
Finding maximum sum submatrices

Guillaume Derval

Thesis submitted in partial fulfillment of the requirements for
the Degree of Doctor in Applied Sciences

December 2021

ICTEAM
Louvain School of Engineering

UCLouvain
Louvain-la-Neuve

Belgium

Thesis Committee:
Pr. Pierre Schaus (Advisor) UCLouvain, Belgium
Pr. François Glineur UCLouvain, Belgium
Pr. Michele Lombardi University of Bologna, Italy
Pr. Charles Pecheur UCLouvain, Belgium
Pr. Jean-Charles Régin Université Côte d’Azur, France

Finding maximum sum submatrices
by Guillaume Derval

© Guillaume Derval 2021
ICTEAM
UCLouvain
Place Sainte-Barbe, 2
1348 Louvain-la-Neuve
Belgium

Preamble

Data mining is nowadays an important part of numerous fields of science,
from linguistics [Ped99] to ecology [Han+20], via chemistry [TZR18] and
medicine [LZ05]. Since the beginning of this century, many multi-billion-
dollar companies, that focus on data mining as it represents their main
source of income, have emerged. Data mining is now pervasive in our
society. The field is thus very active, and numerous results, techniques,
studies have been made to solve problems encountered in many different
disciplines.

Among all these problems, this thesis focuses on a particular family,
biclustering. As its name indicates, this ensemble of methods focuses on
finding biclusters, clusters of two different kinds of entities. Generally,
these problems are defined on matrices, where the biclusters are actually
a selection of rows and columns, forming a submatrix (the bicluster). Bi-
clustering has been applied widely: movie recommendation [UF98], text
mining [Dhi01] and gene expression data analysis [MO04] are examples
among many others.

In this thesis we explore a specific problem of finding maximum-sum
submatrices in matrix data. This problem emerged in the context of the
analysis of gene expression data [BSD17a], matrices where each column
represents a gene and each row a sample (a condition, a patient, a tissue or
any other entity where gene can express themselves); a cell in such a matrix
represents the expression of a gene on an entity, which can be measured
in multiple ways. A submatrix with a large sum can represent a group
of patients that share a common illness, induced by a group of genes,
for example. In practice, research has shown that such techniques are
biologically sound [BSD19]. We focus on the mathematical, algorithmic
and optimization aspects of these problems in this thesis. For an extensive
discussion of the biological aspects, see [Bra21].

Maximum-sum submatrices are more than a tool for analyzing gene
expression data; in general, they can be used in any context where there
are relations of various intensities between two distinct groups. As a data
mining tool, they can extract previously unknown information from this
family of datasets, in an unsupervised or semi-supervised way (by modify-
ing the initial matrix interactively or adding additional constraints). An-
other example of such a dataset is bilateral migration flows [Dao+18a].

i

ii Preamble

Figure 1: A Circos plot represent-
ing a migration matrix, with flows be-
ing cells of a country/country matrix.
Reproduced with authorization from
[Dao+18a].

After a chapter dedicated to
an overview of the existing meth-
ods, problems and techniques used
in this thesis, Chapter 2 of
this manuscript focuses on find-
ing the submatrix of maximum sum
(Maximum-sum submatrix prob-
lem, or MSS), or at least a
good approximation; for this we
use linear and Lagrangian relax-
ations of the problem to infer
fast-to-compute upper bounds for
the problem and compute reduced-
costs, enabling a reduction of the
(exponential) number of possible
submatrices to consider.

An important limitation of
the approach of finding the best
maximum-sum submatrix is its poor configurability; simply plugging ma-
trices into an MSS solver may give very large matrices or empty matrices
if the data is not balanced correctly. In chapter 3 we add cardinality
constraints on the size (number of rows and columns) of the found sub-
matrices, in order to allow the users to indicate what interests them, and
to improve interpretability compared to other techniques also described in
this chapter.

In the second part of this thesis, we look into ways of finding multiple
interesting submatrices. Chapter 4 discusses techniques for mining over-
lapping submatrices. We first note that we must penalize the overlaps and
describe precisely the problem being tackled, then use a constraint pro-
gramming approach with dominance rules and upper bound computations
based on finite-state machines, along with a large neighborhood search
(LNS).

Chapter 5 tackles the Maximum Weighted Set of Disjoint Submatrices
(MWSDS) problem, which doesn’t allow overlaps. We use column gen-
eration to solve this problem, which leads to an interesting usage of the
results gathered on the MSS problem.

In the last chapter, chapter 6, we discuss further research directions.

Preamble iii

Bibliographic notes

This thesis led to the publication of, and is based on, the following works:

1. G. Derval, V. Branders, P. Dupont, and P. Schaus. “The Max-
imum Weighted Submatrix Coverage Problem: A CP Approach”.
In: Integration of Constraint Programming, Artificial Intelligence,
and Operations Research. Ed. by L.-M. Rousseau and K. Stergiou.
Cham: Springer International Publishing, 2019, pp. 258–274. ISBN:
978-3-030-19212-9.

2. V. Branders, G. Derval, P. Schaus, and P. Dupont. “Mining a max-
imum weighted set of disjoint submatrices”. In: International Con-
ference on Discovery Science. Springer. 2019, pp. 18–28.

3. G. Derval and P. Schaus. “Maximal-Sum Submatrix search using a
hybrid Contraint Programming/Linear Programming approach”. In:
European Journal of Operational Research (2021). ISSN: 0377-
2217. DOI: https://doi.org/10.1016/j.ejor.2021.06.008.
URL: https://www.sciencedirect.com/science/article/pii
/S0377221721005142.

During the five years that were needed to write this thesis, other unrelated
but still interesting works were published by the author:

■ G. Derval, J.-C. Régin, and P. Schaus. “Improved filtering for
the bin-packing with cardinality constraint”. In: Constraints 23.3
(2018), pp. 251–271.

■ G. Derval, F. Docquier, and P. Schaus. “An aggregate learning ap-
proach for interpretable semi-supervised population prediction and
disaggregation using ancillary data”. In: Joint European Confer-
ence on Machine Learning and Knowledge Discovery in Databases.
Springer. 2019, pp. 672–687.

https://doi.org/https://doi.org/10.1016/j.ejor.2021.06.008
https://www.sciencedirect.com/science/article/pii/S0377221721005142
https://www.sciencedirect.com/science/article/pii/S0377221721005142

Acknowledgments

In the years spent writing this thesis (among other things), and in general
during my studies at UCLouvain, I met many persons with whom I spend
ten wonderful and stimulant years.

I knew many of them as fellow students. The moments we shared in
the Intel Room, working on projects, discussing politics and joking will be
remembered as some of the best of my life. Anthony, Gorby, Mathieu,
Charles, Thibault, Benoit(s), thanks.

I had the opportunity to work as a student sysadmin administrator,
under the supervision of Pierre Reinbold and Nicolas Detienne; I enjoyed
the time spent with Anthony Gégo, François Michel and Maxime Piraux
fixing the always broken and outdated Scientific Linux 6 (or later CentOS
7) distributions in the student computer rooms. I learned many skills, and
I can’t thank them all enough for that. The INGInious project, started
with the impulse of Pierre and Olivier Bonaventure, allowed Anthony and
I, I think and hope, making a small but significative contribution to the
way computer science is taught and learned nowadays at UCLouvain. That
would not have been possible without the guidance, help, support and work
from Anthony, Pierre and Olivier.

The choice of specializing in AI and (combinatorial) optimization was
greatly inspired by the courses and interactions I had with Yves Dev-
ille, Pierre Dupont and Pierre Schaus, who later became my advisor,
first for my master’s thesis then for my PhD. The discussion I had with
them, along with my fellow PhD students in the BeCool team, Hélène
Verhaeghe, Sascha Van Cauwelaert, Alexandre Dubray, Charles Thomas,
Xavier Gillard, John Aoga, Alex Mattenet and others I sadly forgot to put
here were (and still are) stimulating, insightful, and interesting, whether
they were about our respective research or not. We spent together mem-
orable times in many conferences! Sascha in particular spent his final PhD
years in my office (or rather, I spent my first PhD years in his office), and
I’ll always remember the fun I had to listen to Radio Paradize with Sascha
singing, with French lyrics, English songs.

The other members of the department are not forgotten either, partic-
ularly all the persons regularly present at the cafeteria. The conversations
we shared, sometimes about research, sometimes about news, sometimes
about politics, and more often than not on politically incorrect subjects

v

vi Acknowledgments

were very fun times.
I’d like to specifically thank the administrative and technical personnel

of the INGI department. Vanessa and Sophie, which I bothered quite a lot
of times with strange questions and requests; I hope I helped them enough
in return! The sysadmins, first Pierre and Nicolas, then Nicolas, Anthony
and Ludovic, were also an invaluable help during this thesis, providing
needed tools and fixing things I broke.

A large part of this thesis is based on papers written in collaboration
with Vincent Branders, who focused on the biological side of the tools and
methods presented in this thesis. Thanks, Vincent, for all the discussion,
insights and ideas!

Pierre Schaus, as written a bit everywhere in this thesis, was my ad-
visor during these 5 years. I cannot count the number of discussions we
had about research, but also about lots of other subjects. His guidance
was truly fantastic, always positive and focus on pushing me in the right
direction. I feel very lucky to have pursued a PhD with him as advisor.

The last two years (2020-2021) were marked by the COVID-19 pan-
demic, and I happened to spend quite some time analyzing data, along
with a group of people known as CovidRationnel. Some of our discussions
were truly eye opening, and the opportunity for me to work again with
so many scientists from so many different fields will probably not happen
anytime soon.

But first and foremost, this work could not have been possible without
the indefectible support from my family. Particularly from my mother and
my grandparents, who always pushed me to do better. And from my
brothers and sisters, Mathurin, Arthur, Guillaume and Céleste. These
last 10 years, I’ve shared my life with Charlotte, the most thoughtful
and attentive person I’ve ever met. She had the strength to support my
(luckily not so numerous) days of demotivation, and my more-often-than-
not grumpy attitude. She gave birth to Ondine in 2020, who is the other
sun in my life since, and to whom I dedicate this thesis1.

Other Acknowledgments

Computational resources have been provided by the supercomputing facil-
ities of the Université catholique de Louvain (CISM/UCL) and the Con-
sortium des Équipements de Calcul Intensif en Fédération Wallonie Brux-
elles (CÉCI) funded by the Fond de la Recherche Scientifique de Belgique
(F.R.S.-FNRS) under convention 2.5020.11 and by the Walloon Region.

1Even though she did not help to hand it in time! :-)

Contents

Preamble i

Acknowledgments v

Table of Contents vii

1 Background 1
1.1 Similar problems . 1

1.1.1 Biclustering . 1
1.1.2 Frequent Itemset Mining 3
1.1.3 Maximum-edge biclique problem 3
1.1.4 Contiguous maximum-sum submatrix 4

1.2 Constraint Programming 6
1.2.1 Inference and consistencies 6
1.2.2 Constraint propagation 7
1.2.3 Search and backtracking 8

1.3 Linear Programming . 9
1.4 (Mixed-)Integer Linear Programming 10
1.5 Overview of relaxations techniques used 11

1.5.1 Column generation 11
1.5.2 Lagrangian relaxation 12

I Mining a single submatrix 13

2 The Maximum-Sum Submatrix problem 15
2.1 Definitions and notations 16
2.2 Existing work, similar problems and variants 17

2.2.1 Maximum Weighted Edge Biclique (MWEB) . . . 18
2.2.2 Other biclustering algorithms 18

2.3 An upper bound solvable by inspection 19
2.4 A Lagrangian-based upper bounding procedure 22
2.5 A note about bounds’ tightness and relations 27
2.6 Using the bounds in a CP framework 31

2.6.1 Dealing with partial solutions 31

vii

viii Contents

2.6.2 Update of the incumbent solution 32
2.6.3 Upper bounding 32
2.6.4 Reduced-Cost-based filtering 34
2.6.5 Methods and complexities summary 37

2.7 Experiments . 39
2.7.1 Complete search 39
2.7.2 Large neighborhood search on bigger instances . . 42
2.7.3 Upper bounding 43
2.7.4 Real-life data . 44

2.8 Chapter conclusion . 46

3 Cardinality constrained MSS problem 47
3.1 Constraining the choice of the submatrix 47
3.2 An upper bound for the C-MSS problem 49

3.2.1 Case (A) . 52
3.2.2 Case (B) . 52
3.2.3 Case (C) . 55
3.2.4 Wrapping up the upper bounds of C-MSS 56

3.3 Adapting the upper-bound for partial solutions 56
3.4 Incumbent solution update 58
3.5 Experiments . 58
3.6 Chapter conclusion . 61

II Mining multiple submatrices 63

4 Mining a Set of Overlapping Submatrices 65
4.1 Introduction . 65

4.1.1 Applications . 66
4.2 CP approach . 67

4.2.1 Search Space . 68
4.2.2 Resolution via Depth-First-Search 69
4.2.3 Functions selectUnBoundSetVar and selectValue . 70
4.2.4 Dominance rules 73
4.2.5 propagateDominanceRule: dominance rules check 74
4.2.6 updateBounds: efficient lower and upper bounds

computations . 77
4.2.7 Large Neighborhood Search 78

4.3 Experiments . 79
4.3.1 Synthetic Datasets 79
4.3.2 Real Datasets . 83

Contents ix

4.3.3 Comparison Against Mixed Integer Linearly and
Quadratically Constrained Programming 84

4.4 Chapter conclusion . 84

5 Mining a Maximum Weighted Set of Disjoint Submatrices 87
5.1 Introduction . 87
5.2 Constraint Programming Approaches 89

5.2.1 Search Space . 89
5.2.2 Column Generation 91
5.2.3 Avoiding redundancy 94
5.2.4 Greedy Approach/Hot-Start 96
5.2.5 Mixed Integer Linear Programming 96

5.3 Experiments . 97
5.3.1 Combining Column Generation and Hot-Start . . . 98
5.3.2 Datasets . 99
5.3.3 Performances . 100

5.4 Chapter conclusion . 102

III Future directions and conclusion 103

6 Discussion & future directions 105
6.1 MSS as a Bipartite Quadratic Pseudo Boolean Optimiza-

tion problem . 105
6.1.1 Quadratic Pseudo Boolean Optimization 105
6.1.2 The QPBO method 108
6.1.3 MSS as a QPBO problem 110
6.1.4 Implications for other problems 111
6.1.5 Ongoing work: a solver based on QPBO 111

6.2 Bounding heuristics as search heuristics 112
6.3 Lagrangian-based bounds 113
6.4 Composability . 113
6.5 Dual value redistribution in MWSDS 113

7 Conclusion 115

Background 1
This chapter provides an overview of most of the concepts and methods
needed to understand the work made in this thesis (each time with refer-
ences to books for further reading), along with existing works related to
the subject of this thesis.

1.1 Similar problems

1.1.1 Biclustering

Pattern mining is a well-known and widely studied field of research be-
cause of the numerous real-life applications (health, DNA analysis, errors
tracking and detectors, marketing ...)

This section provides an overview on Biclustering problems and algo-
rithms. We redirect to the very complete survey by Madeira and Oliveira
[MO04] for more precisions.

The term biclustering represents a family of similar problem that at-
tempts to extract from matrices some kind of biclusters (clusters of rows
and columns). This kind of clustering arises particularly in the context
of gene expression data: matrices gathering the expression level of mul-
tiple genes (represented as columns) in multiple organisms (rows). This
definition is voluntarily vague, as biclustering covers a family of methods.
Madeira and Oliveira [MO04] separates these into four families, depending
on the type of biclusters that are being searched for, themselves separated
into subfamilies (with examples of such methods each time):

■ Biclusters with constant values [Har72a]

8 8 8 6

8 8 8 7

4 8 9 5

1

2 Chapter 1. Background

■ Biclusters with constant values on rows or columns
[CST+00; SMD03]

2 6 3 6

3 7 7 7

4 8 8 8

= =

8 6 3 6

8 6 3 7

4 8 9 5

=

Constant rows Constant columns

■ Biclusters with coherent values

3 2 1 4

5 4 3 2

4 3 2 1

2 3 1 1

+2

+1

3 2 1 4

9 6 3 2

6 4 2 1

2 3 1 1

×3
×2

Additive model [CC00] Multiplicative model [GLD00]
(each row = another + constant) (each row = another × constant)

■ Biclusters with coherent evolutions

3 1 10 4

5 8 12 2

4 4 11 1

8 0 1 5

≤

≤

Order-preserving submatrix (OPSM) [Ben+02]

In an OPSM, each column is interpreted as an ordering, and each
ordering in the OPSM must be the same. In this example, given the
matrix is named A, we have in each column j that a0,j < a2,j < a1,j .

■ Other types of bicluster exists, such as the Maximum-Sum Submatrix
problem. These focus less on the internal structure of the bicluster
but rather on its overall value, evaluated by given metrics.

These families and subfamilies themselves encompass multiple formu-
lations that handle noise in the data in different ways.

1.1. Similar problems 3

1.1.2 Frequent Itemset Mining

Frequent Itemset Mining [AH14] is a set of techniques aiming at finding a
set (an itemset) of items present together in a large set of transactions.
The stereotypical example of Frequent Itemset Mining is of finding large
number of objects bought together in stores.

More formally, given a set of items I = {i1, . . . , in}, a database of
transactions D = {T1, . . . , Tm} with each Tj ⊆ I, and a minimum support
θ, the goal is to find a set P ⊆ I such that

freq(P) = |{i | Ti ∈ D ∧ P ⊆ Ti}| ≥ θ

that is, the number of transactions containing all the items in P is greater
or equal than θ. Such an itemset P is said to be frequent (w.r.t. θ).

There are numerous alternative formulations of problems in this con-
text. Among the ones with the most extensive literature, we have:

■ Maximal itemset mining: a frequent itemset is said to be maximal if
no superset of the itemset is frequent. Maximal itemset mining thus
aims at enumerating all maximal itemsets.

■ Closed itemset mining: an itemset is said to be closed if no super-
sets have the same support (number of transactions including the
itemset).

While less used in practice than the "transaction list" view, a matrix
formulation of the problem exists. Given the transaction database D and
the set of items I, we can construct a binary matrix ∈ Rm×n, such that
each column represent an item, and a row a transaction. The content of
a cell is 1 if the item is present in the transaction or 0 otherwise. Finding
a frequent itemset of a given frequency is thus equivalent to finding a
non-contiguous submatrix filled only with ones in such a matrix, with at
least θ rows.

An important property largely used in the field of frequent itemset
mining is that frequency is antimonotonic: if an itemset is not frequent,
any supersets of the itemset won’t be frequent either. This property,
called in the field the apriori principle[AS+94], is used in most algorithms
to heavily prune the set of candidates.

1.1.3 Maximum-edge biclique problem

The maximum-edge biclique problem (MBP)[Pee03; GG08; GG13] is to
find complete (unweighted) bicliques in bipartite graphs, and more precisely
the ones with the largest number of edges. The link to the problems

4 Chapter 1. Background

discussed in this thesis is again made with a matrix representation: given a
bipartite graph G =< V,E > with two groups of nodes A and B (A

⋂
B =

∅, A
⋃
B = V , E ⊆ A× B), an adjacency matrix can be built with a row

for each node in A and a column for each node in B, each cell containing
1 if there is an edge between the nodes it represents, 0 otherwise.

The setting is thus very similar to the one in Frequent Pattern Mining:
MBP aims at finding large non-contiguous submatrices filled only with
ones. The main difference is the objective function to be maximized, here
the number of edges in the resulting biclique, or said differently the area
of the submatrix found. The decision version of this problem (is there a
biclique with at least k edges, or is there is submatrix filled only with ones
with an area of at least k?) is NP-complete[Pee03].

As in FIM, there are variants for mining maximal bicliques (ones not
contained in a larger biclique) rather than only finding the largest one (the
maximum).

1.1.4 Contiguous maximum-sum submatrix

We focus in this thesis on finding non-contiguous submatrices of maximum
sum. The contiguous case, where the selected rows and columns must
actually be one next to another in the submatrix, is a problem well known to
be solvable in polynomial time, and is called the two-dimensional maximum
subarray problem.

Indeed, for a m×n matrix, there are O(2m+n) possible non-contiguous
submatrices, but only O(m2n2) subarray, which can be enumerated simply
by enumerating all pairs of cells. As computing the sum of a submatrix is
trivially O(mn) at most, we have a trivial algorithm in O(m3n3) to solve
this problem, as shown in Algorithm 1.

An alternative algorithm is to use Kadane’s algorithm for 1d maximum-
sum subarray. This algorithm solves in O(n) the one-dimensional case by
iterating on the array and maintaining the best sum ending at the current
cell.

Using Kadane’s algorithm as a subroutine, we can:

■ Produce, for each pair of columns, an array of size m where each
cell i contains the sum of the content of the row i between the
two columns. This operation is done in O(n2m) by reusing previous
computations.

■ Use Kadane’s algorithm on the resulting arrays to find the best sub-
array, providing two rows, which, in addition to the two columns on
which we iterate, gives the best sum submatrix for this choice of

1.1. Similar problems 5

Algorithm 1 Naive algorithm for finding a maximum-sum subarray in a
m × n matrix

(M ∈ Rm×n is a matrix)
bestSum← 0 ▷ Best sum seen so far
best← (0, 0, 0, 0) ▷ Coordinates of the best submatrix seen so far

for all row a ∈ {1, . . . , m} do ▷ Row where the submatrix starts
for all row b ∈ {a + 1, . . . , m + 1} do ▷ Row where the submatrix ends

for all column x ∈ {1, . . . , n} do ▷ Column where the submatrix starts
for all column y ∈ {x + 1, . . . , n + 1} do ▷ Column where the submatrix ends
s ← 0 ▷ Sum of the submatrix
for all row c ∈ {a, . . . b − 1} do

for all column z ∈ {x, . . . y − 1} do
s ← s +Mcz

if s > bestSum then
bestSum← s
best← (a, b, x, y)

return best

columns. This operation runs in O(m) for each of the n2 arrays, so
O(n2m) in total.

■ The best submatrix seen during the computation is the best one
overall.

This algorithm is presented in Algorithm 2 (for simplicity, we do not show
how to recover the coordinates of the submatrix). This complexity cannot
reliably be beaten as there exists a hardness result on square n×n matrices:
the 2d maximum sum subarray problem is Ω(n3) [BDT16].

Algorithm 2 O(n2m) algorithm for finding the maximum-sum subarray
value of a 2d m × n array

function kadane(array a of size m)
best← 0
cur← 0
for i ∈ {1, . . . , m} do

cur← max(0, cur+ ai)
best← max(best, cur)

return best

best ← 0
for all column x ∈ {1, . . . , n} do

rsum← array of size m filled with zeros
for all column y ∈ {x, . . . , n} do

for all row i ∈ {1, . . . , m} do
rsumi ← rsumi +Miy

best← max(kadane(rsum), best)
return best

6 Chapter 1. Background

1.2 Constraint Programming

Constraint Programming (CP) is a declarative paradigm for solving com-
binatorial satisfaction and optimization problems. It primarily relies on
backtracking, heuristic search in search trees, branch-and-bound and con-
straint propagation.

The specific class of problem being solved in CP are Constraint Satis-
faction Problems (CSPs) and Constraint Optimization Problems (COPs):

Definition 1. A Constraint Satisfaction Problem (CSP)[RVW06] is a
triple ⟨X,D,C⟩, where X is a set of variables {X1, X2, . . . , Xn} each having
a non-empty domain, stored in the set D = {D1, D2, . . . , Dn}. C =
{C1, C2, . . . , Cm} is a set of constraints.

A constraint is defined as a relation between a subset of the variables
of X (formally, its thus a pair ⟨si , Ri⟩ with si ⊆ X. si is also called the
scope of the constraint). The relation is thus a subset of the Cartesian
product of the domain of the variables in ti .

A constraint is said to be satisfied by an assignment of the variables if
the corresponding tuple is in the relation of the constraint.

A solution to a CSP is an assignment to all the variables that satisfies
all the constraints.

If no solution exists (i.e. if the intersection of the relation is empty)
the problem is said to be unsatisfiable. Otherwise it is satisfiable.

A variation exists for optimization problems1:

Definition 2. A Constraint Optimization Problem (COP) is a CSP
with an additional objective function, which gives for an assignment of all
variables an objective value to be either maximized or minimized.

In general in CP, the set of constraints available is very large (from
equality constraints to "the graph represented by these variables must be
a single cycle").

1.2.1 Inference and consistencies

One of the main ideas behind CP is the use of reasoning and inference to
reduce the domains of variables. For this, it uses the concept of consis-
tency. This term actually groups together a large number of techniques
used to prune the domain from information known from the constraints.
Here are some of the most well-known consistencies:

1As noted in [RVW06] there are multiple definitions for most of the concepts pre-
sented here; they are generally similar in practice although contradictory in theory. We
try to stick to these definitions in the thesis.

1.2. Constraint Programming 7

Definition 3. (Various consistencies) Arc consistency (AC). W.r.t a bi-
nary constraint with a relation R and a scope ⟨X1, X2⟩, the domain of
these two variables is said be arc consistent if, for all value i in the domain
of X1, there exists a value j in the domain of X2 such that (i , j) ∈ R, and
conversely for each value of X2.

Generalized arc consistency (GAC) is the extension of this principle
to n-ary constraint, where all values in all domains must be supported
by a tuple from the Cartesian product of the domains, with that specific
value, that satisfies the constraint. GAC is also sometimes called domain
consistency.

Bound consistency ensures that the minimum and maximum value in
the domain of any variable is supported by a tuple taken in the Cartesian
product of the domain while considering them a continuous.

Precise definitions and many other consistencies can be found in the
wonderful but sadly unmaintained Global Constraint Catalog[BCR05].

Values that do not respect these consistencies can safely be removed
from the domain, thus reducing the search space, as they cannot be part
of a solution to the problem.

Specialized algorithms are constructed for each type of constraints in
order to enforce these consistencies; they are generally polynomial-time
algorithms. A large portion of the CP literature is devoted to these algo-
rithms.

The choice of consistency generally depends on the complexity of the
algorithm that can enforce the consistency. While an AC consistency
reduces the domains more than a bound consistency, the first might need
an exponential algorithm while the second uses a polynomial one. An
important part of CP modelization is to choose the right propagator and
to balance computation time and pruning.

1.2.2 Constraint propagation

A CSP/COP contains in general multiple constraints, and in a CP context
each of them is linked to one or multiple consistencies (with algorithms
enforcing them). Calling one of these algorithm may do nothing on the
domains, but calling another may remove a value that would allow the first
algorithm to prune another domain.

This process then calls for a fixed-point: running all algorithms en-
forcing consistencies again and again, until no changes are made to the
domain, reaching the point where no new information can be gathered by
the consistencies used. Generally, the problem has still a large number of

8 Chapter 1. Background

values present in its domain at the end of a fixed-point, thus the need for
search algorithms (see next subsection).

This very simple fixed-point works, but in practice is slow as it runs
multiple times algorithms whose variables in their scope have not seen
changes in their domain.

This observation is the basis of constraint propagation[RVW06]. Mul-
tiple fixed-point algorithms exist and use this trick, such as AC-3[Mac81],
AC-5[HDT92], and many others. They all focus on calling consistency
algorithm only if they have a chance of effectively further prune domains,
i.e. only when a domain from a variable in their scope has been modified.

1.2.3 Search and backtracking

Sadly, most of the time constraint propagation is not sufficient to empty a
domain (proving the problem unsatisfiable) or to leave only a single value
in each domain (finding a unique solution). It is thus necessary to explore
the search space. CP solvers generally use complete methods for this,
and rely on backtracking, i.e. they are able to revert previous decision.
The search space is explored via the use of a search tree, where a node
contains the current state of the domains (along with some additional
constraints in some solvers). Once a fixed-point is reached, a decision
is taken (a branch is created); this decision actually removes a part of
the search space, typically by assigning a variable to a specific value in
its domain. This part of the search space is then explored recursively;
once this is done, the algorithm backtracks (rollbacks the changes made
to the domains when the decision was taken) so that the solver state is
again the same as before the decision. Then it takes the opposite decision
(typically adding the constraint that the variable cannot take the value
selected before) and recursively explores the new node.

The backtracking can either be implemented using techniques called
copying or trailing:

■ Copying simply makes a copy of the state of the solver before a
decision is taken, this (full) copy being restored when a backtrack
occurs.

■ Trailing can be summarized as a copy-on-write mechanism: every
variable or state in the solver additionally stores the last time it was
modified. This time is actually a monotonically-increasing counter
that is increased each time a decision or a backtrack is done. When
a variable is modified, it checks whether the last time it was modified
is equal to the current counter; if not, it stores its current value in
a structure called the trail. The trail stores the modification made

1.3. Linear Programming 9

at each node separately (only for node on the path from the current
node to the root); the modification can thus be reverted by simply
visiting the last trail entries.

Implementing trailing is seen as more complex and requires all components
having state in the solver to be aware of its usage, but uses far less memory
and computation time in general. Copying is slower and more memory
hungry, but has many advantages in the context of parallel solvers. See
[Sch99] for an in-depth discussion.

The choice of the decision to be taken each node is made using heuris-
tics, called a search heuristic or a branching heuristic. There exists multiple
generic heuristics, from the simplest (binary static heuristic, taking a static
order of variable, always branching on the first unbound (with more than
one value in its domain) variable), to the more complex (see for example
conflict ordering search[Gay+15]), through simple middle-grounds like the
first-fail[HE80] principle. There is a large part of the CP literature focus-
ing on these generic heuristics. Numerous well-known problems also have
ad-hoc branching heuristics.

We redirect to the Handbook of Constraint Programming [RVW06]
for a (far) more complete description of the basic and more advanced
techniques and ideas used in CP.

1.3 Linear Programming

Linear programming (LP) focuses on optimizing linear problems of the
following form[Mur]:

max
x
cT x (1.1)

subject to Ax ≤ b (1.2)

x ≥ 0. (1.3)

with x , b, c being vectors of reals and A a matrix of reals. The (linear)
function cT x is called the objective function, while the inequalities formed
by Ax ≤ b are called the (linear) constraints.

Each constraint (i.e. each row of the matrix A along with its corre-
sponding entry in b) can be viewed as an hyperplane cutting the space
of all possible vectors x , forming a convex polyhedron containing all the
admissible (respecting the constraints) solution. The goal is thus to find
a point (an admissible vector x) inside this polyhedron that maximizes
the objective function. Finding such a point is not always feasible: if the
resulting polyhedron is empty (if the constraints are inconsistent), or if
the polyhedron is unbounded in the direction of the optimization (it may

10 Chapter 1. Background

happen that always increasing a variable increases the objective function,
and that there is no upper limit for this variable).

An interesting property of linear problems is that any locally maximum
solution is also a global maximum.

LP is a very active research area, and many algorithms and variants of
them exists to solve LP problems. The most well known include the Sim-
plex algorithm, which follows the edges of the convex polyhedron to find
a minimum, and the interior point method-based algorithms, which move
through the interior of the polyhedron. LP problems are in P, meaning
they can be solved in polynomial time. In practice, problems with several
thousand variables and constraints can sometimes be solved to optimality.

1.4 (Mixed-)Integer Linear Programming

An extension of linear programming is known as the Mixed-Integer (Linear)
Programming (MIP or sometimes MILP), which adds integral constraints:

max
x
cT x (1.4)

subject to Ax ≤ b (1.5)

x ≥ 0 (1.6)

xi ∈ Z ∀i ∈ I (1.7)

with I a subset of the indices of x . If I contains all the indices, the prob-
lem is said to be an Integer Linear Programming (ILP) problem. Solving
MIP/ILP problems is NP-Hard[Wol20c] (most NP-Hard problems have a
direct encoding in MIP).

MIP solvers (such as Gurobi [Gur18] used extensively in this thesis)
traditionally rely on relaxing the MIP problem by removing the integral
constraints, thus obtaining a LP problem; solving this relaxed problem
thus gives an upper bound to the original problem.

