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“I can’t, it’s too big !”

— Luke Skywalker





abstract

Nowadays, the Internet delivers more than 1 zettabyte (or 1,000,000,000,000,
000,000,000 bytes) of data to more than 3.2 billions of users every year. As a
consequence, network operators face difficult challenges due to the impressive
(and continuously growing) quantity of data to handle. Upgrading a network
infrastructure with better hardware, to accommodate such a growth, has a
significant cost (in terms of money and time) that network operators are trying
to reduce by improving the efficiency (and thus the lifespan) of their network
infrastructures.

Traffic Engineering is a domain of networking that specifically aims at
providing network operators with tools to optimize their networks. This thesis
focuses on the problem of increasing the efficiency of a network by controlling
the paths on which the traffic is sent using a new network framework called
Segment Routing. In particular, we present various algorithms based on Mixed
Integer Programming, Local Search, and Constraint Programming techniques
to solve this traffic engineering problem on large networks like the ones of
major Internet service providers.
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1
I N T R O D U C T I O N

In a few decades, the Internet has quickly evolved from ARPAnet, a research
network sponsored by the DARPA in the late 1960s [20], to a world spanning
infrastructure responsible for delivering a large variety of services (such as
social networks, video streaming, and cloud computing) to more than 3.2
billions people [51]. As of today, the global traffic delivered on IP networks
(read “the Internet”) has exceeded the symbolic quantity of one zettabytes (i.e.
1021 bytes). Cisco Systems, one major vendor of network solutions, estimates
that this global annual traffic will triple in 2021 reaching 3.34 zettabytes (see
Figure 1.1) [104]. To put things in perspective, that corresponds to 22,829

DVDs1 worth of data to be sent over the world every second.
If the Internet has considerably changed in terms of traffic, it has also

significantly evolved in shape. Indeed, the Internet is not a single network
anymore but a collection of interconnected smaller networks best known as
autonomous systems. An Autonomous System (AS) is a complete network on
its own which is managed by a single authority such as an Internet Service
Provider (ISP), a country, or a University campus [58]. Each AS is responsible
for defining its own intra-domain routing which can be seen as the process of
transmitting Internet traffic through the AS’s network. It is the job of the AS’s
network operators to configure intra domain routing in order to increase the
operational efficiency of the network and make sure that it answers the needs
of its customers.

1.1 traffic engineering

Traffic Engineering (TE) is a field of networking that aims at providing network
operators with tools to configure their network. Network congestion, a
phenomenon that occurs when network components have to carry more data
than what they can handle, is one of the most important problems TE has

1 Assuming a capacity of 4.7 GB.
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Figure 1.1: Cisco Systems Forecast (in italic) of global IP traffic [61].

to deal with because it almost always results in a degradation of the user
experience [9].

In this thesis, we focus on a particular aspect of TE that consists in increasing
the operational capacity of the network — and thus reduce its exposition to
congestion — by controlling the paths on which packets are forwarded. The
typical input of this problem, that we refer to as the general traffic engineering
problem, are (i) the AS’s network topology, (ii) a set of demands that represent
the different flows of packets that are forwarded on the network, and (iii) a
metric to minimize. We formalize them as follows.

Definition 1: Network. A network is a strongly connected directed graph T(N, E)
made of a set of nodes N and of a set of directed edges E. Each edge (u, v) ∈ E
is associated with a capacity cu,v ∈ N. We assume that each edge (u, v) ∈ E
has a sibling (v, u) ∈ E but both edges can be associated to different capacities.

Nodes and edges respectively represent the routers and the links of that
network. The capacity of an edge is its bandwidth, i.e., the maximum quantity
of bits the link can deliver per second.

Definition 2: Demand. A demand d is a triplet (s, t, k) that represents a
continuous flow of k packets, called the bandwidth of the demand, that
traverses a network T(N, E) from a source node s ∈ N to a destination node
t ∈ N.

A demand can spread itself over different paths in the network as long as
they all connect its source to its destination. Demands to be forwarded on the
network are contained in a set D. Note that several demands having the same
source and destination may exist thus allowing D to be much larger than |N|2.
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Definition 3: Link Utilisation. Given a routing policy, we can associate each
link (u, v) to a load loadu,v that corresponds to the total amount of packets
delivered through that link. The utilisation of (u, v) is loadu,v/cu,v and a link
is said to be congested if its utilisation exceeds 100%.

Definition 4: Network Utilisation. The network utilisation, denoted φ, is the
value of the maximum link utilisation φ = max(u,v)∈E

loadu,v
cu,v

.

Configuring the forwarding of packets so that the network utilisation is
minimized is a popular way to minimize the network exposition to conges-
tion in both online and offline contexts. Indeed, it tends to minimize the
consumption of network resources (offline) and thus to maximize the effective
capacity of the networkwhich is more likely to accept new demands (online).
Unfortunately, minimizing the network utilisation might result in a poor use
of the network resources if the network has bottlenecks, i.e. links whose utili-
sation cannot be reduced no matter the routing policy (see Section A.2). The
problem with bottlenecks is that they are likely to block the minimization of
the remaining link utilisations. Researchers and network operators have thus
proposed several alternatives that do not suffer from this weakness. In [10],
Balon et al. compared how the most famous of those alternative objective
functions perform in realistic contexts.

While Balon et al. analysis highlighted that the objective functions proposed
by Degrande et al. [30], Elwalid et al. [36], and Fortz et al. [40] provide
good results in many situations, it also showed that minimizing the network
utilisation performs well in most cases. Therefore, we chose to focus on
minimizing the network utilisation because it still remains a commonly used
objective function used by default by most researchers in the traffic engineering
community.

1.2 software defined network

Aside from the continuous growth of Internet traffic [104], dealing with con-
gestion has become a challenge of increasing difficulty for network operators.
Indeed, recent years have seen an important rise of sudden traffic surges
(due to newly popular content, social networks, or related flash crowds [112])
that tend to significantly stress the network devices. The most common —
and arguably the most reliable — solution network operators have found
to tackle those unexpected events is to provision their networks to operate
at 30-40% of their capacity. This has the advantage of virtually masking all
non-critical perturbation, but comes at the prohibitive cost of a two to three
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fold over-provisioned network infrastructure. For those reasons, dynamically
controlling the paths followed by the traffic has become an increasingly critical
challenge for network operators.

Software Defined Network (SDN) [69] is a new paradigm specifically de-
signed to solve the problems encountered by modern network applications.
In a nutshell, SDN exposes the configuration of the network’s devices through
high-level programmable interfaces (see Open-flow [74]) thus enabling net-
work management by a centralized software entity called SDN controller. Using
the SDN controller, network operators are now able to monitor and adapt
the behavior and functionalities of their network in reliable and secure way,
without having to manually configure the network devices anymore. It is
therefore not surprising that researchers and network operators have started
to rely on SDN controllers to automatically perform TE tasks by reconfiguring
the network devices when needed.

Unfortunately, prior works on SDN do not cover carrier-grade networks,
i.e., geographically distributed networks with hundreds of nodes like the ones
of ISPs. Those networks have special needs. Beyond manageability and flexi-
bility, ISPs operators also have to guarantee high scalability and to preserve
network performance upon link and node failure (e.g. to comply with Service
Level Agreements). Moreover, the large scale and geographic distribution
exacerbates SDN challenges like controller reactivity and controller-to-devices
communication. Consequently, SDN solutions targeting campuses [74], en-
terprises [22], and data-centers [4] cannot be easily ported to carrier-grade
networks. Even approaches designed for large area and inter data-centers
networks [60, 62, 64] do not fit. Indeed, they assume that (i) the scale of
the network is small, (ii) scalability and robustness play a more limited role
(e.g. because of the small number of demands [62]), and (iii) that the SDN
controller may control the traffic distribution itself [64].

1.3 declarative and expressive forwarding optimizer

DEFO (Declarative and Expressive Forwarding Optimizer) is an SDN-like
architecture — that we have designed with researchers from ICTEAM and
Cisco Systems — to solve the limitations of current SDN architecture when
applied to large carrier-grade networks.

DEFO follows the recent SDN trend of separating TE and connectivity
tasks [60, 62, 107] but goes a step further by explicitly separating the responsi-
bility of forwarding packets on three layers (see Figure 1.2):
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Optimization layer

Connectivity layer

Transport layerOperator

TE Controller
Dynamic changes

Static configurationHigh-level
Requirements

Figure 1.2: DEFO’s architecture.

• The transport layer corresponds to the physical transfer of the data and
is ensured by the network’s hardware.

• The connectivity layer ensures network-wide reachability, robustness and
fast failure recovery by generating and updating connectivity paths
for each pair of nodes in the network. In DEFO, we assume that the
connectivity layer is maintained by Interior Gateway Protocols (IGPs)
which are statically configured by the network operators (the necessary
background on IGPs is presented in Chapter 2).

• The optimization layer defines optimized TE paths that overwrite the
default connectivity paths for specific flows. In DEFO, we rely on the
segment routing architecture to define such optimized paths (segment
routing is presented in details in Chapter 3). It is the responsibility of the
DEFO controller to dynamically compute optimized segment routing
paths to dynamically maintain network effectiveness.

The DEFO controller is the brain of the whole architecture. To support
expressiveness, DEFO exposes a high-level interface that allows network
operators to state their network requirement declaratively and to rely on the
DEFO controller to translate these requirements into high quality solutions
with minimal congestion. Of course, computing paths that realize DEFO
goals in a carrier-grade network is far from being easy and requires the use of
sophisticated optimization techniques and algorithms.

5



introduction

1.4 content of the thesis

This thesis focuses on the design of optimization techniques and algorithms to
be embedded in the DEFO controller in order to compute high quality network
configurations that minimize the network’s congestion while respecting the
network’s requirements.

We start this long journey by presenting the necessary background about
Interior Gateway Protocols (i.e. the protocols used in the connectivity layer)
and show why IGP alone is not enough to answer the network requirements
considered in this thesis.

Chapter 3 presents the segment routing architecture, formalize the Segment
Routing Traffic Engineering Problem (SRTEP) and provides the reader with a
proof that the SRTEP belongs to the family of NP-Hard problems and is thus
computationally difficult to solve.

Chapter 4 focuses on the use of Mixed Integer Linear Programming (MILP)
techniques that are commonly used to solve traffic engineering problems
optimally. We present two different models to solve the SRTEP. The first one
is a direct extension of a model proposed by researcher from the Bell labs. We
show that this model is efficient but suffers from important scalability issue
when one aims to define segment routing paths with more than one segment.
The second model that we suggest aims specifically at avoiding the scalability
issues of the first model. We finally present a third model that is the result
of mixing both previous models to get the best of both world. Those three
models are then used to evaluate segment routing as a technology for TE and
its ability to reach optimal routing configurations under different assumptions
such as constraints on the connectivity layer.

Chapter 5 investigates the use of Local Search (LS) techniques to solve large
instances of the SRTEP in a very short time. We formalize the SRTEP as a LS
problem and define two connected neighborhoods with different properties
in terms of scalability. Finally we propose two highly scalable LS algorithms
and empirically analyze their robustness on a large sample of instances (see
Appendix A).

