.46 188.6 99.63 83.23 30.2 99.45 81.83 82.46

lymph 64.2 100.0 89.15 31.6 100.0 85.82 89.79 114.2 99.66 89.17 21.8 97.47 85.13 89.79

prim.-tum. 29.0 88.02 71.46 29.4 78.12 69.33 77.37 110.2 92.04 82.74 27.8 90.48 82.14 77.37

soybean 58.6 98.97 93.81 26.4 99.17 94.13 95.71 129.4 98.13 95.71 53.4 97.86 96.03 95.71

tic-tac-toe 153.2 100.0 89.47 98.8 100.0 82.89 84.99 875.8 100.0 87.49 204.0 100.0 87.28 84.99

vote 58.4 100.0 94.25 28.8 100.0 94.25 95.63 163.6 99.48 96.09 40.6 98.85 95.63 95.63

zoo-1 1.0 100.0 97.0 1.0 100.0 97.0 100.0 1.0 100.0 97.0 1.0 100.0 97.0 100.0

6.3 show that this is not always the case. Although the generalization
error of LPBoost and MDBoost decreases on most datasets with OptiLP-
Boost and OptiMDBoost, there are still some datasets on which boost-
ing ODTs perform worse. This is confirmed by the Figures 6.2 and 6.3,
where the test error obtained by OptiLPBoost and OptiMDBoost on some
folds is higher than errors obtained by classic approaches, although
the same regularization values are used and the objective reached by
the optimal approaches are higher. In conclusion, there is a differ-
ence between boosting a traditional heuristic algorithm compared to
ODTs. Concretely, boosting ODTs can increase performance, but not on
all datasets. The result also depends on the optimization criterion. No-
tice that the results of MDBoost are better than LPBoost. This implies
that it is more interesting to maximize all the margins than maximizing
the lowest one.

Due to the fact that LPBoost and MDBoost are not optimal, it was not
possible to assess their optimization criterion against Adaboost. In Ta-
ble 6.3, we also compare the different approaches to Adaboost with 100
trees. The accuracy found on test sets are put in the column Adaboost.
We compare the results according to whether it is LPBoost or MDBoost.
In each case, we compare the classic approach, the optimal approach,
as well as Adaboost; the best one is underlined. Notice that the perfor-
mance of LPBoost models is lower than Adaboost even when the optimal
forest approach managed to outperform Adaboost on 3 instances. On
the other hand, concerning the MDBoost model, the optimal forest ap-
proach outperforms the classic approach as well as Adaboost on many
datasets. We can conclude that it is a good approach to infer optimal
forests by boosting ODTs. However, the performance is mainly ensured
by the optimization criterion. A good optimization criterion will result
in a good generalization.
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6.6 Conclusions

In this chapter, we explored the question of learning optimal forests. We
presented existing techniques to boost DTs and the intuition on which
they rely. We demonstrated that the results found by these techniques
are not optimal. We then built on recent works on learning ODTs to
propose an ODT algorithm supporting sample weights. We built on this
OWDT algorithm to propose a way to find optimal forests. For the first
time, this allowed us to infer optimal decision forests given a global op-
timization criterion. We then performed a number of experiments to
(1) show that there is a gap between optimal forests and existing ap-
proaches. (2) We compare optimal forests to existing approaches and
found that optimal forests increase the generalization character of these
models. (3) We found that in addition to optimality, the optimization cri-
terion is important to learn ensembles with a good generalization char-
acter. Although we noticed that maximizing all margins is preferable
over maximizing the lowest one and can outperform Adaboost, it ap-
pears that the existing criteria are not yet very satisfactory. We hope this
work could launch the study of other objective functions, as we made
our implementation easy to support other optimization criteria.
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ò
This chapter is based on the paper Aglin, S. Nijssen, and P.
Schaus. “PyDL8.5: a library for learning optimal decision
trees”. In: Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial
Intelligence. 2021, pp. 5222–5224.