Thet then use a branch-and-cut[Wol20d] algorithm composed of

■ a branch-and-bound[Wol20a], based on the upper bound described
above,

■ the cutting planes method[Wol20d] which add new linear constraints
that remove parts of the linear polytope that are not into its integral
counterpart.

For more information about the (numerous) properties and methods to
solve LP and MIP problems, see [Wol20e], which offers a very pedagogic
overview.

1.5. Overview of relaxations techniques used 11

1.5 Overview of relaxations techniques used

A substantial part of this thesis is focused on finding lower and upper
bounds (i.e. under- or overestimations that actually do not under- / over-
estimate too much) to the optimal results of maximization problems, in
order to avoid exploring part of the search space that don’t contain better
solutions than the one we currently have, and/or to generate suboptimal
yet good solutions to these problems.

A common technique is to relax the problem being tackled, by removing
large parts of the search space (producing lower bounds) or hard-to-satisfy
constraints (producing upper bounds). In this thesis, an extensive use
of this kind of techniques is made. Among them, two more complex
techniques are column generation and Lagrangian relaxation.

1.5.1 Column generation

Let us take as an example the following MIP problem:

Z = max
x1,...,xK

K∑
i=1

cixi (1.8)

subject to
K∑
i=1

aixi ≤ b (1.9)

xi ≤ di ∀i ∈ 1..K (1.10)

xi ≥ 0 ∀i ∈ 1..K (1.11)

... (1.12)

with possibly additional constraints acting on each variables individually,
and a very large number of variables (K can be exponentially large de-
pending on the problem being solved).

This kind of problem has a potentially intractable number of variables,
linked by a very small number of constraints (here only equation (1.9))
and the objective values, with additional constraints only acting on one
variable at a time.

Column generation[Wol20b] is a technique to solve such problems, by
reducing the large set of variables to a tractable one, and by generating
potentially useful (that may contribute to the objective) variables on the
fly. The initial problem is called the Master Problem, and the new one
with a limited number of variables is called the Restricted Master Problem
(RMP).

In order to find which variable to insert next in the RMP, a common
technique is to linearize the RMP (by removing integrality constraints), to

12 Chapter 1. Background

solve the LP problem resulting from this relaxation, and to use the dual
of the problem to create a new variable that has a positive reduced cost2.
An example of this process will be presented in chapter 5.

1.5.2 Lagrangian relaxation

Some constraints are sometimes difficult to satisfy; a generic way to deal
with that is to relax those and put them in the objective value, penalizing
it when the constraint is not satisfied.

Given a MIP problem with the following form:

Z = max
x
cT x (1.13)

subject to Ax ≤ b (1.14)

Cx ≤ d (1.15)

x ≥ 0 (1.16)

xi ∈ Z ∀i ∈ I (1.17)

with Z the optimal value. We can relax the constraint Cx ≤ d using the
Lagrangian multipliers[Wol20f] λ ≥ 0:

Z(λ) = max
x
cT x + λT (d − Cx) (1.18)

subject to Ax ≤ b (1.19)

x ≥ 0 (1.20)

xi ∈ Z ∀i ∈ I (1.21)

For any vector λ with positive values, we have that such a formulation
is a (Lagrangian) relaxation of the initial problem: we have (for this maxi-
mization problem) that Z(λ) ≥ Z ∀λ ≥ 0. Of course one generally wants
to find the best bound possible, by solving what’s called a Lagrangian dual
problem:

min
λ
Z(λ) (1.22)

A classical way to find the best vector λ (or at least a very good one)
is to use a subgradient method. [Wol20f] provides an in-depth discussion
of the technique and of the theory around it.

2We don’t go into details here, but duals of linear problems are also linear problems
where each variable of the primal is represented by a constraint in the dual and con-
versely. The dual of the dual is the primal problem. An interesting property is that both
problem are feasible, they share their optimal value. Duality theory is central in solving
LP problems and in the field of optimization in general, see [Wol20f] for an in-depth,
pedagogic review.

Part I

Mining a single submatrix

13

The Maximum-Sum
Submatrix problem 2

This chapter is largely based on the paper G. Derval and P.
Schaus. “Maximal-Sum Submatrix search using a hybrid Con-
traint Programming/Linear Programming approach”. In: Euro-
pean Journal of Operational Research (2021). issn: 0377-2217.
doi: https://doi.org/10.1016/j.ejor.2021.06.008. url:
https://www.sciencedirect.com/science/article/pii

/S0377221721005142..

The strengths of the relationships between two sets of objects can be
encoded as a matrix. Such examples are the traffic between two sets of
nodes in a computer network [Med+02], the gene expressions for a set of
patients [Van+02], the bilateral migration between two sets of countries
[The18; Dao+18b], ranked tiling [Le +14], etc.

When the set of objects is large, mining such matrix manually to un-
derstand the structure of the relations is not an easy task. One important
question is that of summarizing the most important relationships. The
Maximal-Sum Submatrix (MSS) problem has been introduced in [BSD17b]
to answer this question. A MSS maximizes the sum of the entries corre-
sponding to the Cartesian product of a subset of rows and columns from an
original matrix (with positive and negative entries). The size of the MSS
can be controlled by a priori subtracting a common constant from all the
entries. In this setting the MSS can be viewed as a (more or less compact)
summary of the most important relations between two subsets of rows and
columns. As pointed in Branders, Schaus, and Dupont [BSD17b], the MSS
problem shares similarities with the biclustering one [Har72b; MO04] at-
tempting to discover homogeneous submatrices rather than heavy ones.
Biclustring techniques have been mainly applied to bioinformatics.

Solving the MSS problem exactly is an NP-Hard problem [BSD17b],
as it encodes the maximum edge-weighted biclique problem [Pee03].

The state-of-the-art results [BSD17b] for MSS are obtained using an
advanced Constraint Programming (CP) approach that combines a custom

15

https://doi.org/https://doi.org/10.1016/j.ejor.2021.06.008
https://www.sciencedirect.com/science/article/pii/S0377221721005142
https://www.sciencedirect.com/science/article/pii/S0377221721005142

16 Chapter 2. The Maximum-Sum Submatrix problem

filtering algorithm with a Large Neighborhood Search (LNS) [Sha98]. We
improve and extend the state-of-the-art approach by introducing two new
bounding and search tree pruning strategies. First, we show how a linear
program (LP) relaxation of a mixed integer linear formulation can be solved
in linear time with a dedicated algorithm, without using complex algorithms
such as the simplex, but rather by inspection. We then use this linear-
programming relaxation as an upper-bounding procedure to cut off the
search tree and derive the exact reduced costs to prune the values of the
variables in a global constraint following the reduced-cost based filtering
idea of Focacci, Lodi, and Milano [FLM99]. Second, we demonstrate the
use of Lagrangian relaxation for this problem, by finding another set of
tighter upper bounds, although more costly to compute.

We then experiment on both synthetic and real-life data showing the
significant speedups obtained with the new hybrid LP-CP approach.

Chapter’s contributions

The contributions made in this chapter are a constraint programming
framework for solving the Maximum-sum submatrix problem, including:

■ three upper bounds of increasing tightness, along with results linking
them, and efficient algorithms to compute them in the context of
partial solutions;

■ algorithms using these bounds to prune the search space, via domi-
nances;

■ a technique to reduce the size of the problem in the context of partial
solutions;

■ a large neighborhood search algorithms to find solutions on large
instances.

2.1 Definitions and notations

Sets and multisets are both represented as uppercase characters (S). Vec-
tors and matrices are represented as bold characters, respectively lowercase
and uppercase (x , M). Elements of vectors and matrices, and scalars in
general, are represented as normal italic characters (xi ,Mi j , i).

Let M ∈ Rm×n be a matrix with both positive and negative real num-
bers (and zero). The set of rows and columns of the matrix are defined
as LR := {1, . . . , m}, LC := {1, . . . , n}, respectively.

2.2. Existing work, similar problems and variants 17

If I ⊆ LR and J ⊆ LC are subsets of the rows and of the columns,
respectively, MI,J denotes the submatrix of M that contains only the ele-
mentsMi j belonging to the submatrix with set of rows I and set of columns
J. i is always an index of a row, and j is always an index of a column.

Definition 4. The Maximal-Sum Submatrix Problem. A Maximal-Sum
Submatrix (MSS) is a submatrix MR∗,C∗ , with R∗ ⊆ LR and C∗ ⊆ LC ,
such that:

(R∗, C∗) = argmax
I⊆LR,J⊆LC

∑
i∈I,j∈J

Mi ,j (2.1)

Example 1. Given the following matrix:

Mex =

c1 c2 c3 c4 c5 c6 c7

−3 −1 3 −1 2 −3 1 r1

−2 −2 3 −3 3 0 −2 r2

0 2 0 1 −2 2 0 r3

0 0 2 −3 2 −2 1 r4

−3 2 −3 0 0 2 −2 r5

−1 1 −1 2 1 1 −3 r6

−2 1 0 2 −2 2 −2 r7

1 −2 −2 1 −1 −2 −3 r8

The maximal-sum submatrix of Mex is Mex{3,5,6,7},{2,4,6} (highlighted in
black), its value being 18.

An important property of the MSS identified in [BSD17b] is that the
search space can be limited to the selection of the subset of columns or
to the subset of rows as stated in the next observation:

Observation 1. Given a fixed subset of columns C ⊆ LC , an optimal
subset of rows for the MSS is the one computed by

R∗ = {i ∈ LR |
∑
j∈C
Mi j > 0} (2.2)

2.2 Existing work, similar problems and variants

The Maximum-Sum submatrix problem is related to other problems, some
of them being equivalent. This section lists existing work made on similar
problems.

18 Chapter 2. The Maximum-Sum Submatrix problem

2.2.1 Maximum Weighted Edge Biclique (MWEB)

The input matrix of the MSS can be seen as an adjacency matrix of a
bipartite weighted graph with possibly negative weights (which is actually
a biclique). In this context, finding the MSS is equivalent of finding a
biclique whose sum of the edges’ weight is maximum.

Definition 5. Maximum Weighted Edge Biclique (MWEB) problem
[Tan08] Given a complete bipartite graph G = (V1, V2, E), and an edge
weighting function wG : E → R, find a biclique (A ⊆ V1, B ⊆ V2) such
that the sum of the weight of the edges in the biclique is maximal.

Tan [Tan08] discusses this problem and shows that it is inapproximable
(for a problem of size m×n, no polynomial time algorithm can approximate
MWEB within a factor max(m, n)ϵ for ϵ > 0, unless RP=NP 1). This
result thus also holds for MSS. The unweighted version of the problem,
the Maximum Edge Biclique (MEB), is NP-Hard [Pee03]. It has been
used to describe many variants of the biclustering problem (see Tanay,
Sharan, and Shamir [TSS02] for an example, or the survey from Madeira
and Oliveira [MO04]).

2.2.2 Other biclustering algorithms

Biclustering is a broad subject, and numerous methods have been created.
Most of them attempt to find homogeneous biclusters in some sense.
A survey by Madeira and Oliveira [MO04], focusing on biological data,
separates the methods in four families: biclusters with constant values,
biclusters with constant values on rows or columns (each row/column can
have a different, but fixed, value), biclusters with coherent values (additive
or multiplicative models, ...), biclusters with coherent evolution (values are
evolving inside a row/column following a given model).

Note that the MSS does not fall into any of these categories. They
further subdivide these methods depending on the number of bicluster they
find (single, multiple and disjoint/disjoint per row/disjoint per column/non-
overlapping/non-overlapping with tree structure), and classify 19 different
problems and methods inside these categories. Forty-nine methods are
reviewed and classified in [PGA15]. Another survey by Xie et al. [Xie+18]
focuses on the applicability of the biclustering algorithms in biological and
biomedical data.

1RP, Randomized Polynomial-Time, is the set of decision problems solvable by a
probabilistic Turing machine in polynomial time for which, if the correct answer is no,
then always answers no, and if the answer is yes, the probability for answering yes is at
least 1/2.

2.3. An upper bound solvable by inspection 19

Some pattern mining algorithms can also be viewed as biclustering bi-
nary matrices. Frequent Itemset Mining[Agr+96; Han+04; SAG17] aims
at finding frequent itemsets inside a dataset of transaction. Each trans-
action contains a list of items. The dataset can then be represented as
a binary matrix, with transactions as rows, items as columns, and a 1 in
cells where the transaction contains a given item. Frequent itemsets are
itemsets that are present as a subset of a given number (given a priori)
of transactions. The task, in biclustering terms, then amounts at finding
large submatrices filled with ones.

Tiling [GGM04] aims at finding large tiles inside binary matrices, i.e.
finding large submatrices containing only ones, as previously. Tiling differs
from Frequent Itemset Mining as it focuses on the area of the tiles, not on
frequency (number of rows). Le Van et al. [Le +14] introduce an extension
to matrices representing ranks (each row is a permutation of 1 . . . n, giving
a rank to each column) and aims at finding biclusters with similar ranks.

2.3 An upper bound solvable by inspection

A natural upper bound for this problem without limits on the numbers of
selected rows / columns is the sum of the positive elements in M:

∑
i ,j

max(Mi j , 0). (2.3)

It was used by Branders, Schaus, and Dupont [BSD17b] as the cut-off
upper bound for their branch-and-bound algorithm. We present below
an upper bounding procedure based on a Big-M formulation of the prob-
lem[GNS09]. We then prove that this bound is tighter than the upper
bound presented by Branders, Schaus, and Dupont [BSD17b].

Branders, Schaus, and Dupont [BSD17b] introduced a MIP model for
MSS relying on observation 1 and using Big-M constraints. The main
decision variables are the selection status of the rows/columns with binary
variables ri , cj . The contribution of row i to the objective, pi , is then

pi =

{∑
j Mi j · cj if ri = 1

0 otherwise.
(2.4)

This constraint is linearized with the big-M constants upi (resp. lo i) being
the positive sum of the positive (resp. negative) contributions of the row

20 Chapter 2. The Maximum-Sum Submatrix problem

i . The complete model (named FBigM hereafter) is given next.

max
∑
i pi (2.5a)

pi ≤ ri · upi ∀i (2.5b)

pi ≤ (
∑
j Mi j · cj) + (1− ri) · lo i ∀i (2.5c)

ri , cj ∈ {0, 1} ∀i , j (2.5d)

with upi =
∑
j∈LC max(Mi j , 0) ∀i , and lo i = −

∑
j∈LC min(Mi j , 0) ∀i

being respectively the upper bound and the opposite of the lower bound
reachable contribution to the objective, for a given row i . Note that these
bounds can be computed more precisely when we have partial states for the
ri and cj variables (typically, while inside a search tree). We explore later
this possibility (we call this variant of the model the recompute variant).
It is however difficult to do in a MIP solver, as locally modifying the matrix
coefficient is complex and costly.

Intuitively, if ri is 0, i.e. the row i is not selected, then pi must be 0;
this is encoded by constraint (2.5b). The right part of constraint (2.5c)
becomes (

∑
j Mi j · cj) + lo i which is greater than 0 by construction, and

thus less constraining than (2.5b). If ri = 1, then an upper bound for the
contribution pi is upi (thus, in this case, (2.5b) is not constraining pi).
Constraint (2.5c) becomes pi ≤

∑
j Mi j · cj which is the contribution of

the row i when selected.

Linear Programming Relaxation By relaxing the integrality constraint
on the rows of the MIP model FBigM (2.5), i.e. using ri ∈ [0, 1] ∀i ,
we obtain an LP model whose optimum provides an upper bound for the
MSS. We call this particular version of the model the row-relaxed model,
FBigM-linear-rows. It has interesting properties:

Theorem 2.3.1. For any row i taken in isolation, and with column variables
already selected (i.e. variables cj fixed ∀j), the value ri maximizing pi in
FBigM-linear-rows is

r∗i :=
lo i +

∑
j Mi j · cj

upi + lo i
. (2.6)

Proof. From (2.5b) and (2.5c), and as we must maximize pi

pi = min(ri · upi , (
∑
j Mi j · cj) + (1− ri) · lo i). (2.7)

In this context, ri is a continuous variable, only constrained by this par-
ticular relation. Variable pi in function of ri is a concave function (the

2.3. An upper bound solvable by inspection 21

minimum of two linear functions is a concave function), and its maximum
is reached when both components are equal:

ri · upi = (
∑
j Mi j · cj) + (1− ri) · lo i (2.8)

ri =
lo i +

∑
j Mi j · cj

upi + lo i
. (2.9)

Moreover, the optimal contribution is thus

p∗i = upi · r∗i =
upi · lo i + upi ·

∑
j Mi j · cj

upi + lo i
. (2.10)

These two properties can now be used to derive upper bounds for the
MSS problem. This is our first contribution:

Theorem 2.3.2. FBigM-linear-rows has an optimal objective of

∑
i

upi · lo i
upi + lo i

+
∑
j

max

(
0,
∑
i

upi ·Mi j
upi + lo i

)
. (2.11)

This value thus provides an upper-bound for FBigM which is equivalent to
the MSS problem.

Proof. The only constraints in the MIP formulation where the variable ri
appears are (2.5b) and (2.5c), meaning that rows are effectively indepen-
dent from each other: with a given set of selected columns, the optimal
value for pa will not change if rb changes ∀a ̸= b ∈ LR. We have thus
that for each row i , ri = r∗i (see Theorem 2.3.1). The objective becomes∑

i

pi =
∑
i

upi · lo i
upi + lo i

+
∑
i

upi ·
∑
j Mi j · cj

upi + lo i
(2.12)

=
∑
i

upi · lo i
upi + lo i

+
∑
j

cj · (
∑
i

upi ·Mi j
upi + lo i

) (2.13)

By inspection, this expression is maximized with cj = 1 (resp. 0) if∑
i
upi ·Mi j
upi+lo i

> 0 (resp. < 0).

As stated in the next theorem, this bound is tighter than the sum of
the positive contributions.

Theorem 2.3.3. The bound obtained from the optimal solution of
FBigM-linear-rows is tighter than the simple sum of the positive contributions∑
i upi .

22 Chapter 2. The Maximum-Sum Submatrix problem

Proof. From (2.12).∑
i

pi =
∑
i

upi · lo i
upi + lo i

+
∑
i

upi ·
∑
j Mi j · cj

upi + lo i

≤
∑
i

upi · lo i
upi + lo i

+
∑
i

up2i
upi + lo i

≤
∑
i

upi

It is also non-symmetric, hence the minimum between the upper bound
of the matrix and of its transpose can thus be taken.

Example 2. Given the matrix M =
(
3 0
−6 6

)
, the sum of the positive con-

tributions is 9, the upper bound obtained from FBigM-linear-rows is 6, while
it is 7 with MT . The optimum is 6.

2.4 A Lagrangian-based upper bounding procedure

The model FBigM-linear-rows is not the only way to model the MSS problem
as a MIP. A more straightforward model Fx which uses more variables
(notably one variable per cell) is presented below:

max
∑

i∈LR,j∈LC

Mi j · xi j (2.14a)

xi j ≤ ri ∀i , j (2.14b)

xi j ≤ cj ∀i , j (2.14c)

ri + cj ≤ xi j + 1 ∀i , j (2.14d)

ri , cj , xi j ∈ {0, 1} ∀i , j (2.14e)

Rows and column selection are represented by variables ri and cj . xi j
indicates if the cell i , j is selected. Constraints (2.14b) and (2.14c) ensure
that if a cell is selected, then the associated row and column are selected.
Constraint (2.14d) ensures that if both a row and a column are selected,
then the cell is selected.

Some constraints in this model are redundant. As it is a maximization
problem, we have two cases:

■ Either Mi j > 0 and the value xi j will be maximized, and thus either
constraint (2.14b) or (2.14c) will be trivial tight for this particular
(i , j);

2.4. A Lagrangian-based upper bounding procedure 23

■ Or Mi j < 0 and the value xi j will be minimized, thus tightening
constraint (2.14d).

Constraints (2.14b), (2.14c) and (2.14d) can thus be rephrased without
loss of generality as

xi j ≤ ri ∀i , j : Mi j > 0 (2.15a)

xi j ≤ cj ∀i , j : Mi j > 0 (2.15b)

ri + cj ≤ xi j + 1 ∀i , j : Mi j < 0. (2.15c)

The linear relaxation of Fx (named hereafter Fx-linear) uses more vari-
ables than FBigM-linear-rows (O(|LR| · |LC |) rather than O(|LR| + |LC |))
making this model more complex to use in an off-the-shelf MIP solver in
practice, as running the simplex or other standard LP-solving algorithm is
too slow or uses too much memory to be run at each node of the search
tree on big matrices, as it is shown in the experiments below.

It is however possible to use a Lagrangian relaxation of Fx to obtain
good upper bound of the optimal linear solution. We introduce Lagrange
multipliers αi j , βi j and γi j respectively for constraints (2.15a), (2.15b)
and (2.15c). For simplicity we add each of the three multipliers for each
variable, but we set them to zero for non-existing constraints (i.e. αi j =
βi j = 0 if Mi j ≤ 0 and γi j = 0 if Mi j ≥ 0). The Lagrangian relaxation
leads to the following model, Fx-lrelax-all:

min
αi j ,βi j ,γi j

max
ri ,cj ,xi j

∑
i j

Mi j · xi j + αi j(ri − xi j) + βi j(cj − xi j)

+γi j(xi j + 1− ri − cj) (2.16a)

with ri , cj , xi j ∈ {0, 1} ∀i , j (2.16b)

αi j , βi j , γi j ≥ 0 ∀i , j (2.16c)

αi j = βi j = 0 ∀i , j : Mi j ≤ 0 (2.16d)

γi j = 0 ∀i , j : Mi j ≥ 0 (2.16e)

The constraint (2.16b) can be changed to a linear version (∈ [0, 1])
without any modification to the optimal solutions, and is thus equivalent
to its linear relaxation. This is allowed by the fact the variables ri , cj and
xi j are only constrained by this constraint; the maximization process on the
relaxed problem will always push them to either 0 or 1 as a consequence,
depending on their coefficient in the objective function.

By the Strong Lagrangian Duality property [BBV04] (that implies that
Lagragian relaxations of convex problems respecting Slater conditions,

24 Chapter 2. The Maximum-Sum Submatrix problem

which holds in the linear problem Fx-linear, have the same objective value
as the original problem), its optimum is thus the same as Fx-linear.

The maximization part is a convex function on the Lagrangian multi-
pliers αi j , βi j , γi j : we optimize their values using a sub-gradient algorithm.
However the high number of parameters leads to a slow resolution time in
practice.

We show below another Lagrangian relaxation, Fx-lrelax-partial, which
does not relax all the constraints and as consequence uses fewer multipliers.
Usually this prevents a simple, inspection-like solving of the Lagrangian
subproblem but in this particular case we demonstrate it can be solved
easily.

min
αi j ,γi j

max
ri ,cj ,xi j

∑
i j

Mi j · xi j + αi j(ri − xi j)

+ γi j(xi j + 1− ri − cj) (2.17a)

with xi j ≤ cj ∀i , j (2.17b)

ri , cj , xi j ∈ {0, 1} ∀i , j (2.17c)

αi j , γi j ≥ 0 ∀i , j (2.17d)

αi j = 0 ∀i , j : Mi j ≤ 0 (2.17e)

γi j = 0 ∀i , j : Mi j ≥ 0 (2.17f)

Again it can be shown that the constraint (2.17c) can be relaxed into
a linear version while not modifying the optimum solutions (by the same
argument as before), and is then equivalent to Fx-linear. The same sub-
gradient method can be used as the Lagrangian subproblem is still convex
on the Lagrangian multipliers. However, for a given set of Lagrangian
multipliers, the Lagrangian subproblem cannot be solved as trivially as be-
fore. Let us give a name to the Lagrangian subproblem, and rearrange its
formulation:

f (α, γ) = max
ri ,cj ,xi j

∑
i ,j

Mi j · xi j + αi j(ri − xi j) + γi j(xi j + 1− ri − cj)

(2.18)

= max
ri ,cj ,xi j

∑
i ,j

(
xi j · (Mi j − αi j + γi j) + γi j

)
+
∑
i

ri · (
∑
j

αi j − γi j)−
∑
j

cj · (
∑
i

γi j) (2.19)

such that xi j ≤ cj ∀i , j

2.4. A Lagrangian-based upper bounding procedure 25

Selecting the optimal rows ri for a given set of multiplier is trivial
(ri = 1 if

∑
j αi j − γi j > 0, ri = 0 otherwise). The case for xi j and cj is

more complex. Two cases are possible for each specific column j :

■ Either cj = 0. In that case, by constraint (2.20) all cells on this
column are unselected: xi j = 0 ∀i . The overall contribution of these
variables is thus 0.

■ Or cj = 1. In that case, all cells on this column are selected depend-
ing on whether their contributions are positive or not: xi j = 1 ⇐⇒
Mi j − αi j + γi j > 0. The overall contribution of these variables is
then ∑

i

max(0,Mi j − αi j + γi j)− γi j . (2.20)

We can thus conclude that in any optimal solution, a column will be
selected (cj = 1) if

∑
i max(0,Mi j − αi j + γi j) − γi j > 0, and will not

otherwise. This provides a linear time algorithm (in the size of the matrix)
to compute the Lagrangian dual function, by directly applying the resulting
formula:

f (α, γ) =
∑
i

max(0,
∑
j

αi j − γi j)+∑
j

max(0,
∑
i

max(0,Mi j − αi j + γi j)− γi j) +
∑
i ,j

γi j (2.21)

Overall, the subproblem of Fx-lrelax-partial can be solved in the same com-
plexity as Fx-lrelax-all (i.e. O(|LR| · |LC |)) but with fewer Lagrangian multi-
pliers, ensuring a faster solving time for the subgradient algorithm, while
preserving the exact same optimal objective value. The algorithm to min-
imize Fx-lrelax-partial is given in Algorithm 3.

The algorithm uses a simple subgradient-descent algorithm with a har-
monic update [CF15] of step size µ. By default we use a multiplicative
factor of 0.95 for the update, and start with µ0 = 1. The optimality gap
between the optimum of Fx-linear and the one computed by the subgradient
algorithm on random matrices filled with random Gaussian noise is shown
in Figure 2.1. We experimentally observe on that Figure that progress
heavily slows after about 150 iterations even on large matrices, and thus
we limit the number of iterations to this number.

Experiments are also run with 50 and 100 iterations, and with a mech-
anism that only update the multipliers each q nodes (details are in the

26 Chapter 2. The Maximum-Sum Submatrix problem

Algorithm 3 Solving Fx-lrelax-partial

function solveSubproblem(α, γ)
ri ← 0 ∀i ∈ LR ▷ indicates if row i is selected or not
cj ← 0 ∀j ∈ LC ▷ indicates if column j is selected or not
xi j ← 0 ∀i ∈ LR, j ∈ LC ▷ indicates if cell i , j is selected or not
ub← 0 ▷ The upper bound being computed

for all i ∈ LR, j ∈ LC do ▷ Base cell contribution
ub← ub+ γi j

for all i ∈ LR do ▷ Select all rows with positive contribution
contribution ←

∑
j αi j − γi j

if contribution > 0 then
ri ← 1
ub ← ub + contribution

for all j ∈ LC do ▷ Select all columns with positive contribution
contribution ← 0
for all i ∈ LR do ▷ Contribution of a column includes the ones of its cells

contribution ← contribution− γi j
cellContribution ← Mi j − αi j + γi j
if cellContribution > 0 then

contribution ← contribution + cellContribution
xi j ← 1

if contribution > 0 then
ub ← ub + contribution
cj ← 1

else ▷ If, at the end of the computation, we do not select the
column, we must reset the cells to 0.for all i ∈ LR do

xi j ← 0

return ub, r , c, x

function subgradientDescent(nIterations)
α, γ ← random initialization (uniform between 0 and 1)
µ← 1
for nIterations iterations do

ub, r , c, x ← solveSubproblem(α, γ) ▷ Note that here, at any point of the algo-
rithm, ub is a valid upper boundµ← 0.95 · µ

for all i ∈ LR do
for all j ∈ LC do
αi j ← max(0, αi j − µ · (ri − xi j))
γi j ← max(0, γi j − µ · (xi j + 1− ri − cj))

return solveSubproblem(α, γ)

2.5. A note about bounds’ tightness and relations 27

Figure 2.1: Optimality gap between Fx-linear and the value computed by the
subgradient on 50 random matrices.

Table 2.1: Time (s) to reach a given optimality gap, for a black-box LP
solver (Gurobi) using Fx-linear and a Python implementation of Algorithm 3
(subgradient on Fx-lrelax-partial).

LP Lagrangian

Size Opt 5% 1% 5% 1%

100x100 42.54 0.18 0.18 0.77 1.77
200x200 908.7 1.17 1.17 2.73 6.09
300x300 271.9 209.4 252.3 6.85 14.9
400x400 1039 812.3 962.7 12.3 28.2
500x500 2391 1983 2277 15.4 34.7

experiment section). Existing research shows that even poor approxima-
tions or non-updated approximation of the Lagrangian multipliers may be
beneficial [Sel04].

Table 2.1 shows the time taken to reach a given optimality gap, for a
LP solver solving the problem with Fx-linear and Algorithm 3. There is an
important speedup, which is expected as a lot of variables are removed in
Fx-lrelax-partial w.r.t Fx-linear.

The computed bounds will be used to cut in the branch-and-bound
tree. If by misfortune the upper bound found is not accurate (i.e. is
greater than expected), the tree will simply visit more nodes, but will not
give an invalid result, as the bounds are valid.

2.5 A note about bounds’ tightness and relations

So far we discussed three different bounding procedure:

■ The natural upper bound
∑
i ,j max(Mi j , 0);

28 Chapter 2. The Maximum-Sum Submatrix problem

■ The FBigM-linear-rows model, presented in section 2.3, based on a Big-
M relaxation that uses one variable per row and column. We show
above that it is solvable by inspection in linear time;

■ The Fx-linear model presented in section 2.4, which uses one variable
per cell, row, and column. We show above how to use Lagrange
multipliers to solve it.

These bounds are in fact in increasing order of tightness. We showed in
theorem 2.3.3 that FBigM-linear-rows is a tighter bound than the natural one.
The following theorem shows that Fx-linear is tighter than FBigM-linear-rows.

Theorem 2.5.1. The optimal objective of Fx-linear is less or equal than the
optimal objective of FBigM-linear-rows.

Proof. Given an optimal solution (ri , cj∀i , j) of Fx-linear, we show that using
the same values for ri and cj for all rows and columns gives a greater
solution in FBigM-linear-rows, which implies its optimum is greater.

The optimal variables xi j for Fx-linear can be inferred from the row and
column variables. From equations (2.14b), (2.14c) and (2.14d) we have
the following constraints on xi j :

max(0, ri + cj − 1) ≤ xi j ≤ min(ri , cj) (2.22)

As the objective maximizes
∑
i j Mi j · xi j , we have the following:

■ xi j = min(ri , cj) if Mi j > 0

■ xi j = max(0, ri + cj − 1) if Mi j < 0

The optimal objective for Fx-linear is then

objx-linear =
∑
i

(∑
j |Mi j>0

min(ri , cj) ·Mi j +
∑
j |Mi j<0

max(0, ri + cj − 1) ·Mi j
)

(2.23)

We can insert this solution (ri , cj) inside FBigM-linear (note that FBigM-linear
and FBigM-linear-rows have the same solutions).