Chapter 6 considers the use of Constraint Programming (CP) and Large
Neighborhood Search (LNS) to design a fast and modular LS algorithm that
keeps the good scaling behavior of the LS algorithms presented in Chapter 5

but benefits from the declarative aspects that are typical of exact techniques
like MILP and CP. To achieve this, we define a new domain representation as
well as new propagators which, together, form a new language that extends
CP solvers to model the SRTEP in a natural way. In particular, we focus on the

6
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design of lightweight structures that allow our algorithm to scale well when
applied on large instances of the SRTEP. We finally compare the efficiency of
this approach against the best algorithms and models presented in Chapters 4

and 5.
Chapter 7 concludes the thesis by providing general advices to network

operators who might want to use the techniques presented in this thesis to
implement their own SDN controller. This chapter also discusses different
ideas and tracks for further work.

1.5 contributions

We briefly summarize the list of the original contributions of this thesis:

• Formalization of the Segment Routing Traffic Engineering Problem
(SRTEP) and first proof that it is NP-Hard (Chapter 3).

• Conjecture that IGP weights that respect a strict triangle inequality tend
to perform better with segment routing (Chapter 3).

• A new MILP model that does not suffer from the exponential growth of
prior models (Chapter 4).

• Encoding of network requirements in the proposed model as well as in
existing models (Chapter 4).

• Empirical evaluation of segment routing as a technology that highlights
the importance of the connectivity layer and the maximum number of
segments (Chapter 4).

• Formalization of the SRTEP as an LS problem (Chapter 5).

• Two highly scalable and robust LS algorithms based on two different
neighborhoods (Chapter 5).

• Formalization of the SRTEP as a CP problem (Chapter 6).

• Design of a new domain representation for unbounded string variables
(Chapter 6).

• Design of several TE propagators for the previously proposed domain
representation (Chapter 6).

• Island removal algorithm to reduce the size of poorly connected SRTEP
instances (Appendix A).
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2
B A C K G R O U N D O N I G P T R A F F I C E N G I N E E R I N G

Nowadays, most autonomous systems rely on Interior Gateway Protocols
(IGPs) to perform such a task. IGPs, like OSPF (Open Shortest Path First) [77]
and IS-IS (Intermediate System to Intermediate System) [80], are based on
shortest path routing. The main idea behind shortest path routing is to associate
a weight wu,v ∈ Z+ to each link (u, v) ∈ E and then to use these weights to
compute the shortest paths on which packets are sent.1

Example 1. Let us consider that packets have to be forwarded from router s
to router t in the network depicted in Figure 2.1. Dashed links represent the
links that are not part of the shortest path. The shortest path from s to t has a
total cost of 6 and visits routers a, d, b, and t in that order.

s d tc

a b

1 3 4

221
11

5

Figure 2.1: Shortest path from router s to router t. Numbers represent the link weights.

In IGPs, routers rely on a decentralized version of the Dijsktra’s algorithm
to dynamically compute the shortest paths [15]. The particularity of this
distributed computation is that no router is aware of the whole network
topology. Instead, each router contains a routing table that lists the IP address
of the next router — the next hop — on the path towards any reachable
destination (see Example 2). Routers periodically update their routing table

1 In practice, OSPF allows link weights to be any 16–bits unsigned integer while IS-IS is restricted
to 8–bits unsigned integers (though recent versions of IS-IS extend the range of number to 24–bits
signed integers [101]).
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s d tc

a b

Destination Next hop

1a

2a

1c

2a

3c

a

b

c

d

t

Weight

Figure 2.2: A possible routing table for router s (with unary link weights).

s d tc

a b

s d tc

a b

s d tc

a b

Figure 2.3: Shortest paths from router s to router t.

by sharing information with their direct neighbors. This continuous process
enables the automatic detection of changes in the topology, such as a link
failure or the shutdown of a router.

Example 2. Let us consider the network and the routing table of router s
depicted in Figure 2.2. The shortest path from router s to router b first visits
router a which is the next hop from s to b. Likewise, a possible shortest path
from router s to router t first visits router c and then router d thus making c
the next hop from s to t.

The reader might have observed that there are three different shortest paths
of cost 3 between routers s and t in Example 2 (see Figure 2.3). As a matter
of fact, multiple shortest paths are quite common in well connected network
and, according to Filsfils and al. [39], it is not rare to see as much as 128

different shortest paths between a source and a destination within a single
AS’s network [39]. Equal Cost MultiPath (ECMP) is a feature that improves
load balancing in IGPs by spreading demands over those multiple shortest
paths [106]. Precisely, it extends the routing table to contain a list of all the
next hops towards a given destination instead of a single one (see Figure 2.4).
With those ECMP routing tables, routers now forward packets equally on all
the next hops. We formalize this forwarding mechanism as follows.

12
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s d tc

a b
Destination Next hop

1a

2a

1c

2a, c

3a, c

a

b

c

d

t

Weight

Figure 2.4: Routing table of router s when ECMP is enabled.

Definition 5: ECMP forwarding. Let d = (s, t, k) be a demand from router
s to router t and let wpath

s,t be the weight of the shortest path between those
routers. By the transitivity of shortest path, we know that each link (s, u) such
that ws,u + wpath

u,t = wpath
s,t is part of a shortest path from s to t. Let nexts,t be

the set of all those routers u:

nexts,t = {u ∈ N |ws,u + wpath
u,t = wpath

s,t }.

ECMP forwarding sends exactly k/|nexts,t| packets on each edge (s, u) where
u ∈ nexts,t.

Definition 6: Forwarding Graph. A forwarding graph is a function FGs,t :
E → [0, 1] that represents the flow obtained by sending packets between
routers s and t with ECMP:

FGs,t(u, v) =



0 v 6∈ nextu,t

1
|nexts,t | v ∈ nextu,t ∧ u = s

∑m∈N FG s,t(m,u)
|nextu,t | otherwise.

There is only one forwarding graph for each pair of routers s, t ∈ N with s 6= t,
and the set of all link (u, v) such that FGs,t(u, v) > 0 forms a directed acyclic
graph.

Forwarding graphs and ECMP forwarding are both illustrated in Figure 2.5.
To compute forwarding graphs, we first need to compute the nexts,t sets
for all pairs of routers s and t. This can easily be achieved by computing
the shortest path DAGs using a slightly extended version of the Dijkstra’s
algorithm. Forwarding graphs are then computed in O(|E|) by iterating on
the routers of the corresponding DAG in topological order. This process is
described in Pseudocode 2.1 in which we assume that the nexts,t sets are given.

13
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1 function buildFG(s, t) :

2 for e ∈ E :
3 FG[e] = 0

4 for n ∈ N :
5 in f low[n] = 0
6 deg[n] = 0

7 for n ∈ N :
8 for v ∈ nextn,t :
9 deg[v] = deg[v] + 1

10 Q = {s}
11 in f low[s] = 1

12 while Q 6= ∅ :
13 remove a node u from Q
14 f low = in f low[u]/|nextu,t|

15 for v ∈ nexts,t :
16 FG[(u, v)] = f low
17 in f low[v] = in f low[v] + f low

18 deg[v] = deg[v]− 1
19 if deg[v] = 0 :
20 Q = Q ∪ {v}

21 return FG

Pseudocode 2.1: Algorithm to compute FGs,t from its shortest path DAG.
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s d tc

a b

50% 50% 75%

50%25%50%

25%

Figure 2.5: ECMP sends packets on all the shortest paths between routers s and t.
Links are labeled with the percentage of packets they carry.

2.1 weight optimization

The way packets are forwarded in IGP networks is determined by the shortest
paths and thus by the link weights. While unary link weights might already be
enough to make the network works seamlessly, carefully chosen link weights
can substantially improve the network efficiency. For instance, an ISP serving
clients with delay critical applications, such as voice calls, is likely to assign
small weights to the fastest links. To the contrary, an AS serving clients with
high volume of information, such as video streaming, might favor links with
large bandwidth. As a rule of thumb, router vendors commonly recommend
to set the weight of a link to the inverse of its bandwidth [80].

Choosing link weights that optimize the requirements of network operators
turns out to be a singularly complex and difficult task. One of the main
reason is that a marginal change of a single link weight can divert many
shortest paths and result in an entirely different routing configuration. Conse-
quently, network operators often make mistakes that can drastically impact
the performance of their network. In fact, a recent report published by Juniper
Systems [78] shows that network downtimes are more likely to be caused by
human than by hardware failures — not considering hardware failures that
are directly caused by humans, e.g. drunken hunters [28].

IGPs being ubiquitous in IP networks, it is not surprising that the problem of
optimizing link weights, best known as IGP Weights Optimization (IGP-WO),
has stimulated a lot of interest in the TE community. Unfortunately, IGP-WO
proves to be NP-Hard even for simple TE objectives such as minimizing the
network utilization [40, 85, 86]. Nonetheless, researchers have devoted much
effort in tackling IGP-WO in order to optimize a large range of TE objectives
as efficiently as possible. The exhaustive review of those contributions being
out of the scope of this thesis, we only briefly mention what we believe to be
two of the most successful.
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exact approach. In [85, 86], Pièro et al. proposed to formulate IGP-
WO as a Mixed Integer Linear Programming (MILP) problem. Using this
formulation, they were able to compute optimal link weights that result in
a minimal network utilization. Though, as it is often the case with MILP
problems, this approach suffers from important scalability issues. Indeed,
current commercial MILP solvers such as Gurobi 7.0 [52] usually cannot solve
IGP-WO optimally on network made of more than a few tens of nodes in
reasonable time.

heuristic . A fundamentally different approach based on tabu search [48]
has been proposed by Fortz et al. in [40, 41]. To the contrary of the above
MILP approach, tabu search does not strive to prove the optimality of its
solutions but rather tries to find very good solutions as fast as possible. As
a result, tabu search tends to behave very well on large scale problems. The
tabu search of Fortz et al. is often considered as the state-of-the-art technique
to perform IGP-WO and has been implemented in commercial solvers such as
Cisco MATE [24].

2.2 limitations of shortest path routing

Despite all their strengths, IGPs suffer from important weaknesses that come
from the shortest paths themselves. A first limitation of shortest path routing
is that it might not be able to prevent congestion while the network capacity
could allow it (see Example 3). A second weakness of shortest path routing
is that it cannot differentiate two demands having the same source and
destination. This is a particularly important issue if both demands are subject
to different service level agreements. For instance, one of the demand might
come from a client who is paying to access high-priority links that are not
available to his competitors. Last but not least, a third weakness of shortest
path routing is that changing the link weights, e.g. to answer a sudden change
of traffic, comes with an operational cost and the risk of potential disruptions
due to inter-domain routing policies [105, 109]. Therefore, network operators
might actually be reluctant to the idea of optimizing link weights — at least
dynamically.

Example 3. Let us consider the network depicted in Figure 2.6. There are two
demands d1 = (s, t, 8) and d2 = (s, v, 4) to forward on that network. All the
possible ways to route those demands using shortest path routing with and
without ECMP are presented in Figure 2.7. We observe that both demands
have to be forwarded on the shortest path from s to c before being routed
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Figure 2.6: A network where the number next to both links (u, v) and (v, u) corre-
sponds to their capacity cu,v and cv,u.
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Figure 2.7: There is no way to prevent congestion with shortest path routing.
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to their respective destination — thus making c an intermediate destination
of both demands. Our first routing configuration (see Figure 2.7 a) sends all
the packets from router s to router c on path s, a, c and results in congestion
on links (s, a) and (a, c). The second solution (see Figure 2.7 b) sends all the
packets on path s, b, c which results in an even worst congestion on links (s, b)
and (b, c). Finally the last solution (see Figure 2.7 c) makes use of ECMP to
spread the traffic equally on both previous paths. Sadly, even this solution
results in congestion on links (s, b) and (b, c) despite the fact that enough
resource is available on the network to accommodate both flows. A simple
solution to this problem is to send d1 on path s, a, c, t and to send d2 on path
s, b, c, v.