7.1 Introduction

Machine learning models are increasingly used in a wide range of ap-
plications. However, an increasing concern is the interpretability of ma-
chine learning models. Whether or not human experts can understand
a model can for instance be important to avoid ethical problems [CS14;
RSG18; RSG16a; RSG16b; INM19]. Decision trees have gained interest
in recent years for this reason, since they can be interpreted as rules that
are interpretable by domain experts.

An important parameter for the interpretability of a decision tree is
the depth of the tree. Deeper trees contain more tests and more rules,
and hence are often harder to interpret.

As explained in the previous chapters, the most well-known algo-
rithms such as CART [Bre+84] and C4.5 [Qui93] use a greedy approach
to learn DTs. They select iteratively the best feature to split on based
on a heuristic (information gain, gini index) and continue this splitting
process until a desired quality (eg., classification accuracy) is obtained
or a desired depth is reached. However, this greedy process has dis-
advantages. Greedy trees that are sufficiently accurate are sometimes
unnecessarily deep, and depth-constrained greedy trees are not suffi-
ciently accurate [BD17]. Moreover, to learn trees for other tasks than
classification, it is often necessary to develop new heuristics [BRR98],
making it harder to solve such tasks.

The main challenge in finding ODTs is the NP-hardness of finding
ODTs. Good search algorithms are needed to make solving this task
feasible. We showed that DL8.5 obtains the best performance on a wide
range of test cases [ANS20]. Indeed, on commonly used UCI datasets
DL8.5 computes ODTs within seconds, making its use in an interactive
demo possible. Moreover, we show in the previous chapter that it can
be used to solve another problem than the one of misclassification rate
minimization.

In this chapter, we introduce PyDL8.5, an open source Python library
that implements DL8.5 in an efficient and extendible manner. Compared
to other systems for finding ODTs, it offers these advantages: (1) it offers
better computational performance, as shown in chapter 4 [ANS20]; (2)
it is easy to use, as it is fully compatible with scikit-learn; (3) it extends
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ODTs to several well-known problems; (4) it can easily be extended to
solve other tree learning problems than classification problems.

To deal with other learning problems, we implemented DL8.5 such
that it works for any optimization criterion that is additive; i.e. the
error produced by a node is the sum of errors produced by its children.
Using our library, a user can express her optimization criterion using any
Python library of choice; the optimization criterion does not need to be
linear or integer, as required in alternative methods based on MIP and
SAT solvers.

This chapter is organized as follows. In the next section, we remind
the essentials of DL8.5 by proposing a summary of the algorithm. Then,
we present a bit the architecture of PyDL8.5 library. Finally, we propose
a non-exhaustive list about examples of how to use PyDL8.5 on some
ML tasks.

7.2 Learning ODTs using DL8.5

Given a binary training set D, and two parameters maxdepth and
minsup, the problem that is solved by the DL8.5 algorithm is to find the
decision tree argminT∈DT f(T ), where

■ DT represents all decision trees of depth lower than or equal to
maxdepth in which each leaf covers at least minsup examples of
the training data D;

■ f(T ) is a scoring function that is additive over the leafs of the tree
T , that is, f can be written as f(T ) =

∑
ℓ∈leafs(T ) g(ℓ), where g(ℓ)

is a function that evaluates the quality of each leaf ℓ, and g(ℓ) is
independent of the order of the tests leading to leaf ℓ.

In [ANS20] DL8.5 was introduced for the problem of classification;
a scoring function g(ℓ) was used that evaluates the misclassification rate
of a leaf, that is, the number of instances covered by a leaf that do
not belong to the majority class of that leaf. However, the algorithm is
correct for other additive scoring functions as well.

DL8.5’s search algorithm relies on a mix of Dynamic Programming
and Branch-and-Bound search. It recursively explores all possible splits
and selects the split with the lowest score. Since different sequences of
splits may select the same set of instances in the data, the same subset of
data may be encountered multiple times during the search. DL8.5 uses a
caching system to reuse results of subsets already assessed. To prune the
search space, DL8.5 uses a bounding system. When a subtree is found,
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its score is used as an upper bound to restrict the quality of future sub-
trees. Here, DL8.5 exploits the additive nature of the scoring function
to prune a right-hand subtree when the left-hand subtree provides an
error greater than or equal to the upper-bound. On the contrary, when
the upper bound is too restrictive to find a solution, it is considered as a
lower bound.