From equations (2.5a), (2.5b) and (2.5c), we have that the solution
is

objBigM-linear =
∑
i

min(ri · upi , (
∑
j

Mi j · cj) + (1− ri) · lo i) (2.24)

2.5. A note about bounds’ tightness and relations 29

If we take individually each row from objx-linear:∑
j |Mi j>0

min(ri , cj) ·Mi j +
∑
j |Mi j<0

max(0, ri + cj − 1) ·Mi j (2.25)

≤
∑
j |Mi j>0

min(ri , cj) ·Mi j (2.26)

≤
∑
j |Mi j>0

ri ·Mi j = ri · upi (2.27)

Moreover,∑
j |Mi j>0

min(ri , cj) ·Mi j +
∑
j |Mi j<0

max(0, ri + cj − 1) ·Mi j (2.28)

≤
∑
j |Mi j>0

cj ·Mi j +
∑
j |Mi j<0

(ri + cj − 1) ·Mi j (2.29)

≤
∑
j |Mi j>0

cj ·Mi j +
∑
j |Mi j<0

cj ·Mi j +
∑
j |Mi j<0

(ri − 1) ·Mi j (2.30)

≤
∑
j

cj ·Mi j +
∑
j |Mi j<0

(ri − 1) ·Mi j =
∑
j

cj ·Mi j + (1− ri)lo i (2.31)

All of this for any row i . We thus have that for each row, the contribution
of the row in objx-linear is less or equal than in objBigM-linear. From equations
(2.27) and (2.31):∑

j |Mi j>0
min(ri , cj) ·Mi j +

∑
j |Mi j<0

max(0, ri + cj − 1) ·Mi j

≤ min(ri · upi ,
∑
j

cj ·Mi j + (1− ri)lo i) ∀i (2.32)

=⇒
∑
i

∑
j |Mi j>0

min(ri , cj) ·Mi j +
∑
j |Mi j<0

max(0, ri + cj − 1) ·Mi j

≤
∑
i

min(ri · upi ,
∑
j

cj ·Mi j + (1− ri)lo i) (2.33)

=⇒ objx-linear ≤ objBigM-linear (2.34)

It is thus expected that bounding and filtering based on Fx-linear will
prune the search space more than ones based on FBigM-linear. Figure 2.2
gives a visual representation of all the bounds used in this chapter.

It is possible to show that all these linear bounds can be arbitrarily
distant from the discrete problem’s optimal solution, as shown in Example
3.

30 Chapter 2. The Maximum-Sum Submatrix problem

Natural bound FBigM-linear

FBigM-linear-rows

Fx-linear

Fx-lrelax-all

Fx-lrelax-partial

MSS

FBigM

Fx

Figure 2.2: Summary of all the models used in this chapter. A gray rectan-
gle means that enclosed methods are equivalent (have the same optimum
objective). An arrow from A to B indicates that B has a lower optimum
than A. This relation is transitive.

Table 2.2: Bounds obtained for example 3

Value for (n, a, b)
Method (20, 1, 1000) (20, 19, 1)

Natural bound 20 380

FBigM-linear ≃ 19.9989 190

Fx-linear 10 190

Optimum MSS 1 100

Example 3. Let Mex2 be an n × n matrix with positive values in the
diagonal but negative ones everywhere else:

Mex2 =

a −b −b . . . −b
−b a −b . . . −b
−b −b a −b
...

...
. . .

...
−b −b −b . . . a

with a, b ∈ R+ . The optimal MSS objective value is a by construction
if a ≤ b, and ca − (c2 − c)b with c the best integer around a+b

2b other-
wise. Table 2.2 shows the bounds obtained by all linear bounding methods
presented above.

As an admissible solution is to select all the cells in the best row/column
and leave the rest unselected, we have that the bounds found by these lin-
ear relaxations can be at most min(m, n) times greater than the optimum
discrete objective in an m × n matrix.

Moreover, the bound found by all the linear relaxations above will be
at least

∑
i ,j max(Mi j ,0)

2 as the solution ri = cj = 1
2 is always admissible in

Fx-linear, and produce the aforementioned objective value. This can be at
most min(m,n)2 times greater than the actual discrete optimum.

2.6. Using the bounds in a CP framework 31

2.6 Using the bounds in a CP framework

We reuse the framework introduced by [BSD17b]. It is based on Constraint
Programming which, in this particular case, is based on a Depth First
Search using Branch-and-Bound on the space of the possible assignment
of the variables (rows and columns to select).

We use one binary variable per row (r1, . . ., rm) and per column (c1,
. . ., cn). These binary variables can either be assigned (v = 1), unassigned
(v = 0) or undecided yet (v = ⊥). At each DFS iteration, an undecided
variable is selected (according to a search strategy, described in the fol-
lowing subsections), and the DFS branches on the left by assigning this
variable to 1, and on the right to 0. The various bounds are then com-
puted, and the filtering rules are applied, that is the removal of impossible
values from the domains of the variables. It is, of course, possible that a
domain becomes empty, making the solver backtrack in the search tree.

Let us define Rs = {i ∈ LR | ri = s} and Cs = {j ∈ LC | cj = s}, the
sets of variable currently having a given status s ∈ {⊥, 0, 1}. Note that
the sets R0, R1, R⊥ are disjoint and that their union equals LR, the same
being true for columns. We thus omit most of the time one of these three
sets, mainly R0, as its value can be computed intuitively as LR\(R1∪R⊥).
We also denote from this point R and C as any choice of rows and columns
(respectively) that can be an improving solution.

2.6.1 Dealing with partial solutions

Without loss of generality, all partial assignments of variables for any matrix
M can be reduced to a partial solution with |R1| = |C1| = 1 and |R0| =
|C0| = 0 on a transformed matrix Ms . Let γ1, . . . , γ|R⊥| be any ordering
of rows ∈ R⊥, and θ an ordering of the columns ∈ C⊥. We can construct
the matrix Ms ∈ R(|R

⊥|+1)×(|C⊥|+1) such that:

Ms,i j =

∑
a∈R1

∑
b∈C1Mab if i = j = 1∑

a∈R1Maθj+1 if i = 1 and j > 1∑
b∈C1Mγi+1b if j = 1 and i > 1

Mγi+1θj+1 otherwise

C1 θ1 θ2 ··· θ|C⊥|

∑
of sel. rows R1∑

Remaining γ1

of cells γ2

sel. of old ···
cols matrix γ|R⊥|

i.e. we merge selected rows into a single one by summing them, remove
the excluded ones from the matrix, and keep all the other ones as they
are, and do the same with the columns.

One of our contributions is the usage of this simplification trick during
the search. As we use a Large Neighborhood Search Strategy [Sha98],
most of the variables are decided during the search.

32 Chapter 2. The Maximum-Sum Submatrix problem

2.6.2 Update of the incumbent solution

As observed in [BSD17b], it is not necessary to wait until all the decision
variables are decided in order to update the incumbent (best so far) solution
and the lower-bound. By construction, each node of the search tree can
be transformed greedily in linear time into an admissible partial solution to
possibly become the incumbent solution of the branch and bound.
C = C1 is a partial solution with R ⊆ R1∪R⊥ such that the objective is

maximum. Such R can be computed easily using Observation 1. Precisely,
the objective value for this solution is∑

i∈R1

∑
j∈C1
Mi j +

∑
i∈R⊥

max(0,
∑
j∈C1
Mi j) (2.35)

The selected columns are thus only composed of the ones already
selected, discarding the undecided ones to build the optimal solution. The
transpose reasoning is also true2.

The algorithm used to maintain the incumbent solution is below. It
maintains for each column the sum of the already-selected entries∑
i∈R1Mi j (and similarly for each row the sum of the selected entries),

and use these caches to compute the possible new solution objective value
faster.

The whole update needed to find a possible new incumbent solution is
in O(n +m).

2.6.3 Upper bounding

The upper bounds introduced earlier must be adapted to take into account
partial assignments of decision variables.

2.6.3.1 FBigM-linear-rows

Equation (2.11), providing the optimal solution for FBigM-linear-rows and
thus a valid upper bound for the MSS problem, can be adapted to the
following:

∑
i∈R⊥

upi ·lo i
upi+lo i

+
∑
j∈C1
(
∑
i∈R1
Mi j +

∑
i∈R⊥

upi ·Mi j
upi+lo i

) +
∑
j∈C⊥
max(0,

∑
i∈R1
Mi j +

∑
i∈R⊥

upi ·Mi j
upi+lo i

)

(2.36)

2Note that [BSD17b] did not consider this transpose reasoning (for the unconstrained
cardinality case) in the update rule for the incumbent, and that the two solutions are in
general different.

2.6. Using the bounds in a CP framework 33

Algorithm 4 Maintain incumbent solution
rowVal[i] =

∑
j∈C1 Mi j ∀i ∈ LC \ C0

colVal[j] =
∑
i∈R1 Mi j ∀j ∈ LR \ R0

function onRowModified(i) ▷ Called when a row is selected/unselected (⊥ → 0/1)
if row becomes selected then

for all j ∈ LC \ C0 do ▷ No need to do it for non-selectable columns
colVal[j]← colVal[j] +Mi j

updateIncumbentSolution()

function onColumnModified(j) ▷ Called when a column is selected/unselected
(⊥ → 0/1)if column becomes selected then

for all i ∈ LR \ R0 do ▷ No need to do it for non-selectable rows
rowVal[i]← rowVal[i] +Mi j

updateIncumbentSolution()

function updateIncumbentSolution()
solR← 0
solC← 0
for all i ∈ R1 do

solR← solR+ rowVal[i]

for all j ∈ C1 do
solC← solC+ colVal[j]

for all i ∈ R⊥ do
solR← solR+max(0, rowVal[i])

for all j ∈ C⊥ do
solC← solC+max(0, colVal[j])

incumbentSolution← max(incumbentSolution, solR, solC)

34 Chapter 2. The Maximum-Sum Submatrix problem

upi and lo i can also be adapted, as they need to be respectively the
upper and minus the lower bound of the contribution of a row. Then, this
definition is also valid:

upi :=
∑
j∈C1
Mi j +

∑
j∈C⊥
max(0,Mi j) (2.37)

lo i := −
∑
j∈C1
Mi j +

∑
j∈C⊥
max(0,−Mi j) (2.38)

Recomputing upi , lo i for all rows along with the upper bound at each
node of the search tree has a runtime of O(mn) per node (which, over
a full branch, amounts to O(mn2)). This version of the upper-bounding
procedure is shown below in the experiments as "FBigM-linear-rows (recom-
pute)".

A computational speed-up can be obtained by using caching and fixing
upi and lo i before starting the computation (typically to∑
j∈LC max(0,Mi j) and

∑
j∈LC max(0,−Mi j)). While this reduces the

pruning power of the bound (which will be less tight as a consequence),
the increase in visited nodes (due to a faster computation) can be worth
the trade-off. In this case, the computation can be made in O(∆r ·n+∆c)
at each node, where ∆r is the number of modified row variables in the
current tree node (and similarly for ∆c). Over a full branch of the tree
search, this sums up to O(mn). The algorithm is shown in Algorithm 5.
The name of this upper bounding procedure is "FBigM-linear-rows (fixed)" in
the experiments presented in the last section.

2.6.3.2 Fx-lrelax-partial

The model presented at equation (2.17) can be reused as-is, simply by
adding additional constraints to include/exclude rows/columns (ri = 1
∀i ∈ R1, ri = 0 ∀i ∈ R0, ...). This requires a small adaptation to
subproblem solving in Algorithm 3, shown in Algorithm 6. The algorithm
runs in O(kmn) at each node of the tree, where k is the number of
subgradient descent steps.

2.6.4 Reduced-Cost-based filtering

2.6.4.1 Upper bound filtering

Given a current state (R1, R⊥, C1, C⊥), we can compute for each row i ∈
R⊥ its upper bound when selected or unselected (namely
ubR

1∪{i},R⊥\{i},C1,C⊥ and ubR
1,R⊥\{i},C1,C⊥).

2.6. Using the bounds in a CP framework 35

Algorithm 5 Implementation of FBigM-linear-rows (fixed) with caching
▷ Initialization

curBound← 0 ▷ Reversible (i.e. reverted to previous value when a backtrack occurs)
curColBound[j]← 0 ∀j ▷ Reversible

for all i ∈ LR do
upi ←

∑
j∈LC max(0,Mi j)

lo i ←
∑
j∈LC max(0,−Mi j)

rowContribution[i]← upi ·lo i
upi+lo i

for all j ∈ LC do
cellContribution[i , j]← Mi j ·lo i

upi+lo i
curColBound[j]← curColBound[j] + cellContribution[i , j]

curBound← curBound+ rowContribution[i]

for all j ∈ LC do
if curColBound[j] > 0 then

curBound← curBound+ curColBound[j]

function onColModified(i) ▷ Called when a column is selected/unselected (⊥ → 0/1)
if j ∈ C1 ∧ curColBound[j] < 0 then
▷ If the column is now selected, but was not as its contribution is negative, add it.
curBound← curBound+ curColBound[j]

else if j ∈ C0 ∧ curColBound[j] > 0 then
▷ If the column is now unselected, but had a positive contribution, remove it.
curBound← curBound− curColBound[j]

function onRowModified(i) ▷ Called when a row is selected/unselected(⊥ → 0/1)
curBound← curBound− rowContribution[i]

delta← 0
for all j ∈ C1 ∪ C⊥ do

oldValue← curColBound[j]

cdelta← cellContribution[i , j] ▷ the delta between the current
if i ∈ R1 then ▷ and new contribution of the cell

cdelta← cdelta+Mi j

curColBound[j]← curColBound[j] + cdelta

if j ∈ C1 then
▷ If the column is selected, then its contribution is updated.
delta← delta+ cdelta

else if oldValue <= 0 ∧ curColBound[j] > 0 then
▷ If the column was not selected, but should be now, add its contribution.
delta← delta+ curColBound[j]

else if oldValue > 0 ∧ curColBound[j] <= 0 then
▷ If the column was selected, but is not anymore, remove its old contribution.
delta← delta− oldValue

else if oldValue > 0 ∧ curColBound[j] > 0 then
▷ If the column was selected, and still is, update the contribution.
delta← delta+ cdelta

curBound← curBound+ delta

36 Chapter 2. The Maximum-Sum Submatrix problem

Algorithm 6 Solving Fx-lrelax-partial, with partial solution support (differ-
ences underlined)

function solveSubproblem(α, γ)
ri ← 0 ∀i ∈ LR ▷ indicates if row i is selected or not
cj ← 0 ∀j ∈ LC ▷ indicates if column j is selected or not
xi j ← 0 ∀i ∈ LR, j ∈ LC ▷ indicates if cell i , j is selected or not
ub← 0 ▷ The upper bound being computed

for all i ∈ R1 ∪ R⊥, j ∈ C1 ∪ C⊥ do ▷ Base cell contribution
ub← ub+ γi j

for all i ∈ R1 ∪ R⊥ do ▷ Select all rows with positive contribution
contribution ←

∑
j αi j − γi j

if contribution > 0 ∨i ∈ R1 then
ri ← 1
ub ← ub + contribution

for all j ∈ C1 ∪ C⊥ do ▷ Select all columns with positive contribution
contribution ← 0
for all i ∈ R1 ∪ R⊥ do ▷ Contribution of a column includes the ones of its cells

contribution ← contribution− γi j
cellContribution ← Mi j − αi j + γi j
if cellContribution > 0 ∨i ∈ R1 then

contribution ← contribution + cellContribution
xi j ← 1

if contribution > 0 ∨j ∈ C1 then
ub ← ub + contribution
cj ← 1

else ▷ If, at the end of the computation, we do not select the
column, we must reset the cells to 0.for all i ∈ LR do

xi j ← 0

return ub, r , c, x

We then have these filtering rules:

ubR
1∪{i},R⊥\{i},C1,C⊥ < best⇒ i ̸∈ R (2.39)

ubR
1,R⊥\{i},C1,C⊥ < best⇒ i ∈ R (2.40)

where best is the value of the best solution found so far.
Explained differently, if the upper bound for a particular assignment of

a row is worse than the current best solution found, then this assignment
is not part of any better solution. The same is done for columns. The
method is called cost-based domain filtering [FLM99].

Reusing at each node the upper bounding algorithm presented in the
previous sections would require a too consequent increase in complex-
ity; however, it is possible to do this pruning efficiently at no additional
(asymptotic) cost.

2.6. Using the bounds in a CP framework 37

This involves maintaining during the computation of the main upper
bound the delta that would occur if the row/column variable is assigned
to a specific value. While this is straightforward in practice, we do not
include the code in the text of this chapter for the sake of conciseness.
The reference implementation is however available.

In practice, all pruning algorithms run in O(nm) (which is equivalent
to the running time of the associated-bounding procedure), but for the
fixed version of FBigM-linear-rows (see Section 2.6.3.1). For this particu-
lar constraint, the column filtering occurs in O(m) (which is the running
time of the upper bounding procedure) while the row filtering is in O(nm)
(so, greater than the upper bounding procedure running time). We thus
propose two versions of this pruning while associated with FBigM-linear-rows:
one with the row filtering, one without.

2.6.4.2 Lower bound filtering

upi and lo i are, for a given row i , the upper bound and the opposite of the
lower bound of its contribution. A version of these bounds which supports
partial solutions is presented in equations (2.37) and (2.38).

The following filtering rules always apply3:

upi < 0⇒ i ̸∈ R∗ (2.41)

lo i < 0⇒ i ∈ R∗ (2.42)

where R∗ is the set of rows of one of the optimum solutions reachable
from the current partial solution.

That is, if the maximum contribution of a row is negative, it will never
be part of any (locally) optimal solution (reachable from this partial solu-
tion). Similarly, if the minimum contribution of a row is positive, then it
will always be part of the best solution reachable from the current partial
solution.

The rule (2.41) was introduced by [BSD17b], while (2.42) is a new
contribution. This is straightforward, but was not possible in the imple-
mentation of [BSD17b] as it was not able to force rows to be in solution.
As their constraint is included in all our experiments, we implemented the
lower-bound filtering inside their constraint, with the option of being de-
activable.

2.6.5 Methods and complexities summary

Table 2.3 provides a summary of all the methods and their complexities.
Table 2.4 shows all the combinations of methods used in the experiments.

38 Chapter 2. The Maximum-Sum Submatrix problem

Table 2.3: Methods and complexities (computed at each node, non-
symmetric)

Upper Filtering

Model Type bounding LB-Low Row UB Column UB

Base [BSD17b] O(n∆r + ∆c) O(∆r + ∆c) O(mn∆) N/A
FBigM-linear-rows fixed O(n∆r + ∆c) N/A O(mn∆) O(n∆)

recompute O(mn∆) N/A O(m∆) O(n∆)
Fx-lrelax-partial O(kmn∆) N/A O(n∆) O(m∆)
∆r and ∆c are the number of modified rows/columns in the node. ∆ = ∆r + ∆c .
Matrices are of size m × n and the Lagragian based method makes k steps. The

complexities of the filtering operations are given after the upper bounding has been
done, as it fills memoization arrays, allowing faster filtering.

Table 2.4: Combinations of methods used in the experiments

Overall Applied Enabled filtering

Name complexity models LB-Low Row UB Col UB

Natural O(mn∆) Base 7 3 -

Natural+LB+fast O((m + n)∆) Base 3 7 -

Natural+LB O(mn∆) Base 3 3 -

Fixed-BigM O((m + n)∆) Base 3 7 -
FBigM-linear-rows (fixed) - 7 3

Recompute-BigM O(mn∆) Base 3 3 -
FBigM-linear-rows (recompute) - 3 3

Lagrangian (k, skip s%) O(kmn∆) Base 3 3 -
Fx-lrelax-partial - 3 3

3: activated, 7: disabled, -: non-applicable. Note that the models are always also applied in a
symmetrical way (on the transpose matrix), but the table shows the enabled features for the

non-symmetric case.

2.7. Experiments 39

These combinations are chosen to show the relative improvement of
each of our contributions, compared to the existing techniques. The pair
(Natural, Natural+LB) aims at comparing the addition of the additional
lower bound procedure introduced in Section 2.6.4.2. Natural+LB+fast
provides a counterpart to Fixed-BigM as they have the same overall com-
plexity. The same goes for Natural+LB and Recompute-BigM. We test
the Lagrangian-based method presented earlier with various parameters
for the number of iterations (k) and the probably of skipping an update at
each node4 of the search tree (s%). The chosen pairs (k, s) are:

■ (50, 100%),

■ (100, 100%),

■ (150, 100%),

■ (150, 30%),

■ (150, 60%),

■ (150, 90%),

■ (150, 95%).

2.7 Experiments

We first experiment on synthetic data, showing differences in efficiency
between all the methods presented, and then experiment with real-life
data. We compare against a MIP solver (Gurobi) when appropriate. The
MIP solver is run with the BigM model from equation (2.5).

2.7.1 Complete search

We generated small instances (square matrices from size 10× 10 to 30×
30) that can be solved to optimality, and compare the number of nodes
explored by each method by computing the ratio between this number of
nodes and the one visited by the Natural method (see table 2.4), our
baseline, along with the runtime ratio. We generated two datasets, the
first being square matrices filled with a Gaussian noise N (0.2, 1), the other
with N (0, 1).

There is a phase transition when the expected value of any row/column
is 0, as this is the tipping point between selection and non-selection of a

3Recall that lo i is the opposite of the lower bound, hence the <.
4A full SGD is always run at the root node

40 Chapter 2. The Maximum-Sum Submatrix problem

row/column. Moreover, the expected value of any submatrix in a matrix
filled with noise N (0, 1) is 0, and all solutions are similar and close to
0. This makes the N (0, 1) case particularly difficult. On the other hand,
N (0.2, 1) is comparatively simpler as the expected size for the MSS is the
whole matrix. This kind of matrix appears when using LNS to solve the
instances, as when the search progresses, we refine the main matrix by
removing some columns with a negative contribution, increasing the mean
value in the row/column/matrix. This choice of dataset thus shows the
two phases possible in the problem, since both are relevant.

Table 2.5 shows the ratio for all datasets and matrix sizes. As it can
be seen, the various methods proposed all improve over the state-of-the-
art, but in the single case where only the new lower-bound filtering is
activated. Fixed-BigM improves over the Natural method as they share
complexities but the former prunes more heavily the search tree. More
complex models, such as Recompute-BigM and Lagrangian, can visit up
to five orders of magnitude fewer nodes than the existing method; this
ratio increasing rapidly with the size of the matrices.

These results must be compared to the mean runtime ratio, as shown in
the table. While the Lagrangian method variants provide the best pruning,
its running time increases more rapidly. Experiments thus tend to show
that Fixed-BigM and Recompute-BigM are generally the best choices.

The various parameters tested for the Lagrangian shows that using
fewer gradient descent iterations worsen the computed upper bounds and
thus increases the number of visited nodes, but it is counterweighted by the
decrease in computation time, leading to very small differences in running
time. Skipping multipliers updates does not seem to help, either.

2.7. Experiments 41

T
ab

le
2.

5:
A

ve
ra

ge
ra

ti
o

be
tw

ee
n

th
e

nu
m

be
r

of
vi

si
te

d
no

de
s

by
N

at
ur

al
an

d
th

e
nu

m
be

r
of

no
de

s
vi

si
te

d
by

th
e

ot
he

r
m

et
ho

ds
,

al
on

g
w

it
h

th
e

ti
m

e
ra

ti
o,

on
sq

ua
re

m
at

ric
es

fil
le

d
w

it
h

a
N
(·,
1
)

no
is
e.

Fi
ft

y
di

ff
er

en
t

m
at

ric
es

pe
r

si
ze

.
St

at
ic

br
an

ch
in

g.

S
iz

e
-
N
(0
,1
)

S
iz

e
-
N
(0
.2
,1
)

M
et

ho
d

10
14

18
22

26
30

10
14

18
22

26
30

N
at

ur
al

(B
as

e
fo

r
ra

ti
os

)
A
vg

.
vi

si
te

d
no

de
s

83
68

9
87

09
82

k
91

8k
10

46
1k

77
61

3
6k

48
k

41
6k

34
10

k
T

im
e

(s
)

0.
02

s
0.

04
s

0.
15

s
1.

01
s

14
.0

s
16

2s
0.

02
s

0.
04

s
0.

12
s

0.
51

s
3.

56
s

40
.8

s

N
at

ur
al

+
LB

+
fa

st
N

od
e

ra
ti
o

0.
9

0.
59

0.
57

0.
51

0.
46

0.
48

2.
96

2.
18

3.
0

2.
75

2.
49

3.
09

T
im

e
ra

ti
o

1.
18

1.
08

1.
09

0.
84

1.
02

1.
12

1.
49

1.
49

1.
92

1.
95

2.
08

3.
49

N
at

ur
al

+
LB

N
od

e
ra

ti
o

2.
18

1.
44

1.
36

1.
26

1.
19

1.
2

6.
1

4.
1

5.
4

4.
75

4.
4

5.
41

T
im

e
ra

ti
o

1.
19

1.
09

1.
04

0.
81

0.
92

0.
93

1.
47

1.
45

1.
71

1.
68

1.
72

2.
57

F
ix

ed
-B

ig
M

N
od

e
ra

ti
o

2.
39

2.
2

2.
27

2.
03

2.
03

2.
5

9.
71

13
.7

5
27

.9
4

38
.6

7
50

.3
9

10
4.

32
T

im
e

ra
ti
o

1.
17

1.
12

1.
32

1.
19

1.
24

1.
69

1.
43

1.
63

2.
67

4.
39

7.
52

17
.8

7

R
ec

om
pu

te
-B

ig
M

N
od

e
ra

ti
o

6.
36

11
.7

25
.1

7
34

.0
3

51
.5

8
96

.2
1

12
.7

8
35

.3
5

11
7.

94
28

2.
13

67
6.

64
20

33
.6

T
im

e
ra

ti
o

1.
25

1.
21

1.
62

2.
73

4.
29

9.
43

1.
55

1.
73

2.
74

5.
37

13
.3

3
48

.5
2

La
gr

an
gi

an
(5

0,
al

l)
N

od
e

ra
ti
o

5.
77

12
.3

4
31

.0
8

46
.6

7
72

.0
7

13
6.

16
12

.5
6

38
.4

2
18

2.
74

82
5.

02
34

90
.7

7
20

74
6.

94
T

im
e

ra
ti
o

0.
56

0.
22

0.
17

0.
17

0.
27

0.
4

0.
71

0.
47

0.
38

0.
72

2.
12

12
.9

1

La
gr

an
gi

an
(1

00
,
al

l)
N

od
e

ra
ti
o

5.
99

14
.7

8
46

.9
7

83
.3

14
0.

27
29

1.
93

12
.6

5
39

.7
4

20
6.

35
10

27
.7

7
53

87
.5

4
35

67
9.

89
T

im
e

ra
ti
o

0.
36

0.
13

0.
15

0.
18

0.
31

0.
51

0.
47

0.
25

0.
28

0.
62

1.
95

12
.1

2

La
gr

an
gi

an
(1

50
,
al

l)
N

od
e

ra
ti
o

6.
0

14
.9

4
48

.0
86

.2
9

14
5.

97
30

6.
46

12
.6

5
40

.2
20

9.
15

10
36

.1
55

06
.0

36
59

8.
44

T
im

e
ra

ti
o

0.
23

0.
1

0.
13

0.
15

0.
25

0.
4

0.
35

0.
16

0.
22

0.
51

1.
6

10
.0

5

La
gr

an
gi

an
(1

50
,
sk

ip
30

%
)

N
od

e
ra

ti
o

5.
85

14
.5

8
46

.4
1

82
.8

2
14

0.
57

29
4.

4
12

.6
2

39
.5

2
20

5.
0

10
05

.7
7

53
92

.6
4

35
30

9.
34

T
im

e
ra

ti
o

0.
35

0.
13

0.
14

0.
18

0.
32

0.
53

0.
49

0.
28

0.
25

0.
65

2.
03

12
.7

2

La
gr

an
gi

an
(1

50
,
sk

ip
60

%
)

N
od

e
ra

ti
o

5.
26

13
.0

3
40

.9
70

.1
8

11
3.

99
23

3.
59

12
.4

8
38

.0
19

3.
77

95
4.

92
48

39
.9

7
31

37
3.

44
T

im
e

ra
ti
o

0.
6

0.
28

0.
19

0.
23

0.
45

0.
76

0.
81

0.
6

0.
53

0.
95

2.
54

14
.2

7

La
gr

an
gi

an
(1

50
,
sk

ip
90

%
)

N
od

e
ra

ti
o

4.
74

8.
07

18
.4

2
27

.9
8

43
.0

4
83

.3
6

12
.2

9
34

.8
1

14
2.

72
57

0.
75

19
66

.9
5

10
72

7.
53

T
im

e
ra

ti
o

1.
14

0.
68

0.
36

0.
39

0.
78

1.
21

1.
44

1.
63

2.
19

3.
05

5.
94

25
.6

7

La
gr

an
gi

an
(1

50
,
sk

ip
95

%
)

N
od

e
ra

ti
o

4.
71

6.
72

14
.0

9
19

.4
6

31
.4

3
59

.6
2

12
.2

6
34

.4
4

13
1.

05
46

1.
54

12
77

.8
6

54
12

.7
4

T
im

e
ra

ti
o

1.
15

0.
73

0.
38

0.
45

0.
9

1.
46

1.
44

1.
66

2.
04

2.
91

5.
03

23
.5

8

42 Chapter 2. The Maximum-Sum Submatrix problem

2.7.2 Large neighborhood search on bigger instances

We now show the results on bigger matrices. These synthetic instances
are filled by a Gaussian noise of parameters (µ = −0.01, σ = 1). We then
inject a submatrix with Gaussian noise (µ = 0.01, σ = 1), the size of the
submatrix depending on a parameter p being the ratio of the main matrix
being filled with the submatrix. We generated 30 matrices for each (size,
p) pair. All methods run a Large Neighborhood Search (LNS, [Sha98]) with
an adaptive relaxation rate. The additional constraint (maximum running
time and timeout per LNS iteration) and results are shown in Table 2.6 and
Figure 2.3, which shows the average solution quality at any point in time
for all the different methods. The average solution quality is defined as
the mean of the ratios between the current solution for a method/instance
and the best seen solution at timeout for all the methods.

In practice, the quality of the solution is more dependent on the diver-
sification method5 than on the intensification method (the bound used).
The new bounds produce only a small difference in terms of results after
60 seconds, as seen in Table 2.6. Figure 2.3 shows, however, that the
convergence rate is higher for some methods. The group of methods that

5here, a part of the best current solution is randomly kept, and the remaining columns
are aggregated until the matrix is small enough, these parameters being computed at
runtime

Figure 2.3: Average solution quality w.r.t. time for all methods. (MIP-
Strong is omitted due to poor performance)

2.7. Experiments 43

Table 2.6: Solution quality (average ratio of objective value found by a
method divided by the best objective found by any method) using Large
Neighborhood Search. All numbers are in percentages. Best methods (less
than 0.05% wrt the best method) are in bold. Average of 30 different
instances per type of instance.

Matrix size 1000 2000 3000

p 5% 30% 50% 5% 30% 50% 5% 30% 50%

Natural 99.31 99.17 99.53 99.2 99.3 99.55 98.54 98.67 99.38
Natural+LB+fast 99.5 99.39 99.6 99.49 99.63 99.81 99.49 99.57 99.75
Natural+LB 99.44 99.42 99.6 99.45 99.49 99.64 99.63 99.46 99.85
Fixed-BigM 99.39 99.51 99.54 99.46 99.49 99.61 99.51 99.66 99.79
Recompute-BigM 99.37 99.4 99.56 99.5 99.51 99.77 99.55 99.57 99.73
Lagrangian (50, all) 99.13 99.29 99.46 98.18 98.49 99.04 93.74 94.45 96.9
Lagrangian (100, all) 99.3 99.27 99.42 97.73 98.08 98.78 91.12 91.07 94.84
Lagrangian (150, all) 99.24 99.2 99.42 97.22 97.59 98.45 88.61 88.86 92.49
Lagrangian (150, skip 30%) 99.2 99.29 99.44 97.89 98.24 98.8 92.54 93.59 96.33
Lagrangian (150, skip 60%) 99.23 99.27 99.53 98.65 98.64 99.19 95.32 95.89 97.87
Lagrangian (150, skip 90%) 99.29 99.26 99.57 99.3 99.09 99.4 97.36 97.62 98.78
Lagrangian (150, skip 95%) 99.27 99.45 99.59 99.1 99.15 99.42 97.31 97.68 98.8
MIP-BigM 85.06 85.71 89.41 83.07 84.71 88.95 80.19 82.03 89.16
MIP-Strong* 0.0 0.0 2.98 0.0 0.0 2.22 OOM OOM OOM

* in practice, MIP-Strong cannot solve the first LP relaxation in 60 seconds on most instances.

performs better can be summarized as follows:

■ They all use the lower bound for pruning the domain;

■ They use a moderate amount of computational time (i.e. they are
not based on a gradient descent).