2.3 conclusion

In this chapter, we have reviewed the core concepts behind IGPs and, more
precisely, shortest paths routing as well as its ECMP extension. We have
briefly presented the IGP weight optimization traffic engineering problem and
reviewed what we believe to be the most important contributions to the field.2

We finally showed that, and despite the additional flexibility offered by ECMP,
IGPs remain constrained by the shortest path routing model and might be
unable to avoid congestion when enough resource is available elsewhere in
the network.

2 Readers who are interested to learn more about IGP weight optimization may refer to [108] for a
detailed overview of this traffic engineering problem.
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3

S E G M E N T R O U T I N G

Segment Routing (SR) is an emerging technology, introduced in mid 2013 [39]
and developed within the Internet Engineering Task Force (IETF), that is
specifically designed for SDN and scalable traffic engineering. In SR, a path
is encoded as a sequence of detours, called segments, that is stored directly
inside the packet headers. Each pair of successive detours in an SR path are
connected using the shortest paths defined by the underlying routing protocol.
Concretely, when a packet is sent, it first follows one of the shortest path
to the first detour, and then follows one of the shortest paths to the second
detour and so on until it reaches its destination. The whole definition of
an SR path being contained in the header of its packet (instead of storing it
in the network infrastructure as done by other traffic engineering protocols
such as RSVP-TE [8]), only the ingress router (i.e. the router at which the
packet enters the network) is responsible for maintaining the path description.
This simple and elegant mechanism is the key that allows SR to avoid the
well-known scalability issue and operational challenges of RSVP-TE [76, 114]
while keeping an expressive path definition.

Two types of segments, namely adjacency segments and node segments, can
be used to define an SR path. An adjacency segment references a particular
interface of a router. When that router is reached, it removes the segment
from the top of the header and then forwards the packet on its corresponding
interface. The practical interest of adjacency segments is that they can be used
to bypass the routing table of a router by forcing it to send packets on any
link (see Example 4).

Example 4. We illustrate the use of adjacency segments to forward a flow of
packets from router s to router t on the network depicted in Figure 3.1. First,
router s removes the top segment of the header and forwards the packets
on its link to router c. Note that the link from s to c does not belong to the
shortest path from s to c — which visits s, a, and c. Router c then also removes
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Figure 3.1: Use of adjacency segments to bypass the routing tables. Each link label
corresponds to the IGP cost of its link.

the top adjacency segment and forwards the packets on its corresponding
interface to router a. Finally, router a routes the packets on the shortest paths
to their destination, i.e., router t.

A node segment identifies a specific router in the network that temporarily
replace the actual destination of the packet. Once this temporary destination
reached, it is removed (or “popped”) from the packet’s header and the next
node segment (if any) becomes the new temporary destination. This process is
repeated until no node segment remains, meaning that the packet can finally
be sent to its actual destination (see Example 5).

Example 5. Figure 3.2 illustrates the use of node segments to forward a flow
of packets from router s to router t in a way that is impossible to achieve with
shortest path routing alone. The first node segment — the one on top of the
header — is a reference to router d which acts as a temporary destination.
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Figure 3.2: Use of node segments to route packets on a sequence of shortest paths. All
link weights are set to 1.

Router s thus forwards the packets on the shortest paths to router d. Router d
then removes the segment on top of the header and forwards the packets to
the next destination, i.e., router a. Finally, router a removes the last segment
and forwards the packet to its destination.

Example 6. Example 3 illustrated the limitation of shortest paths routing. SR
allows us to prevent congestion (and makes the network operate at 80% of its
capacity) by defining distinct paths for both flows (see Figure 3.3).

In the general case, the set of paths that can be constructed using either
node or adjacency segments are different. The paths built with node seg-
ments essentially depend on the underlying shortest paths. On the contrary,
adjacency segments can be used to route a demand on any simple path no
matter the shortest paths. Nevertheless, we focus on SR paths only made of
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3.1 the segment routing traffic engineering problem

node segments for the following reasons.1 First, it is also possible to build
any simple path with node segments if the shortest path from node u to
node v is link (u, v) itself (if it exists). This happens when the link weights
respect a strict triangle inequality — e.g. unary link weights have that property.
Second, node segments are more reliable than adjacency segments in case of
failure. If a failure occurs, the routing protocol will automatically detect it
and recompute the shortest paths, thus ensuring that an SR path with node
segments still connects its source to its destination. Last but not least, node
segments benefit from ECMP and thus favor load balancing. We formalize SR
paths as follows.

Definition 7: Segment Routing Path. An SR path ps,t from node s to node t
is represented by a sequence of nodes

s = m0, m1, . . . , mi−1, mi, mi+1, . . . , mk, mk+1 = t

in which the subsequence m1, . . . , mk is the sequence of node segments, called
midpoints, towards the path destination t. Each pair of successive nodes (mi,
mi+1) in an SR path is connected by a forwarding graph FGmi ,vm+1 such that
the SR path can also be represented as a sequence of forwarding graphs

FGs,m1 , . . . , FGmi−1,mi , FGmi ,mi+1 , . . . , FGmk ,t.

We subsequently denote FG(ps,t) the sequence of forwarding graphs that are
part of ps,t. The link between ps,t and FG(ps,t) is illustrated in Figure 3.4. By
abuse of notation, we often use FG(ps,t) as a set of forwarding graphs.

3.1 the segment routing traffic engineering problem

The Segment Routing Traffic Engineering Problem (SRTEP) is the natural
specialization of the general traffic engineering problem to the SR flavor. The
problem is thus the one of finding an SR path for each demand such that the
network operates below a given maximum network utilization. It is formalized
as follows.

The inputs of the problem are a network T(N, E), a set of demands D, a
maximum network utilization φ ∈ R+, and a forwarding graph FGs,t for each

1 Note that all the techniques developed in the subsequent chapters can be extended to handle
adjacency segments as well by adding fake nodes, that will simulate adjacency segments, to the
network’s topology.
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forwarding graphs correspond to the ECMP computed with unary link
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3.2 additional constraints

pair of nodes s, t ∈ N with s 6= t.2 The load of link (u, v) ∈ E, denoted loadu,v,
is the sum of all the flows that traverse that link:

loadu,v = ∑
d=(s,t,k)∈D

∑
FGi,j∈pd

FGi,j(u, v)k.

To solve the SRTEP, one must find an SR path for each demand d ∈ D such
that:

∀(u, v) ∈ E : loadu,v ≤ φcu,v.

In its optimization form, the goal of the SRTEP is to find a solution with the
minimal value of φ.

Theorem 1. The SRTEP is NP-Hard.

Proof. We show that the SRTEP is NP-Hard by a simple reduction of the
well known partition problem [25]. The partition problem is an NP-complete
problem that consists of n numbers c1, . . . , cn ∈ N. The question is whether
there is a set A ⊆ {1, . . . , n} such that

∑
i∈A

ci = ∑
j∈A

cj

where A is the set of elements not contained in A. This problem can easily
be reduced to the instance of the segment routing problem depicted in Fig-
ure 3.5 with all link capacities fixed to ∑n

i=1 ci/2. First, consider n demands
(s, t, ci), . . . , (s, t, cn). Then, consider that segments are defined such that there
are only two possible SR paths from node s to node t (see the left and right
parts of Figure 3.5). Finally, let us constrain the maximum load of each link
to not exceed the link capacity. Finding a valid SR path for each demand in
this context amounts to find a solution to the Partition problem, i.e., demands
having s, A, t as SR path are part of the set A while the remaining demands
are part of the set A. �

3.2 additional constraints

Minimizing the network utilization is not the only goal of network operators.
Internet service providers deliver different kind of services that are subject
to different levels of agreement. Video and audio calls, for instance, must

2 As mentioned in Definition 6, we assume that forwarding graphs match the ECMP computed
accordingly to the network link weights.
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Figure 3.5: The partition problem encoded as an instance of the SRTEP. Forwarding
graphs are such that there are only two possible SR paths from node s to
node t.

be carried as fast as possible to ensure a good user experience. Demands
containing suspicious packets (e.g. coming from a DoS attack) should be
forwarded through firewalls spread over the networks while high-priority de-
mands should be forwarded through load-balancers [90]. Network operators
might also agree to forward privacy sensitive demands on link disjoint SR
paths thus reducing the risk of being spied on by sending the message and
its encryption key on two different SR paths. Beside, all those requirements
must be fulfilled with a minimum number of SR tunnels to enable fast recon-
figuration when dynamic events, such as link failures or substantial traffic
changes, will occur. For all these reasons, we propose to use the following
additional constraints to extend the SRTEP to meet a large set of network
operators requirements.

3.2.1 Max Cost

Let CFG be a set of costs such that CFG
s,t ∈ R+ is the cost of forwarding graph

FGs,t (∀s, t ∈ N, s 6= t). The maxCost(p, CFG, k) constraint ensures that the cost
of SR path p does not exceeds the maximum cost k:

∑
FGs,t∈FG(p)

CFG
s,t ≤ k. (1)

Latency is an obvious cost that network operators might want to associate to
an SR path but it is not the only one. The number of segments that can be
encoded into the packet header is likely to be limited too due to hardware
restrictions. In this context, the cost of each forwarding graph is simply set to
one and k + 1 is the maximum number of detours.
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3.3 conclusion

3.2.2 Service Chaining

We represent a service S ⊂ N as a subset of nodes that provide a particular
service (e.g. a firewall) to any demand making a detour to a node m ∈ S.
The serviceChaining(p, S1, . . . , Sk) constraint ensures that SR path p visits an
ordered list of services on its way from its source s to its destination t such
that

p = s, . . . , m1, . . . , m2, . . . , mk, . . . , t

where mi ∈ Si for all i ∈ {1, . . . , k}.

3.2.3 Disjoint Paths

The disjoint(p1, p2) constraint ensures that SR paths p1 and p2 do not visit
the same network links:

∀(u, v) ∈ E : ∑
FGs,t∈FG(p1)

FGs,t(u, v) = 0∨ ∑
FGs,t∈FG(p2)

FGs,t(u, v) = 0.

Note that links (u, v) and (v, u) are considered to be different links.

3.3 conclusion

This chapter focuses on Segment Routing (SR), an emerging architecture
specifically designed for SDN and scalable traffic engineering. We briefly
introduced the core concepts of SR such as adjacency and node segments.
Then, we showed that node segments typically offer more advantages that
adjacency segment because they tend to improve load balancing, have a better
behavior in case of a link failure, and can be used to define any simple path
in the network as long as the underlying IGP weights respect a strict triangle
inequality. Next, we formalized the Segment Routing Traffic Engineering
Problem (SRTEP) as an optimization problem and showed that this problem
is NP-Hard (and thus computationally difficult to solve). We concluded by
presenting different constraints that could be used to customize the SRTEP in
order to handle specific goals and requirements from network operators.
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4

I N T E G E R P R O G R A M M I N G A N D R E L A X AT I O N S

Linear Programming (LP) is a fundamental tool to solve optimisation problems.
In LP, an optimisation problem is expressed by a set of n decisions variables, a
set of m linear inequalities that represent the constraints of the problem, and
by a linear objective function to minimise. The linear formulation of a problem,
also called linear program or linear model, is formulated as follows:

minimise c1x1 + · · ·+ cnxn

subject to a11x1 + · · ·+ a1nxn ≤ b1

...

am1x1 + · · ·+ amnxn ≤ bm

and xi ∈ R ∀i ∈ {1, . . . , n}

where the xi are the decision variables and the aj,i, bj, and ci correspond to
constants in R.