7.3 Architecture of PyDL8.5

Given the popularity of Python in data science and AI, we implemented
PyDL8.5 as a Python 3 library. The core of the algorithm is written in
C++ so PyDL8.5 is featured as a Python wrapper over the C++ im-
plemetation of DL8.5 as well as its extensions proposed in the previous
chapters. However, PyDL8.5 also provides numerous features that ex-
tend the DL8.5 algorithm. PyDL8.5 implements the fit/predict inter-
face of the popular scikit-learn library [Ped+11] to make it easy to use
in combination with scikit-learn. An important component of DL8.5 is
the scoring function used to evaluate the leafs of a tree. For the most
common scoring functions, a fast implementation in C++ is provided.
This is important as the function is called very often. Thanks to DL8.5,
users can also write a scoring function in Python, although such func-
tions may slow down the execution.

The library is hosted on PyPI1 and the source code is available at
https://github.com/aia-uclouvain/pydl8.5 under MIT license. It can be
installed by running the command pip install pydl8.5. The docu-
mentation of the library is available at https://pydl85.readthedocs.io/en/
latest/.

The following examples demonstrate how easily PyDL8.5 can be
used to implement many different ODT learning tasks.

7.4 Examples of PyDL8.5 use

In this section, we present how PyDL8.5 can be used to learn many types
of ODTs based on the DL8.5 algorithm.

The first example we show is the basic implementation of the DL8.5
algorithm.

Example Task 1: Shallow Classifiers. Listing 7.1 shows the code
needed to train an ODT classifier under a maximum depth and a min-
imum support constraints. The code also allows predicting on unseen

1https://pypi.org/project/pydl8.5/

https://github.com/aia-uclouvain/pydl8.5
https://pydl85.readthedocs.io/en/latest/
https://pydl85.readthedocs.io/en/latest/
https://pypi.org/project/pydl8.5/
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data. Note the simple integration in scikit-learn. Indeed, a scikit-learn
function is used to split the dataset into a training and test sets. More-
over, the outputs of the code are compatible with scikit-learn metric
functions. Notice that the lines from 1 to 9 are only for preprocess-
ing purpose. Only the three lines (12-14) are really important to learn
the ODT and predict on unseen data. The score minimized by default
by DL85Classifier is the misclassification rate. Notice the presence of
parameters mentioned in the previous chapters. max_depth, min_sup
and time_limit are parameters mentioned in Chapter 4. max_depth,
min_sup are constraints set on the tree to be found. time_limit is the
parameter denoting the anytime behavior of the DL8.5 algorithm. In the
code proposed, it is to 60, meaning that the search will be interrupted
after 60 seconds if the ODT is not found. In this case, the current ODT
found is returned. The parameters maxcachesize and wipe_factor
are introduced in Chapter 5. They are related to the reduction of the
memory consumption. maxcachesize denotes the maximum size of the
cache, and wipe_factor indicates the percentage of the cache to remove
when the cache is full. There are also possibilities to change the type of
the cache (trie or hash table) and the representation used as the key in
the cache (paths or set of instances). These options can be found in the
online documentation.

1import numpy as np
2from sklearn.model_selection import train_test_split
3from sklearn.metrics import confusion_matrix, accuracy_score
4from pydl85 import DL85Classifier
5# read the dataset and split into features and targets
6dataset = np.genfromtxt("anneal.txt")
7X = dataset[:, 1:] # get the features matrix
8y = dataset[:, 0] # get the class vector
9# split the dataset into training and test sets

10X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.2)
11# initialize the classifier, train and predict
12clf = DL85Classifier(max_depth=3, min_sup=5, time_limit=60,

maxcachesize = 10000, wipe_factor = 0.3)
13clf.fit(X_train, y_train) # train the model
14y_pred = clf.predict(X_test) # predict on new data
15print("Accuracy on test set =", accuracy_score(y_test, y_pred))
16print("Confusion Matrix\n", confusion_matrix(y_test, y_pred))