The gradient descent needed to run the Lagrangian-based methods ap-
pears too costly.

2.7.3 Upper bounding

We use the new bounds to attempt to close the gap between the incumbent
solution (which is effectively a lower bound for the optimum) and the upper
bound. To this end, we use the following algorithm, based on a priority
queue which always has as first item the node with the highest UB:

1. Dequeue the node

2. Expand it using the static branching presented earlier, creating two
new nodes

3. Put the two new nodes in the priority queue.

We let this algorithm run for a 600 seconds, with the various bounds,
on various relatively large matrices. We provide a lower bound to the

44 Chapter 2. The Maximum-Sum Submatrix problem

Table 2.7: Average of ratios between the UB found by the upper bounding
procedure and the best found solution, on 50 instances for each type of
instance. Lower is better.

n=50, N (0, 1) n=50, N (0.2, 1) n=100, N (0, 1) n=100, N (0.2, 1)

Natural 2.82 1.62 6.03 2.14
Natural+LB 2.83 1.63 6.03 2.14
Natural+LB+Fast 2.70 1.59 5.85 2.09
Fixed-BigM 1.82 1.16 3.38 1.38
Recompute-BigM 1.71 1.04 3.39 1.35
Lagrange (50) 1.93 1.05 3.50 1.22
Lagrange (100) 1.85 1.02 3.36 1.16
Lagrange (150) 1.86 1.02 3.37 1.16

algorithm (enhancing its pruning ability) which is the best found solution
by the Fixed-BigM method after 300 seconds.

The results are presented in Table 2.7, which shows the average ratio
between the best found solution and the UB obtained by the algorithm
above.

Despite their slowness, the Lagrangian-based method provides the best
bounds for simpler instances (filled with a N (0.2, 1)), while for instances
filled with N (0, 1) the methods based on the BigM formulation work best.

2.7.4 Real-life data

Table 2.8 shows runtime, reached objective value, and runtime at which
the best objective value was reached, from multiple real-life datasets [Le
+14; Bra+19a].

The result on these medium-sized instance, combined with the ones
presented in the previous sections, shows that there is no silver bullet.

On bc_030.tsv (breast cancer dataset [Le +14]), the best methods
are based on the BigM formulation (fixed, recompute, and MIP), visiting
significantly fewer nodes. Lagrangian methods are penalized due to their
complexity on this matrix with 2211 rows.

On ijcai_small_0.075.tsv (graph of the 100 most prolific authors
at 2019’s IJCAI and the 100 venues to which they publish the most),
the BigM and Lagrangian formulations seem to give bound marginally
equivalent to the natural bound, and so are not able to perform well, with
the MIP even reaching timeout.

On olympic_0.02.tsv (Number of medals won per sport and per
country in all olympic games, [Bra+19a]) we observe a significant differ-
ence (3 orders of magnitude) between Fixed-BigM and Recompute-BigM,
and again 3 orders of magnitude with Lagrangian-based methods, which

2.7. Experiments 45

Table 2.8: Results of a complete search on real-life data. All methods had
1 hour of maximum runtime.

Method Best solution (time) Total runtime Total #nodes Optimum proven

bc_030.tsv (2211× 94)

Natural 4052763 (2.5s) 1h (TO) 1099464 7

Natural+LB 4052763 (1.2s) 1h (TO) 599436 7

Natural+LB+Fast 4052763 (1.5s) 26m 1095513 3

Fixed-BigM 4052763 (0.7s) 2s 95 3

Recompute-BigM 4052763 (1s) 1.6s 25 3

Lagrange (50, all) 4052763 (45s) 61s 23 3

Lagrange (100, all) 4052763 (83s) 108s 23 3

Lagrange (150, all) 4052763 (121s) 160s 23 3

Lagrange (150, skip 30%) 4052763 (73s) 100s 23 3

Lagrange (150, skip 60%) 4052763 (35s) 47s 23 3

Lagrange (150, skip 90%) 4052763 (3.7s) 8.1s 33 3

Lagrange (150, skip 95%) 4052763 (3.2s) 7.2s 33 3

MIP-BigM 4052763 (0.0s) 1.0s 3

MIP-Strong 4052763 (0.1s) 636s 3

ijcai_small_0.075.tsv (100× 100)

Natural 209.35 (0.1s) 106s 742703 3

Natural+LB 209.35 (0.07s) 110s 742703 3

Natural+LB+Fast 209.35 (0.06s) 62s 5124739 3

Fixed-BigM 209.35 (0.06s) 121s 5100199 3

Recompute-BigM 209.35 (0.1s) 367s 733563 3

Lagrange (50, all) 209.35 (1.2s) 1h (TO) 65457 7

Lagrange (100, all) 209.35 (1.7s) 1h (TO) 7921 7

Lagrange (150, all) 209.35 (3.1s) 1033s 7873 3

Lagrange (150, skip 30%) 209.35 (2.1s) 776s 8217 3

Lagrange (150, skip 60%) 209.35 (0.7s) 531s 9889 3

Lagrange (150, skip 90%) 209.35 (0.2s) 485s 51365 3

Lagrange (150, skip 95%) 209.35 (0.2s) 608s 114299 3

MIP-BigM 209.35 (0.03s) 1h (TO) 7

MIP-Strong 209.35 (355s) 1226s 3

olympic_0.02.tsv (74× 151)

Natural 28.955 (0.16s) 1h (TO) 259652006 7

Natural+LB 29.128 (0.07s) 953s 30626451 3

Natural+LB+Fast 29.128 (0.04s) 556s 41019839 3

Fixed-BigM 29.128 (0.07s) 475s 11472295 3

Recompute-BigM 29.128 (0.09s) 13s 17241 3

Lagrange (50, all) 29.128 (3.8s) 1h (TO) 14658 7

Lagrange (100, all) 29.128 (7.1s) 29s 163 3

Lagrange (150, all) 29.128 (8.9s) 10s 23 3

Lagrange (150, skip 30%) 29.128 (6.2s) 8.2s 23 3

Lagrange (150, skip 60%) 29.128 (4.0s) 5.9s 25 3

Lagrange (150, skip 90%) 29.128 (1.0s) 2.3s 27 3

Lagrange (150, skip 95%) 29.128 (1.0s) 3.2s 171 3

MIP-BigM 29.128 (0.03s) 0.44s 3

MIP-Strong 29.128 (1.56s) 1.56s 3

46 Chapter 2. The Maximum-Sum Submatrix problem

prove useful on this particular instance.

2.8 Chapter conclusion

We presented three new methods for computing upper bounds for the
Maximum-Sum Submatrix (MSS) problem. The first two methods (Fixed-
BigM and Recompute-BigM) are based on a Big M reformulation of the
problem; Fixed-BigM is shown to be computable in linear time (depending
on the number of rows or columns), while Recompute-BigM, which is
tighter, can be computed in quadratic time (depending on the number of
cells in the matrix). A third method, based on a Lagragian relaxation of
the MSS, is also presented.

We show the Lagrangian method gives the best bound, both theoreti-
cally and experimentally, but suffers from its complexity (quadratic, with an
additional gradient descent). Fixed-BigM and Recompute-BigM are shown
to produce tighter bounds, as they provide a middle ground between more
tight but slower Lagrangian-based methods and the less precise but faster
natural bound.

Source code and raw experiment results

The source code is available on Zenodo[DS20a], along with the experi-
ments code and results [DS20b]. The experiment were run on the OscaR
CP solver [Osc12].

Cardinality constrained
MSS problem 3

At the moment this thesis is written, the work in this chapter
is unpublished yet.

3.1 Constraining the choice of the submatrix

The MSS problem introduced in the previous chapter aims at finding the
submatrix with the greatest sum, without particular constraints. In prac-
tice, users may want to constrain the size of submatrices or implement
other constraints.

A principle used in [BSD17b] is to remove a constant value λ from all
cells in the matrix; this idea came from the fact that the authors actually
had matrices with positive entries. The MSS is thus not searched in the
initial matrix M but in a matrix M

′
with M

′
i ,j = Mi ,j − λ. This has two

properties:

■ All solutions with a positive objective value have a minimum average
weight per cell of λ. This is easily proven by writing the objective
function for a solution (R, C):

0 ≤
∑

(i ,j)∈R×C
M
′
i ,j

=
∑

(i ,j)∈R×C
(Mi ,j − λ)

= (
∑

(i ,j)∈R×C
Mi ,j)− |R × C| ∗ λ

⇒ λ ≤
∑
(i ,j)∈R×CMi ,j

|R × C|

■ Submatrices with fewer cells (less area) are prioritized (as the λ
penalty over the objective is proportional to the number of cells).

47

48 Chapter 3. Cardinality constrained MSS problem

In practice, increasing λ thus reduces the area of the submatrices
found, and choosing the lambda correctly to obtain a specific size can
be cumbersome. Its interpretability is also somewhat difficult.

In this chapter we propose as an alternative to constraint directly the
number of rows and columns of the searched submatrices (we call these
the cardinality constraints). While this still imposes to the user to select
two additional parameters instead of one, this allows a more fine-grained
specification of the mining problem, especially instrumental when the ex-
tracted submatrix must be visualized in circular plots [Krz+09]. Indeed,
over-cluttering becomes rapidly an issue with Chord Diagrams when there
are too many connections displayed[Dao+21].

We thus introduce a variant of the MSS problem allowing specifying
lower and upper bounds on the number of rows and columns to select in
the submatrix:

Definition 6. The cardinality-constrained Maximum-Sum Submatrix
Problem (C-MSS) is the MSS problem with the additional constraints
rmin ≤ |R∗| ≤ rmax and cmin ≤ |C∗| ≤ cmax.

Example 4. Given the following matrix:

Mex =

c1 c2 c3 c4 c5 c6 c7

−3 −1 3 −1 2 −3 1 r1

−2 −2 3 −3 3 0 −2 r2

0 2 0 1 −2 2 0 r3

0 0 2 −3 2 −2 1 r4

−3 2 −3 0 0 2 −2 r5

−1 1 −1 2 1 1 −3 r6

−2 1 0 2 −2 2 −2 r7

1 −2 −2 1 −1 −2 −3 r8

The maximal-sum submatrix of Mex is Mex{3,5,6,7},{2,4,6} (highlighted in
black), its value being 18. With the additional cardinality constraints
rmin = cmin = 0, rmax = 3, cmax = 2, the C-MSS is Mex{1,2,4},{3,5} (high-
lighted in grey), its value being 15.

We discuss in this chapter an extension of the bounds developed for
the MSS problem, for the C-MSS problem.

Chapter’s contributions

The contributions made in this chapter are:

3.2. An upper bound for the C-MSS problem 49

■ a precise definition of the MSS with cardinality constraints;

■ an upper bound for the problem based on a Big-M formulation of
the problem, being partially solved by inspection;

■ an implementation of this upper bound in a CP framework, including
support for partial solutions

■ an adaptation of heuristics presented in the last chapter

■ experiments comparing our solver with an off-the-shelf MIP solver.

3.2 An upper bound for the C-MSS problem

The next theorem gives a simple upper bound for the C-MSS that is the
counterpart of selecting all the positive entries in the standard MSS.

Theorem 3.2.1. An upper bound for the C-MSS is given by

max
R⊆LR

rmin≤|R|≤rmax

∑
i∈R

max
C⊆LC

cmin≤|C|≤cmax

∑
j∈C
Mi j (3.1)

Proof. max C⊆LC
cmin≤|C|≤cmax

∑
j∈CMi j is an upper bound of the contribution of the

row i , therefore by selecting the most favorable ones with the first max
operator, we still have an upper bound.

An alternative upper bound can be derived by solving a relaxation of
the MIP problem presented in model (2.5), with the additional cardinality
constraints:

max
∑
i pi (3.2a)

pi ≤ ri · upi ∀i ∈ LR (3.2b)

pi ≤ (
∑
j∈LC Mi j · cj) + (1− ri) · lo i ∀i ∈ LR (3.2c)∑

ri ∈ [rmin, rmax] ∀i ∈ LR (3.2d)∑
cj ∈ [cmin, cmax] ∀j ∈ LC (3.2e)

ri ∈ {0, 1} ∀i ∈ LR (3.2f)

cj ∈ {0, 1} ∀j ∈ LC (3.2g)

with upi =
∑
j∈LC max(Mi j , 0) and lo i = −

∑
j∈LC min(Mi j , 0). In chapter

2, we found in Theorem 2.3.1 that the optimal value for each ri and pi in

50 Chapter 3. Cardinality constrained MSS problem

order to maximize the linear relaxation of this model (without cardinality
constraints) are respectively

r∗i =
lo i +

∑
j Mi j · cj

upi + lo i
. (3.3)

p∗i = upi · r∗i =
upi · lo i + upi ·

∑
j Mi j · cj

upi + lo i
. (3.4)

We first present a method to create a specific class of optimal solutions
(i.e. a subset of the set of optimal solutions) to the LP relaxation of the
problem. We then derive the upper bound. To begin, we need two small
results, showing the behavior of the objective value w.r.t. small increases of
a row contribution, in the relaxed-rows problem (where we relax equation
(3.2f) in a linear way):

Theorem 3.2.2. Increasing in isolation any ri < r∗i by ϵ (0 ≤ ϵ ≤ r∗i − ri)
increases the contribution of the row, pi , by ϵ ·upi . Decreasing in isolation
any ri > r∗i by ϵ (0 ≤ ϵ ≤ ri − r∗i) increases the contribution of the row in
the objective, pi , by ϵ · lo i .

Proof. Direct from equations (3.2b), (3.2c) and (2.7), which is recalled
below:

pi = min(ri · upi , (
∑
j Mi j · cj) + (1− ri) · lo i)

Corollary 3.2.2.1. Any optimal solution of the relaxed-rows problem either
respects ∀i : ri ≤ r∗i or ∀i : ri ≥ r∗i .

Proof. By contradiction. Let us assume we have two rows a, b such that
ra < r

∗
a and rb > r∗b . Let δ = min(r∗a − ra, rb − r∗b). Increasing ra by δ

and decreasing at the same time rb by δ (this simultaneous move ensures
that the cardinality constraint is respected) would increase the objective
by δ · (upa + lob) > 0 while respecting all the constraints.

Theorem 3.2.3. Let α1, α2, . . . , αm be any ordering of the rows such that
they are in decreasing order of upper bound, namely upαa ≥ upαb ∀a ≤ b.
Similarly, but for lower bounds, let β1, β2, . . . , βm be any ordering such
that loβa ≤ loβb ∀a ≤ b. There exists an optimal solution to the relaxed
rows MIP formulation (i.e. ri ∈ [0, 1] ∀i) such that at least one of these
two properties holds:

3.2. An upper bound for the C-MSS problem 51

1. ∃v ∈ LR such that:

rαi =

r∗αi if i < v

x if i = v

0 if i > v

(3.5)

with 0 < x ≤ r∗αv .

2. ∃v ∈ LR such that:

rβi =

1 if i < v

x if i = v

r∗βi if i > v

(3.6)

with r∗βv ≤ x < 1.

Proof. By Corollary 3.2.2.1, we have that any optimal solution respects
either ∀i : ri ≤ r∗i or ∀i : ri ≥ r∗i .

Let us consider now that we are in the first case, ∀i : ri ≤ r∗i . We prove
that we can construct a solution respecting (3.5) (the proof is similar for
the second case, this time respecting (3.6)). By construction, we might
still have multiple rows such that 0 < ri < r∗i . Note that for any such
two rows a, b, we have that Aa = Ab (as it would otherwise lead to a
contradiction, the solution not being optimal).

We construct another optimal solution: select αa, αb in these rows
such that a < b and rαa < r

∗
αa , rαb < r

∗
αb

. Increase rαa and decrease rαb
by the same value ϵ = min(r∗αa − rαa , rαb − r

∗
αb
). This does not change

the objective value of the whole solution, respects all the constraints, and
effectively enforces either ra = r∗a or rb = r∗b . We can then repeat this
process until it is not possible to find new candidates a and b.

At the end of this process, we have at most one row i which is 0 <
ri < r

∗
i . Moreover, the property (3.5) is respected, as if it was not, then

there would exist rows αa, αb, a < b, such that rαa < r
∗
αa and rαb = r

∗
αb

.
This is actually a contradiction, as increasing rαa and decreasing rαb would
increase the objective value, as, by definition, upαa > upαb .

We now prove that these solutions have strong relations with the row
cardinality limits.

Theorem 3.2.4. Exactly one claim below is true for any instance of the
row-relaxed MIP formulation:

(A) There exists an optimal solution such that ri = r∗i ∀i ;

52 Chapter 3. Cardinality constrained MSS problem

(B) There exists an optimal solution such that it respects (3.5), in which
there exists a row i with ri < r∗i , and

∑
i ri = rmax;

(C) There exists an optimal solution such that it respects (3.6), in which
there exists a row i with ri > r∗i , and

∑
i ri = rmin.

Proof. From Theorem 3.2.3, there exists an optimal solution such that it
respects (3.5) or (3.6). If the solution respects both, it falls into claim
(A). If this is not the case, then there exists a row i such that ri ̸= r∗i .

Let us assume the solution respects only (3.5), and falls into claim
(B). We now need to prove that this solution has

∑
i ri = rmax. This is

easily done by contradiction: assume that
∑
i ri < rmax. Let w = αv if

rαv < r
∗
αv or w = αv+1 otherwise. It is possible to increase rw and remain

feasible, increasing the objective value, hence the contradiction.
Claim (C) is proven in a similar fashion, using (3.6).

This last theorem can then be used to compute an upper bound for
the problem. It is possible to generate three solutions, corresponding to
each of the possibilities of the Theorem 3.2.4.

3.2.1 Case (A)

Case (A) is the case where the cardinality constraints rmin, rmax are not
tight, and can actually be removed. The objective value becomes:

caseA() :=
∑
i∈LR

upi ·lo i
upi+lo i

+ max
C⊆LC

cmin≤|C|≤cmax

∑
j∈C

∑
i∈LR

upi ·Mi j
upi+lo i

(3.7)

This solution only exists if the sum of the ri for all the rows respects
the constraints:

rmin ≤
∑
i∈LR

lo i+
∑
j∈C∗ Mi j

upi+lo i
≤ rmax (3.8)

where C∗ is the optimal selection of columns in equation (3.7).

3.2.2 Case (B)

Case (B) requires more attention. We have to find for which v the con-
dition (3.5) is respected. For a given v , we can rewrite the objective
according to the condition (3.5). Let us consider, without loss of general-
ity, that the rows are ordered in decreasing order of upi : upa ≥ upb ∀a ≤ b;
this simplifies the notation w.r.t. the ordering defined in (3.5).

3.2. An upper bound for the C-MSS problem 53

We thus have that ri = r∗i ∀i < v , rv < r∗v and ri = 0 ∀i > v . As we
have ri ≤ r∗i ∀i , it follows that pi = ri ·upi ∀i ≤ v . Moreover, we can infer
the value of rv from the other rows: rv = rmax −

∑
i<v r

∗
i . We can then

put everything together into the objective function:

(rmax −
∑
i<v

r∗i)upv +
∑
i<v

r∗i · upi (3.9)

= rmax · upv +
∑
i<v

r∗i · (upi − upv) (3.10)

= rmax · upv +
∑
i<v

lo i ·(upi−upv)
upi+lo i

+
∑
j∈LC

cj · (
∑
i<v

(upi−upv)·Mi j
upi+lo i

) (3.11)

We must maximize this objective function under the column cardinality and
integer constraints (cmin ≤

∑
j cj ≤ cmax, cj ∈ {0, 1}) and the constraint

on rv :

0 ≤ rv = rmax −
∑
i<v

r∗i ≤ 1 (3.12)

⇐⇒ rmax − 1 ≤
∑
i<v

r∗i ≤ rmax (3.13)

⇐⇒ rmax − 1 ≤
∑
i<v

lo i+
∑
j cj ·Mi j

upi+lo i
≤ rmax (3.14)

⇐⇒ rmax − 1−
∑
i<v

lo i
upi+lo i

≤
∑
j

cj · (
∑
i<v

Mi j
upi+lo i

) ≤ rmax −
∑
i<v

lo i
upi+lo i

(3.15)

Notice that this optimization problem is actually a multidimensional
0-1 knapsack (that includes negative weights). Sadly, solving this problem
is NP-Hard, and thus is probably not an time-efficient upper-bounding
procedure. There are at least two ways to generate an upper bound for
this problem, computable in polynomial time:

■ Relaxing the constraint cj ∈ {0, 1} into cj ∈ [0, 1];

■ Or relaxing the constraint (3.15) by removing it (note that it would
also relax constraint (3.2c) on row v implicitly, by construction of the
objective function that forces the equality with constraint (3.2b)).

Doing any of these actions will generate an upper bound for equation
(3.11). We decide to go for the second possibility, as it greatly simplifies
the computation and the objective function, which becomes:

caseB(v) := rmax · upv +
∑
i<v

lo i ·(upi−upv)
upi+lo i

+ max
C⊆LC

cmin≤|C|≤cmax

∑
j∈C

∑
i<v

(upi−upv)·Mi j
upi+lo i

(3.16)

54 Chapter 3. Cardinality constrained MSS problem

minv caseB(v) is an upper-bound for the original row-relaxed problem
with

∑
i ri = rmax. One solution would be to enumerate all the possible

values for v , which would lead to a computation time in O(nm2 log(n)):

■ for a given v , computing the first sum is in O(n)

■ the max C⊆LC
cmin≤|C|≤cmax

operator implies to compute n sums, each contain-

ing at most m elements, and then to sort these sums to select the
greatest ones. Hence a complexity of O(nm log(n));

■ this must be repeated for each v , so at most n times.

However, caseB(v) is unimodular:

Theorem 3.2.5. Let v∗ be the optimal value for the problem described in
equation (3.11) (with the cardinality constraint 0 ≤ rv ≤ rmax). Then:

■ ∀v ≥ v∗ : caseB(v) ≤ caseB(v + 1)

■ ∀v ≤ v∗ : caseB(v) ≤ caseB(v − 1)

caseB(v) is thus unimodular around v∗.

Proof. Let us prove the first claim, ∀v ≥ v∗ : caseB(v) ≤ caseB(v +1).
Suppose that we have such a v ≥ v∗. Let C∗v be the optimum column
selection found by caseB(v), and α = upv − upv+1 (note that α ≥ 0
by construction). When we write ri and r∗i , they refer to the ones of

3.2. An upper bound for the C-MSS problem 55

caseB(v). Then:

caseB(v + 1) (3.17)

= rmax · upv+1 +
∑
i≤v

lo i ·(upi−upv+1)
upi+lo i

+ max
C⊆LC

cmin≤|C|≤cmax

∑
j∈C

∑
i≤v

(upi−upv+1)·Mi j
upi+lo i

(3.18)

≥ rmax · upv+1 +
∑
i≤v

lo i ·(upi−upv+1)
upi+lo i

+
∑
j∈C∗v

(∑
i≤v

(upi−upv+1)·Mi j
upi+lo i

)
(3.19)

≥ rmax · (upv − α) +
∑
i≤v

lo i ·(upi−upv+α)
upi+lo i

+
∑
j∈C∗v

(∑
i≤v

(upi−upv+α)·Mi j
upi+lo i

)
(3.20)

≥ rmax · upv +
∑
i<v

lo i ·(upi−upv)
upi+lo i

∑
j∈C∗v

(∑
i<v

(upi−upv)·Mi j
upi+lo i

)
− rmax · α+

∑
i≤v

lo i ·α
upi+lo i

+
∑
j∈C∗v

(∑
i≤v

α·Mi j
upi+lo i

)
(3.21)

≥ caseB(v)− rmax · α+
∑
i≤v

lo i ·α
upi+lo i

+
∑
j∈C∗v

(∑
i≤v

α·Mi j
upi+lo i

)
(3.22)

≥ caseB(v) + α
(∑
i≤v

lo i+
∑
j∈C∗v

Mi j

upi+lo i
− rmax

)
(3.23)

≥ caseB(v) + α
(∑
i≤v
ri − rmax

)
(3.24)

≥ caseB(v) + α
(
r∗v − rv

)
(3.25)

As we are above the optimum v∗, we have that rv ≤ 0. Moreover 0 ≤
r∗v ≤ 1. We obtain caseB(v + 1) ≥ caseB(v). The proof is similar in the
other direction.

The unimodularity of caseB(v) allows to compute the optimal v using
a ternary search. This method has a total runtime of O(nm log n logm).

3.2.3 Case (C)

The mechanism for case (C) are similar to the ones of case (B). By doing
the same relaxation, we find the following function to be an upper-bound
for the row-relaxed problem with

∑
ri = rmin (with rows ordered by in-

creasing lo i):

56 Chapter 3. Cardinality constrained MSS problem

caseC(v) := (v + 1− rmin) · lov +
∑
i>v

lo i ·(upi−upv)
upi+lo i

+ max
C⊆LC

cmin≤|C|≤cmax

∑
j∈C

(∑
i≤v
Mi j +

∑
i>v

(upi−upv)·Mi j
upi+lo i

)
(3.26)

This function is also unimodular (proof omitted for conciseness; it is
very similar from the proof of theorem 3.2.5). The time needed to compute
caseC(v) is in O(nm log n logm).

3.2.4 Wrapping up the upper bounds of C-MSS

An upper bound for each of the three cases of theorem 3.2.4 has been
presented. An upper bound for the global can be derived, and is the
minimum of these three case-specific upper bounds:

min(caseA(),min
v

caseB(v),min
v

caseC(v)) (3.27)

The total computation time is in O(nm log n logm), to be compared
to the O(nm) time needed to compute the upper bound for the non-
cardinality-constrained MSS.

The upper bounds from Theorem 3.2.1 and Equation (3.27) are not
comparable:

Example 5. For the matrix Mex (see example 4) and constraints rmin =
cmin = 0, rmax = 3, cmax = 2, we have that the bound from theorem 3.2.1
is 15, and the one from equation (3.27) is ≃ 16.92. For the same matrix,
with rmin = cmin = 2, rmax = 6, cmax = 3, we have that the bound from
theorem 3.2.1 is 31, and the one from equation (3.27) is ≃ 24.7.

In the following sections, we present a branch and bound-based method
that uses the upper bounds found above to trim the search space.

3.3 Adapting the upper-bound for partial solutions

We reuse the notations introduced in section 2.6. In order to use the upper
bounds found in the previous section in a CP framework, we must adapt
them to partial solutions.

For the non-cardinality constrained case, and case (A) of the bounds
presented above, we obtain:

caseA() :=
∑
i∈R⊥

upi ·lo i
upi+lo i

+ max
C1⊆C⊆C1∪C⊥
cmin≤|C|≤cmax

∑
j∈C
(
∑
i∈R1
Mi j +

∑
i∈R⊥

upi ·Mi j
upi+lo i

) (3.28)

3.3. Adapting the upper-bound for partial solutions 57

For the case (B) of section 3.2.2, given that we order the rows in R⊥∪R1
by decreasing upi :

caseB(v) := (rmax − |R1|) · upv +
∑

i<v∧i ̸∈R1

lo i ·(upi−upv)
upi+lo i

+ max
C1⊆C⊆C1∪C⊥
cmin≤|C|≤cmax

∑
j∈C
(
∑
i∈R1
Mi j +

∑
i<v∧i ̸∈R1

(upi−upv)·Mi j
upi+lo i

) (3.29)

This equation can be computed directly in O(nm logm log n) for each v .
Using caching and trailing, we can however avoid recomputing some part
of it and speed up the computation. Let us rewrite the equation with
additional intermediate values:

caseB(v) := (rmax − |R1|) · upv (3.30)

+

STa(0,v−1)︷ ︸︸ ︷∑
i<v∧i ̸∈R1

lo iupi
upi+lo i

−upv ·

STb(0,v−1)︷ ︸︸ ︷∑
i<v∧i ̸∈R1

lo i
upi+lo i

+ max
C1⊆C⊆C1∪C⊥
cmin≤|C|≤cmax

∑
j∈C
(
∑
i∈R1
Mi j︸ ︷︷ ︸

includedj

+
∑

i<v∧i ̸∈R1

upi ·Mi j
upi+lo i︸ ︷︷ ︸

STcj (0,v−1)

−upv ·
∑

i<v∧i ̸∈R1

Mi j
upi+lo i︸ ︷︷ ︸

STdj (0,v−1)

)

(3.31)

We keep each sum above inside a dedicated reversible segment tree[De
+97] (2 + 2n segment tree of size m each), allowing computing in a very
fast way (O(logm)) the needed sum. When a row i becomes (un)selected
(⊥ → 0/1), the segment trees are updated such that their content in
position i becomes 0, in O(logm) each. Moreover, if the row is indeed
selected, then the variables includedj are increased with value Mi j for
every column j . The whole update operation is thus in O(n logm), and
the computation of the bound for a specific v is in O(n log(nm)).

For the case (C) of section 3.2.3, given that we order the rows in R⊥

by increasing lo i and that we place before them the rows in R1:

caseC(v) := (v + 1− rmin) · lov +
∑
i>v

lo i ·(upi−upv)
upi+lo i

+ max
C1⊆C⊆C1∪C⊥
cmin≤|C|≤cmax

∑
j∈C

(∑
i≤v
Mi j +

∑
i>v

(upi−upv)·Mi j
upi+lo i

)
(3.32)

The best upper bound for the C-MSS can be found using:

min(caseA(), min
v≤rmax−|R1|

caseB(v), min
|R1|≤v

caseC(v)) (3.33)

The lowest of the upper bounds at any moment of the resolution is
named ubR

1,R⊥,C1,C⊥ . As shown earlier, these bounds can be computed in
O(nm log(m) log(n)), this being made at each node of the search tree.

58 Chapter 3. Cardinality constrained MSS problem

3.4 Incumbent solution update

Incumbent solutions can still be created at any new node, but only if
we have enough already-selected rows or columns. We must respect the
cardinality constraints while building the heuristic solution (which are still
creating using the heuristic shown in section 2.6.2).

Algorithm 7 Maintain incumbent solution
rowVal[i] =

∑
j∈C1 Mi j ∀i ∈ LC \ C0

colVal[j] =
∑
i∈R1 Mi j ∀j ∈ LR \ R0

function onRowModified(i) ▷ Called when a row is selected/unselected (⊥ → 0/1)
if row becomes selected then

for all j ∈ LC \ C0 do ▷ No need to do it for non-selectable columns
colVal[j]← colVal[j] +Mi j

updateIncumbentSolution()

function onColumnModified(j) ▷ Called when a column is selected/unselected
(⊥ → 0/1)if column becomes selected then

for all i ∈ LR \ R0 do ▷ No need to do it for non-selectable rows
rowVal[i]← rowVal[i] +Mi j

updateIncumbentSolution()

function updateIncumbentSolution()
if |R1| ≥ rmin then

solR← max
C1⊆C⊆C1∪C⊥
cmin≤|C|≤cmax

∑
j∈C colVal[j]

incumbentSolution← max(incumbentSolution, solR)
if |C1| ≥ cmin then

solC← max
R1⊆R⊆R1∪R⊥
rmin≤|R|≤rmax

∑
i∈R rowVal[i]

incumbentSolution← max(incumbentSolution, solC)

3.5 Experiments

We first show experiments on synthetic data, showing efficiency differences
between the existing approaches. We then show possible usages of the
row/column number limiting constraints on real data.