What makes LP so interesting in practice is that most linear programs can
be solved efficiently using algorithms such as the simplex algorithm [26] or
the interior point algorithm [2]. LP is however not able to solve problems
that require some of their decisions variables to be assigned to integer values
only. Mixed Integer Linear Programming (MILP) is an extension of LP that
considers such integer variables as well as linear variables. Let’s assume that
I ⊆ {1, . . . , n} is the set of the integer variables and that L = {1, . . . , n} \ I is
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the set of the linear variables. The general form of a MILP linear program is
the following:

minimise c1x1 + · · ·+ cnxn

subject to a11x1 + · · ·+ a1nxn ≤ b1

...

am1x1 + · · ·+ amnxn ≤ bm

and xi ∈ R ∀i ∈ L

xi ∈ Z ∀i ∈ I

Unfortunately, the simple addition of integer decisions variables makes the
MILP problem NP-Hard. Nevertheless, many techniques and algorithms
(such as branch-and-bound, branch-and-cut, or branch-and-price) have been
developed during the last decades to tackle MILP problems as efficiently as
possible [113]. All these approaches aim at solving problems optimally or at
least to provide one with a lower bound on the value of the optimal solution.

Flow problems can be encoded particularly easily with LP and MILP [3]. It
is therefore not surprising that they both have a long history of being used to
solve traffic engineering problems. This chapter is dedicated to LP and MILP
approaches to solve the Segment Routing Traffic Engineering Problem (SRTEP).
We first review two approaches to solve the general traffic engineering problem
— better known as the multi-commodity flow problem — and explain how it
is related to the SRTEP. We then present two MILP models (one being adapted
from related work [17]) to solve the SRTEP. Finally, we use both MILP models
to analyse the capability of segment routing as a traffic engineering technology
to minimize the network utilisation with a minimal number of tunnels.

4.1 background on multi-commodity flow

The Multi-Commodity Flow Problem (MCFP) is one of the most studied
problem of traffic engineering and is for the matter often referred to as the
general traffic engineering problem (see Chapter 1). Basically, the MCFP is the
problem of finding an optimal way to forward packets on the network without
being restricted by the expressivity of routing protocols — such as being
forced to follow the shortest paths. Solving the MCFP thus provides operators
with an optimistic view, i.e. a lower bound, on how much network bandwidth
can be saved with perfect traffic engineering.
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4.1 background on multi-commodity flow

4.1.1 Per Demand Formulation

We formulate the MCFP as a LP program using a similar notation to the one
introduced in Chapter 3. The network is a strongly connected directed graph
made of a set of nodes N and of a set of directed edges E that respectively
represent the routers and the links of that network. Each edge (u, v) ∈ E is
associated with a capacity denoted cu,v. The demands to be forwarded on the
network are contained in a traffic matrix D = {(s, t) | s, t ∈ N∧ s 6= t} and the
bandwidth requirement of each demand (s, t) ∈ D is denoted bws,t ∈ R+. The
linear variable f s,t

u,v ∈ R+ denotes the amount of traffic from demand (s, t) ∈ D
that is routed through edge (u, v) ∈ E. The network utilisation to minimize
is denoted φ ∈ R+ and constrains the total amount of data traversing each
edge (u, v) ∈ E to not exceed φcu,v. Finding an optimal solution to the MCFP
consists in finding the lowest possible value for φ such that all the following
constraints are respected:

∑
u∈N

f s,t
s,u = ∑

u∈N
f s,t

u,t = bws,t ∀(s, t) ∈ D (2)

∑
u∈N

f s,t
u,m = ∑

u∈N
f s,t

m,u ∀(s, t) ∈ D, ∀m ∈ N, m 6= s, t (3)

∑
(s,t)∈D

f s,t
u,v ≤ φcu,v ∀(u, v) ∈ E. (4)

Linear equations (2) and (3) are called flow conservation constraints.1 They
guarantee that no packet is lost or created along the paths from their source
to their destination. In particular, linear equations (2) ensure that the amount
of packets that leave the source of a demand reach its destination while linear
equations (3) ensure that all packets reaching any intermediate node m leave
this node. Equations (4) are called capacity constraints and guarantee that the
utilization of link (u, v) does not exceed the maximum network utilization φ.

4.1.2 Per Destination Formulation

It is possible to significantly improve the solving process of the MCFP if
one does only care about the minimal value of φ and not how the packets

1 The flow conservation constraints are exactly the same as the ones we used in the definition of
forwarding graph in Chapter 3.
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are actually forwarded on the network [65]. The idea is to aggregate the
flow variables by destination such that variable f t

u,v ∈ R+ corresponds to the
amount of traffic destined to node t that is routed through edge (u, v). The
linear constraints are the following:

∑
u∈N

f t
m,u = ∑

v∈N
f t

v,m + bwm,t ∀m, t ∈ N, m 6= t (5)

∑
t∈N

f t
u,t ≤ φcu,t ∀(u, t) ∈ E. (6)

The first set of linear constrains (5) corresponds to the flow conservation
constraints. The second set of linear constraints (6) is similar to (4) and
ensures that link (u, v) operates below the network utilization.

The attentive reader might have been wondering why no inequality con-
strains the value of the variables f t

t,v (∀v ∈ N). The reason for this absence
is simply that there is no demand from a node to itself. The only way to
assign one of these variables to a positive value is to introduce a cycle in
the network. While this may sound bad at first, it is easy to transform any
solution with a cycle into a solution with no cycle. Also, the LP solving process
will automatically remove all the cycles that impact the objective value, thus
returning the optimal network utilization regardless of the presence of a cycle.

Both linear programs, per demand and per destination, have been extensively
analysed and showed to be equivalent in [63]. However, as mentioned before,
the per destination formulation is usually much faster to solve due to the
smaller number of variables and of linear equations required to formulate
the MCFP.2 Table 1 shows the difference between both models. We assume
that the network is sparse such that the number of edges is proportional to
the number of nodes, i.e., O(|E|) ' O(|N|). Also, we assume that we have
a demand between every pair of distinct nodes in the network such that
|D| = |N|2 − |N| = O(|N|2).

4.2 the path model

Solving the MCFP provides us with an optimistic view of how much network
resource can be spared in optimal traffic engineering conditions. Of course,

2 Note that Jones et al. showed in [63] that the per demand formulation can be faster to solve with
techniques based on Dantzig-Wolfe decomposition [11].
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4.2 the path model

Model #variables #inequalities

Per demand O(|D||E|) ' O(|N|3) O(|D||N|) ' O(|N|3)
Per destination O(|N||E|) ' O(|N|2) O(|N|2)

Table 1: Number of variables and constraints involved in the per demand and per
destination models.

those perfect conditions are often far from reality which has to deal with
software and hardware limitations. In the context of segment routing, those
limitations mainly come from the underlying routing protocol which defines
the shortest paths used to build the SR paths. The Segment Routing Traffic
Engineering Problem (SRTEP) can thus be seen as a more constrained version
of the MCFP.

In [17], Bhatia et al. proposed a MILP model to solve the 2-SRTEP, i.e. a
more constrained version of the SRTEP in which SR paths are made of at
most two forwarding graphs (or a single midpoint). This model, that we
subsequently refer to as the path model, shines by its simplicity. It comes down
to precomputing all the possible SR paths a demand can be forwarded on and
to assigning each demand to exactly one of those paths such that the network
utilization is minimized. SR paths being restricted to at most one detour, each
demand can be routed on exactly |N| − 1 SR paths, i.e. one with no midpoint
and |N| − 2 with a single midpoint. We present a generalized version of
the path model in which a demand can be routed on any SR path no matter
the number of midpoints. This extension is rather trivial since it basically
consists in precomputing more SR paths. Naturally, the number of possible
SR paths grows exponentially with the maximum number of midpoints but
let us assume that this is not an issue for the moment.

Let Pd be the set of all SR paths demand d can be routed on, and let
flowp : E→ R+ be a function that returns the quantity of flow that traverses
any edge (u, v) ∈ E when demand d is forwarded on SR path p:

∀d ∈ D, ∀p ∈ Pd : flowp(u, v) = bwd ∑
FGs,t∈FG(p)

FGs,t(u, v).

Note that flowp(u, v) might be higher than bwd if SR path p sends demand d
several times on (u, v), e.g. if there’s a cycle in p.
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We associate a binary variable x d
p ∈ {0, 1} to each demand d and path

p ∈ Pd that is assigned to 1 if demand d is forwarded on SR path p or set to 0
otherwise. The SRTEP is modeled as follows:

∑
p∈Pd

x d
p = 1 ∀d ∈ D (7)

∑
d∈D

∑
p∈Pd

x d
p flowp(u, v) ≤ φcu,v ∀(u, v) ∈ E (8)

Equation (7) enforces each demand to be forwarded on a single SR path.
Equation (8) computes the load of each edge (u, v) as the sum of all the
data that is forwarded through (u, v) and constrains its link utilization to not
exceed the network utilization φ.

The problem of the path model appears when we start remembering that the
number of SR paths grows exponentially with the number of midpoints. This
is probably fine if SR paths are limited to one or two midpoints and simple
constraints but it is likely to be the source of important scalability issues
otherwise. Let us consider the k-SRTEP in which k is the maximum number
of forwarding graphs that an SR path can contain.3 The number of possible
SR paths for a demand is ∑k−1

i=0 (|N| − 2)i and has an asymptotical growth
of O(|N|k−1). The path model thus requires O(|D||N|k−1) binary variables,
O(|E|) linear variables, and O(|D|) linear equations.4

4.3 the segment model

We propose a slightly more complex model, called segment model, that does
not suffer from the scalability issue of the path model and can handle any SR
path that does not traverse the same forwarding graph more than once.5 The
segment model is based on the fact that finding an SR path can be seen as
finding a path in a clique of midpoints, called segment graph, in which each
edge corresponds to a forwarding graph (see Figure 4.1).

Let x d
u,v be a binary variable that is assigned to 1 if the SR path of demand

d traverses forwarding graph FGu,v or assigned to 0 otherwise. We model the
SRTEP as follows:

∑
u∈N

x d
s,u = ∑

u∈N
x d

u,t = 1 ∀d = (s, t) ∈ D (9)

3 The 1-SRTEP being the “problem” of routing the demands on the shortest paths only.
4 Such simple models with an exponential number of variables are usually well suited for Dantzig-

Wolfe decomposition techniques such as column generation [11].
5 Getting rid of this limitation is relatively trivial and left as an exercice for the reader.
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Figure 4.1: An SR path (left) can be seen as a path in the segment graph (right). Edges
in the segment graph correspond to forwarding graphs.