Listing 7.1: Code snippet to train a classifier

Given the branch-and-bound nature of DL8.5, it can be interesting
to provide an initial upper-bound on the quality of the tree to find, to
help the search. A concrete example is to run a heuristic tree learning
algorithm, for instance CART, to quickly find a tree and to use its error to
bound the search. This feature isn provided by PyDL8.5. It can be eas-
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ily used by providing the parameter max_error to the DL8Classifier.
This feature can also be used to solve some ML tasks. An example of a
problem that can be solved using this feature is the problem of finding
the shallowest tree with perfect accuracy that has been studied recently.
The problem was solved using a SAT solver [Nar+18; Ave20].

Example Task 2: 100% Accurate Classifiers. The following code
shows how this problem can be solved using PyDL8.5. The idea con-
sists in searching the ODT for successive depths starting from 1 until an
error of 0 is met. To speed up the search, an upper bound representing
a maximum error not reachable is set using the parameter max_error.
In this case, a good upper bound is 1, denoting that we want an error
lower than 1, i;e. 0. The fact that the upper bound is very restrictive,
induces a huge number of pruning. We found that this simple piece
of code typically solves the same problem more rapidly than SAT-based
approaches.

1import numpy as np
2from sklearn.model_selection import train_test_split
3from pydl85 import DL85Classifier
4# read the dataset and split into features and targets
5dataset = np.genfromtxt("anneal.txt")
6X = dataset[:, 1:] # get the features matrix
7y = dataset[:, 0] # get the class vector
8# split the dataset into training and test sets
9X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.2)

10# loop for each depth
11depth = 1
12while True:
13 clf = DL85Classifier(max_depth=depth, max_error=1)
14 clf.fit(X_train, y_train)
15 if clf.error_ == 0:
16 break
17 maxdepth += 1
18y_pred = clf.predict(X_test)

Listing 7.2: Code snippet to train the shallowest 100% accurate DT

As explained above, the DL8.5 algorithm is suitable for finding trees
for which the total error can be expressed as a sum over the errors of
all leafs. As many ML problems meet this requirement, we provide
through PyDL8.5 an interface to allow users to define their own opti-
mization criteria. An example of a task fulfilling this requirement is
predictive clustering [BRR98]. This is an unsupervised task in which
one aims to identify clusters of good quality in the leafs of the tree and
the tree can be interpreted as a description of the clusters. To handle
this problem, PyDL8.5 provides a DL85Predictor class in addition to
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the DL85Classifier class, each of them having an interesting parame-
ter: error_function. This input provides the function used by DL8.5 to
compute the error produced by the different paths assessed during the
search. To easily define this function, DL8.5 provides to the function the
list of instances covered by the path. An additional parameter is added
to the DL85Predictor class: leaf_value_function. It is used to define
a function to set a label to the leaf assessed. In DL85Classifier class,
the error_function can directly return the class in addition to the er-
ror value. It can be a class for a classification problem or a label for a
clustering problem. This function also receives from DL8.5, the list of
transactions falling in the leaf to label. Note that since the error compu-
tation is performed in Python, it slows down the execution compared to
if it was done in C++.

Example Task 3: Predictive Clustering. Listing 7.3 shows how to
use the features of PyDL8.5 to implement predictive clustering using
a custom scoring function error that calculates the sum of Euclidean
distances from each point in a cluster to the centroid. Note that no
heuristic is needed, that this function is nonlinear, and is written using
NumPy code itself. A leaf_value function is provided to determine the
labels put in the leafs of the tree. The centroids of clusters are used as la-
bels. This feature provided by PyDL8.5 can be used to learn regression
trees optimizing a criterion like the mean absolute error (MAE). This
can also be used to learn weighted instances trees mentioned in Chap-
ter 6 even if the resolution of this problem is directly provided by the
core implementation of DL8.5 written in C++. For this, the parameter
sample_weights should be used with the DL85Classifier class.