Synthetic data We compare our method for C-MSS against Gurobi
(with the MIP model). We generate for this purpose matrices of dif-
ferent sizes. All matrices are filled by a Gaussian noise of parameters
(µ = −0.1, σ = 1). We then inject a submatrix with Gaussian noise
(µ = 0.01, σ = 1), the size of the submatrix depending on a parameter
p being the ratio of the main matrix being filled with the submatrix. We
generated 30 matrices for each (size, p) pair. All CP-based methods run

3.5. Experiments 59

C-MSS
Size p MIP Ours

500 5% 99.9% 91.7%
500 30% 99.9% 88.2%
500 70% 99.8% 92.7%

1000 5% 47.6% 98.0%
1000 30% 65.5% 91.0%
1000 70% 99.5% 85.1%
2000 5% 31.6% 98.2%
2000 30% 29.8% 98.5%
2000 70% 21.7% 100.0%
3000 5% 14.8% 100.0%
3000 30% 16.7% 100.0%
3000 70% 21.6% 100.0%

Table 3.1: Mean ratio between the best found solution for the method and
the best solution found by all methods over all matrices. Higher is better.
The method with the best result is highlighted.

a Large Neighborhood Search (LNS, [Sha98]) with 0.2 seconds per run,
with an adaptive relaxation rate. All the methods are stopped after 60
seconds.The constraints are rmin = cmin = 50, rmax = cmax = 100. The
results are shown in Table 3.1.

IJCAI author-venue matrix We extracted from DBLP [Ley09] the au-
thor/venue graph of the last five IJCAI conferences. The matrix is a
6777x2177 (authors, venues) with the number of articles presented by the
authors in each venue. We exclude IJCAI from the matrix as it is, by
construction, overrepresented.

In order to find a relevant, small community of authors and the venues
to which they collectively participate a lot, we add the following (arbitrary)
constraints:
■ At most twenty authors should be selected. The number of venues

must be between two and seven.
■ We substract 1 from all entries in the matrix to force selecting au-

thors who contribute to all the selected venues, rather than authors
who contribute a lot to a single venue and not to the others.

Table 3.2 contains the approximate MSS until convergence by the LNS
search. The authors believe it is optimal but were not able to close the
problem due to the size of the matrix.

60 Chapter 3. Cardinality constrained MSS problem

SI
G

IR
C

IK
M

W
W

W
W

SD
M

A
A

A
I

K
D

D
Zhaochun Ren 3 2 2 7 2 1

Fuzheng Zhang 0 1 6 3 1 3
Martin Ester 0 5 5 2 2 2
Wenwu Zhu 0 0 0 0 6 7
Min Zhang 6 3 3 2 0 0

Xuanhui Wang 3 2 3 7 0 1
Xiangnan He 8 0 3 1 1 0

Min Wang 1 4 2 3 0 5
Quan Yuan 4 7 2 1 1 5

Shaoping Ma 7 3 4 4 0 0
Peng Cui 0 0 0 0 6 9

Nemanja Djuric 2 1 8 2 0 2
Yu Zhang 0 0 0 0 8 5

Mihajlo Grbovic 3 1 6 4 0 3
Jun Yan 2 8 3 2 4 0

Michael Bendersky 6 2 1 6 0 1
Marc Najork 3 2 2 7 0 2

Dou Shen 4 3 1 2 5 2
Liangda Li 1 2 5 1 2 2

Donald Metzler 8 5 1 5 0 0

Table 3.2: left: approximate C-MSS for IJCAI author/venue graph with
at most twenty authors and between two and seven venues, with one unit
removed from each edge. Authors and venues are in no particular order.
Right: Word cloud from the topics indicated by the authors (from Table
3.2) on their Google Scholar profiles.

3.6. Chapter conclusion 61

Interestingly enough, the C-MSS is a sub-community of the Informa-
tion Retrieval/Data mining community, as emphasized by the choice of
venues. This analysis is further reinforced with the observation of the
Google Scholar profiles of the authors, shown as a word cloud on the right
of Table 3.2. Some authors are "false positives", such as Wenwu Zhu
or Yu Zhang, which are not part of this community, but are nevertheless
selected as they published at lot to AAAI and KDD.

Migration data MSS can be used as a way to summarize information
as illustrated next by analyzing a human bilateral migration matrix from
[The18]. For every pair of countries, this matrix contains an approximation
of the number of people having migrated from one country to another
during the year 2017. We create a submatrix by keeping only OECD
members on the destination countries (columns) and non-OECD members
as source countries (rows). Thus, it can be interpreted as a bipartite graph
of migration between non-OECD toward OECD countries. Finding a C-
MSS on this bipartite graph will then produce a two group of countries,
which, together, contain the maximum number of migrants given the size
of the groups. This C-MSS can then be represented in other formats in
order to be interpreted. We propose as an example Figure 3.1 (page 62),
which is a Circos [Krz+09] plot representing the C-MSS of this matrix,
with the additional constraint that at most eight members of the OECD,
and a most eight non-members, are selected.

3.6 Chapter conclusion

We extended the definition of the Maximum Sum Submatrix problem with
cardinalities on the rows and the columns. The problem becomes more
complex, but the bounds and methods discussed in chapter 2 can be ex-
tended as shown in this chapter, while still giving good results against MIP
methods.

62 Chapter 3. Cardinality constrained MSS problem

United States

T
urkey

G
er

m
an

y

C
an

ad
a

Ita
ly

UK

Australia
Japan

China

India

Syria

Ph
ili

pp
in

es
Rom

an
ia

Viet
nam

Puerto Rico Russia

Source countries
(Non-OECD members)

Destination countries
(OECD members)

Figure 3.1: Circos plot of the C-MSS (max 8 rows, max 8 columns) of the
modified migration matrix. OECD countries are on the left part of the plot,
non-OECD ones on the right. Each tick on the outer circle represents half
a million people.

Part II

Mining multiple submatrices

63

Mining a Set of
Overlapping Submatrices 4

This chapter is largely based on the paper G. Derval, V. Bran-
ders, P. Dupont, and P. Schaus. “The Maximum Weighted
Submatrix Coverage Problem: A CP Approach”. In: Integra-
tion of Constraint Programming, Artificial Intelligence, and Op-
erations Research. Ed. by L.-M. Rousseau and K. Stergiou.
Cham: Springer International Publishing, 2019, pp. 258–274.
isbn: 978-3-030-19212-9. The two first authors made a similar
amount of work on the article. This thesis’ author’s contribu-
tion involves mainly the creation of the algorithms to maintain
the various states (and the idea of maintaining them), along
with most of the writing itself, while Vincent Branders focused
on the experiments and their analysis, and gave the initial idea
for the dominance rules.

4.1 Introduction

Chapter 2 introduced the Maximum-Sum Submatrix (MSS) problem, which
aims at finding submatrices (non-contiguous selections of rows and col-
umns) with maximal sum.

The maximum weighted submatrix coverage problem (MWSCP), that
we study in this chapter, generalizes the maximum-sum submatrix problem
to K submatrices. Simply using the MSS problem multiple times would,
of course, select K times the same matrix, we thus need to add additional
constraints or account for this change in the objective function.

With the MWSCP we explore the second possibility, by not adding any
constraint, thus allowing overlaps, but we modify the objective function
such that if a cell is taken by multiple submatrices, it is only counted once
in the objective function. That is, the aim is to maximize the weight of
the union of the submatrices. An example is provided in Fig. 4.1.

Definition 7. The Maximum Weighted Submatrix Coverage Prob-
lem. Given a matrix M ∈ Rm×n and a parameter K, the maximum

65

66 Chapter 4. Mining a Set of Overlapping Submatrices

The submatrix ({R1, R2, R4, R5};
{C2, C4, C5, C6}), in red, is of maxi-
mal sum as the value of the objective
function is 27.3.

For K = 2, the two submatrices depicted in
red, ({R1, R2, R4, R5}; {C2, C4, C5, C6}),
and blue, ({R3, R4, R6}; {C3, C4}), are of
maximal sum. The objective value equals
38.6.

Figure 4.1: Example of matrix and associated submatrices of maximal sum.

weighted submatrix coverage problem is to select a set of submatrices
{MR1,C1 ,MR2,C2 , . . . ,MRK ,CK} with Rk ∈ LR, Ck ∈ LC for k = 1, . . . , K
such that the sum of the cells covered by at least one submatrix is maximal:

(R∗1;C
∗
1), . . . , (R

∗
K ;C

∗
K) = argmax

(R1;C1),...,(RK ;CK)

∑
i∈R,j∈C

M i ,j × 1cover ((i , j))

(4.1)

where 1cover is the indicator function over the set cover =
⋃
k∈1...K Rk×

Ck .

The possibility of adding a constraint to disallow overlaps is studied
in Chapter 5 with the Maximum-Weighted Set of Disjoint Submatrices
(MWSDS).

4.1.1 Applications

The maximum weighted submatrix coverage problem has many practical
data mining applications where one is interested to discover K strong
relations between two groups of variables (rows and columns) represented
as a matrix:

■ In gene expression analysis, rows correspond to genes and columns to
samples and the value in Mi ,j is the measurement of the expression
of gene i in sample j . One is typically interested in finding subsets
of genes that present high expression in a subset of the samples as
it would indicate that a particular biological pathway made of these
genes is active in these samples.

■ In migration data, value Mi ,j represents the number of persons that
moved from location i to j . The goal is the to identify groups of
locations that together migrate to other groups of locations.

4.2. CP approach 67

■ A sports journalist could also be interested in Olympic games to
discover group of countries that together obtained similar strong
performances on the same subset of sports. The matrix value Mi ,j
then represents the number of medals obtained by the country i in
sport j .

■ Dendrograms and Sankey plots are standard visualization tools to
represent relations. Unfortunately, those plots quickly suffer from
cluttering for large matrices. The MWSCP can be used as a prelim-
inary step to preselect submatrices that can then be analyzed more
easily with those plots.

Chapter’s contribution

Our contributions are:

■ The introduction of the maximum weighted submatrix coverage
problem (MWSCP) as a generalization of the maximal-sum sub-
matrix problem.

■ A CP approach for solving MWSCP including filtering, lower-bound,
dominance rules, a variable heuristic, and a Large Neighborhood
Search (LNS) strategy.

■ An evaluation of the performances of the CP approach as compared
to a greedy baseline approach (using the maximal-sum submatrix
problem as a subroutine) and two mathematical programming models
on synthetic and real datasets.

4.2 CP approach

We use a CP approach to solve this problem. We first define precisely the
search space, then explore the heuristics and dominance rules that can be
used, and then use all these components in a Large Neighborhood Search.

We reuse notation concerning set variables (and their partial solutions)
introduced in previous chapters (notably in section 2.6, page 31): we use
set variables for each row/column set of each submatrix.

■ R1k is the set of already selected rows for submatrix k

■ R0k is the set of rows that will never be selected for submatrix k in
this partial solution

■ R⊥k is the set of rows for which we don’t yet know their state.

68 Chapter 4. Mining a Set of Overlapping Submatrices

with R1k ∪ R0k ∪ R⊥k = LR. Any possible solution Rk for the selected rows
of submatrix k must thus respect R1k ⊆ Rk ⊆ R1k ∪ R⊥k or equivalently
R1k ⊆ Rk ⊆ LR \ R0k .

The same goes for the columns with C1k , C
0
k and C⊥k . A set variable S

is bound if S⊥ = ∅.
We also define R1,+jk (resp. R1,−jk) as the subset of R1k whose matrix

value in column j is positive (resp. strictly negative):

R1,+jk = {i ∈ R1k | Mi ,j ≥ 0} R1,−jk = {i ∈ R1k | Mi ,j < 0} (4.2)

Similar notations hold for Ck , 0 and ⊥. The sum of the elements in a
given row i (resp. column j) and in a column (resp. row) set S is noted
as:

sum
row i
(S) =

∑
j∈S
Mi ,j sum

col j
(S) =

∑
i∈S
Mi ,j (4.3)

The set of cells selected by at least one submatrix is denoted Cover1. The
set of cells excluded by all submatrices is denoted Cover0:

Cover1 = {(i , j) | ∃k : i ∈ R1k ∧ j ∈ C1k} (4.4)

Cover0 = {(i , j) | ∀k : i ∈ R0k ∨ j ∈ C0k} (4.5)

The CP resolution is made via a Depth-First-Search (DFS) exploration.
The following subsections discuss the search space, sketch the algorithm
and its key components.

4.2.1 Search Space

As explained in [BSD17b], the search space of MWSCP with K = 1 can
be limited to searching on a single dimension, for instance C1. Indeed, the
variable R1 can be fixed optimally in polynomial time by a simple inspection
argument: ∀i ∈ R⊥1 : sumrow i

(C1) > 0 =⇒ i ∈ R11.
For K > 1, once all the columns set variables are fixed (Ck ∀k ∈ [1..K])

it remains to decide for each row i and each submatrix k whether i should
be part of Rk or not. Those K decisions per row does not enjoy the
monotonicity or the anti-monotonicity properties as illustrated on the next
example.

Example 6. Let us consider K = 2 with column selection C1 = {1, 3},
C2 = {2, 3}. For the 1 × 3 input matrix M = [[2, 2,−3]]. Individually
for each submatrix, the sum of entries that would be covered by selecting
this row in both R1 and R2 would be negative (−1). But since weights of

4.2. CP approach 69

covered elements count only once, the value −3 is added only once and the
objective value obtained is 1. Now consider the matrix M = [[−2,−2, 3]].
Individually for each submatrix, the sum of entries that would be covered
by selecting this row in both R1 and R2 would be positive (1). But since
weights of covered elements count only once, the value 3 is added only
once and the final objective value is −1.

Actually, those K decisions per row cannot be optimally taken in poly-
nomial time anymore as stated in Theorem 4.2.1. As a consequence, the
CP search will have to branch both on the rows and columns variables
rather than branching on the columns only.

Theorem 4.2.1. For fixed variables Ck ∀k ∈ [2..K], fixing optimally
Rk ∀k ∈ [1..K] is NP-Hard.

Proof. We reduce the NP-Hard Set Cover Problem [Kar72] to our prob-
lem: Given a universe U = {1, . . . , n} and a set {S1, . . . , SK} of K subsets
of U, the Set Cover Problem is to find the minimum number of sets such
that their union covers the universe. We construct a matrix with a single
row and n + K columns. The unique row values of this matrix are given
by the regular expression [K + 1]{n}[−1]{K} (value K + 1 repeated n
times followed by −1 repeated K times). The column variables are fixed
to Ck = Sk ∪ {n + k}. In this reduction, Sk is selected if and only if
Rk = {1} for every set k . A first observation is that any optimal solu-
tion covers the universe otherwise it could be improved by K by selecting
any additional set that contains an uncovered element. The optimal ob-
jective function can thus be written as n · (K + 1) − |{k | Rk = {1}}|.
As n · (K + 1) is fixed, maximizing this expression amounts at minimizing
|{k | Rk = {1}}| which is exactly the set cover objective.

4.2.2 Resolution via Depth-First-Search

The CP resolution through Depth First Search (DFS) exploration is sket-
ched in Algorithm 8. All the procedures are assumed to take the decision
variables {R1, . . . , RK , C1, . . . , CK} and the input matrixM as parameters.

The procedure selectUnBoundSetVar chooses a not yet bound set vari-
able among {R⊥1 , . . . , R⊥K , C⊥1 , . . . , C⊥K}. The subsequent line chooses for
the selected row/column set of some submatrix k , the specific row/column
i (among the possible ones) to be included on the left branch and to be ex-
cluded on the right branch. The explored search tree is thus binary. Once
the constraint is posted, and the previous state saved for later backtrack-
ing, the procedure propagateDominanceRule can include (exclude) rows
or columns in every submatrix that can be proven to (not) participate in

70 Chapter 4. Mining a Set of Overlapping Submatrices

Algorithm 8 Sketch of the DFS resolution algorithm
function SolveDFS()

if !allVariablesBound() then
S ← selectUnBoundSetVar()
i ← selectValue(S⊥)
for action ∈ [set(i ∈ S1), set(i ∈ S0)] do

saveState()
post(action)
propagateDominanceRule()
(lb, cb, ub) ← updateBounds()
best← max(best, cb)
if ub > best then

SolveDFS()
restoreState()

any optimal solution. The updateBounds function updates and returns
the lower, current and upper bounds for the state. New incumbent solu-
tions are obtained by transforming the partial assignment into a complete
feasible solution that excludes all rows/columns in ⊥. If the new possible
solution (cb) is better than the best value found so far (stored in variable
best), the current state (R11, . . . , R

1
K , C

1
1 , . . . , C

1
K) is a better solution and

the value of the variable best (storing the best objective found so far) is
updated (and the solution is logged). Once this is done, a check is made
to ensure that there may still be a better solution below this tree node,
by verifying that the upper bound is greater than the best objective value
found so far; if that is the case, the DFS continues recursively. Once these
steps are done, the state is backtracked and the next state visited.

Efficient backtracking is achieved through trailing, which is a state
management strategy that facilitates the restoration of the computation
state to an earlier version. Trailing enables the design of reversible ob-
jects. We refer to MiniCP [MSV18] for a detailed description of trail-based
solvers and to [Sai+13] for a trailed based implementation of set domains
with sparse-sets.

The following subsections are dedicated to the four main functions of
our algorithm: selectUnBoundSetVar, selectValue, propagateDominance-
Rule and updateBounds.

4.2.3 Functions selectUnBoundSetVar and selectValue

selectUnBoundSetVar chooses, at each step of the DFS, the next (un-
bounded) row/column interval set S to branch on, while selectValue se-
lects the value v ∈ S⊥ to include/exclude from this set when branching.
That is, when a pair (S, v) has been chosen, the DFS branches on the
left, by setting v ∈ S1, and on the right, by setting v ∈ S0. The deci-

4.2. CP approach 71

sion of the interval set and of the value are not done independently. To
choose the next (set,value) pair to branch on, our algorithm maintains two
(reversible) counters per row or column and per submatrix:
■ trowk,i contains the sum of cell values that will be immediately added

to the objective value if row i is included in Rk :

trowk,i = sumrow i

(
{j | j ∈ C1k ∧ (i , j) ̸∈ Cover1}

)
(4.6)

■ prowk,i contains the sum of positive values in the line i that could be
taken by submatrix k , i.e. whose columns have not been excluded:

prowk,i = sumrow i

(
{j | j ∈ (C1k ∪ C⊥k) ∧ (i , j) ̸∈ Cover1}

)
(4.7)

tcol
k,j and pcol

k,j are defined similarly. The algorithm then selects the (subma-
trix, row) (or (submatrix, column)) pair (k, i) (or (k, j)) that maximizes
trowk,i (or tcol

k,j). Ties are broken by maximizing prowk,i (or pcol
k,j). The selected

interval set and value are then Rk and i (or Ck and j).

72 Chapter 4. Mining a Set of Overlapping Submatrices

p
ro

w
s

k
,i

←
p

ro
w

s
k
,i

+
v
+

p
co

ls
k
,j

←
p

co
ls

k
,j

+
v
+

st
ar

t
p

ro
w

s
k
,i

←
p

ro
w

s
k
,i

−
v
+

p
co

ls
k
,j

←
p

co
ls

k
,j

−
v
+

p
ro

w
s

k
,i
←
p

ro
w

s
k
,i
−
v
+

p
co

ls
k
,j
←
p

co
ls

k
,j
−
v
+

tc
ol

s
k
,j
←
tc

ol
s

k
,j
+
v

tr
ow

s
k
,i
←
tr

ow
s

k
,i
+
v

tc
ol

s
k
,j
←
tc

ol
s

k
,j
−
v

p
co

ls
k
,j
←
p

co
ls

k
,j
−
v
+

tr
ow

s
k
,j

←
tr

ow
s

k
,j

−
v

p
ro

w
s

k
,j

←
p

ro
w

s
k
,j

−
v
+

re
qu

ire
th

e
ce

ll

ce
ll

re
qu

ire
d

by
ot

he
r

su
bm

at
rix

re
qu

ire
(i
,R
k
)

re
qu

ire
(j
,C
k
)

ex
cl

ud
e(
j,
C
k
)

ex
cl

ud
e(
i,
R
k
)

ce
ll

re
qu

ire
d

by
ot

he
r

su
bm

at
rix

ce
ll

re
qu

ire
d

by
ot

he
r

su
bm

at
rix

re
qu

ire
(j
,C
k
)

re
qu

ire
(i
,R
k
)

Fi
gu

re
4.

2:
FS

M
m

ai
nt

ai
ne

d
fo

r
ea

ch
(r

ow
,
co

lu
m

n,
su

bm
at

rix
)
i,
j,
k

in
th

e
va

ria
bl

e/
va

lu
e

se
le

ct
io

n
al

go
rit

hm
.

Fo
r

si
m

pl
ic

ity
,

v
=
M
i,
j,
v
+
=
m
a
x(
v
,0
)

an
d
v
−
=
m
in
(v
,0
).

FS
M

s
st

at
es

in
bl

ue
ar

e
te

rm
in

al
st

at
es

.

4.2. CP approach 73

Recomputing these counters at each iteration is costly, as this opera-
tion runs in O(Knm +K(n +m)) for the MWSCP with an m × n matrix
and K submatrices. We propose here to maintain these counters using the
finite state machine (FSM) shown in Fig. 4.2. The algorithm we propose
virtually maintains a FSM for each (row, column, submatrix) triplet. The
FSMs are updated each time a row/column is added to/excluded from a
submatrix:
■ When a row i is included in/removed from the submatrix k , at most
n FSMs must be updated (one for each cell in the row).

■ When a column j is included in/removed from the submatrix k , at
most m FSMs must be updated (one for each cell in the column).

■ Updating a cell isO(1), if it does not become selected by a submatrix
(i.e. the row and column of the cell are both in the mandatory sets
of the submatrix).

■ If a cell becomes selected, K − 1 other cells must be updated.
Given that ∆rows,∆cols and ∆selected are respectively the number of added
or excluded (submatrix, row) tables, added/excluded (submatrix, column)
tables and selected cells between two calls of the algorithm, this update
runs in O(∆rowsn+∆colsm+∆selectedK). To this update process we must
add the verification of the counters to select the best set/value pair, which
is in O(K(m + n)).

Over a complete branch of the DFS tree (which has a maximum depth
of K(m + n)), we have that:∑

branch

∆rows ≤ K ·m
∑

branch

∆cols ≤ K · n
∑

branch

∆selected ≤ n ·m (4.8)

Over a complete branch, the FSM-based algorithm maintains the states
and returns the best set/value pair in O(K2(m + n)2), which is a signifi-
cant improvement over the recomputation-based algorithm which runs in
O(K2(n2m + nm2)) over a complete branch.

4.2.4 Dominance rules

In some cases, given a partial assignment with some rows and columns
already included in the set variables Ck and Rk , dominance rules permit
to detect additional rows or columns that must be included in any opti-
mal solution extending this partial assignment, or rows or columns that
never participate in an optimal solution. The current state is defined
by (R1k , R

⊥
k , C

1
k , C

⊥
k), and we denote the optimal solution extending this

state as (R∗∈k , ∅, C
∗∈
k , ∅) with R1k ⊆ R∗∈k , R∗∈k ⊆ (R1k ∪ R⊥k), C1k ⊆ C

∗∈
k ,

C∗∈k ⊆ (C1k ∪ C⊥k).

74 Chapter 4. Mining a Set of Overlapping Submatrices

Theorem 4.2.2 gives the condition to be satisfied to detect that a row
i should be included in submatrix l in any optimal solution extending the
current state.

Theorem 4.2.2.

∀i ∈ R⊥l : sumrow i

(C1l ∪ C⊥,−il) \ (
⋃
k|k ̸=l

C1,+ik ∪ C⊥,+ik)

 > 0⇒ i ∈ R∗∈l
(4.9)

Proof. Let us assume the worst-case scenario: despite selecting all the
columns with negative values in this row i , while other submatrices would
take the columns with positive values, the submatrix still has a positive
sum contribution for this row i .

I.e. there is no selection of columns (for this submatrix) and of
rows/columns for the other submatrices such that this choice is not a
net positive.

Therefore this row must be included in submatrix l in any optimal
solution extending the current state.

Theorem 4.2.3 gives the condition to be satisfied to detect that a row
i will never be included submatrix l in any optimal solution extending the
current state, using the best-case scenario.

Theorem 4.2.3.

∀i ∈ R⊥l : sumrow i

(C1l ∪ C⊥,+il) \ (
⋃
k|k ̸=j

C1,−ik ∪ C⊥,−ik)

 < 0⇒ j /∈ R∗∈l
(4.10)

These two properties (and their symmetric counterparts for columns)
can be used in any node of the search tree to reduce the search space.

4.2.5 propagateDominanceRule: dominance rules check

Dominance rules from equations (4.9) and (4.10) (and their symmetric
counterparts for the columns) can be used to reduce the search space. As
in the previous subsections, recomputing the rules at each call to prop-
agateDominanceRule is expensive (O(Kmn) at each call, O(K2(m2n +
mn2)) over a complete branch of the DFS). We describe below how to
maintain the rules on rows. Of course, the method is symmetric for
columns.

4.2. CP approach 75

As in selectUnBoundSetVar and selectValue, we maintain virtual FSMs
for each triplet (row, column, submatrix), as shown in shown Fig.4.3. The
FSMs collectively maintain two reversible values, shared between FSMs,
for each (submatrix k , row i) table:
■ lbk,i is the value of the worst-case scenario for submatrix k and row
i (the left part of equation (4.9))

■ ubk,i is the value of the best-case scenario for submatrix k and row
i (the left part of equation (4.10))

The FSMs also maintain the number of supports of each cell (i , j), i.e.
the number of submatrices that could still select the cell:

supporti ,j =
∣∣{k | i ∈ (R1k ∪ R⊥k) ∧ j ∈ (C1k ∪ C⊥k)}∣∣ (4.11)

Each supporti ,j , shared across all FSMs, is maintained as reversible integer
by the solver: its state can then be backtracked.

76 Chapter 4. Mining a Set of Overlapping Submatrices

lb
k
,i
←

lb
k
,i
+
v
−

ub
k
,i
←

ub
k
,i
+
v
+

st
ar

t

su
pp

or
t i
,j
←

su
pp

or
t i
,j
−
1

lb
k
,i

←
lb
k
,i

−
v
−

ub
k
,i

←
ub
k
,i

−
v
+

su
pp

or
t i
,j
←

su
pp

or
t i
,j
−
1

lb
k
,i
←

lb
k
,i
+
v
+

ub
k
,i
←

ub
k
,i
+
v
−

ex
cl

ud
e(
j,
C
k
)

ex
cl

ud
e(
i,
R
k
)

re
qu

ire
(j
,C
k
)

su
pp

or
t i
,j
=
1

ex
cl

ud
e(
i,
R
k
)

su
pp

or
t i
,j
=
1

ex
cl

ud
e(
i,
R
k
)

ex
cl

ud
e(
j,
C
k
)

re
qu

ire
(j
,C
k
)

Fi
gu

re
4.

3:
FS

M
m

ai
nt

ai
ne

d
fo

r
ea

ch
(r

ow
,

co
lu

m
n,

su
bm

at
rix

)
i,
j,
k

in
pr

op
ag

at
eD

om
in

an
ce

R
ul

e.
Fo

r
si
m

pl
ic

ity
,
v
=
M
i,
j,

v
+
=
m
a
x(
v
,0
)

an
d
v
−
=
m
in
(v
,0
).

FS
M

s
st

at
es

in
bl

ue
ar

e
te

rm
in

al
st

at
es

.

4.2. CP approach 77

The transition and update operations of our FSMs are the following:
■ When a row i (resp. column j) is excluded from a submatrix k , at

most n (resp. m) cells’ FSMs must be updated. The contribution
of the cell (i , j) to ubk,i and lbk,i are removed and the support of the
cell is decremented. Each of these operations are in constant time,
and overall takes O(n) (resp. O(m)).

■ When a cell (i , j) becomes supported by only one remaining subma-
trix k (supporti ,j = 1), and the column j is included in this submatrix
k (j ∈ C1k , and since supporti ,j = 1, it implies that i ∈ (R1k ∪ R⊥k)),
the value of lb and ub for this submatrix k is updated by the cell’s
value. This operation is also in constant time, and thus O(K) for
all submatrices.

■ When a row i (resp. column j) is included in a submatrix k , a check
on all columns j (resp. rows i) must be performed to see if a cell
(i , j) with supporti ,j = 1 and i ∈ R1k and j ∈ C1k exists. If that is
the case, lbk,i and ubk,i are updated to include the value of the cell.
Overall, this operation is O(n) (resp. O(m)).

Once the update of the FSMs is done, each (row, submatrix) pair is
verified w.r.t. the rules, in O(Km). A call to propagateDominanceRule is
in O(Km+∆rowsn+∆colsm+∆requiredK+∆support=1K). Over a complete
branch, the number of operations required is in O(Km2 + Kmn). If the
rules are applied symmetrically on columns, the overall running time is in
O(Kmax(m, n)2).

4.2.6 updateBounds: efficient lower and upper bounds
computations

In order to run the Branch & Bound, upper bounds on the objective for the
current tree node must be computed efficiently. The chosen method also
provides a lower bound, with no additional (asymptotic) computational
cost.

The upper bound ub is the sum of every cell that is either selected in a
submatrix or that is positive and could still be selected. The lower bound
lb is similarly defined, but keeping negative-valued cells. Formally, they are
computed as follows:

ub =
∑
{Mi ,j | (i , j) ∈ Cover1 ∨ (Mi ,j > 0 ∧ (i , j) /∈ Cover/∈)} (4.12)

lb =
∑
{Mi ,j | (i , j) ∈ Cover1 ∨ (Mi ,j < 0 ∧ (i , j) /∈ Cover/∈)} (4.13)

Recomputing these bounds from scratch in each node is again costly:
O(Knm). The running time can be improved by maintaining incremen-

78 Chapter 4. Mining a Set of Overlapping Submatrices

tally the number of submatrices supporting each cell, in the same way as
previously done in propagateDominanceRule.

These bounds, stored as reversible floating point numbers, can then
be maintained easily:
■ When a row i is included in a submatrix k , check if any column j is

already in C1k , and that (i , j) /∈ Cover1 yet. If that is the case and
that Mi ,j > 0 (resp. < 0), increase ub (resp. lb) by Mi ,j . This
operation runs in O(n).

■ The similar operation must be performed when a column is included
in a submatrix. Each of these operations runs in O(m).

■ When a row i is excluded from a submatrix k , check if any column j
is not already excluded (j /∈ (C1k ∪C⊥k)). If that is the case, decrease
supporti ,j by one. This operation runs in O(n).

■ The same operation goes for excluded columns in O(m).
■ When the supporti ,j is reduced to zero, if Mi ,j > 0 (resp. < 0), then

decrease ub (resp. lb) by Mi ,j . This operation runs in O(1).
The whole maintenance process for the bounds behaves in O(∆rowsn +
∆colsm). Over a complete branch, the incremental method is in O(Knm),
while the one based on recomputations is in O(K2(n2m + nm2)).

4.2.7 Large Neighborhood Search

The exhaustive approach presented above eventually finds and proves the
optimum value provided enough time is given. Unfortunately, the search
space is so large that even for small matrices and a limited number of sub-
matrices, it tends to quickly find a good solution but is not able to improve
it. To overcome this limitation, we propose to embed the exhaustive CP
search into a Large Neighborhood Search (LNS) [Sha98]. LNS is a local
search approach using CP to discover improvements around the current
best solution:
■ First the CP exhaustive search is used during a limited time, to

discover an initial solution.
■ For a given number of iterations, the CP exhaustive search is used

again but this time with some variables partially fixed (fragment) as
in the current best solution.

In addition, to limit the risk of having an iteration stuck for too long, we
limit the DFS to 1000 failures.