∑
v∈N\{u}

x d
v,u = ∑

v∈N\{u}
x d

u,v ∀d = (s, t) ∈ D, ∀u ∈ N \ {s, t} (10)

∑
d∈D

∑
s,t∈N,s 6=t

x d
s,t FGs,t(u, v) bwd ≤ φcu,v ∀(u, v) ∈ E (11)

Constraints (9) and (10) are basically a binary version of the flow conservation
constraints from (2) and (3). Precisely, constraint (9) specifies that a single
forwarding graph could leave (resp. enter) the source (resp. destination) of
a demand, while constraint (10) ensures that if a forwarding graphs enters
a node then it must leave that node. In other words, constraints (9) and (10)
model SR paths as sequences of forwarding graphs, i.e. as simple paths in the
segment graph. Constraint (11) ensures that the link utilization of each edge
(u, v) does not exceed the network utilization.

Similarly to the MCFP, every solution of the segment model that contains an
SR path with a cycle, i.e. its path in the segment graph is not simple, can be
turned into an as good solution (in terms of network load) that contains no
cycle. The segment model thus implicitly models the k-SRTEP where SR paths
are limited to k = |N| − 1 forwarding graphs. We can easily restrict the model
to any value of k < |N| − 1 by adding the following constraint:

∑
u,v∈N,u 6=v

x d
u,v ≤ k ∀d ∈ D (12)

Contrarily to the path model, this additional constraint allows us to handle
multiple SR path length without changing the spacial complexity of the model.
Indeed, the segment model requires O(|D||N|2) binary variables, O(|E|) linear
variables, and O(|D||N|) inequalities no matter the value of k.

Despite its exponential behavior, the path model still remains smaller than
the segment model when applied to the 2-SRTEP. In fact, the path model of the
2-SRTEP can be seen as a simplified segment model in which useless variables,
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Model #binary variables #linear variables #inequalities

Path O(|D||N|k−1) O(|E|) O(|D|)
Segment O(|D||N|2) O(|E|) O(|D||N|)

Table 2: Number of variables and inequalities in the path and segment models.

i.e. variables that are assigned in any case, have been removed. By definition,
any SR path in the 2-SRTEP is made of at most one single midpoint. Therefore,
all variables that connect two midpoints, i.e. every variable x d

u,v where u and v
are different from the source and the destination of d, are guaranteed to be
set to 0 and can thus be removed from the model. This removal drastically
reduces the size of constraint (10) which becomes the following:

x d
s,m = x d

m,t ∀d = (s, t) ∈ D, ∀m ∈ N \ {s, t} (13)

Every pair of variables x d
s,m and x d

m,t can thus be substituted by a single variable
x d

m such that there is exactly one variable per SR path per demand — as with
the path model.

Table 2 compares the size of the path and segment models. As mentioned
above, we see that the path model is the smallest one for the 2-SRTEP (i.e.
when k = 2) and should be preferred over the segment model when solving
this problem. Both models are similar when applied to the 3-SRTEP but the
path model gets exponentially larger than the segment model when we consider
problems with more than two midpoints, i.e., when solving the k-SRTEP with
k ≥ 4.

4.4 linear relaxations

A lower bound of a problem is an optimistic value that is guaranteed to be
lower or equal to the optimal objective value of that problem. Lower bounds
are essential to minimization problems because they allow one to evaluate
the quality of a solution by measuring the distance between its value and the
lower bounds. Various types of lower bounds are likely to exist for a given
problem and the best of them, the ones with the highest value, are usually the
most expensive to compute.

The linear relaxation of a MILP model is an LP model obtained by substi-
tuting all the integer variables by linear ones. The interest of linear relaxation
is that their optimal solution is a lower bound of the original MILP model
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and that they can be computed quite efficiently (see the introduction of this
chapter). Since MILP solvers strongly rely on linear relaxation, models that
have a strong linear relaxation, i.e. a relaxation that provides a lower bound
that is close to the optimal objective value, are usually easier to solve.

We have seen in the previous section that the path and segment models of
the 3-SRTEP have similar sizes. In this section, we compare the efficiency of
both models by comparing the optimal value of their linear relaxation for the
3-SRTEP.

4.4.1 Path and Segment Linear Relaxations

Basically, the linear relaxation of the path model allows each demand to
be split arbitrarily on several SR paths, each one being made of at most k
forwarding graphs. The linear relaxation of the segment model goes one step
further and also relax the length constraint (12) thus allowing SR paths with
more than k forwarding graphs. The linear relaxation of the path model thus
provides better lower bounds than the one of the segment model. We verify this
statement empirically on all the instances of our dataset that have less than 40

nodes and no bottleneck link (see Appendix A).6 Let lbpath and lbsegment be the
value of the linear relaxation of the path and segment models respectively. The
comparison of lbpath and lbsegment on the 3-SRTEP is presented in Figure 4.2.
As expected, we see that lbsegment is never better than lbpath. However, lbpath
barely higher than lbsegment on most of our test cases. Indeed, both linear
relaxations return the same lower bound for 77–78% of the instances. Also,
lbpath is less than 0.5% higher for 99% of the cases and is only 9% better in the
most extreme case.

Ultimately, both linear relaxations are similar in practice despite a marginal
advantage for the path model.7 Therefore, we subsequently rely on the path
model to solve the k-SRTEP when k ≤ 3 and rely on the segment model when
k ≥ 4. We denote this linear relaxation lbSRTEP:

lbSRTEP =


lbpath k ≤ 3

lbsegment otherwise.

6 We focus on instances with less than 40 nodes for the sake of scalability.
7 However, — and this is quite counterintuitive — we observed that Gurobi 7.0 [52], the MILP

solver we used to compute all the results in this chapter, is usually faster on the segment model.
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Figure 4.2: Comparison of lbpath and lbsegment on the 3-SRTEP. The vertical axis is in
log scale and corresponds to the value of lbpath/lbsegment for each percentile.
The 78th percentile is the first to exceed 100%.

4.4.2 MCFP vs Path and Segment Linear Relaxations

As mentioned at the beginning of this chapter, solving the MCFP already
provides us with a lower bound of the SRTEP. Let lbMCFP denote the optimal
value of the MCFP. Obviously, lbMCFP is worse than lbSRTEP because it isn’t
constrained to follow the shortest paths at all (see Section 4.1). But is lbMCFP
really weaker in practice? We compare lbMCFP with lbSRTEP on the k-SRTEP
with k = 2 and k = |N| − 1. Note that all the demands of our dataset have been
rescaled such that the optimal value of the MCFP is 100% (see Appendix A).
Consequently, the ratio lbSRTEP/lbMCFP always corresponds to the value of
lbSRTEP.

The comparison of lbSRTEP and lbMCFP on the 2-SRTEP is presented in the
left part of Figure 4.3. We see that lbSRTEP is higher than lbMCFP for 25% of
all the tested instances. Particularly, lbSRTEP becomes substantially higher for
5% of the instances and reaches 606.84% in the most extreme case. The right
part of Figure 4.3 presents the comparison between lbSRTEP and lbMCFP on
the k-SRTEP. The results are difficult to differentiate from the one presented in
the left part of Figure 4.3, but lbSRTEP returns slightly lower values between
its 75th and 90th percentiles. As before, lbSRTEP is substantially higher for 5%
of the instances and reaches 606.84% of lbMCFP in the best case.

In conclusion, lbSRTEP is a stronger lower bound, both in practice and in
theory, than the lbMCFP. Nevertheless, lbSRTEP is much more expensive to
compute than lbMCFP due to the additional number of variables and inequali-
ties involved in its LP model (see Tables 1 and 2). This is especially true when
solving the k-SRTEP with k ≥ 3. The MCFP thus remains an excellent tool
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Figure 4.3: Comparison of lbSRTEP and lbMCFP on the 2-SRTEP (left) and the k-SRTEP
where k = |N| − 1 (right). The vertical axis is in log scale and corresponds
to the value of lbSRTEP/lbMCFP for each percentile. The 75th (resp. 79th)
percentile is the first to exceed 100% on the left (resp. right) part of the
figure. The difference between both curves is highlighted in orange.

to evaluate the minimum utilization of networks that operate with segment
routing.

4.5 midpoints and link weights

In [17], Bhatia et al. observed that the optimal value of lbpath on the 2-SRTEP
was “almost as good as” the one of the MCFP and thus suggested that one
single midpoint is enough to reach good traffic engineering solutions. This
statement is somehow refuted by the results presented in the left part of
Figure 4.3 which show that the optimal value of the 2-SRTEP can be much
higher than the one of lbMCFP for a significant number of instances. Both parts
of Figure 4.3 actually suggest that “2-SRTEP is almost as good as k-SRTEP”
would be a better statement. First, the similarities between both parts of
Figure 4.3 hint that the number of midpoints only plays a minor role on the
value returned by lbSRTEP. Second, the high network utilization of the last
percentiles seem to indicate that the efficiency of SR strongly depends on
the underlying forwarding graphs. This is precisely what happens on the
NTT instance (see Figure 4.4) on which lbSRTEP returns a lower bound that is
606.84% higher than the actual network capacity. This impressive difference is
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Figure 4.4: The NTT topology — node coordinates have been handpicked to make the
topology “as planar as possible”.

the result of a bad set of link weights that does not exploit the connectivity of
the topology.8

Still, we only have compared lower bounds until now and we know from
experience that actual optimal solutions can be even farther than the value
of the MCFP. Luckily, the path and segment models provide us with the
necessary tools to compute the optimal solutions of the k-SRTEP for any value
of k ∈ [2, |N| − 1]. In particular, we have computed the optimal solution of
where k is equal to 2, 3, and |N| − 1. Also, we broke down our our analysis
on different set of link weights, i.e. unary, inverse, and random, to observe the
actual impact of midpoints and shortest paths on the quality of the returned
solutions.

As before, we performed our analysis on a subset of instances that have
less than 40 nodes and no bottleneck. Our results are presented as set of box
plots in Figure 4.5. They not only show that 2-SRTEP solutions can fall far
from the value of MCFP but also that k-SRTEP with k ≥ 3 often significantly
outperforms 2-SRTEP no matter the set of link weights. Speaking of link
weights, our results highlight that they are of particular importance and can
drastically hamper the ability of segment routing. The best tested combination
is unary link weights with no restriction on the number of midpoints. Though,
3-SRTEP seems to already provide a lot of improvement compared to 2-SRTEP
— especially if the link weights are bad.

8 The instance was solved with inverse-capacity link weights.
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Figure 4.5: Distributions of optimal network utilizations for the 2-SRTEP, the 3-SRTEP,
and the k-SRTEP (with k = |N| − 1) on unary, inverse, and random link
weights. Unary link weights with no restriction on the number of midpoints
achieves the best result. The box contains all data points between the first
and third quartiles (the thick line being the median) while data points
explicitly represented correspond to outliers that exceed the 95th percentile
(end of the whisker).
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4.6 additional constraints

The constraints presented in Section 3.2 can be divided into two categories:
per demand and global. A per demand constraint restricts the set of SR paths
a demand can be forwarded on, no matter the value assigned to the other
variables of the problem — e.g. the load of an edge or the SR path of another
demand. The maxCost and serviceChaining constraints are examples of per
demand constraints. On the contrary, a global constraint considers several
variables of the problem such as the SR path of several demands (e.g. the
disjoint constraint).

One of the nicest property of the path model is that we can extend it with
any per demand constraint without having to change the model at all. Indeed,
the set of all the possible SR paths of each demand being precomputed, we
only have to filter out forbidden SR paths beforehand to ensure that any
solution respects all the per demand constraints. This not only allows us to
encode per demand constraints with no additional inequalities or variables,
it also reduces the size of the problem by removing variables associated to
forbidden SR paths.