1import numpy as np
2from sklearn.model_selection import train_test_split
3from sklearn.neighbors import DistanceMetric
4from pydl85 import DL8Predictor
5eucl_dist = DistanceMetric.get_metric("euclidean")
6# user-defined scoring function
7def error(tids):
8 X_subset = X_train[list(tids),:]
9 centroid = np.mean(X_subset, axis=0)

10 distances = eucl_dist.pairwise(X_subset, [centroid])
11 return float(sum(distances))
12# user-defined labels in the leaf
13def leaf_value(tids):
14 return np.mean(X_train.take(list(tids)))
15# read the dataset and split into features and targets
16dataset = np.genfromtxt("anneal.txt")
17X, y = dataset[:, 1:], dataset[:, 0]
18# split the dataset into training and test sets
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19X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.2)
20# initialize the search and run it
21clf = DL85Predictor(max_depth=3, min_sup=5, error_function=error,

leaf_value_function=leaf_value)
22clf.fit(X_train)
23predicted = clf.predict(X_test)

Listing 7.3: Code snippet of user-defined clustering

To speed up a bit the learning of user-specific trees, PyDL8.5 offers
a special interface for an error function that relies on the number of
instances per class. For this, a parameter fast_error_function is pro-
vided through the DL85Predictor and DL85Classifier classes. This pa-
rameter allows the user to pass a function to compute the error value of
paths assessed. In contrast to the parameter error_function that relies
on the list of instances covered by the path, the fast_error_function
parameter relies on the numbers of instances per class related to the
path. For instance, to compute the misclassification rate, the complexity
of using the supports per class depends on the number of classes, which
is lower than the number of instances covered by the path. This feature
can be used to learn cost sensitive trees. The problem of cost sensitive
learning is similar to misclassification rate minimization, except the fact
that the cost of predicting a class in place of another one is different for
each pair of classes.

Example Task 4: Cost-sensitive Learning. Listing 7.4 shows how
to use the fast_error_function provided by PyDL8.5 to learn
cost-sensitive trees. The function error passed as input to the
DL85Predictor class (line 17), takes as input for each path, the sup-
ports per class (line 7). The classic misclassification rate is computed,
and it is timed by the cost of predicting the minority class as the
majority class (line 10). Notice also that using the DL85Predictor class,
the class of the leaf error is directly provided using the user-defined
function; here maxindex (line 10). This feature of PyDL8.5 can also be
used to solve many other tasks, such as fair tree learning.

1import numpy as np
2from sklearn.model_selection import train_test_split
3from pydl85 import DL85Predictor
4# misclassification costs
5cost = [[1, 3], [2, 1]]
6# user scoring function: weighted misclassification rate
7def error(sup_iter):
8 supports = list(sup_iter)
9 maxindex = np.argmax(supports)
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10 return (sum(supports) - supports[maxindex]) *
cost[maxindex][abs(maxindex-1)], maxindex

11# read the dataset and split into features and targets
12dataset = np.genfromtxt("anneal.txt")
13X, y = dataset[:, 1:], dataset[:, 0]
14# split the dataset into training and test sets
15X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.2)
16# initialize the search and run it
17clf = DL85Predictor(max_depth=3, fast_error_function=error)
18clf.fit(X_train)
19predicted = clf.predict(X_test)

Listing 7.4: Code snippet of user-defined clustering

Many other tasks such as the boosting discussed in Chapter 7 are
made available through the PyDL8.5 library. The online documentation
can be consulted to get a further insight on the use case of PyDL8.5.
However, a last interesting feature of PyDL8.5 is worth to be mentioned
here: it is the printing of the learnt ODTs.

Example Task 5: Visual representation of learnt ODT. Listing 7.5
shows how to learn an ODT and display its visual representation. A
function export_graphiz is provided by the DL85Classifier class. It
returns a .dot string that represents the learned tree. It can be used by
the graphviz library to convert the string to an image.