The current best solution at iteration t has the form ((R∗∈1,t , . . . , R
∗∈
K,t);

(C∗∈1,t , . . . , C
∗∈
K,t)) We propose three different fragment selection heuristics

(part of the solution to constrain when restarting the LNS for next itera-
tion):

4.3. Experiments 79

1. Select uniformly at random a subset of rows and columns in the set
of lines and columns used by some submatrix: Rp ⊆ (

⋃
k∈Mp R

∗∈
k,t),

Cp ⊆ (
⋃
k∈Mp C

∗∈
k,t), then for each submatrix, include the set of

rows and columns intersecting with those sets: R1k,t+1 = R
1
k,t ∩Rp,

R⊥k,t+1 = R \ R1k,t+1 and similarly for columns.
2. A similar operator is defined with rows and columns selected inside

the whole matrix: Rp ⊆ R, Cp ⊆ C. This allows for greater di-
versification, notably by allowing discovery of previously unselected
rows/columns.

3. Selecting uniformly at random a subset of submatrices Mp for p ∈
{1, . . . , K}. For each of these submatrices, select at random dif-
ferent subsets of rows and columns Rpk ⊆ R

∗∈
k,t , C

p
k ⊆ C

∗∈
k,t that is

constrained: R1k,t+1 = R
1
k,t ∩ R

p
k , R

⊥
k,t+1 = R \ R1k,t+1 and similarly

for columns.
Empirical observations show that these three operators are complementary.

4.3 Experiments

This section describes experiments conducted to assess the performances
of the proposed algorithms and to provide guidance on the selection of the
appropriate solution. We first evaluate the methods on synthetic datasets,
where the optimum is known, then on real datasets.

We compare our exhaustive CP and LNS methods against a greedy
baseline approach, CP-Greedy, that solves at each step the maximal-sum
submatrix (K=1) problem using the CP approach from [BSD17b]. This
approach iteratively selects the next best submatrix, on a modified matrix
in which the previously selected entries are set to 0 such that there is no
incentive to select several times the same (positive) entries. Each iteration
is performed within t

max

K with tmax the allocated budget of time.
The implementation has been carried out on OscaR [Osc12], using

Java 1.8.0 (Hotspot VM) on an AMD Bulldozer clocked at 2.1ăGHz; one
core and 3 Go of RAM per instance.

The source code is available here: https://github.com/GuillaumeDerv
al/MWSCP.

4.3.1 Synthetic Datasets

A synthetic dataset composed of 1,617 instances have been generated
using a Python script (available on Zenodo [Gui+18]). For those, the op-

https://github.com/GuillaumeDerval/MWSCP
https://github.com/GuillaumeDerval/MWSCP

80 Chapter 4. Mining a Set of Overlapping Submatrices

timal solution is known1 as they were all generated by implanting randomly
K submatrices before adding some noise. Table 4.1 describes parameter
values considered in the generation.The parameters used to generate the
instances are described in Table 4.1.

Approaches are compared using any-time profiles as described in Def-
inition 8.

Definition 8. Any-Time Profile. Let f (a, i , t) be the objective value of
the best solution found so far by an algorithm a for an instance i at time
t. Let tmax be the provided budget of time before interrupting a run. Let
f ∗i be the optimal solution for i if known (as is the case for synthetic data).
The any-time profile of a is the solution quality Qa(t) of a on all instances
as a function of time:

Qa(t) =
1

|i |
∑
i

f (a, i , t)

max(f (a∗i , i , t
max), f ∗)

with a∗i = argmax
a
f (a, i , tmax) . (4.14)

Table 4.1: Parameters for the synthetic dataset generation

Parameter Description Values used

m, n size of the matrix M ∈ Rm×n (800, 200), (640, 250), (400, 400)
K number of submatrices 2, 4, 8
o minimum overlap between submatrices

(in % of cells)
0, 0.3, 0.6

σ background noise variance (mean is 0) 0, 0.5, 1.0
r, s size of submatrices (noisy, Gaussian with

σ = r or s
20

)
(35, 70), (50, 50)

seed seed for matrix generation [0, 9]

1Or at least a good approximation of it. Notice that the optimal solution may be
slightly different than the implanted submatrices because of the noise addition.

4.3. Experiments 81

10
s

20
s

10
0s

10
80

s

P
ar

am
et

er
s

G
R

E
E
X

LN
S

G
R

E
E
X

LN
S

G
R

E
E
X

LN
S

G
R

E
E
X

LN
S

{m
=
4
0
0
,n
=
4
0
0
}

0.
70

0.
33

0.
37

0.
74

0.
57

0.
76

0.
76

0.
75

0.
95

0.
77

0.
75

0.
97

{m
=
6
4
0
,n
=
2
5
0
}

0.
71

0.
34

0.
32

0.
75

0.
48

0.
79

0.
77

0.
74

0.
95

0.
77

0.
75

0.
97

{m
=
8
0
0
,n
=
2
0
0
}

0.
73

0.
34

0.
29

0.
77

0.
48

0.
61

0.
79

0.
77

0.
94

0.
79

0.
78

0.
96

K
=
2

0.
85

0.
78

0.
32

0.
85

0.
88

0.
83

0.
85

0.
90

0.
96

0.
85

0.
91

0.
97

K
=
4

0.
72

0.
20

0.
30

0.
77

0.
51

0.
72

0.
78

0.
74

0.
94

0.
78

0.
75

0.
96

K
=
8

0.
57

0.
03

0.
36

0.
64

0.
13

0.
61

0.
68

0.
62

0.
94

0.
68

0.
62

0.
97

o
=
0
%

0.
58

0.
27

0.
34

0.
67

0.
45

0.
71

0.
71

0.
66

0.
97

0.
71

0.
66

0.
98

o
=
3
0
%

0.
71

0.
34

0.
31

0.
73

0.
50

0.
69

0.
75

0.
75

0.
93

0.
75

0.
76

0.
95

o
=
6
0
%

0.
85

0.
40

0.
34

0.
86

0.
57

0.
77

0.
86

0.
86

0.
94

0.
86

0.
86

0.
97

σ
=
0
.0

0.
73

0.
34

0.
78

0.
78

0.
63

0.
80

0.
81

0.
77

0.
98

0.
81

0.
78

1.
00

σ
=
0
. 5

0.
72

0.
33

0.
04

0.
75

0.
44

0.
67

0.
78

0.
74

0.
94

0.
78

0.
74

0.
97

σ
=
1
.0

0.
69

0.
33

0.
16

0.
73

0.
44

0.
68

0.
73

0.
75

0.
93

0.
73

0.
75

0.
94

{r
=
5
0
,s
=
5
0
}

0.
71

0.
34

0.
34

0.
75

0.
52

0.
73

0.
77

0.
76

0.
94

0.
77

0.
77

0.
96

{r
=
3
5
,s
=
7
0
}

0.
71

0.
32

0.
32

0.
76

0.
50

0.
71

0.
78

0.
75

0.
95

0.
78

0.
75

0.
97

T
ab

le
4.

2:
Sy

nt
he

ti
c

da
ta

se
t

82 Chapter 4. Mining a Set of Overlapping Submatrices

K
=
4

1s
5s

20
s

T
yp

e
D

at
as

et
G

R
E

E
X

LN
S

G
R

E
E
X

LN
S

G
R

E
E
X

LN
S

m
ig

ra
ti
on

m
ig

ra
ti
on

_
0.

00
1

[D
ao

+
18

a]
0.

96
0.

92
0.

96
0.

96
0.

92
0.

99
0.

96
0.

92
1.

00
m

ig
ra

ti
on

m
ig

ra
ti
on

_
0.

00
3

[D
ao

+
18

a]
0.

87
0.

89
0.

93
0.

87
0.

89
0.

99
0.

87
0.

89
1.

00
m

ig
ra

ti
on

m
ig

ra
ti
on

_
0.

00
5

[D
ao

+
18

a]
0.

83
0.

79
0.

96
0.

83
0.

79
1.

00
0.

83
0.

79
1.

00
ol

ym
pi

c
ol

ym
pi

c_
0.

01
[IO

C
]

0.
88

0.
69

0.
92

0.
88

0.
91

0.
97

0.
91

0.
91

1.
00

ol
ym

pi
c

ol
ym

pi
c_

0.
02

[IO
C

]
0.

79
0.

69
0.

87
0.

84
0.

84
0.

97
0.

84
0.

84
1.

00
ol

ym
pi

c
ol

ym
pi

c_
0.

04
[IO

C
]

0.
62

0.
81

0.
91

0.
76

0.
82

0.
96

0.
93

0.
82

1.
00

ol
ym

pi
c

ol
ym

pi
c_

0.
06

[IO
C

]
0.

80
0.

92
0.

93
0.

97
0.

92
0.

98
0.

97
0.

92
0.

99

K
=
4

10
s

20
s

10
0s

T
yp

e
D

at
as

et
G

R
E

E
X

LN
S

G
R

E
E
X

LN
S

G
R

E
E
X

LN
S

ge
ne

al
iz

ad
eh

-2
00

0-
v1

_
09

5
[S

ou
+
08

]
1.

00
0.

48
0.

82
1.

00
0.

48
0.

82
1.

00
0.

48
0.

92
ge

ne
ar

m
st

ro
ng

-2
00

2-
v1

_
09

5
[S

ou
+
08

]
0.

73
0.

60
0.

92
0.

73
0.

60
0.

99
0.

73
0.

60
1.

00
ge

ne
bh

at
ta

ch
ar

je
e-

20
01

_
09

5
[S

ou
+
08

]
0.

82
0.

31
0.

98
0.

91
0.

86
0.

99
0.

91
0.

96
1.

00
ge

ne
bi

tt
ne

r-
20

00
_

09
5

[S
ou

+
08

]
0.

96
0.

53
0.

86
0.

96
0.

53
0.

98
0.

96
0.

53
0.

98
ge

ne
br

ed
el

-2
00

5_
09

5
[S

ou
+
08

]
0.

98
0.

86
1.

00
0.

98
0.

86
1.

00
0.

98
0.

86
1.

00
ge

ne
ch

en
-2

00
2_

09
5

[S
ou

+
08

]
0.

74
0.

80
1.

00
0.

89
0.

80
1.

00
0.

89
0.

80
1.

00
ge

ne
ch

ow
da

ry
-2

00
6_

09
5

[S
ou

+
08

]
0.

82
0.

83
1.

00
0.

82
0.

83
1.

00
0.

87
0.

83
1.

00
ge

ne
dy

rs
kj

ot
-2

00
3_

09
5

[S
ou

+
08

]
0.

97
0.

94
0.

99
0.

97
0.

94
1.

00
0.

97
0.

94
1.

00
ge

ne
ga

rb
er

-2
00

1_
09

5
[S

ou
+
08

]
0.

59
0.

24
0.

58
0.

82
0.

32
0.

58
1.

00
0.

50
0.

86
ge

ne
go

lu
b-

19
99

-v
1_

09
5

[S
ou

+
08

]
0.

86
0.

88
0.

92
0.

86
0.

88
0.

95
0.

86
0.

88
0.

96

T
ab

le
4.

3:
R

ea
ld

at
as

et
s

4.3. Experiments 83

100 101 102 103

Time [s]

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
so

lu
tio

n
qu

al
ity

Any-time profile

CP-Greedy
CP-Exhaustive
CP-LNS

Figure 4.4: Comparison between CP-Greedy, CP-Exhaustive and CP-LNS on
1, 617 matrices generated as described in section 4.3.1. The graph presents
the any-time profile described in equation (8). For each instance, 18 minutes
were allocated for computations.

Fig. 4.4 gives the any-time profiles of the CP-Greedy baseline method,
along with CP-Exhaustive (the exhaustive process presented above) and
CP-LNS. The results clearly illustrates the overall better performances of
the CP-LNS whenever the computation time exceeds roughly 20 seconds.

Table 4.2 presents, for each parameter value considered in the syn-
thetic data generation, the performances of the algorithms. Reported
performances are computed as the average performance of each algorithm
obtained before a certain limit of computation time.

Through analysis of the performances with respect to parameters’ val-
ues, we observed that the major parameters are, in decreasing order of
influence, the following:

1. the degree of overlap between the submatrices

2. K, the number of submatrices

The difficulty of reaching good solution increases quickly as the min-
imum overlap parameter increases until 50%, after which it decreases.
Similarly, as the number of implanted submatrices increases, it becomes
increasinly harder to find good solutions.

4.3.2 Real Datasets

We also experiment with non-synthetic datasets of several types (olympic,
migration, genes) described in section 4.1.1. The results, presented in
Table 4.3, are similar to those obtained for synthetic datasets. CP-LNS is

84 Chapter 4. Mining a Set of Overlapping Submatrices

the best method on most datasets given 10 seconds of computation time,
with two notable exceptions (alizadeh and garber datasets), in which case
LNS did not find the optimum in the 20 minutes allowed for each dataset.

4.3.3 Comparison Against Mixed Integer Linearly and
Quadratically Constrained Programming

We tested our methods against MIP (linear) and MIQCP (quadratic terms
in the constraints) methods. As these two methods do not perform well
on bigger instances, we do not integrate them in our experiments on large
matrices, presented above.

MIP model MIQCP model
max

∑
i ,j Mi ,j · si ,j max

∑
i ,j Mi ,j · si ,j

si ,j ≥ ei ,j,k ∀i , j, k K · si ,j ≥
∑
k rk,i · ck,j ∀i , j

si ,j ≤
∑
k ei ,j,k ∀i , j si ,j ≤

∑
k rk,i · ck,j ∀i , j

ei ,j,k + 1 ≥ rk,i + ck,j ∀i , j, k
2 · ei ,j,k ≤ rk,i + ck,j ∀i , j, k

All variables ∈ {0, 1}

MIP and MIQCP methods are plagued by the number of variables, that is
in O(Knm) for MIP and O(K(n+m)) for MIQCP, and by the number of
constraints, which isO(Knm) for MIP and O(nm) for MIQCP. Tables 4.4a
and 4.4b show that both models are slow compared to our LNS method,
and are heavily affected by matrix size, number of submatrices to find
and noise. For bigger submatrices, such as the synthetic and real ones
presented in the previous section, both methods timeout either without
returning solutions or with comparatively poor solutions.

4.4 Chapter conclusion

We presented a generalization of the Maximal-Sum Submatrix Problem to
multiple submatrices, called the Maximum Weighted Submatrix Coverage
Problem (MWSCP), along with a method to solve this problem based
on constraint programming and large neighborhood search. Experiments
on both synthetic and real datasets show that our CP-LNS method finds
consistently better solutions (when more than 10 seconds are allocated)
than both MIP/MIQCP, an exhaustive CP method and a greedy approach
using the method from [BSD17b].

4.4. Chapter conclusion 85

Table 4.4: Comparison between CP-LNS, MIP and MIQCP, on a synthetic
dataset (generated as described in section 4.3.1). All methods were given
a fixed time limit of 300 seconds. The metric used is the any-time profile
at the time limit (see definition 8). CP-LNS finds the optimum on each
dataset. The time when the best found solution was found is indicated
inside parentheses. Experiments made on Gurobi 8.1.0.

K σ CP-LNS MIP MIQCP

2 0.0 1.00 (1s) 1.00 (0s) 1.00 (1s)
2 0.5 1.00 (1s) 1.00 (7s) 1.00 (7s)
2 1.0 1.00 (1s) 0.89 (233s) 0.79 (57s)
3 0.0 1.00 (2s) 1.00 (1s) 1.00 (2s)
3 0.5 1.00 (3s) 1.00 (140s) 1.00 (138s)
3 1.0 1.00 (3s) 0.74 (254s) 0.48 (256s)
4 0.0 1.00 (2s) 1.00 (1s) 1.00 (62s)
4 0.5 1.00 (3s) 1.00 (252s) 0.88 (290s)
4 1.0 1.00 (6s) 0.64 (260s) 0.69 (225s)
5 0.0 1.00 (4s) 1.00 (79s) 1.00 (275s)
5 0.5 1.00 (5s) 0.82 (257s) 0.69 (237s)
5 1.0 1.00 (6s) 0.77 (24s) 0.36 (38s)

(a) Varying number of submatrices and noise, with matrices of size 50 × 50 and
submatrices of size 16× 16.

m σ CP-LNS MIP MIQCP

50 0.0 1.00 (0s) 1.00 (1s) 1.00 (3s)
50 0.5 1.00 (1s) 1.00 (5s) 1.00 (7s)
50 1.0 1.00 (1s) 0.95 (207s) 0.82 (204s)
100 0.0 1.00 (4s) 1.00 (1s) 1.00 (33s)
100 0.5 1.00 (1s) 0.86 (293s) 1.00 (45s)
100 1.0 1.00 (3s) 0.65 (269s) 0.82 (191s)
200 0.0 1.00 (17s) 1.00 (8s) 1.00 (135s)
200 0.5 1.00 (21s) 0.37 (191s) 3% (81s)
200 1.0 1.00 (6s) 0% (0s) 5% (134s)
400 0.0 1.00 (1s) 1.00 (31s) 1.00 (54s)
400 0.5 1.00 (1s) 0% (1s) 0% (0s)
400 1.0 1.00 (1s) 0% (1s) 4% (301s)

(b) Varying size of the matrix and noise, with matrices of size m × m and K = 2
submatrices of size ⌊m

3
⌋ × ⌊m

3
⌋.

Mining a Maximum
Weighted Set of Disjoint
Submatrices

5

This chapter is largely based on the paper V. Branders, G. Der-
val, P. Schaus, and P. Dupont. “Mining a maximum weighted
set of disjoint submatrices”. In: International Conference on
Discovery Science. Springer. 2019, pp. 18–28.. The two first
authors made a similar amount of work on the article. This
thesis’ author’s contribution involves finding the proof for the
NP-completeness of a part of the problem (see below), the re-
distribution of the reduced-costs, along with some programming
and guidance for the experiments.

5.1 Introduction

The identification of not one but K different submatrices is a natural ex-
tension to the maximum-sum submatrix problem. Without modification to
the objective function, an optimal selection of K submatrices with a max-
imal sum of weights consists of selecting K times an identical submatrix,
which is the one of maximal sum. As this provides no useful information,
the aim being to find pairwise-different submatrices, the objective function
must be modified and/or additional constraints need to be imposed.

The maximum weighted submatrix coverage problem (explored in the
previous chapter) is one of such extensions to the identification of K pos-
sibly overlapping submatrices with maximal weight. It relies on a modifica-
tion of the objective function such that covered matrix entries contribute
precisely once to the objective. The downside of this modification is that it
tends to favor overlaps on the negative matrix entries. Indeed, overlaps on
the positive entries will not improve the objective value. On the opposite,
overlapping submatrices share the penalty of selecting a negative matrix
entry.

In this chapter, we consider an alternative extension to the identifica-

87

88Chapter 5. Mining a Maximum Weighted Set of Disjoint Submatrices

tion of K submatrices, relying on an objective function computed as the
sum of submatrix weights, and the explicit addition of disjunction con-
straints.

Definition 9. The Maximum Weighted Set of Disjoint Submatrices:
Given a matrix M ∈ Rm×n and K, a target number of submatrices. The
maximum weighted set of disjoint submatrices problem is to select a set
of K submatrices {MR1,C1 ,MR2,C2 , . . . ,MRK ,CK}, such that each matrix
entry is covered by at most one submatrix and the weight of the covered
entries is maximal:

(R∗1;C
∗
1), . . . , (R

∗
K ;C

∗
K) = argmax

(R1;C1),...,(RK ;CK)

K∑
k=1

∑
(i ,j)∈Rk×Ck

Mi j (5.1)

s.t. (Rk × Ck) ∩ (Rk ′ × Ck ′) = ∅ ∀k, k ′ ∈ {1, . . . , K}, k ̸= k ′ (5.2)

Disjunction constraints (5.2) enforce that the intersection of entries
covered by any pair of submatrices is empty. In other words, each matrix
entry cannot be selected more than once1. We must stress that any
submatrix pair may share rows or columns. The disjunction constraint
only prevents submatrices from sharing both rows and columns at the
same time.

As the MSS is NP-hard, so is this generalization. This problem can
efficiently be solved using a combination of column generation, using CP,
and mixed integer linear programming (MIP).

The definition implies that the ordering of the submatrices is irrelevant.
It should be stressed again that the disjunction constraints are of im-

portance. Indeed, they avoid the selection of irrelevantly identical sub-
matrices. The redefinition of the objective function such as in the previ-
ous chapter leads to the unexpected behavior of avoiding signal overlaps,
whereas overlaps on noise are favored. By reducing overlaps on the rows
or the columns (but not both simultaneously) we avoid such behavior.
Also, it eases the solution’s interpretability by a domain expert. Such a
structure of the solution is commonly called nonoverlapping nonexclusive
nonexhaustive in the context of biclustering.

Chapter’s contributions

Our contributions are:

1If we restrict to, say, maximum G overlap, an optimal solution consists of ⌈K/G⌉
groups of (at most) G identical submatrices.

5.2. Constraint Programming Approaches 89

■ The introduction of the maximum weighted set of disjoint subma-
trices problem (MWSDS) as a generalization of the max-sum sub-
matrix (MSS) problem.

■ A mathematical programming approach to solve the MWSDS.

■ The formulation of the MWSDS as a mixed integer linear program
relying on CP to produce relevant variables.

■ An evaluation of the performances of these two alternatives and the
benefit of the column generation as compared to a greedy baseline
approach (using the max-sum submatrix problem as a subroutine)
on synthetic datasets.

5.2 Constraint Programming Approaches

We propose an approach using column generation in an integer linear pro-
gramming setting. The column generation (or subproblem solving) process
is responsible for the identification of candidate submatrices that can be
put into a weighted set of disjoint submatrices. The proposed approach
relies on constraint programming (CP) to solve subproblems.

To avoid confusions between columns of the original matrix and colum-
ns corresponding to variables in the LP terminology, we will use the sub-
problem solving terms rather than column generation. Complementary,
columns of the LP problem are referred to as LP-variables.

General notations. As previously, for each submatrix k , a set variable Rk
(resp. Ck) is introduced to represent the possible selection of rows (resp.
columns) in submatrix k . By an abuse of notation, in the context of a CP-
based search, they also represent set variables with partial solutions, along
with their declinations (R1k , R

0
k , R

⊥
k , and columns equivalent, see section

4.2 page 67 for details).

5.2.1 Search Space

The search space of the maximal-sum submatrix problem (where K = 1)
can be limited to searching on a single dimension, for instance the column
set variable C1, as explained in observation 1 page 17.

Indeed, the row set variable R1 can be fixed optimally in polynomial
time by a simple inspection argument:

∀i ∈ LR :
∑
j∈R1

Mi j > 0 =⇒ i ∈ R1

90Chapter 5. Mining a Maximum Weighted Set of Disjoint Submatrices

For K > 1, once all the column set variables Ck are fixed, it remains
to decide for each row i and each submatrix k whether i is to be selected
(i ∈ Rk) or not (i ̸∈ Rk). Example (7) illustrates the interdependence of
these K decisions per row.

Example 7. Given the following matrix and column set variables:[]
Mex = 1 1 1 1

C1={1,2,3}

C2={1,2}

C3={3,4}

Let us consider K = 3 with column set variables C1 = {1, 2, 3}, C2 =
{1, 2} and C3 = {3, 4}, as shown above. There are 2K=3 possible ways of
defining the row set variables R1, R2 and R3.

It could be tempting to include the row in the first submatrix (R1 =
{1}). The optimal solution is R1 = ∅, R2 = {1} and R3 = {1}, however.
Observe that row 1 cannot be included in all submatrices as overlaps are
forbidden.

As previously with the MWSCP (chapter 4), these K decisions per
row cannot be optimally taken in polynomial time anymore, as stated in
Theorem 5.2.1. As a consequence, the search will have to assign both the
row and column set variables, as opposed to the simpler K = 1 problem.

Let us define formally the MWSDS with fixed column selections:

R1, · · · , RK = argmax
R1,··· ,RK

K∑
k=1

∑
(i ,j)∈Rk×Ck

Mi j (5.3)

s.t. (Rk × Ck) ∩ (Rk ′ × Ck ′) = ∅ ∀k, k ′ ∈ {1, . . . , K}, k ̸= k ′ (5.4)

The notations are the same as in definition 9, but in this case the
selections of columns for each submatrices (the Ci sets) are given.

Theorem 5.2.1. The MWSDS with fixed column selections is NP-Hard.

Proof. We reduce the Maximum Weighted Independent Set (MWIS) prob-
lem to our problem. MWIS is NP-Hard (by immediate generalization from
the Independent Set problem [GJ90]), and aims at finding, in a graph
G =< V,E > with weights wv on each vertex v ∈ V , the set of vertices
with the maximum sum such that they do not share edges in G. For sim-
plicity, we represent edges and vertices as numbers: V = {1, . . . , |V |} and
E = {1, . . . , |E|}.

5.2. Constraint Programming Approaches 91

From an instance of the MWIS, we reduce it to an instance of MWSDS
with fixed column selections. We create a matrix M of size 1×(|V |+ |E|),
such that

M1,i =

{
wi if i ∈ {1, . . . , |V |}
0 otherwise.

The columns sets C1, . . . , C|V | are constructed as follows:

Cv = {v} ∪ {|V |+ e | e ∈ E ∧ edge e has v as origin or destination}.

The interpretation is the following: each vertex in the graph G is
transformed as a submatrix. If the single row of the matrix M is selected
by a submatrix, then the vertex is included in the MWIS.

The non-overlapping constraint of MWSDS forbids two adjacent ver-
tices (i.e. submatrices) to both be included in the solution (constructing
an independent set), due to the way the column selections C1, . . . , C|V |
are constructed.

Resolving the MWSDS then leads to the same optimal objective result
as the original MWIS problem, and the selected rows Rv ∀v ∈ {1, . . . , |V |}
indicates for each node v if the node is inside the MWIS (Rv = {1}) or
not (Rv = ∅). As computing the MWIS in general graphs is NP-Hard,
and as the MWSDS with fixed column selections can encode the MWIS
problem, we conclude that the MWSDS with fixed column selections is
NP-Hard.

5.2.2 Column Generation

Given a matrixM ∈ Rm×n, the number of possible rectangular submatrices
is 2m+n (there are some duplicates2). We consider the vector v ∈ Rmn
resulting from matrixM vectorization. Specifically, v is the mn×1 column
vector obtained by stacking the columns of the matrix M on top of one
another.

Let’s represent a submatrix l as a column vector s l ∈ Bmn where
s li = 1 if entry vi is covered by the submatrix l and s li = 0 otherwise.
The MWSDS is formulated using a mn × 2m+n matrix S representing all
possible submatrices3. A submatrix of the MWSDS is defined as a column

2There are multiple "empty" submatrices, taking some rows but no columns, or
some columns but no rows. In practice there are precisely 2m+n − 2m − 2n + 1 different
submatrices, but the difference is small and does not matter here, so we keep 2m+n for
simplicity.

3Note that we could represent each submatrix using only a boolean for each
row/column rather than for each cell, making the matrix S sparser; we will see later in
this chapter that the matrix is actually never built, and thus we keep this choice purely
as it simplifies the reasoning and the notations.

92Chapter 5. Mining a Maximum Weighted Set of Disjoint Submatrices

S•,l of the S matrix. The weight wl of submatrix l is the sum of its covered
entries: wl =

∑v
i=1 vi · Si ,l .

Example 8.

M =

[
1 2 3

4 5 6

]
, v =

1

4

2

5

3

6

 , S =

1 1

1 0

. . . 1 1 . . .

1 0

0 1

0 0

v is the vectorization of M. S contains the representation of the possible
submatrices of M. The two example columns given here represent the
submatrix with both rows and the two first columns, and the submatrix
with only the first row but all columns.

The maximum weighted set of disjoint submatrices problem in equation
(5.2) can be formulated as an Integer Linear program as follows:

max
x

∑
l∈L
wl · xl (5.5a)

s.t.
∑
l∈L
Si ,l · xl ≤ 1 ∀i ∈ {1, . . . , v} (5.5b)∑
l∈L
xl ≤ K (5.5c)

xl ∈ {0, 1} ∀l ∈ L (5.5d)

where L = {1, . . . , 2m+n} denotes the set of possible submatrices. Equa-
tion (5.5b) ensures submatrices disjunction and equation (5.5c) enforces
the selection of at most K submatrices. The decision variable xl encodes
the selection of submatrix l .

Defining the matrix S before solving the above ILP is not reasonable,
even for small input matrices. Column generation, or subproblem solving,
restricts the master problem, in equations (5.5a-5.5d), to a subset L′ ⊆ L
of submatrices. Additional submatrices are progressively inserted in L′, and
the restricted master problem is solved until a provable optimal solution is
found [BGN14].

Column generation, or subproblem solving, relies on iterations between
solving the restricted master problem (RMP) and adding one or multiple
submatrices. Candidate submatrices for addition to the RMP are subma-
trices that can improve the objective function of the LP relaxation upon
addition to the restricted master problem. If no submatrix can improve the

5.2. Constraint Programming Approaches 93

objective function, the optimal solution to the restricted master problem
is an optimal solution to the full master problem.

We relax the integrality constraint on the RMP, and use its dual to
find submatrices with a positive4 reduced cost, i.e. that can improve the
LP version of the RMP.

The dual of the master problem is given below.

min
θ,λ

θ ·K +
v∑
i=1

λi (5.6a)

s.t. θ +
v∑
i=1

Si ,l · λi ≥ wl ∀l ∈ L (5.6b)

λi ≥ 0 ∀i ∈ {1, . . . , v} (5.6c)

θ ≥ 0 (5.6d)

The dual values λi and θ correspond to the primal constraints defined in
equation (5.5b) and equation (5.5c), respectively. Each "column" (thus,
each submatrix) of the master problem is associated with a constraint in
the dual (eq. (5.6b)). Values for λ and θ are obtained by solving an RMP.

Finding a submatrix with a positive reduced cost is called pricing. Such
a submatrix is defined as any submatrix l ∈ L for which

−θ −
v∑
i=1

Si ,l · λi + wl < 0.

The LP version of the RMP is optimal if the pricing problem has no solu-
tion. Moreover, if the LP (being optimal) and the MIP version of the RMP
have the same objective value, then the solution to the MIP is optimal.

While a pricing routine can return any submatrix with a positive reduced
cost, the one with the maximum reduced cost is usually searched. The
pricing problem can be reformulated as:

mn∑
i=1

Si ,l · (vi − λi) > θ

Solving this pricing problem is not trivial: it amounts to identifying a
submatrix in the input matrix modified by the λi values such that its weight
is larger than some θ. Given a modified input matrix, finding a submatrix of
maximal sum using CP gives a solution to the subproblem, as long as the
maximal sum submatrix is of weight larger than θ. We use the CP-with-
global-constraint implementation (CPGC) provided in [BSD17a]5. It is a

4Given that the problem is a maximization problem.
5Historically, the MSS chapter of this thesis has been written after this chapter, and

the experiments were not rerun.

94Chapter 5. Mining a Maximum Weighted Set of Disjoint Submatrices

depth-first search approach composed of major CP ingredients: 1) filtering
rules, 2) bounding procedure, 3) dominance rules, and 4) variable-value
heuristic.

While the proposed method is not complete, using a branch-and-price
algorithm [Sav97] is possible but non-trivial. The running time needed to
solve the LP to optimality (i.e., to the point where no new subproblem
with positive reduced cost exists) is quite high, as shown in the experiment
section below.

The LP version of the RMP does not provide a boolean selection of
submatrices. To effectively identify a solution to the original problem
(MWSDS), the MIP version of the RMP, with integrality constraints en-
forced, is also solved for any solution to the ILP-RMP.

5.2.3 Avoiding redundancy

To maximize the information given by the dual values, we avoid having
redundant constraints, notably the constraints (5.5b). For example, if we
have two submatrices that overlap on more than one cell, we enforce only
one constraint representing all the cells. Precisely, constraints (5.5b) are
replaced by the following ones:

∑
l∈O
xl ≤ 1 ∀O ∈

{
{l | Si ,l = 1}

∣∣∣ i ∈ {1, . . . , v}}. (5.7)

That is, we enforce one non-overlap constraint per group of entries shar-
ing the same intersecting submatrices (an overlapping group)6. We then
redistribute the dual value of the constraint equally (we divide it by the
number of entries) over all the entries in this overlapping group. This
allows the method to avoid a pitfall of most MIP solvers: when facing
multiple equivalent constraint, only one will be tight, i.e. having a non-
zero dual value. This behavior leads to very high value for the λi on a very
small number of entries. Redistributing the duals on all the entries in an
overlapping group allows the subproblem solver to find more interesting
submatrices.