Encoding global constraints usually requires additional inequalities and/or
variables. For instance, a naive way to encode the disjoint constraint is to add
an inequality to forbid all the pairs of incompatible SR paths of two demands:

x d1
p1 + x d2

p2 ≤ 1 ∀p1 ∈ Pd1 ∀p2 ∈ Pd2 ,¬disjoint(p1, p2) (14)

Unfortunately, this encoding suffers from the same weakness than the path
model because the number of additional inequalities might grow exponentially
with the number of possible SR paths.

An alternative, more scalable, way to encode the disjoint constraint consists
in focusing on the edges instead of the SR paths. Let us introduce a new
function visitp : E → {0, 1} that returns 1 if and only if SR path p visits a
given link (u, v):

visitp(u, v) =

{
1 flowp(u, v) > 0
0 otherwise.

Using this new function, we adapt (8) to guarantee that each edge is only
visited by a single disjoint demand:

∑
p∈Pd1

x d1
p visitp(u, v) + ∑

p∈Pd2

x d2
p visitp(u, v) ≤ 1 ∀(u, v) ∈ E (15)

42



4.7 hybrid model

The gain of scalability is twofold. First, we only need O(|E|) additional
inequalities to encode the constraint on a pair of demands (d1, d2). Second,
this encoding can actually be used to impose the disjoint constraint on a set of
disjoint demands Ddis instead of a pair:

∑
d∈Ddis

∑
p∈Pd

x d
pvisitp(u, v) ≤ 1 ∀(u, v) ∈ E (16)

In the context of the segment model, the disjoint constraint is encoded in a
similar way as in (16) but with a visit function visits,t : E → {0, 1} for each
forwarding graph FGs,t such that

visits,t(u, v) =

{
1 FGs,t(u, v) > 0
0 otherwise.

Adding per demand constraints to the segment model requires a little more
of elbow grease because they must be explicitly encoded into the model.
Nevertheless, this is not a big problem for the maxCost constraint which is
basically a weighted version of constraint (12). Encoding the serviceChaining

constraint with a single service S (or set of services with no specific order
between them) can also be done quite easily as follows:

∑
s∈S

∑
(u,s)∈E

x d
u,s ≥ 1 (17)

∑
s∈S

∑
(u,s)∈E

x d
s,v ≥ 1 (18)

where d is the demand on which the constraint is enforced.
Encoding the general form of the constraint, though, is much more chal-

lenging since it requires to extend the model with both additional variables
and inequalities. Therefore, we recommend to rely on the path model when
dealing with large service chaining constraint — especially if the services only
have a small number of nodes.

4.7 hybrid model

The path and segment models have different pros and cons. While the
path model naturally supports — and might actually benefit from — per
demand constraints, only the segment model is able to handle SR paths with
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large number of midpoints within practical space requirements. Sometimes,
the path model might be very well suited for a subset of demands (e.g.
demands with strong per demand constraints) while the segment model is
better suited for another. When operators have to deal with both sets of
demands at the same time, they can rely on a hybrid model that combines
both previous models into a single one. Let Dpath and Dseg be the set of
demands to be encoded using the path and segment models respectively such
that Dpath ∪Dseg = D and Dpath ∩Dseg = ∅. The hybrid model is encoded as
follows:

∑
p∈Pd

x d
p = 1 ∀d ∈ Dpath (19)

∑
u∈N

x d
s,u = ∑

u∈N
x d

u,t = 1 ∀d = (s, t) ∈ Dseg (20)

∑
v∈N\{u}

x d
v,u = ∑

v∈N\{u}
x d

u,v ∀d = (s, t) ∈ Dseg, ∀u ∈ N \ {s, t} (21)

loadpath
u,v = ∑

d∈Dpath

∑
p∈Pd

x d
p flowp(u, v) ∀(u, v) ∈ E (22)

loadseg
u,v = ∑

d∈Dseg

∑
s,t∈N,s 6=t

x d
s,t FGs,t(u, v) bwd ∀(u, v) ∈ E (23)

loadpath
u,v + loadseg

u,v ≤ φcu,v ∀(u, v) ∈ E (24)

Constraints (19), (20), and (21) respectively encode SR paths accordingly the
path and segment models. Inequalities (22), (23) and (24) compute the load
of each link as the sum of demands in Dpath and Dseg that traverse that link.
Particularly, (24) makes sure that no link utilization exceeds the network
utilization φ.

4.8 conclusion

In this chapter, we have analysed the ability of SR to solve traffic engineering
problems. For that purpose, we introduced the segment model to solve the
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SRTEP optimally without limiting ourselves to an arbitrary maximum number
of midpoints. Particularly, the segment model allowed us to show that the
assumption, popularized by [17], that “one midpoint is enough” is misleading.
Indeed, our observation showed that allowing SR paths with two midpoints
often substantially improve over being restricted to a single one.

Curiously, the impact of the shortest paths on the SR paths has only been
barely discussed in the literature — at least to the best of our knowledge. We
showed that bad shortest paths might hamper the ability of SR path to prevent
congestion and highlighted that allowing more midpoints usually does not
make up for those bad shortest paths. Of course, finding an optimal set of link
weights that minimize the network utilization is an NP-hard problem [41] —
and a difficult one in practice. Looking for optimal SR paths and link weights
at the same time thus raises many challenges. We however think that the
benefits of being able to solve such a global problem are limited (we briefly
discussed the cost and risks of changing shortest paths in Section 2.2). Indeed,
we believe that a reasonable operational strategy consists in finding a set of
link weights such that the network is able to accommodate a large variety of
situations without relying on SR path (see the oblivious shortest path routing
approaches proposed by Altın et al. [5, 6]). SR paths are then used as a last
resort to deal with a critical situation or to enforce particular service level
agreements such as minimum delays and disjoint paths.

While MILP is an extremely powerful tool for traffic engineering, it suffers
from speed and scalability weaknesses that are inherent to solving NP-Hard
problems optimally. Those weaknesses are the main reason why we have lim-
ited or analysis to instances with less than 40 nodes, i.e., instances that could
be solved by Gurobi 7.0 [52] in reasonable time. Despite being primordial in
analysing SR as a technology, optimality is a much less desired property in
practice. Indeed, network operators are mostly interested by approaches that
are able to provide near optimal solution consistently and as fast as possible.
The next chapters of this thesis are dedicated to such techniques that trade
the ability to prove optimality for speed and scalability.
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5

FA S T R E C O V E RY W I T H L O C A L S E A R C H

For networks, the capability to promptly answer to unexpected dynamics, such
as link failures and traffic changes, in a very short time is more critical than
ever. This is especially true for large networks such as inter-datacenter wide
area networks and the ones of ISPs. On the first hand, new network architec-
tures powered by SDN enable network to almost fully use their link capacity
and let them carry more traffic without having to heavily over-provision their
infrastructures (see Chapter 4 and [60, 62]). On the second hand, sudden traffic
surges due to newly popular content, flash crowds [112] or even DoS attacks1

tend to create more frequent unexpected perturbations. Those events can
significantly change traffic distribution, and sum to the previously-considered
factors (like link failures) that can affect traffic optimization. Those two factors
increase the likelihood of experiencing congestion at any moment and led
recent works to focus on online traffic-engineering solutions [35, 92, 53].

In Chapter 4, we have seen that Mixed Integer Linear Programming (MILP)
is a very powerful tool to solve TE problems — the SRTEP not being an
exception. However, MILP approaches usually struggle to provide network
operators with solution in short delays. This scalability issue are particularly
stressed on large network — as the ones of ISPs. Nevertheless, pragmatic
workarounds have been developed to avoid, or at least diminish, the poor
scalability of MILP solvers.

periodic re-optimization. This workaround simply consists in re-
optimizing the network periodically — typically every few (e.g. 5) minutes
— instead of computing a new configuration each time a significant change
occurs in the network [60, 62]. The obvious interest of this approach is that
it can handle several changes by solving a single problem using more time.

1 DoS (Denial-of-Service) attacks usually consist in flooding network devices with superfluous
requests in order to make the network unavailable to its users.
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However, by running periodically, it can only remove congestion after the
fixed period. The worst case being the one in which a critical event, such as
a link failure, occurs just after the previous re-optimization and thus leaves
the network in a congested state until the next optimization. The second issue
with this approach is that it suffers from its own scalability issue. Indeed, the
bigger the network, the longer the MILP solver will have to run to reconfigure
the SR paths. Another difficulty comes from the fact that the successive config-
uration must stay relatively homogenous to minimize the cost of reconfiguring
several network devices — which can lead to additional instability on the
network.

precomputed events . An alternative approach — that is complementary
to the previous one — is to precompute a congestion-free configuration for
each of the most expected, or the most critical, events [17, 35, 53, 92]. When
one of those event occurs, the controller just has to push the corresponding
precomputed configuration on the network devices. Events that are likely to
be considered typically include link and node failures but can also include
common traffic patterns. For instance, the daily and nightly traffic distribu-
tions of an ISPs might be very different from each other but stable on a long
period. Of course, precomputing a network configuration for each combina-
tion of possible events is not scalable both in time and memory. Network
operators thus have to focus on a set of expected events thus leaving the
network vulnerable to the unexpected ones by definition.

In this chapter, we explore the feasibility of a different approach where SR
paths are re-optimized as soon as the utilization of a link increases too much,
e.g. in consequence of a significant traffic change or a link or node failures. In
particular, we focus on providing operators with high-quality re-optimized
network configurations in very short delays. To tackle this challenge, we rely
on an optimization techniques called local search. To the contrary of systematic
approaches like MILP, Local Search (LS) does not strive to prove the optimality
of its solutions but rather tries to find high-quality solutions as fast as possible.
Because of that, LS tends to behave very well on large scale problems. Also,
LS is inherently an anytime optimization techniques that will return a solution
no matter when the algorithms is stopped. Therefore, LS is particularly well
suited for time-constrained scenarios like the one described above.
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5.1 background on local search

This section briefly formalizes and presents the concepts and notations used
throughout this chapter.2 To do so, we assume that the combinatorial opti-
mization problem P to be solved has the form

minimize f (x)

subject to c1(x)
...

cm(x)

where x ∈ Zn is a vector of n discrete decision variables, f is an objective
function Zn → R that evaluates the quality of a variable assignment, and
c1, . . . , cm are constraints defining the search space.

Definition 8. A solution of P is an assignment of values to the variables in x
that satisfies the constraint c(x)1 ∧ · · · ∧ c(x)m.

Definition 9. The search space of P is the set of all its solutions and is denoted
by SP .

Definition 10. The set of optimal solutions of P is denoted by S∗P and defined
as

S∗P = {s ∈ SP | f (s) = min
s′∈SP

f (s′)}.

Typically, an LS algorithm starts from a solution s ∈ SP and moves from
solutions to solutions in order to improve the value of its objective function f .
At each iteration, the LS algorithm evaluates the neighboring solutions N(s)
of solution s and decides whether to move to the most promising one, or to
stay at solution s. We now define the concepts of neighborhood, transition
graph, and local optimality which are central to this iterative process.

Definition 11. A neighborhood is a function N : SP → P(SP ) that defines the
set of adjacent solutions N(s) ⊆ SP of each solution s.