1import numpy as np
2from sklearn.model_selection import train_test_split
3from pydl85 import DL85Classifier
4import graphviz
5# read the dataset and split into features and targets
6dataset = np.genfromtxt("anneal.txt")
7X, y = dataset[:, 1:], dataset[:, 0]
8# split the dataset into training and test sets
9X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.2)

10# instance the classifier, fit and predict
11clf = DL85Classifier(max_depth=2, min_sup=1)
12clf.fit(X, y)
13y_pred = clf.predict(X_test)
14# print the tree
15dot = clf.export_graphviz()
16graph = graphviz.Source(dot, format="png")
17graph.render("anneal_odt")

Listing 7.5: Code snippet of user-defined clustering

Figure 7.1 shows the visual representation of the tree learned in the
Listing 7.5.
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Figure 7.1: Visual representation of an ODT
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The conclusion of this thesis consists of 3 parts. Section 8.1 presents
a summary of the thesis. In Section 8.2, an overview of DL8.5 applica-
tions in real-world situations is shown. Finally, Section 8.3 presents a
discussion of some future works.

8.1 Summary

In this thesis, we studied four main problems:

1. The learning of optimal decision trees under a maximum depth
and a minimum support constraints,

2. The learning of optimal decision trees under memory constraints,

3. The use of optimal decision trees for solving and assessing boost-
ing models,

4. The learning of optimal decision trees optimizing user-defined er-
ror criteria.

The starting point is two earlier works:

(1) The study performed by Bertsimas and Dunn [BD17] showed exper-
imentally that the optimal decision trees under a maximum depth
constraint generalize better than the heuristic decision trees. How-
ever, [BD17] had not managed to propose an approach to learn
ODTs within a reasonable time. This is mainly due to the use of a
MIP solver that is generic and cannot take into account the speci-
ficity of the decision tree learning problem. Moreover, Laurent and
Rivest [LR76] have shown that it is NP-complete to learn optimal
decision trees under a size constraint.

(2) To learn optimal decision trees in a shorter period of time, we
mainly relied on an earlier work DL8 [NF07; NF10]. This algo-
rithm is a dynamic programming algorithm based on the caching
and the reuse of solutions of subproblems encountered multiple
times during the search. It has provided the essential algorithmic
basics that have directed our work.

In this thesis, we created a new algorithm, DL8.5, which relied on
DL8 and introduced a branch-and-bound behavior in the dynamic pro-
gramming process. We proposed the use of the best so far error found in
the search space as hierarchical upper bound and a restrictive bound as
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lower bound. The combination of these bounds showed impressive re-
sults compared to earlier work. However, the solution caching inherited
from DL8 has an important drawback: the memory consumption.

Despite the choice in DL8 to represent its cache as a prefix tree, the
number of elements that must in general be stored is huge and this led to
a high memory consumption. To mitigate this problem, we proposed a
bounded cache to replace the standard cache used in the DL8 algorithm.
The new cache we proposed is still a prefix tree because its compression
capacity is an asset. However, we provided the cache with the ability
to limit its size. Therefore, the number of solutions that can be stored
is bounded. This allowed to reduce the memory consumption of the
algorithm at the expense of a longer run time. To reduce the impact
of the cache bounding on the run time of the algorithm, we proposed
different strategies to remove whenever the cache is full, some specific
elements, which ensures a lower impact of their recomputation on the
run time.

After solving the memory consumption problem of DL8.5, we
showed that it can be used to solve many other problems. We used the
DL8.5 algorithm to solve till optimality existing optimization problems
that could not be solved beforehand. Specifically, we solved some
boosting optimization problems that have been proposed earlier to
explain the performance of traditional boosting models. Despite the
specification of these models, it was not possible to solve them because
there was no algorithm able to learn optimal decision trees given a
dataset of weighted instances, whereas this is required to accomplish a
boosting task. Based on the DL8.5 algorithm, we proposed an algorithm
able to learn optimal decision trees taking the weight of instances into
account. Thanks to this algorithm, we were able to solve the models
and assess their relevance.