Example 9. Let us use this particular (part of) matrix, along with the
submatrices in color (here they are contiguous for simplicity, but recall
this is not mandatory):

6Equation (5.7) uses the set notation to implicitly remove duplicates.

5.2. Constraint Programming Approaches 95

4 1 1 6 · · ·
9 −2 3 7 · · ·
4 8 −9 −2 · · ·
5 −1 2 7 · · ·...

...
...

...
. . .

We could, as a naïve application of equation (5.5b), create a constraint
for each cell overlapped by at least one submatrix, for a total of 15 here.
Even if we remove those that are trivially true (overlapped by only one
submatrix), 7 constraints remains.

Even here, there are redundant constraints; take for example the four
cells at the intersection of the second and third rows and the two first
columns; they all intersect the same subset of submatrices.

In practice, the only non-trivial, non-redundant constraints are the one
derived from the filled areas below:

4 1 1 6 · · ·
9 −2 3 7 · · ·
4 8 −9 −2 · · ·
5 −1 2 7 · · ·...

...
...

...
. . .

Using the 7 original constraints is generally not a problem while solving

the master problem; the solving time difference is generally small or neg-
ligible, the solver removing redundant constraints; however, as we put 7
constraints, we obtain 7 values for their reduced-cost. MIP solver gener-
ally ensure that only one redundant constraint is tight, and thus only one
reduced-cost is positive.

These reduced-costs are interpreted in the pricing problem as values to
be subtracted from a cell. Using directly the reduced-costs from these 7
redundant constraints would imply that only 3 cells get a value subtracted
from their original value, and the other are left untouched. However, the
reduced-costs associated with constraints can be shared between cells they
cover, so these three assignations of reduced-costs are equivalent for the
master problem:

0 0 0 0 · · ·
20 0 30 0 · · ·
0 0 0 0 · · ·
0 0 5 0 · · ·
...

...
...

...
. . .

0 0 0 0 · · ·
0 10 10 0 · · ·
10 0 20 0 · · ·
0 0 5 0 · · ·
...

...
...

...
. . .

0 0 0 0 · · ·
5 5 15 0 · · ·
5 5 15 0 · · ·
0 0 5 0 · · ·
...

...
...

...
. . .

96Chapter 5. Mining a Maximum Weighted Set of Disjoint Submatrices

While they are equivalent for the master problem, they aren’t for the
pricing problem; distributing more evenly the values allows, in practice,
to select better candidate submatrices (high values in a single cell simply
forbids the cell, keeping the original problem nearly untouched).

Note that this trick doesn’t modify correctness; it actually removes
completely redundant constraints, which have the following properties:

■ removing one of them do not modify the optimal objective value of
the LP (primal or dual);

■ the dual variables linked to these constraints share the same coef-
ficient in the dual objective function, and the same coefficients in
the dual constraints. Hence, given an optimal solution, subtracting
a (constraint-preserving) value δ from one of these dual variable and
adding it to another preserves the objective value. This technique is
the basis of our redistribution trick;

■ this technique can be used until all dual variables associated to the
redundant constraint are equal to 0, but one whose dual value would
be the sum of the previous dual values. The redundant constraints
with a zero dual value can thus be removed safely.

5.2.4 Greedy Approach/Hot-Start

We define a greedy baseline approach that repeatedly solves the maxi-
mal weight submatrix (K = 1) problem, using the CP approach from
[BSD17a]. The purpose of this approach is to provide a hot-start to the
column generation approach.

The greedy approach iteratively selects the best next submatrix. Each
time a new maximum submatrix is found, its content is replaced inside the
main matrix by −∞ (forbidding subsequent iterations from selecting these
entries again).

In our experiments, each iteration is performed within TOK time where
TO is the time-out for the greedy approach and K the number of sub-
matrices that are searched for. If no solution has been found within the
allocated time, the time-out is extended until at least one submatrix is
found.

5.2.5 Mixed Integer Linear Programming

We propose a Mixed Integer Linear Programming model, based on a Big-
M formulation of the problem. The model uses the binary variables r ki and
ckj to represent the selection of row i and column j for submatrix k . The

5.3. Experiments 97

decision variables are used to compute the contribution of the row i for
the submatrix k (pki). The sum of the row contributions is the objective
function to be maximized. The binary variables ski,j (one for each submatrix
k and matrix cell i , j), indicating if cell i , j is covered by submatrix k , are
used to ensure that selected submatrices are disjoint.

max
∑

i∈LR,k∈{1,...,K}
pki (5.8a)

s.t. pki ≤
∑
j∈LC

(
Mi j · ckj

)
+ (r ki − 1) ·M−i ∀i , k (5.8b)

pki ≤ M+i · r
k
i ∀i , k (5.8c)

2 · ski,j ≤ r ki + c
k
j ∀i , j, k (5.8d)

r ki + c
k
j ≤ 1 + ski,j ∀i , j, k (5.8e)∑

k

ski,j ≤ 1 ∀i , j (5.8f)

where constants M−i and M+i are respectively the lower bound and upper
bound on the sum of row i ’s entries:

∀i ∈ LR : M−i =
∑
j∈LC

min(0,Mi j) and M+i =
∑
j∈LC

max(0,Mi j)

(5.9)

Constraints (5.8b) and (5.8c) ensures that the row contributions pki are
computed correctly. If r ki = 0, constraint (5.8c) ensure the contribution
is zero, with the rhs of constraint (5.8c) being always positive. Otherwise
(r ki = 1), constraints (5.8c) and (5.8b) become pki =

∑
j∈LC Mi j ·c

k
j , thus

computing the effective value of the contribution.
Submatrices disjunction is ensured by constraints (5.8f) and relies on

the variable ski,j which is computed as the product r ki · ckj , linearized by
eq. (5.8d) and (5.8e).

This model is plagued by the number of variables and constraints which
are both in O(mnK), mainly due to the non-overlap constraints.

5.3 Experiments

This section describes experiments conducted to assess the performances
of the proposed algorithms and to provide guidance on the selection of the
appropriate solution. Given enough time and memory, both the column
generation approach and the MIP approach seem to converge to similar
solution. Therefore comparing performances solely on the objective value

98Chapter 5. Mining a Maximum Weighted Set of Disjoint Submatrices

of an approach is irrelevant. As a consequence, column generation and
MIP approaches are evaluated and compared given a budget of time, the
time-out TO, on synthetic datasets with implanted submatrices using any-
time profiles:

Definition 10. Any-Time Profile. Let f (a, i , t) be the objective value of
the best solution found so far by an algorithm a for an instance i at time
t. Let tmax be the provided budget of time before breaking a run. The
any-time profile of a is the solution quality Qa(t) of a on all instances as
a function of time:

Qa(t) =
1

|i |
∑
i

f (a, i , t)

f (a∗i , i , t
max)

with a∗i = argmax
a
f (a, i , tmax) . (5.10)

All experiments are performed using Java 1.8.0 on an AMD Bulldozer
clocked at 2.1 GHz; one core and 6 GB of RAM per instance and a time-
out TO of 2 hours. Solutions to the maximal sum submatrix problem are
carried out on OscaR [Osc12].MIP and column generation approaches rely
on Gurobi 8.1.0 [Gur18].

5.3.1 Combining Column Generation and Hot-Start

While the greedy approach cannot prove optimality, it may identify good
solutions within short amounts of time. A natural way to take benefit
from the greedy approach is to use it as a hot-start for the column gener-
ation. The greedy approach also serves as a subroutine to find solutions
to generated subproblems (i.e. as a pricing problem solver).

In the subsequent experiments, all runs of the column generation are
preceded by a greedy hot-start identifying up to K submatrices within
the allocated time-out of 5 minutes. Afterward, the LP is solved, and
the greedy approach starts on the matrix modified by the dual values (as
explained in section 5.2.2) in order to find new submatrices that have a
positive reduced cost in the LP RMP.

As this process generates more and more subproblems, the dual values
of the RMP provide more guidance on the search for better subproblems.
It is then more useful to seek multiple new subproblems later in the search
process than at the beginning. Empirically, the subproblem generation is
made such that, at the jth call to the subproblem generator, at most j
new subproblems will be created. Given the non-trivial pricing problem,
there is no guarantee that the subroutine identifies an optimal solution to
the pricing problem.

Note that all results of the CG method are computed from the MIP
version of the RMP (with a binary selection of submatrices).

5.3. Experiments 99

5.3.2 Datasets

This section presents the two datasets considered to evaluate perfor-
mances of the column generation (CG) and mixed integer linear program-
ming (MIP) approaches. We start with a dataset designed to evaluate the
ability of the CG approach to refine solutions found by the greedy hot-start.
The other dataset is constructed to evaluate the relative performances of
the CG approach and the MIP approach.

5.3.2.1 Hot-Start Solution Improvement.

To evaluate the ability of the CG approach to improve over its hot-start, we
designed five different scenarios where the greedy hot-start is bound to find
a sub-optimal solution. The different scenarios are presented in Fig. 5.1.
For scenarios 1, 2, 3 and 4, matrices are built to ensure that the maximum
submatrix found by the greedy hot-start covers the whole matrix, thus
giving very little information to the column generation method. Therefore,
the benefit of the column generation is evaluated as the improvement of
the objective value relatively to the objective value of the suboptimal hot-
start solution.

Scenario + value - value

1 and 3 K + 1 −1
2 and 4 ∼ N (K + 1, 1) ∼ N (K + 1, 1)

5 ∼ N (2, 2) ∼ N (−1, 1)

Figure 5.1: Construction of matrices with suboptimal greedy solution. A
matrix is defined by its positive and negative values. The presented scenarios
rely on different structures of positive values insertions and the distribution
of the positive and negative values defining the matrix.

For each scenario, 14 different matrices are generated, following the
14 combinations of matrix size and number of implanted submatrices in-
dicated in Table 5.1. The performances of the hot-start and CG are then
compared on the 70 matrices generated as described. As a complement
of information, we also compare these results with the performances of
the MIP approach.

100Chapter 5. Mining a Maximum Weighted Set of Disjoint Submatrices

Table 5.1: Combination of matrix size and number of implanted submatrices

K = 2 K = 5 K = 8 K = 10 K = 20

50× 50 ✓ ✓
100× 100 ✓ ✓ ✓
200× 200 ✓ ✓ ✓ ✓ ✓
500× 500 ✓ ✓ ✓ ✓

5.3.2.2 Relative Performances of CG and MIP.

A synthetic dataset composed of 720 instances has been generated using a
Python script7 following a similar protocol as in [Der+19b]. Data genera-
tion includes a normal background noise (∼ N (−1, 1)) and K insertions of
a submatrix with normal distribution (∼ N (1, 0.5))8. Rows and columns
of each submatrix are uniformly selected from the set of rows and the set
of columns of the matrix. Table 5.2 describes parameter values considered
in the dataset generation.

It is worth stressing that given the allocated time and memory, MIP
approach ends up without any solution and with memory issues for most
(more than 75%) instances on larger matrices (800 × 200, 640 × 250,
and 400× 400). The parameter values in Table 5.2 are defined such that
the MIP formulation can provide a solution to at least 75% of the 720
instances.

Table 5.2: Parameters for the synthetic dataset generation

Parameter Description Values used

m, n size of the matrix M ∈ Rm×n (400, 100), (320, 125), (200, 200)

K number of submatrices 2, 5, 10
s submatrix size (size = (m×s

K
; n×s
K
)) 0.05, 0.01, 0.2, 0.5

seed generation’s seed [0, 19]

5.3.3 Performances

Fig. 5.2 presents the any-time profile of the column generation, the greedy
hot-start, and the mixed integer programming on the 70 synthetic in-

7The generation protocol with fixed seed is available on https://www.dropbox.co

m/s/jh470v9etwg5js0/gen.py?dl=0
8Notice that the optimal solution might be slightly different from the implanted

submatrices because of the Gaussian distribution of the background and the implanted
solutions.

https://www.dropbox.com/s/jh470v9etwg5js0/gen.py?dl=0
https://www.dropbox.com/s/jh470v9etwg5js0/gen.py?dl=0

5.3. Experiments 101

stances described in section 5.3.2.1. These instances are generated such
that a greedy approach is bound to obtain a low-quality solution.

The results clearly illustrate the benefit of the column generation ap-
proach on the hot-start: through the iterative definition of subproblems
and identification of possibly improving submatrices, the CG approach can
avoid the sub-optima reached by the hot-start. Results also illustrate the
poor performances of the MIP approach, which, given roughly 25 times
larger time-out than that of the greedy suboptimal hot-start, is outper-
formed by the latter approach.

Given that some sub-optimal solutions are efficiently found by the hot-
start, the latter may complete the exploration of its search space before
timing-out (TO = 300 seconds). As a consequence, the associated col-
umn generation process starts earlier and may improve over the hot-start
solution before the hot-start times-out. It explains the shift between hot-
start and CG curves before 300s.

100 101 102 103

Time [s]
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

so
lu

tio
n

qu
al

ity

Any-time profile
(70 instances)

Col.Generation
Hot start
MILP

Figure 5.2: Comparison of the different methods proposed to solve the
maximum weighted set of disjoint submatrices. The graph presents the
any-time profile described in eq. (10). Results averaged on 70 matrices
generated as described in section 5.3.2.1 such that the greedy hot-start
cannot find the optimal solution. For each instance, the time-out is fixed
at 2 hours.

Fig. 5.3 presents the any-time profile of the column generation and the
mixed integer programming on the 720 instances generated as described
in section 5.3.2.

These results illustrate the good performance of the column genera-
tion approach. MIP’s worse performance is explained by the number of
variables and constraints required to model the problem. On the smaller
problems, with K = 2, the MIP approach appears to reach relatively good

102Chapter 5. Mining a Maximum Weighted Set of Disjoint Submatrices

101 102 103

Time [s]
0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
so

lu
tio

n
qu

al
ity

Any-time profile
(720 instances)

Col.Generation
Hot start
MILP

Figure 5.3: Comparison of the different methods proposed to solve the
maximum weighted set of disjoint submatrices. The graph presents the
any-time profile described in eq. (10). Results averaged on 720 matrices
generated as described in section 5.3.2. For each instance, the time-out is
fixed at 2 hours.

solutions. For larger values of parameter K, MIP performances do not
reach a quarter of the column generation’s average solution quality after
2 hours of computation time.

Each call to the greedy subroutine results in a single solution reported
after some budget of time. This situation explains the sudden bumps in the
hot-start: every 300K seconds, a new solution is reported while in between,
no improvements are reported.

5.4 Chapter conclusion

We explore the Maximum Weighted Set of Disjoint Submatrix Problem
(MWSDS) and present two methods to solve it. One is based on mathe-
matical programming and the other on constraint programming.

Our main contribution, a column generation method for the MWSDS,
finds new candidate submatrices using dual variables of a linear relaxation
of the submatrix selection problem. Experiments on synthetic datasets
indicate that the column generation method consistently finds better so-
lutions than the mixed integer linear programming approach.

The performances of the column generation can be further improved by
complementing the exploration with a branch-and-price algorithm [Sav97].
Such improvement is non-trivial, however: the time taken to solve the un-
derlying LP problem is already quite long, but is nonetheless an attractive
direction for future work.

Part III

Future directions and
conclusion

103

Discussion & future
directions 6
In this chapter we succinctly describe some unexplored ideas, that may
be the basis for future research, and discuss the results obtained and how
they could maybe be improved.

6.1 MSS as a Bipartite Quadratic Pseudo Boolean
Optimization problem

We assume some proficiency with maximum-flow algorithms and
theory in this section.

The maximum sum subproblem can be represented as a Quadratic
Pseudo Boolean Optimization (QPBO) problem; in this section we first
define the QPBO problem, succinctly explore its properties and ways to
solve it, then explain how we could use these properties and algorithms for
the MSS and other problems seen in this thesis.

6.1.1 Quadratic Pseudo Boolean Optimization

Quadratic Pseudo Boolean Optimization (QPBO)[BH02; Rot+07; KR07]
describes in the literature either a class of optimization problem or a
method to solve them, depending on context.

Definition 11. Quadratic Pseudo-Boolean Optimization (QPBO).
QPBO aims at minimizing quadratic pseudo-boolean functions:

min
x
fw (x) = w

∅ +
∑
i∈V
w ixi +

∑
(i ,j)∈E

w i ,jxi ,xj (6.1)

with x ∈ {0, 1}n, V = {1, . . . , n} (the nodes), E ⊆ V × V (the edges).
w∅, w i and w i ,j are respectively a constant, vectors of size 2, and ma-
trices of size 2 × 2, giving a weight to each authorized assignation of
variable/node/edge. Note that the edges are undirected: w i ,jxi ,xj ≡ w

j,i
xj ,xi .

The weights are grouped by an abuse of notation in the vector w .

105

106 Chapter 6. Discussion & future directions

QPBO solvers generally assume that weights are either in N or Z (with-
out loss of generality, see below) but they similarly can be in R or R+.

Intuitively, QPBO can be seen as a graph where a selection of nodes
must be made. Each decision carries a specific weight: selecting a node
has a weight, not selecting it has another weight, and every choice for
every pair of variables may carry a weight too.

Example 10. Here is an example, with four variables:

w∅ =0

w1 =
(xi=0 xi=1

1 −1
)

w2 =
(
2 0

)
w3 =

(
−2 3

)
w4 =

(
4 −2

)

w1,2 =

(xj=0 xj=1

0 0 xi=0

1 0 xi=1

)
w1,3 =

(
1 0 xi=0

1 2 xi=1

)
w2,4 =

(
1 −1 xi=0

1 1 xi=1

)
w3,4 =

(
1 1 xi=0

1 1 xi=1

)

The solution (x1 = 1, x2 = 1, x3 = 0, x4 = 0) has an objective value of
4.

Most QPBO problem are displayed in normal form:

Definition 12. (QPBO normal form) A QPBO instance is in normal form
if:

1. min(w i0, w
i
1) = 0 ∀i ∈ V

2. min(w i ,jv ,0, w
i ,j
v ,1) = 0 ∀(i , j) ∈ E, v ∈ {0, 1}

A QPBO problem can be modified such that its value does not change
for any vector x . This is called a reparametrization:

Definition 13. A reparametrization fw ′ of a QPB function fw is a QPB
function such that fw ′(x) = fw (x) ∀x .

It is fairly straightforward to reparametrize a QPB function so that its
weights are in normal form. If the first rule is not respected for a variable

6.1. MSS as a BQPBO problem 107

i , i.e. δ = min(w i0, w
i
1) ̸= 0, one can simply update the weights using the

following operations:

w i0 ← w i0 − δ
w i1 ← w i1 − δ
w∅ ← w∅ + δ

If the second rule is not respected for variables i , j and value v , the
parameters can be updated using δ = min(w i ,jv ,0, w

i ,j
v ,1):

w i ,jv ,0 ← w
i ,j
v ,0 − δ

w i ,jv ,1 ← w
i ,j
v ,1 − δ

w iv ← w iv + δ

These steps should then be repeated until the normal form is obtained.
It is easy to see that these reparametrizations do not change the value

obtained by the function; we are merely moving weights around without
modifying results. Once the QPB function is in normal form, the base
weight w∅ is actually a lower-bound for the function.

Example 11. Here is the normal form of the function shown in Example
10:

w∅ = −20

w1 =
(xi=0 xi=1

1 0
)

w2 =
(
0 0

)
w3 =

(
0 5

)
w4 =

(
6 0

)

w1,2 =

(xj=0 xj=1

0 0 xi=0

1 0 xi=1

)
w1,3 =

(
1 0 xi=0

0 1 xi=1

)
w2,4 =

(
2 0 xi=0

0 0 xi=1

)
w3,4 =

(
0 0 xi=0

0 0 xi=1

)

The solution (x1 = 1, x2 = 1, x3 = 0, x4 = 0) still has an objective
value of 4.

108 Chapter 6. Discussion & future directions

6.1.2 The QPBO method

The QPBO method computes the objective value of a linear relaxation of
the QPBO minimization problem here above. Let us first define the linear
relaxation:

Definition 14 (QPBO, discrete Rhys form). [HHS84] An equivalent for-
mulation of QPBO is as follows:

min
x
w∅ +

∑
i∈V
(x1i w

i
1 + x

0
i w
i
0) +

∑
(i ,j)∈E,(a,b)∈{0,1}2

(y a,bi,j w
i ,j
a,b) (6.2)

such that

x1i = xi ∀i ∈ V (6.3)

x0i = 1− xi ∀i ∈ V (6.4)

y a,bi,j ≥ x
a
i + x

b
j − 1 ∀(i , j) ∈ E ∀(a, b) ∈ {0, 1}2 (6.5)

y a,bi,j ≤ x
a
i , x

b
j ∀(i , j) ∈ E ∀(a, b) ∈ {0, 1}2 (6.6)

xi ∈ {0, 1} ∀i ∈ V (6.7)

y a,bi,j ∈ {0, 1} ∀(i , j) ∈ E ∀(a, b) ∈ {0, 1}2 (6.8)

A linear version of this problem can be obtained by replacing constraints
(6.7) and (6.8) with the following ones:

xi ∈ [0, 1] ∀i ∈ V (6.9)

y a,bi,j ∈ [0, 1] ∀(i , j) ∈ E ∀(a, b) ∈ {0, 1}2 (6.10)

To compute the optimal value of this linear relaxation, providing an
upper bound, the QPBO method reparametrizes the weights. For that it
uses a graph with special properties:

■ A minimum cut/maximum flow provides the value for the linear re-
laxation optimum

■ Augmenting paths created while computing the maximum flow can
be seen as reparametrizations of the weights

■ The minimum cut provides guarantees on the value of some part of
the decision vector in some optimal solutions.

The graph is built as follows[BH02]:

■ to each variable i is associated two nodes, xi and x̄i , representing
the variable and its negation;

6.1. MSS as a BQPBO problem 109

xq x̄p

s t

xp x̄q

w
p
1
2

w
q
1
2

w
p,q
1,0
2

w
p,q
0,1
2

w
p,q
1,0
2

w
p,q
0,1
2

w
p,q
0,0
2

w
p,q
1,1
2

w
p,q
0,0
2

w
q
1
2

w
p
1
2

w
q
0
2

w
p
0
2

w
q
0
2

w
p
0
2

w
p,q
1,1
2

Figure 6.1: QPBO method graph construction

■ two special nodes, the source s and the sink t, are also present;

■ for every non-null weight, two edges are added:

Weight Edges to create Edges’ capacities

w i0 xi → t s → x̄i
w i0
2

w i1 s → xi x̄i → t
w i1
2

w i ,j0,0 xi → x̄j xj → x̄i
w i ,j0,0
2

w i ,j0,1 xi → xj x̄j → x̄i
w i ,j0,1
2

w i ,j1,0 xj → xi x̄i → x̄j
w i ,j1,0
2

w i ,j1,1 x̄j → xi x̄i → xj
w i ,j1,1
2

There is thus a one-to-one correspondence between weights (apart from
w∅) and such a graph. Figure 6.1 shows a visual explanation of how the
graph is built. By construction, it has a form of symmetry; for each edge
a → b with weight c , there is an edge b̄ → ā with weight c (with ¯̄a = a,
s̄ = t and t̄ = s).

The value of a minimum s-t cut inside this graph actually gives the
objective value of the linear relaxation of the problem[Rot+07], and has
additional interesting properties allowing to prune the domains:

110 Chapter 6. Discussion & future directions

Theorem 6.1.1 (Weak persistency). [Rot+07] Given the two sets of nodes
S and T related to a minimum s-t cut (with s ∈ S and t ∈ T), we have
that there exists at least an optimal solution such that:

xi = 0 if xi ∈ S ∧ x̄i ∈ T (6.11)

xi = 1 if x̄i ∈ S ∧ xi ∈ T (6.12)

the variables respecting at least one of those equations are said to be
labeled by the s-t cut.

As there are multiple possible minimum cuts, different cuts can give
a different number of labeled nodes; a maximum label can be obtained
by computing strongly connected components on the residual graph (see
[Rot+07] for the full algorithm). Similarly, it is possible to compute the
minimum cut that labels the minimum number of variables: this labeling
has the property that all optimal solutions have this partial labeling (strong
persistency).

Computing the minimum s-t cut is usually done using a maximum-flow
algorithm. Some algorithms are based on finding augmenting paths, i.e.
path from the s to t in the residual graph with non-zero minimum weight
w , then pushing this flow w through this path. This operation can actually
be seen as a reparametrization of the QPB function[Rot+07]1.

6.1.3 MSS as a QPBO problem

A maximum-sum submatrix problem with a matrix M can be encoded as a
QPBO problem by using as variables the rows ri and the columns cj , with
the following weights:

w ri ,cj =

(
0 0

0 −Mi ,j

)
∀ i ∈ LR, j ∈ LC

all the other weights being zero. The minimum obtained by the QPBO
encoding is then minus the maximum sum of the original problem. A

1This breaks the "symmetry" property, but it can be restored easily by updating the
edges’ weights as follows: for each edge a and its mate b, do w ′a ← wa+wb

2
, w ′b ←

wa+wb
2

6.1. MSS as a BQPBO problem 111

possible normal form can be:

w∅ =
∑

i ,j |Mi ,j>0
−Mi ,j

w ri =
(∑

j |Mi ,j>0Mi ,j 0
)

w cj =
(
0 0

)

w ri ,cj =

(
0 0

Mi ,j 0

)
if Mi ,j ≥ 0(

0 0

0 −Mi ,j

)
if Mi ,j < 0

The MSS problem has a specific form: the variables ri doesn’t inter-
act between themselves, i.e. they don’t have edges between them in the
QPBO graph. The same goes for the variables cj . It is thus a bipartite
quadratic pseudo-boolean problem, which has been studied (theoretically)
in [PSK14].

The output of the QPBO method (the minimum cut value) is equiva-
lent to the linear relaxation of the MSS.

Based on ongoing experimentations made while writing this thesis, us-
ing QPBO with efficient maximum flows algorithms (such as push-relabel-
based algorithms) is faster than computing the LP bound using the La-
grangian (see section 2.4) by at least an order of magnitude.

6.1.4 Implications for other problems

Improvement on solving speed (and pruning) in the MSS may speed up the
existing algorithms for the other problem presented in this thesis, notably
for the Maximum Weighted Set of Disjoint Submatrices (MWSDS, see
chapter 5), where finding a MSS is actually a subroutine (to generate a
column in the column generation formulation).

For the CMSS (where the minimum and maximum number of selected
rows/columns is limited), the implications are unclear; whether the QPBO
graph is usable in this context or not is an open question. At least it
provides a valid upper bound while not taking into account the cardinality
constraints. The central concept of reparametrization must be adapted to
account for the cardinalities, which does not seem trivial at first glance.

6.1.5 Ongoing work: a solver based on QPBO

There is apparently no complete solver based on QPBO in the literature.
The closest existing match is solver of cost-function networks/WCSP such

112 Chapter 6. Discussion & future directions

as Toulbar2[Hur+16; All+16; Coo+10]; however they use heuristics to
compute a lower bound rather than solving exactly the linear approximation
or rely on generic LP solvers[Coo+10].

We propose a simple architecture for a branch-and-bound QPBO
solver, inspired by CP solvers such as OscaR[Osc12] and MiniCP[MSV18].
The main particularity of the solver would be that it maintains the underly-
ing QPBO graph, notably during backtracking operations, and for this we
propose the usage of trailing to maximize efficiency and minimize memory
usage (see [Sch99] for a discussion between copying and trailing). The
solver would thus maintain a variable for each edge of the residual graph.

Taking a decision implies that the graph must be updated, "forcing"
a variable to respect the properties of equations (6.11) and (6.12). This
can be done by using a reparametrization in linear time (see [Rot+07] page
12).

Such a solver would apply multiple times the maximum-flow computa-
tion (pruning nodes and domains) and the various pruning heuristics (such
a the ones in chapter 2, but also with existing local heuristics for QPBO
such a QPBOP[Rot+07]), until a fixed-point is reached where no further
inference can be made. A listener system[MSV18] would allow the various
heuristics to maintain their state during the computation.

Preliminary work (involving a functional solver implementing the ideas
above) shows that there is an important speedup (multiple orders of mag-
nitude) versus the method presented in Chapter 2, and empirically stress
the importance of using trailing versus copying and of the choice of the
maximum flow algorithm, with Push-relabel algorithms getting the best
results.

6.2 Bounding heuristics as search heuristics

As a general rule, most experiments made during this thesis use a static
branching strategy. However, most bounding methods presented assign a
weight to each variable (generally its weight in the LP relaxation of the
problem). These could be used as a search heuristic,to direct the search
towards variables having a greater weight.

Experiments made during the thesis using this kind of ideas have gen-
erally been disappointing. We conjecture that always going in the direction
of the best variable w.r.t. the LP relaxation actually doesn’t allow the LP
relaxation to give more accurate bounds.

6.3. Lagrangian-based bounds 113

6.3 Lagrangian-based bounds

The performance of the Lagrangian method in Chapter 2 is disappointing,
as it is not able to compete with the Big-M-based bounds in practice.
However, the implementation was made in plain Java, without any par-
ticular optimization. Exploring the opportunity of explicitly using modern
vector CPU extensions, or even deep learning frameworks optimized for
gradient descent and floating point computations could help make this
method more competitive.

Moreover, aside this purely technical point, the way the subgradient
descent algorithm is made can (and should probably) be changed. Adding
less trivial techniques such as Nesterov momentum[Nes83] or modern op-
timizers would probably help to obtain a faster convergence.

6.4 Composability

The problems approached in this manuscript all (except C-MSS) have an
important feature: each possible submatrix is (part of) a solution, that is,
the entire space of submatrices is the search space. The bounds, reduced-
cost filtering and other methods we derive in the previous chapters all
rely on this fact. Sadly, it implies that some of the filtering we use is
not composable: adding a new constraint will, in general, break the results
obtained. Suffice to say, the length of chapter 3 where we add a cardinality
constraint to the MSS is proof in itself that it is indeed not trivial.

Additional research in composability to make the known filtering al-
gorithms (or others) work with different classes of constraints may prove
beneficial for the end user.

6.5 Dual value redistribution in MWSDS

Again in Chapter 5, we presented a trick to reduce the number of redundant
constraint in the RMP, reducing the number of dual variables. This trick
made each constraint correspond to a group of cells intersecting the same
submatrices rather than a single cell of the original matrix.

We chose during this thesis to redistribute equally the dual value on the
cells it corresponds to. However, it is possible that alternative strategies
may be beneficial, such as focusing the redistribution only on positive cells.

Conclusion 7
In this thesis we explored four biclustering problems:

■ the Maximum-Sum Submatrix problem, that aims at finding a sub-
matrix whose elements sum is maximal. We introduced new bounds
for the problem, and used them in a CP framework, along with dom-
inance rules and reduced-cost filtering;

■ A variant with cardinality constraints, C-MSS, to allow users to con-
trol the output more precisly. We adapted the bound of the MSS to
account for these new constraints.

■ the Maximum Weighted Submatrix Coverage Problem (MWSCP),
to find multiple submatrices at once in datasets where the solution
can be composed of multiple biclusters. We use a Finite-State-
Machine based constraint to maintain the state of the bounds in a
CP framework.

■ the Maximum Weighted Set of Disjoint Submatrices (MWSDS),
that forbids overlaps. A column generation scheme is used, which
works by finding a single MSS at a time on a modified matrix, then
solving a master problem with the found MSSs, before finding a new
one, and until convergence.

The research on these problems was motivated by the analysis of gene
expression matrices, that lists, for a series of samples (rows) and genes
(columns), the expression (cells) of this gene in that sample. Submatrices
with large sums represent subset of genes very active in large subsets of
samples. Maximum-sum submatrices and adjacent techniques have proven
useful in such contexts [BSD19], and we redirect to the thesis of Vincent
Branders, co-author of some articles on which this thesis is based, for an
in-depth analysis of the biological aspects of the usage of these methods
[Bra21]. Examples have been shown in this thesis of other uses of the
MSS family of techniques and problems. In practice, these data-mining
tools can be used on any matrices whose content represents the force of
a relation between the rows and the columns.