Definition 12. The transition graph G(SP , N), associated to a search space SP
and a neighborhood N, is the graph whose nodes are solutions in SP and
where an arc s→ s′ exists if s′ ∈ N(s).

2 Note that the definitions presented in this section are directly adapted from [59].

49



fast recovery with local search

Definition 13. A neighborhood N : SP → P(SP ) is connected if and only if,
for each pair of solutions s1, s2, there exists a path from s1 to s2 in G(SP , N).

Definition 14. A solution s ∈ SP is locally optimal with respect to its neigh-
borhood N if

f (s) ≤ min
i∈N(s)

f (i).

Definition 15. The set of locally optimal solutions is denoted by S+P and
contains all the optimal solutions of P so that S+P ⊆ S

∗
P .

Neighborhoods play a critical part in the effectiveness of local search al-
gorithms. Large neighborhoods generally take more time to explore but
simultaneously reduce the number of local optima as well as the diameter of
the transition graph, which, in turn, increase the likelihood of finding high
quality solution quickly. Finding the right trade-off between the diameter of
the transition graph and the time spent exploring neighborhoods is particu-
larly import design choice that is often problem dependent — if not instance
dependent.

Connectivity is another important property of neighborhoods. Basically,
a connected neighborhood guarantees that there exists a path between any
solution s ∈ SP and any solution s∗ ∈ S∗P . In other words, a connected
neighborhood guarantees that a well-designed local search algorithm can reach
an optimal solution. However, the heuristic used to evaluate the solutions in
the neighborhood might prevent the local search algorithm from doing so.

Definition 16. A local search algorithm for P computes a path

s0 → s1 → · · · → sk

in the transition graph G(SP , N) such that

si+1 ∈ N(si) (1 ≤ i ≤ k).

One of the simplest local search algorithm one can imagine is the following

1 function LocalSearch(N, sinit) :
2 s← sinit
3 while ¬StopCondition() :
4 for s′ ∈ N(s) :
5 if c1(s′) ∧ · · · ∧ cn(s′) and f (s′) ≤ f (s) :
6 s← s′

7 return s
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It starts from sinit and, at each iteration, selects the best solution in the
neighborhood of the current one. The algorithm stops when a stop condition,
like a time limit, is met. The final solution returned by such a local search
algorithm usually belongs to S+P (for a given neighborhood N).

While heuristics aim at reaching good local optima quickly by choosing
the next solution in a neighborhood, metaheuristics, on the contrary, aim
at escaping those local optima and to direct the local search in the most
promising parts of the search space. We briefly describe the ones that we
consider to be the most famous.

tabu search. Tabu search [48] is a popular and effective metaheuristic
that is the parent of a large set of metaheuristics and techniques. Tabu
search aims at preventing an embedded local search heuristic from returning
to recently visited areas of the search space. To achieve this, tabu search
maintains a short term memory of the specific changes between the recently
explored solutions to forbid the undoing of those changes in the near future.
Tabu search has been successfully used in traffic engineering to optimize link
weights [40].

simulated annealing . Simulated annealing [67] is based on the Metropo-
lis heuristic [75] which accepts a degrading move with probability

exp(
f (s)− f (s′)

t
)

where t is a parameter of the heuristic called temperature. The key idea under-
lying simulated annealing is to iterate the Metropolis heuristic with a sequence
of decreasing temperatures. The effect is that simulated annealing accepts
many moves at the beginning of the search, thus sampling the search space
widely, and moves progressively toward small values of t thus converging
toward random improvements and hopefully a high quality local optima.

guided search. Guided local search [111] is based on the recognition
that a local optima s ∈ S+P for objective function f may not be locally optimal
with respect to another function f ′. Therefore, using f ′ instead of f could
drive the search away from s. As a consequence, the key idea behind guided
local search is to use a sequence of objective functions f0, . . . , fi to escape local
optima and to explore the search space widely.
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5.2 a neighborhood for segment routing

The SRTEP can easily be instantiated as a local search problem P in which
each demand is associated with a decision variable that represents the SR
path on which that demand is forwarded. We subsequently refer to those
variables as path variables. The objective function to be minimized computes
the network utilization of a complete assignment of the path variables

f (x) = max
(u,v)∈E

∑i∈D flowxi (u, v)
cu,v

.

In this chapter, we assume that there is no additional constraint to impose
on the path variables. Therefore, any assignment is a valid solution. We
have seen in Chapter 4 that the number of SR paths grows exponentially
with the number of midpoints. The size of the search space SP thus grows
exponentially with both the maximum number of midpoints k and the number
of demands in D such that

O(|SP |) = O(|N|k|D|).

We propose to build a simple neighborhood function Npath so that the
neighborhood of a solution s is made of every solution s′ that is equal to s
except for one SR path

Npath(s) = {s′ ∈ SP | ∃!i ∈ D : s′i 6= si}

where ∃! denotes the uniqueness quantification. Without any surprise, the
size of Npath(s) grows exponentially with the number of midpoints k and is

O(|D||N|k−1)

which could quickly become prohibitive when solving the k-SRTEP with large
value of k. The transition graph induced by N is strongly connected and has
a diameter of length |D|. Theoretically, this guarantees that a local search
algorithm could reach an optimal solution, from any other one, in at most |D|
iterations.

We adapted the basic local search algorithm presented in the previous
section to use the neighborhood function Npath. The algorithm, that we
subsequently refer to as basic local search, is the following

1 function BasicLocalSearch(sinit) :
2 s← sinit
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Figure 5.1: Comparison of the basic local search with the optimal instance of 2-SRTEP.
The algorithm reaches optimality on 30% of the instances and is 76.51%
higher than the optimal solution in the worst case.

3 while {s′ ∈ Npath(s) | f (s′) ≤ f (s)} 6= ∅ :
4 s← SelectRandom({s′ ∈ Npath(s) | f (s′) ≤ f (s)})
5 return s

It starts from solution sinit which we assume to be the shortest paths routing,
i.e. the solution in which every SR path directly follows the shortest paths
towards its destination without making any detour. At each iteration, the
algorithm explores the entire neighborhood Npath(s) and moves to the solution
that leads to the largest improvement of the objective function f . If there are
several such solutions, one of them is selected randomly. The algorithm stops
when Npath(s) contains no solution with a better objective value than s — s is
a local optima.

We measured the efficiency of this algorithm by solving the 2-SRTEP on
all the instances solved optimally in Chapter 4. The results are presented
in Figure 5.1 where the vertical axis is the ratio of the best objective value
found divided by the optimal objective value. Quite surprisingly, this simple
algorithm already performs well: it reaches optimality on 30% of the con-
sidered instances, returns solutions that are not more than 14% higher than
the optimal one for 95% of them, and is only 76.51% larger than the optimal
objective value in the most extreme case.

Improving the efficiency of the basic local search algorithm goes hand-in-
hand with escaping local optima. A first natural way to achieve this is to use
larger, or at least partially disjoint, neighborhoods. However, Npath is already
very likely to face scalability issues due to its exponential asymptotic growth.
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A second solution to escape local optima is to rely on metaheuristics — which
happens to be the topic of the next section.

5.3 link guided local search

Understanding the properties of local optima is a solid basis to design a
procedure to escape them. By definition, a solution s is a local optima with
respect to f , if no solution s′ ∈ Npath(s) has a smaller objective value than
s. In particular, a solution s is a local optima if it is impossible to reduce
the network utilization by changing the SR path of a single demand in s.
Ultimately, minimizing the network utilization comes down to minimizing
the utilization of the most loaded links. Let fu,v : SP → R be the function that
returns the utilization of link (u, v) given an assignment of the path variables

fu,v(x) =
∑i∈D flowxi (u, v)

cu,v
(∀(u, v) ∈ E)

so that M(x) denotes the set of all the most utilized links

M(x) = {(u, v) ∈ E | fu,v(x) = f (x)}.

Therefore, to improve over s, a solution s′ ∈ Npath(s) needs to reduce the
utilization of all links in M(s),

∀(u, v) ∈ M(s) : fu,v(s′) < fu,v(s), (25)

while ensuring that the utilization of all links in E \M(s) remain strictly lower
than f (s). To respect condition (25), solution s needs to contain an SR path
that forwards its demand on all the links in M(s). However, the probability of
having such an SR path grows finer when M(s) grows larger. Especially, it is
very unlikely that such an SR path exists if M(s) is made of two symmetrical
links

M(s) = {(u, v), (v, u)}

because the SR path would have to contain a cycle.
Similarly to guided local search (see Section 5.1), we tackle this issue by

dynamically changing the objective function to escape local optima. In par-
ticular, each iteration of our local search algorithm focuses on minimizing
the utilization of a single link instead of focusing on the overall network
utilization. The general pseudo code of this local search algorithm, that we
refer to as link guided local search, is the following:
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1 function LinkGuided(N, sinit) :
2 s← sinit
3 while ¬StopCondition() :
4 (u, v)← SelectLink(s)
5 for s′ ∈ N(s) :
6 if fu,v(s′) < fu,v(s) and f (s′) ≤ f (s) :
7 s← s′

8 return s

Note that the second condition at line 6 ensures that the algorithm never
degrades the quality of the solution.

Selecting the next link to drive the local search (line 4) is the most critical
design choice of this algorithm. There are two opposite natural heuristics to
do that. The first is to select the next link among the most utilized:

1 function SelectLinkMax(s) :
2 return (u, v) ∈ M(s) with probability 1/|M(s)|

The second is to select the next link randomly among E in order to drive the
search in various parts of the search space:

1 function SelectLinkUniform(s) :
2 return (u, v) ∈ E with probability 1/|E|

We propose to rely on a third heuristic which stands halfway between Se-
lectLinkMax and SelectLinkUniform. The key idea is to select the next
link randomly but where the probability of selecting a link increases with
the link utilization. Formally, the probability Pu,v(x) of selecting link (u, v) is
determined by its utilization and by an intensification coefficient denoted by α:

Pu,v(x) =
fu,v(x)α

∑(u,v)∈E fu,v(x)α
.

The pseudocode of our heuristic is thus the following:

1 function SelectLinkWeighted(s) :
2 return (u, v) ∈ E with probability Pu,v(s)

High values of α increase the chance of selecting the most utilized edges.
The larger α is, the more likely SelectLinkWeighted is to return the same
solution has SelectLinkMax. To the contrary, low values of α flatten the
probability distribution. Particularly, setting α to 0 results in the same behavior
as SelectLinkUniform.
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Figure 5.2 shows the impact of α on the efficiency of link guided local
search. As before, the algorithm was evaluated on all the optimally solved
instances from Chapter 4. For each instance, link guided local search was
given a limit of 10,000 iterations. The right most box plot presents the same
results as in Figure 5.1 to ease the comparison with the basic local search.
We see that setting α to 0, which corresponds to SelectLinkUniform, leads
to the worst results. The problem with this configuration is that it focuses
too much on exploring the search space. Therefore, it is not able to take
advantage of the limited iterations to drive the search toward a high quality
local optima. Increasing the value of α substantially improves the effectiveness
of link guided local search. However, and this is quite interesting, too high
values of α, making the selection behave like SelectLinkMax, reduce the
effectiveness of the algorithm. The best results were obtained with α = 8.

5.4 scalable neighborhood

As the path model before it (see Chapter 4), neighborhood Npath grows expo-
nentially with the maximum number of midpoints

O(|Npath(s)|) = O(|D||N|k−1) (∀s ∈ SP ).