Finally, we proposed a new library, PyDL8.5, as a way to use the nu-
merous features provided by DL8.5 or implemented on top of the DL8.5
algorithm. Despite the fact that the core source code of DL8.5 is written
in C++, the library is provided in Python to follow the trend of most
of the libraries in data science and to ease its use. Moreover, the library
is compatible with the well-know scikit-learn library [Ped+11]. It can
solve many machine learning problems and we showed some examples
of how this can be done. Note also that in addition to the optimization
criterion implemented in the library, it allows its user to define her own
optimization criterion as long as it is additive. One can also print a vi-
sual representation of the learned trees. Using the PyDL8.5 library is as
simple as installing it by running the command pip install pydl8.5.
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8.2 DL8.5 in real-world applications

During this thesis, we directed some master theses in collaboration with
companies. In this section, we concisely present the ones that are re-
lated to the use of DL8.5 algorithm on real-world data. Note that these
works were not published, but they demonstrate the usefulness of our
approach in real-world situations.

8.2.1 Distribution similarity

This work was done in collaboration with a major Belgian company that
provides services to the population throughout the country. For each ser-
vice that they provide to the population, they keep track of information
about the status of the service. Thus, the company has a dataset that
contains for each customer, the different information related to the sta-
tus of the services provided to the customer. The status of these services
is a numerical data type. The objective of this work was to optimally
find groups of customers with similar profiles so that the intra-cluster
distance is minimized. There are several clustering algorithms to find
these groups. However, they are all heuristic unlike DL8.5. In addition,
the company also wanted to understand the similarities. A decision tree
is an interesting model to accomplish this task. The dataset provided by
the company was collected over twenty months and contains informa-
tion about 120 million services provided to over 3.2 million customers.

To perform this task, we used the predictive clustering technique in-
troduced in section 7.4. Prior to this, we performed a preprocessing task
to convert the dataset of individual services into a dataset of the distri-
bution of service statuses per customer. The number of instances was
thus equal to the number of clients. Different versions of the dataset
were generated using different levels of aggregation (days, weeks or
months). The size of the distribution per customer then depends on this
level of aggregation. In order to perform predictive clustering, we need,
in addition to the distributions, some features on which the decision
tree will rely to explain the predicted clusters. Since we did not have
enough information about the customers and in order to reduce the size
of the dataset, we transformed the dataset into a new one by grouping
the customers into 19781 geographic units provided by the Belgian sta-
tistical office (Statbel1). These groups bring together several addresses
belonging to the same socio-economic status and are a good represen-
tation of the clients in them. In addition, the Belgian statistical office
provides interesting socio-economic characteristics on these groups that

1https://statbel.fgov.be/en

https://statbel.fgov.be/en
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might be interesting to explain the similarities between the customers.
Our final dataset consisted of 19781 instances. We were able to perform
the predictive clustering task by minimizing the Euclidean distance. The
results showed some interesting clusters, mainly explained by the job
function of customers. These were validated by a visual representation
on a map that confirms the difference between some well-known regions
in Belgium, known to be regions with strong economic activities such as
airports, ports and industrial areas.

8.2.2 Quantile regression trees

In this work done in collaboration with a large international retail com-
pany, the objective was to learn quantile regression trees. Specifically,
the company uses an optimization framework to define how they replen-
ish stores and warehouses for each product. To execute this framework,
they provide as input, for each product, the prediction of demands in
the future. These predictions could be provided by a linear regression
model that would learn them based on previous sales records. Unfortu-
nately, the distribution of past product sales contains many outliers and
the average value predicted by linear regression models is not represen-
tative of the true distribution. In this situation, it is more interesting to
predict the demands, for many quantile values, so that the optimization
framework will base on these quantile-based predictions that take out-
liers into account. Moreover, the company was interested in knowing
the features explaining the predictions.

In order to learn quantile regression trees, the error function used
in DL8.5 must be replaced by the quantile loss error. Fortunately, this
error function satisfies the additivity condition described in Chapter 7;
that is, the quantile loss produced by a node in a binary decision tree is
the sum of the quantile losses produced by its two children. By replac-
ing the error function of DL8.5, one would be able to learn an optimal
regression tree for a specific quantile value. However, since the dataset
provided was large, this operation takes a considerable amount of time
and it becomes very time consuming to successively learn 100 trees for
a percentile case, for example. Concretely, the dataset had 70000 in-
stances and 46 features. To mitigate the iterative tree learning process,
we proposed in this work, a modification of the DL8.5 algorithm to learn
several quantile regression trees at once. The idea is to share the infor-
mation of the search space between the different trees being searched
rather than starting the search from the beginning for each tree. The
bounds are therefore adapted. There is one per node and per tree. An
example of a modification made is that the upper bound pruning only
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occurs when the bounds of all trees violate the least restrictive upper
bound of a node. The results show an impressive gap between the run-
time of our new algorithm and the iterative tree learning process. A
future work is to publish these results.