115

116 Chapter 7. Conclusion

Chapter 6 discussed some of the open doors in this field of research.
The QPBO algorithms is an interesting next-step for solving the MSS
problem (and also the MWSDS, as the column generation scheme uses
an MSS solver underneath). While the QPBO is an incomplete algorithm,
an adaption of the algorithm and its inclusion in a complete solver could
provide large speedup compared to the work presented in this thesis. An-
other interesting direction is composability: while efficient, the techniques
presented in this thesis are ad-hoc and not composable: adding a new con-
straint to an existing problem is complex and will probably break existing
filtering algorithms.

Bibliography

[Agr+96] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo. “Fast discovery of association rules”. In: Advances
in knowledge discovery and data mining. USA: American As-
sociation for Artificial Intelligence, Feb. 1996, pp. 307–328.
isbn: 978-0-262-56097-9. (Visited on 03/24/2020).

[AH14] C. C. Aggarwal and J. Han, eds. Frequent Pattern Mining.
Springer International Publishing, 2014. doi: 10.1007/978-
3-319-07821-2.

[All+16] D. Allouche, C. Bessiere, P. Boizumault, S. de Givry, P.
Gutierrez, J. H. Lee, K. L. Leung, S. Loudni, J.-P. Métivier,
T. Schiex, and Y. Wu. “Tractability-preserving transforma-
tions of global cost functions”. In: Artificial Intelligence 238
(2016), pp. 166–189. issn: 0004-3702. doi: https://doi.
org/10.1016/j.artint.2016.06.005.

[AS+94] R. Agrawal, R. Srikant, et al. “Fast algorithms for mining
association rules”. In: Proc. 20th int. conf. very large data
bases, VLDB. Vol. 1215. Citeseer. 1994, pp. 487–499.

[BBV04] S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimiza-
tion. Cambridge university press, 2004.

[BCR05] N. Beldiceanu, M. Carlsson, and J.-X. Rampon. “Global con-
straint catalog”. In: (2005).

[BDT16] A. Backurs, N. Dikkala, and C. Tzamos. “Tight Hardness
Results for Maximum Weight Rectangles”. In: 43rd Interna-
tional Colloquium on Automata, Languages, and Program-
ming (ICALP 2016). Ed. by I. Chatzigiannakis, M. Mitzen-
macher, Y. Rabani, and D. Sangiorgi. Vol. 55. Leibniz Inter-
national Proceedings in Informatics (LIPIcs). Dagstuhl, Ger-
many: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2016, 81:1–81:13. isbn: 978-3-95977-013-2. doi: 10.4230
/LIPIcs.ICALP.2016.81.

117

https://doi.org/10.1007/978-3-319-07821-2
https://doi.org/10.1007/978-3-319-07821-2
https://doi.org/https://doi.org/10.1016/j.artint.2016.06.005
https://doi.org/https://doi.org/10.1016/j.artint.2016.06.005
https://doi.org/10.4230/LIPIcs.ICALP.2016.81
https://doi.org/10.4230/LIPIcs.ICALP.2016.81

118 BIBLIOGRAPHY

[Ben+02] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. “Discovering
local structure in gene expression data: the order-preserving
submatrix problem”. In: Proceedings of the sixth annual inter-
national conference on Computational biology. 2002, pp. 49–
57.

[BGN14] B. Babaki, T. Guns, and S. Nijssen. “Constrained Cluster-
ing Using Column Generation”. In: Integration of AI and OR
Techniques in Constraint Programming. Ed. by H. Simonis.
Cham: Springer International Publishing, 2014, pp. 438–454.
isbn: 978-3-319-07046-9.

[BH02] E. Boros and P. L. Hammer. “Pseudo-Boolean optimization”.
In: Discrete Applied Mathematics 123.1 (2002), pp. 155–
225. issn: 0166-218X. doi: https://doi.org/10.1016/S0
166-218X(01)00341-9.

[Bra+19a] V. Branders, G. Derval, P. Schaus, and P. Dupont. “Mining a
Maximum Weighted Set of Disjoint Submatrices”. In: Discov-
ery Science. Ed. by P. Kralj Novak, T. muc, and S. Deroski.
Lecture Notes in Computer Science. Cham: Springer Interna-
tional Publishing, 2019, pp. 18–28. isbn: 978-3-030-33778-0.
doi: 10.1007/978-3-030-33778-0_2.

[Bra21] V. Branders. “Finding submatrices of maximal sum : appli-
cations to the analysis of gene expression data”. PhD thesis.
UCL - Université Catholique de Louvain, 2021. (Visited on
09/09/2021).

[BSD17a] V. Branders, P. Schaus, and P. Dupont. “Combinatorial Opti-
mization Algorithms to Mine a Sub-Matrix of Maximal Sum”.
In: International Workshop on New Frontiers in Mining Com-
plex Patterns. Springer. 2017, pp. 65–79.

[BSD17b] V. Branders, P. Schaus, and P. Dupont. “Mining a sub-matrix
of maximal sum”. In: Proceedings of the 6th International
Workshop on New Frontiers in Mining Complex Patterns in
conjunction with ECML-PKDD 2017. 2017.

[BSD19] V. Branders, P. Schaus, and P. Dupont. “Identifying gene-
specific subgroups: an alternative to biclustering”. In: BMC
Bioinformatics 20.1 (Dec. 2019), p. 625. issn: 1471-2105.
doi: 10 . 1186 / s12859 - 019 - 3289 - 0. (Visited on
03/24/2020).

[CC00] Y. Cheng and G. M. Church. “Biclustering of expression
data.” In: Ismb. Vol. 8. 2000. 2000, pp. 93–103.

https://doi.org/https://doi.org/10.1016/S0166-218X(01)00341-9
https://doi.org/https://doi.org/10.1016/S0166-218X(01)00341-9
https://doi.org/10.1007/978-3-030-33778-0_2
https://doi.org/10.1186/s12859-019-3289-0

BIBLIOGRAPHY 119

[CF15] H. Cambazard and J.-G. Fages. “New filtering for AtMost-
NValue and its weighted variant: A Lagrangian approach”. In:
Constraints 20.3 (July 2015), pp. 362–380. issn: 1383-7133,
1572-9354. doi: 10.1007/s10601-015-9191-0. (Visited on
03/05/2020).

[Coo+10] M. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki,
and T. Werner. “Soft arc consistency revisited”. In: Artificial
Intelligence 174.7 (2010), pp. 449–478. issn: 0004-3702. doi:
https://doi.org/10.1016/j.artint.2010.02.001.

[CST+00] A. Califano, G. Stolovitzky, Y. Tu, et al. “Analysis of gene
expression microarrays for phenotype classification.” In: Ismb.
Vol. 8. 2000, pp. 75–85.

[Dao+18a] T. Dao, F. Docquier, M. Maurel, and P. Schaus. “Global
migration in the 20th and 21st centuries: the unstoppable
force of demography”. In: (2018).

[Dao+18b] T. H. Dao, F. Docquier, M. Maurel, and P. Schaus. Global
Migration in the 20th and 21st Centuries: the Unstoppable
Force of Demography. FERDI Working paper P223. Mar.
2018.

[Dao+21] T. H. Dao, F. Docquier, M. Maurel, and P. Schaus. “Global
migration in the twentieth and twenty-first centuries: the un-
stoppable force of demography”. In: Review of World Eco-
nomics 157.2 (May 2021), pp. 417–449. issn: 1610-2886.
doi: 10.1007/s10290-020-00402-1.

[De +97] M. De Berg, M. Van Kreveld, M. Overmars, and O.
Schwarzkopf. “Computational geometry”. In: Computational
geometry. Springer, 1997, pp. 1–17.

[Der+19b] G. Derval, V. Branders, P. Dupont, and P. Schaus. “The
maximum weighted submatrix coverage problem: A CP ap-
proach”. In: Integration of Constraint Programming, Artificial
Intelligence, and Operations Research. Ed. by W.-J. van Ho-
eve. Springer International Publishing, 2019.

[Dhi01] I. S. Dhillon. “Co-Clustering Documents and Words Us-
ing Bipartite Spectral Graph Partitioning”. In: Proceedings
of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’01. San
Francisco, California: Association for Computing Machinery,
2001, pp. 269–274. isbn: 158113391X. doi: 10.1145/50251
2.502550.

https://doi.org/10.1007/s10601-015-9191-0
https://doi.org/https://doi.org/10.1016/j.artint.2010.02.001
https://doi.org/10.1007/s10290-020-00402-1
https://doi.org/10.1145/502512.502550
https://doi.org/10.1145/502512.502550

120 BIBLIOGRAPHY

[DS20a] G. Derval and P. Schaus. Maximal-Sum Submatrix search
using a hybrid Contraint Programming/Linear Programming
approach: source code. Version 0.1. Aug. 2020. doi: 10.528
1/zenodo.3992317.

[DS20b] G. Derval and P. Schaus. Software Open Access Maximal-
Sum Submatrix search using a hybrid Contraint Program-
ming/Linear Programming approach: experiment code and
results. Version 1.0. Zenodo, Aug. 2020. doi: 10 . 5281 /

zenodo.3992324.

[FLM99] F. Focacci, A. Lodi, and M. Milano. “Cost-based domain fil-
tering”. In: International Conference on Principles and Prac-
tice of Constraint Programming. Springer. 1999, pp. 189–
203.

[Gay+15] S. Gay, R. Hartert, C. Lecoutre, and P. Schaus. “Con-
flict Ordering Search for Scheduling Problems”. In: Principles
and Practice of Constraint Programming. Ed. by G. Pesant.
Cham: Springer International Publishing, 2015, pp. 140–148.
isbn: 978-3-319-23219-5.

[GG08] N. Gillis and F. Glineur. Nonnegative Factorization and The
Maximum Edge Biclique Problem. 2008. arXiv: 0810.4225
[math.NA].

[GG13] N. Gillis and F. Glineur. “A continuous characterization of
the maximum-edge biclique problem”. In: Journal of Global
Optimization 58.3 (Mar. 2013), pp. 439–464. doi: 10.1007
/s10898-013-0053-2.

[GGM04] F. Geerts, B. Goethals, and T. Mielikäinen. “Tiling
Databases”. In: Discovery Science. Ed. by E. Suzuki and S.
Arikawa. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2004, pp. 278–289. isbn: 978-3-540-30214-8.
doi: 10.1007/978-3-540-30214-8_22.

[GJ90] M. R. Garey and D. S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. New York, NY,
USA: W. H. Freeman & Co., 1990. isbn: 0716710455.

[GLD00] G. Getz, E. Levine, and E. Domany. “Coupled two-way clus-
tering analysis of gene microarray data”. In: Proceedings of
the National Academy of Sciences 97.22 (2000), pp. 12079–
12084.

[GNS09] I. Griva, S. G. Nash, and A. Sofer. Linear and nonlinear op-
timization. Vol. 108. Siam, 2009.

https://doi.org/10.5281/zenodo.3992317
https://doi.org/10.5281/zenodo.3992317
https://doi.org/10.5281/zenodo.3992324
https://doi.org/10.5281/zenodo.3992324
https://arxiv.org/abs/0810.4225
https://arxiv.org/abs/0810.4225
https://doi.org/10.1007/s10898-013-0053-2
https://doi.org/10.1007/s10898-013-0053-2
https://doi.org/10.1007/978-3-540-30214-8_22

BIBLIOGRAPHY 121

[Gui+18] D. Guillaume, B. Vincent, D. Pierre, and S. Pierre. Synthetic
dataset used in "The maximum weighted submatrix coverage
problem: A CP approach". Nov. 2018. doi: 10.5281/zenod
o.1688740.

[Gur18] L. Gurobi Optimization. Gurobi Optimizer Reference Manual.
2018.

[Han+04] J. Han, J. Pei, Y. Yin, and R. Mao. “Mining Frequent
Patterns without Candidate Generation: A Frequent-Pattern
Tree Approach”. In: Data Mining and Knowledge Discovery
8.1 (Jan. 2004), pp. 53–87. issn: 1573-756X. doi: 10.1023
/B:DAMI.0000005258.31418.83. (Visited on 03/24/2020).

[Han+20] B. A. Han, S. M. ORegan, J. Paul Schmidt, and J. M. Drake.
“Integrating data mining and transmission theory in the ecol-
ogy of infectious diseases”. In: Ecology Letters 23.8 (2020),
pp. 1178–1188. doi: https://doi.org/10.1111/ele.1352
0. eprint: https://onlinelibrary.wiley.com/doi/pdf/1
0.1111/ele.13520.

[Har72a] J. A. Hartigan. “Direct Clustering of a Data Matrix”. In: Jour-
nal of the American Statistical Association 67.337 (1972),
pp. 123–129. issn: 01621459.

[Har72b] J. A. Hartigan. “Direct Clustering of a Data Matrix”. In:
Journal of the American Statistical Association 67.337 (Mar.
1972), pp. 123–129. issn: 0162-1459. doi: 10.1080/016214
59.1972.10481214. (Visited on 02/25/2019).

[HDT92] P. V. Hentenryck, Y. Deville, and C. Teng. “A Generic Arc-
Consistency Algorithm and its Specializations”. In: Artif. In-
tell. 57 (1992), pp. 291–321.

[HE80] R. M. Haralick and G. L. Elliott. “Increasing tree search effi-
ciency for constraint satisfaction problems”. In: Artificial in-
telligence 14.3 (1980), pp. 263–313.

[HHS84] P. L. Hammer, P. Hansen, and B. Simeone. “Roof dual-
ity, complementation and persistency in quadratic 01 opti-
mization”. In: Mathematical Programming 28.2 (Feb. 1984),
pp. 121–155. issn: 1436-4646. doi: 10.1007/BF02612354.
(Visited on 08/12/2021).

[Hur+16] B. Hurley, B. Osullivan, D. Allouche, G. Katsirelos, T. Schiex,
M. Zytnicki, and S. De Givry. “Multi-language evaluation of
exact solvers in graphical model discrete optimization”. In:
Constraints 21.3 (2016), pp. 413–434.

https://doi.org/10.5281/zenodo.1688740
https://doi.org/10.5281/zenodo.1688740
https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/10.1023/B:DAMI.0000005258.31418.83
https://doi.org/https://doi.org/10.1111/ele.13520
https://doi.org/https://doi.org/10.1111/ele.13520
https://onlinelibrary.wiley.com/doi/pdf/10.1111/ele.13520
https://onlinelibrary.wiley.com/doi/pdf/10.1111/ele.13520
https://doi.org/10.1080/01621459.1972.10481214
https://doi.org/10.1080/01621459.1972.10481214
https://doi.org/10.1007/BF02612354

122 BIBLIOGRAPHY

[IOC] IOC Research and Reference Service, The Guardian. Olympic
Sports and Medals, 1896-2014. https://www.kaggle.com/
the-guardian/olympic-games.

[Kar72] R. M. Karp. “Reducibility among combinatorial problems”.
In: Complexity of computer computations. Springer, 1972,
pp. 85–103.

[KR07] V. Kolmogorov and C. Rother. “Minimizing nonsubmodular
functions with graph cuts-a review”. In: IEEE transactions
on pattern analysis and machine intelligence 29.7 (2007),
pp. 1274–1279.

[Krz+09] M. I. Krzywinski, J. E. Schein, I. Birol, J. Connors, R. Gas-
coyne, D. Horsman, S. J. Jones, and M. A. Marra. “Circos: An
information aesthetic for comparative genomics”. In: Genome
Research (2009). doi: 10.1101/gr.092759.109. eprint:
http://genome.cshlp.org/content/early/2009/06/15

/gr.092759.109.full.pdf+html.

[Le +14] T. Le Van, M. van Leeuwen, S. Nijssen, A. C. Fierro, K. Mar-
chal, and L. De Raedt. “Ranked Tiling”. In: Machine Learning
and Knowledge Discovery in Databases. Ed. by T. Calders, F.
Esposito, E. Hüllermeier, and R. Meo. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2014, pp. 98–
113. isbn: 978-3-662-44851-9. doi: 10.1007/978-3-662-4
4851-9_7.

[Ley09] M. Ley. “DBLP - Some Lessons Learned”. In: PVLDB 2.2
(2009), pp. 1493–1500. doi: 10.14778/1687553.1687577.

[LZ05] N. Lavra and B. Zupan. “Data Mining in Medicine”. In:
Data Mining and Knowledge Discovery Handbook. Ed. by
O. Maimon and L. Rokach. Boston, MA: Springer US, 2005,
pp. 1107–1137. isbn: 978-0-387-25465-4. doi: 10.1007/0-
387-25465-X_52.

[Mac81] A. K. Mackworth. “Consistency in Networks of Relations”.
In: Readings in Artificial Intelligence. Ed. by B. L. Webber
and N. J. Nilsson. Morgan Kaufmann, 1981, pp. 69–78. isbn:
978-0-934613-03-3. doi: https://doi.org/10.1016/B978
-0-934613-03-3.50009-X.

[Med+02] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C.
Diot. “Traffic matrix estimation: Existing techniques and new
directions”. In: ACM SIGCOMM Computer Communication
Review. Vol. 32. ACM. 2002, pp. 161–174.

https://www.kaggle.com/the-guardian/olympic-games
https://www.kaggle.com/the-guardian/olympic-games
https://doi.org/10.1101/gr.092759.109
http://genome.cshlp.org/content/early/2009/06/15/gr.092759.109.full.pdf+html
http://genome.cshlp.org/content/early/2009/06/15/gr.092759.109.full.pdf+html
https://doi.org/10.1007/978-3-662-44851-9_7
https://doi.org/10.1007/978-3-662-44851-9_7
https://doi.org/10.14778/1687553.1687577
https://doi.org/10.1007/0-387-25465-X_52
https://doi.org/10.1007/0-387-25465-X_52
https://doi.org/https://doi.org/10.1016/B978-0-934613-03-3.50009-X
https://doi.org/https://doi.org/10.1016/B978-0-934613-03-3.50009-X

BIBLIOGRAPHY 123

[MO04] S. C. Madeira and A. L. Oliveira. “Biclustering algorithms for
biological data analysis: a survey”. In: IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics (TCBB)
1.1 (2004), pp. 24–45.

[MSV18] L. Michel, P. Schaus, and P. Van Hentenryck. MiniCP: A
Lightweight Solver for Constraint Programming. Available
from https://minicp.bitbucket.io. 2018.

[Mur] K. G. Murty. Linear programming. Springer.

[Nes83] Y. Nesterov. “A method for solving the convex programming
problem with convergence rate O(1/k2)”. In: Proceedings of
the USSR Academy of Sciences 269 (1983), pp. 543–547.

[Osc12] OscaR Team. OscaR: Scala in OR. Available from https:

//bitbucket.org/oscarlib/oscar. 2012.

[Ped99] W. Pedrycz. “Linguistic Data Mining”. In: Computing with
Words in Information/Intelligent Systems 2: Applications. Ed.
by L. A. Zadeh and J. Kacprzyk. Heidelberg: Physica-Verlag
HD, 1999, pp. 399–420. isbn: 978-3-7908-1872-7. doi: 10.1
007/978-3-7908-1872-7_19.

[Pee03] R. Peeters. “The maximum edge biclique problem is NP-
complete”. In: Discrete Applied Mathematics 131.3 (Sept.
2003), pp. 651–654. issn: 0166-218X. doi: 10.1016/S0166
-218X(03)00333-0. (Visited on 02/25/2019).

[PGA15] B. Pontes, R. Giráldez, and J. S. Aguilar-Ruiz. “Biclustering
on expression data: A review”. In: Journal of Biomedical Infor-
matics 57 (Oct. 2015), pp. 163–180. issn: 1532-0464. doi:
10.1016/j.jbi.2015.06.028. (Visited on 03/24/2020).

[PSK14] A. P. Punnen, P. Sripratak, and D. Karapetyan. The bipartite
unconstrained 0-1 quadratic programming problem: polyno-
mially solvable cases. 2014. arXiv: 1212.3736 [math.OC].

[Rot+07] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szummer.
“Optimizing binary MRFs via extended roof duality”. In: 2007
IEEE conference on computer vision and pattern recognition.
IEEE. 2007, pp. 1–8.

[RVW06] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint
programming. Elsevier, 2006.

https://bitbucket.org/oscarlib/oscar
https://bitbucket.org/oscarlib/oscar
https://doi.org/10.1007/978-3-7908-1872-7_19
https://doi.org/10.1007/978-3-7908-1872-7_19
https://doi.org/10.1016/S0166-218X(03)00333-0
https://doi.org/10.1016/S0166-218X(03)00333-0
https://doi.org/10.1016/j.jbi.2015.06.028
https://arxiv.org/abs/1212.3736

124 BIBLIOGRAPHY

[SAG17] P. Schaus, J. O. R. Aoga, and T. Guns. “CoverSize: A Global
Constraint for Frequency-Based Itemset Mining”. In: Princi-
ples and Practice of Constraint Programming. Ed. by J. C.
Beck. Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2017, pp. 529–546. isbn: 978-3-
319-66158-2. doi: 10.1007/978-3-319-66158-2_34.

[Sai+13] V. L. C. de Saint-Marcq, P. Schaus, C. Solnon, and C.
Lecoutre. “Sparse-Sets for Domain Implementation”. In: CP
workshop on Techniques foR Implementing Constraint pro-
gramming Systems (TRICS). 2013, pp. 1–10.

[Sav97] M. Savelsbergh. “A Branch-and-Price Algorithm for the Gen-
eralized Assignment Problem”. In: Operations Research 45.6
(1997), pp. 831–841. doi: 10.1287/opre.45.6.831.

[Sch99] C. Schulte. “Comparing Trailing and Copying for Constraint
Programming.” In: ICLP. Vol. 99. 1999, pp. 275–289.

[Sel04] M. Sellmann. “Theoretical Foundations of CP-Based La-
grangian Relaxation”. In: Principles and Practice of Con-
straint Programming CP 2004. Ed. by M. Wallace. Lec-
ture Notes in Computer Science. Berlin, Heidelberg: Springer,
2004, pp. 634–647. isbn: 978-3-540-30201-8. doi: 10.1007
/978-3-540-30201-8_46.

[Sha98] P. Shaw. “Using constraint programming and local search
methods to solve vehicle routing problems”. In: International
conference on principles and practice of constraint program-
ming. Springer. 1998, pp. 417–431.

[SMD03] Q. Sheng, Y. Moreau, and B. De Moor. “Biclustering microar-
ray data by Gibbs sampling”. In: Bioinformatics 19.suppl_2
(2003), pp. ii196–ii205.

[Sou+08] M. C. de Souto, I. G. Costa, D. S. de Araujo, T. B. Luder-
mir, and A. Schliep. “Clustering cancer gene expression data:
a comparative study”. In: BMC bioinformatics 9.1 (2008),
p. 497.

[Tan08] J. Tan. “Inapproximability of Maximum Weighted Edge Bi-
clique and Its Applications”. In: Theory and Applications of
Models of Computation. Ed. by M. Agrawal, D. Du, Z. Duan,
and A. Li. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2008, pp. 282–293. isbn: 978-3-540-79228-4.
doi: 10.1007/978-3-540-79228-4_25.

https://doi.org/10.1007/978-3-319-66158-2_34
https://doi.org/10.1287/opre.45.6.831
https://doi.org/10.1007/978-3-540-30201-8_46
https://doi.org/10.1007/978-3-540-30201-8_46
https://doi.org/10.1007/978-3-540-79228-4_25

BIBLIOGRAPHY 125

[The18] The World Bank. Migration and Remittances Data. data re-
trieved from "Bilateral Migration Matrix 2018", http://

www.worldbank.org/en/topic/migrationremittances

diasporaissues/brief/migration-remittances-data.
2018.

[TSS02] A. Tanay, R. Sharan, and R. Shamir. “Discovering statistically
significant biclusters in gene expression data”. In: Bioinfor-
matics 18.Suppl 1 (July 2002), S136–S144. issn: 1367-4803,
1460-2059. doi: 10.1093/bioinformatics/18.suppl_1
.S136. (Visited on 11/22/2019).

[TZR18] M. C. Thomas, W. Zhu, and J. A. Romagnoli. “Data min-
ing and clustering in chemical process databases for moni-
toring and knowledge discovery”. In: Journal of Process Con-
trol 67 (2018). Big Data: Data Science for Process Control
and Operations, pp. 160–175. issn: 0959-1524. doi: https:
//doi.org/10.1016/j.jprocont.2017.02.006.

[UF98] L. H. Ungar and D. P. Foster. “A Formal Statistical Approach
to Collaborative Filtering”. In: In CONALD98. 1998.

[Van+02] L. J. Van’t Veer, H. Dai, M. J. Van De Vijver, Y. D. He, A. A.
Hart, M. Mao, H. L. Peterse, K. Van Der Kooy, M. J. Mar-
ton, A. T. Witteveen, et al. “Gene expression profiling pre-
dicts clinical outcome of breast cancer”. In: nature 415.6871
(2002), p. 530.

[Wol20a] L. Wolsey. “Branch and Bound”. In: Integer Programming.
John Wiley & Sons, Ltd, 2020. Chap. 7, pp. 113–138. isbn:
978-1-1196-0647-5. doi: https://doi.org/10.1002/9781
119606475.ch7. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/9781119606475.ch7.

[Wol20b] L. Wolsey. “Column (and Row) Generation Algorithms”.
In: Integer Programming. John Wiley & Sons, Ltd, 2020.
Chap. 11, pp. 213–233. isbn: 978-1-1196-0647-5. doi:
https://doi.org/10.1002/9781119606475.ch11. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002

/9781119606475.ch11.

[Wol20c] L. Wolsey. “Complexity and Problem Reductions”. In: Inte-
ger Programming. John Wiley & Sons, Ltd, 2020. Chap. 6,
pp. 95–111. isbn: 978-1-1196-0647-5. doi: https://doi.
org / 10 . 1002 / 9781119606475 . ch6. eprint: https : / /

onlinelibrary.wiley.com/doi/pdf/10.1002/978111

9606475.ch6.

http://www.worldbank.org/en/topic/migrationremittancesdiasporaissues/brief/migration-remittances-data
http://www.worldbank.org/en/topic/migrationremittancesdiasporaissues/brief/migration-remittances-data
http://www.worldbank.org/en/topic/migrationremittancesdiasporaissues/brief/migration-remittances-data
https://doi.org/10.1093/bioinformatics/18.suppl_1.S136
https://doi.org/10.1093/bioinformatics/18.suppl_1.S136
https://doi.org/https://doi.org/10.1016/j.jprocont.2017.02.006
https://doi.org/https://doi.org/10.1016/j.jprocont.2017.02.006
https://doi.org/https://doi.org/10.1002/9781119606475.ch7
https://doi.org/https://doi.org/10.1002/9781119606475.ch7
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch7
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch7
https://doi.org/https://doi.org/10.1002/9781119606475.ch11
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch11
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch11
https://doi.org/https://doi.org/10.1002/9781119606475.ch6
https://doi.org/https://doi.org/10.1002/9781119606475.ch6
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch6
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch6
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch6

126 BIBLIOGRAPHY

[Wol20d] L. Wolsey. “Cutting Plane Algorithms”. In: Integer Program-
ming. John Wiley & Sons, Ltd, 2020. Chap. 8, pp. 139–166.
isbn: 978-1-1196-0647-5. doi: https://doi.org/10.100
2/9781119606475.ch8. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/9781119606475.ch8.

[Wol20e] L. Wolsey. “Formulations”. In: Integer Programming. John
Wiley & Sons, Ltd, 2020. Chap. 1, pp. 1–23. isbn: 978-1-
1196-0647-5. doi: https://doi.org/10.1002/97811196
06475.ch1. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/9781119606475.ch1.

[Wol20f] L. Wolsey. “Lagrangian Duality”. In: Integer Programming.
John Wiley & Sons, Ltd, 2020. Chap. 10, pp. 195–212. isbn:
978-1-1196-0647-5. doi: https://doi.org/10.1002/9781
119606475.ch10. eprint: https://onlinelibrary.wiley.
com/doi/pdf/10.1002/9781119606475.ch10.

[Xie+18] J. Xie, A. Ma, A. Fennell, Q. Ma, and J. Zhao. “It is time
to apply biclustering: a comprehensive review of biclustering
applications in biological and biomedical data”. In: Briefings in
Bioinformatics 20.4 (Feb. 2018), pp. 1450–1465. issn: 1467-
5463. doi: 10.1093/bib/bby014. (Visited on 03/24/2020).

https://doi.org/https://doi.org/10.1002/9781119606475.ch8
https://doi.org/https://doi.org/10.1002/9781119606475.ch8
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch8
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch8
https://doi.org/https://doi.org/10.1002/9781119606475.ch1
https://doi.org/https://doi.org/10.1002/9781119606475.ch1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch1
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch1
https://doi.org/https://doi.org/10.1002/9781119606475.ch10
https://doi.org/https://doi.org/10.1002/9781119606475.ch10
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch10
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119606475.ch10
https://doi.org/10.1093/bib/bby014

	Preamble
	Acknowledgments
	Table of Contents
	Background
	Similar problems
	Biclustering
	Frequent Itemset Mining
	Maximum-edge biclique problem
	Contiguous maximum-sum submatrix

	Constraint Programming
	Inference and consistencies
	Constraint propagation
	Search and backtracking

	Linear Programming
	(Mixed-)Integer Linear Programming
	Overview of relaxations techniques used
	Column generation
	Lagrangian relaxation

	I Mining a single submatrix
	The Maximum-Sum Submatrix problem
	Definitions and notations
	Existing work, similar problems and variants
	Maximum Weighted Edge Biclique (MWEB)
	Other biclustering algorithms

	An upper bound solvable by inspection
	A Lagrangian-based upper bounding procedure
	A note about bounds' tightness and relations
	Using the bounds in a CP framework
	Dealing with partial solutions
	Update of the incumbent solution
	Upper bounding
	Reduced-Cost-based filtering
	Methods and complexities summary

	Experiments
	Complete search
	Large neighborhood search on bigger instances
	Upper bounding
	Real-life data

	Chapter conclusion

	Cardinality constrained MSS problem
	Constraining the choice of the submatrix
	An upper bound for the C-MSS problem
	Case (A)
	Case (B)
	Case (C)
	Wrapping up the upper bounds of C-MSS

	Adapting the upper-bound for partial solutions
	Incumbent solution update
	Experiments
	Chapter conclusion

	II Mining multiple submatrices
	Mining a Set of Overlapping Submatrices
	Introduction
	Applications

	CP approach
	Search Space
	Resolution via Depth-First-Search
	Functions selectUnBoundSetVar and selectValue
	Dominance rules
	propagateDominanceRule: dominance rules check
	updateBounds: efficient lower and upper bounds computations
	Large Neighborhood Search

	Experiments
	Synthetic Datasets
	Real Datasets
	Comparison Against Mixed Integer Linearly and Quadratically Constrained Programming

	Chapter conclusion

	Mining a Maximum Weighted Set of Disjoint Submatrices
	Introduction
	Constraint Programming Approaches
	Search Space
	Column Generation
	Avoiding redundancy
	Greedy Approach/Hot-Start
	Mixed Integer Linear Programming

	Experiments
	Combining Column Generation and Hot-Start
	Datasets
	Performances

	Chapter conclusion

	III Future directions and conclusion
	Discussion & future directions
	MSS as a Bipartite Quadratic Pseudo Boolean Optimization problem
	Quadratic Pseudo Boolean Optimization
	The QPBO method
	MSS as a QPBO problem
	Implications for other problems
	Ongoing work: a solver based on QPBO

	Bounding heuristics as search heuristics
	Lagrangian-based bounds
	Composability
	Dual value redistribution in MWSDS

	Conclusion