8.3 Perspectives

Concerning the perspectives of improvement of DL8.5, many directions
are possible, either in terms of the efficiency of the algorithm in terms of
time and memory or in the different problems solved by the algorithm.
In this thesis, we present some of them.

8.3.1 Parallelization

One important direction we can consider to make the DL8.5 algorithm
more efficient is parallelization of the algorithm. As a recursive algo-
rithm that performs an independent search each time a branching oc-
curs, it is intuitive to consider the algorithm as a parallel algorithm.
However, an important aspect to consider when implementing the par-
allel version of DL8.5 is cache access. Since the algorithm is based on
a dynamic programming concept, the cache will be regularly used by
each process to store or get the solution of subproblems. It is therefore
important to find a way to coordinate how the cache will be accessed
to avoid collisions. This problem can be solved by implementing a ded-
icated protocol deciding which process and when a process can use the
cache, while ensuring that this does not produce an overhead. For ex-
ample, a priority metric could be computed based on the importance of
the solution to be stored/retrieved by each process in order to decide
the order of access to the cache.

8.3.2 Model distillation

Regarding the future features that can be covered by DL8.5, model dis-
tillation is an interesting one. The idea is to find a decision tree that
can explain the decisions of a complex model. This allows to find expla-
nations for well-performing models but which lack of interpretability.
The problem has already been studied by some researchers [RSG16a;
RSG16b; RSG18], but it has not been treated as an optimal decision
tree learning problem yet. In the context of optimal decision trees, the
model distillation problem can be considered as the problem of finding a
decision tree for which the difference between the prediction of the tree



8.3. Perspectives 131

and that of the model is minimal. Being aware that a decision tree ex-
plaining all the decisions of a complex model can be huge, it is possible
to consider finding the best tree minimizing this error under a maximum
depth constraint. Another important aspect is that the dataset used to
learn the complex model will be needed by the decision tree learning
algorithm. In the context of trained models for which the input dataset
is not existing, an approach to generate a large dataset with different
examples can be considered. Otherwise, models that can be used to
generate datasets will be preferred.

8.3.3 Continuous features

Another interesting feature is the handling of numerical attributes. Cur-
rently, DL8.5 as well as other existing approaches for learning ODTs
only support binary datasets as input. When datasets with numeric at-
tributes are provided, they are converted to a binary dataset as shown
in Section 4.3.1. Then, the binary dataset is passed to algorithms de-
signed for binary datasets. Unfortunately, the binarization of numerical
features leads to a dataset with numerous Boolean features, whereas
the run time of the learning algorithms increase with the number of
features. In practice, there are many real-world applications in which
it is not feasible to learn an optimal decision tree because the datasets
contain mostly numerical features with a large number of distinct real
values per feature. In this context, a possible approach could be to per-
form discretization with a fixed number of values (equal width or equal
frequency) before performing binarization. However, the guarantee of
optimality is lost.

An attempt to learn optimal decision trees when processing numer-
ical attributes could be a better handling of the feature columns gen-
erated after the binarization process. Since the features are generated
from the same original feature, some preprocessing operations before
or during the learning phase could allow, after exploring some features,
to identify other features from the same original feature, which could
become irrelevant and be removed from the list of features to explore.

Another aspect that might be interesting to study is the distribution
of feature values originating from the same feature. We might expect
them to share some similarities. Therefore, we might expect some kind
of similarity bound to be derived for one feature based on another.

The use of instances and path length as a representation of subprob-
lems will also lead to more reuse of solutions and thus a reduction in
execution time. However, the closed itemsets concept introduced in DL8
could be explored to create a more compact form of this representation
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and therefore avoid the risk of too much memory consumption.
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