Exploring this neighborhood thus becomes a problem when k ≥ 3. For-
tunately, there are many solutions to overcome this issue. One could, for
instance, design a selection heuristic that samples the neighborhood instead
of systematically exploring it (see random walks [59] and the Metropolis
heuristic [75]). Another approach, the one we chose to follow, is to reduce the
size of the neighborhood or to explore it partially. In this section, we present a
second neighborhood that is strongly connected, and scales well with k.

The Levenshtein distance [72], commonly referred to as an edit distance, is
a way of counting the dissimilarities between two sequences of symbols, e.g.
two strings. Basically, the edit distance between two sequences is the mini-
mum number of primitive operations that must be applied to transform one
sequence into the other. Those operations usually are:

• Insert a single symbol;

• Remove a single symbol;

• Substite a single symbol by another one.

Since an SR path can be represented as a sequence of midpoints, we can
apply the edit distance to count the dissimilarities between two SR paths (see
Example 7).
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Figure 5.2: Impact of α on the effectiveness of link guided local search. The best
configuration is α = 8.
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Example 7. The edit distance between SR paths p1 = s, a, b, c, t and p2 =
s, a, d, t is 2:

1. s, a, b, c, t→ s, a, b, t (deletion of c),

2. s, a, b, t→ s, a, d, t (substitution of b by d).

An alternative is to delete b and then substitute c by d.

Let edit be a function N∗ ×N∗ →N that returns the edit distance between
two SR paths using the three previous operations plus an additional one:

• Insert (I) a new midpoint;

• Remove (R) a midpoint;

• Substite (S) a midpoint by another one;

• Clear (C) an SR path by removing all its midpoints.

We propose a new neighborhood function Nedit so that the neighborhood of a
solution s is made of every solution s′ that is equal to s expect for one SR path
which differ by a single edit operation

Nedit(s) = {s′ ∈ SP | ∃!i ∈ D : s′i 6= si ∧ edit(s′i, si) = 1}.

To the contrary of Npath, the size of Nedit grows linearly with the maximum
number of midpoints k and is

O(|Nedit(s)|) = O(k |N||D|) (∀s ∈ SP ).

Furthermore, the transition graph produced by Nedit remains strongly con-
nected and has a diameter of length k |D|. Indeed, it is possible to transform
any SR path into another one by applying at most k edit operations. Note
that insertion and removal are the only required operations to ensure that the
transition graph of Nedit is strongly connected.3 Nevertheless, the substitute
and clear operations increase the connectivity of the transition graph, and
thus potentially reduce the number of local optima, without changing the
asymptotical growth of |Nedit|.

Property 1. Neighborhoods Npath and Nedit are equal when k = 2.

3 The edit distance using only insertion and removal is called Longest Common Subsequence (LCS)
distance. It is an upper bound of the Levenshtein distance.
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Proof. Trivially, two SR paths made of at most one midpoint cannot differ by
more than a single midpoint. �

We compared the efficiency of Nedit, with different set of edit-operations, to
Npath by solving the 3-SRTEP on our usual dataset. The results are presented
in Figure 5.3. As before, each algorithm was configured with a limit of 10,000

iterations to solve each instance. The first — striking — observation is that
Nedit is not only competitive with Npath but actually computes better solutions.
We explain those counter intuitive results by the fact that Nedit might perform
less attractive moves than Npath (in terms of improvement of the objective
function) but that lead to local optima that are easier to escape. Indeed, Nedit,
with our four edit operations (i.e. IRSC), performs much better than the
other tested neighborhoods and computes solutions that are only 12% higher
than their optimal objective value in the worst case. Finally, as a general
observation, we see that Link Guided local search finds better solutions when
solving the 3-SRTEP than 2-SRTEP, no matter if it is used with Nedit or Npath.

5.5 intensification vs diversification

Even a small neighborhood like Nedit might be to large to explore entirely in
critical situations in which promptly finding a good-enough solution is of
paramount importance. In those contexts, it is often interesting to (temporarily)
forget about exploring diversified parts of the search space to intensify the search
in a potentially sub-optimal but promising direction.

We showed in the beginning of Section 5.3 that the exploration of the
neighborhood could be sped up by focusing on the SR paths visiting the
selected link (because changing other SR path cannot lead to an improvement
of the objective function). We could go a step further by reducing even more
the set of considered SR paths. Quite intuitively, changing the SR path of the
largest demand that visits the selected link is likely to result in the biggest
improvement of that link utilization. Therefore, we propose to adapt the
exploration of the neighborhood so that solutions that change the path of
large demand are visited first.

Let d1, . . . , dn be the n demands with the largest contribution to the load of
link (u, v), sorted in non-increasing order

flowd1(u, v) ≥ · · · ≥ flowdn(u, v).

Heuristic OrderedImprovement relies on those sorted demands to drive the
exploration of neighborhood N
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Impact of the neighborhood
when solving the 3-SRTEP
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Figure 5.3: Comparison of Nedit, with different set of edit operations, to Npath on the
3-SRTEP. Letters I, R, S, and C describe the set of edit-operations used to
define Nedit.
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1 function OrderedImprovement(N, s, d1, . . . , dn) :
2 for i ∈ 1, . . . , n :
3 s+ ← s
4 for s′ ∈ {s′ ∈ N(s) | s′di

6= sdi
} :

5 if fu,v(s′) < fu,v(s+) and f (s′) ≤ f (s) :
6 s+ ← s′

7 if s+ 6= s :
8 return s+

9 return s

At each iteration i, it explores the solutions in N(s) that changes the path of
demand di with regard to solution s (line 4). The heuristic returns the best
improving solution, or iterates to the next demand di+1 if no such solution
exists for di (lines 5 to 8). The heuristic returns solution s if it wasn’t able to
find an improving solution.

We propose a new local search algorithm called Link Guided Variable
Search (LGVS) that extends the previous link guided search to rely on Or-
deredImprovement. The pseudocode is the following

1 function LinkGuidedVariableSearch(N, maxSize, sinit) :
2 s← sinit
3 n← 1
4 while ¬StopCondition() and n < maxSize :
5 (u, v)← SelectLink(s)
6 d1, . . . , dn ← SortedDemands(u, v)
7 s′ ← OrderedImprovement(N, s, d1, . . . , dn)

8 if s 6= s′ :
9 s← s′

10 n← 1
11 else :
12 n← n + 1
13 return s

At each iteration, the algorithm selects one of the most loaded links (line 5),
and selects and sorts the n demands with the largest contribution to the load
of that particular link (line 6). OrderedImprovement is then used on the
selected link and demands to drive the exploration of the neighborhood (line
7). If an improving solution was found, the number of demands to select at
the next iteration of the algorithm is reset to 1; it is incremented otherwise.
The algorithm stops when a stop condition is met, or when n exceeds the
maximum number of demands to select.
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Figure 5.4: Comparison of LGVS to link guided local search with Nedit and Npath.
LGVS achieves the best results in time constrained scenarios.

We compared the efficiency of LGVS on the 3-SRTEP against link guided
search with Nedit and Npath. Precisely, the three local search algorithms were
tested in two different scenario: (i) with a limit of 10,000 iterations, and
(ii) with a pragmatic time limit of 5 seconds. The results are presented in
Figure 5.4. On the left part, we see that fast link guided local search performs
quite well, getting solution that are less than 14% higher than their optimal
solution, but not as well as link guided search with Nedit. However, on the
right part, we see that fast link guided local search is by far superior than the
other approaches when the actual computing time is used as a stop condition.
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5.6 conclusion

In this chapter, we focused on the design of a local search algorithm to find
high-quality solutions to the SRTEP in a scalable and robust way. To achieve
this, we designed a scalable neighborhood, Nedit to explore the search space of
the SRTEP. We also proposed Linked Guided Variable Neighborhood Search
(LGVS), a local search algorithm that rely and focuses on minimizing the
utilization of the most utilized edges, and adapts its exploration of Nedit to
control the trade-off between sampling the search space and improvement.
We showed that this algorithm performs well: it usually finds solutions with
an objective value that is less than 1% higher than the optimal one for more
than 75% of the considered instances, and remains at a reasonable distance
(15%) of the optimal objective value in the worst cases.

Escaping local optima can be approached in a multitude of way. This is
witnessed by the large variety of heuristics and metaheuristics developed
during the past decades. It is therefore unlikely for Nedit and LGVS to be the
best possible combination one can come up with. Nevertheless, we believe
that the approaches we designed could help network operators and serve as a
baseline for researchers in the field.

While all the local search algorithms we proposed could easily be extended
to handle additional constraints, by filtering invalid solution when exploring
the neighborhood, we still have to face the problem of finding an initial
solution that actually respects those constraints in minimal time. The next
chapter of this thesis focus on that particular problem.
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6
C O N S T R A I N T P R O G R A M M I N G A N D L O C A L S E A R C H

The link guided search algorithms presented in Chapter 5 proved to be very
competitive. This is especially true when considering problems of large size
where MILP usually struggles to find high-quality solutions in practicable
time (and amount of memory). However, while link guided search can
easily be extended to handle additional constraints, such as service chaining
and disjoint SR paths, its effectiveness is substantially diminished in such
constrained context. In particular, our LS algorithms always assume that their
incubent solutions are feasible. This is not a problem in offline contexts, in
which a low-quality but feasible solution can be computed using MILP, and
then optimized with LS. However, events such as link failures, which might
result in a substantial change of the forwarding graphs, are likely to turn
feasible solutions into unfeasible ones. For instance, nothing guarantees that
two disjoint SR paths would remain disjoint under different sets of forwarding
graphs. Even worse, such disruptive events might actually make the problem
infeasible — if two disjoint demands have to traverse a bridge for example.
Of course, MILP techniques could still be used to find a new feasible solution
or to detect infeasible constraints. However, as discussed in Chapter 4, MILP
might takes a long time to compute such feasible solution and is therefore
not suited for the time-critical and large scale scenarios for which we initially
designed our LS algorithms.

6.1 constraint programming

Among the long standing traditions of the Constraint Programming (CP)
community, one is to illustrate CP’s basic concepts with the 8-Queens prob-
lem [94]. The 8-Queens problem is a toy puzzle, proposed in 1848 by German
chess player Max Bezzel [16], that has attracted (and still attracts [13, 46]) the
attention of many researchers in artificial intelligence. The problem is the one
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Figure 6.1: A possible solution to the 8-Queens problem.

of placing 8 queens on a 8×8 chess board so that no two queens attack each
others. For the readers who are not familiar with chess rules, that means that
no pair of two queens can share the same row, column, or diagonal. One such
solution is depicted in Figure 6.1.

The 8-Queens problem is an example of a combinatorial problem as there
is a finite, but astronomically large, number of possible solutions (there are
64!/56! = 178,462,987,637,760 ways to place the queens on the board) but only
a few of them actually respect the rules of the game (there are 92 solutions
to the 8-Queens problem). Solving such combinatorial problem is a complex
task since there are too many configurations to investigate to find an actual
solution (whether it is by cherry picking or by enumeration). Furthermore,
there is no trivial way to infer a solution by looking at the rules of the game
alone. As a matter of fact, combinatorial problems — at least the interesting
ones — usually belong to the NP-Hard class.1

The CP way of solving a combinatorial problem is to translate it into a
Constraint Satisfaction Problem (CSP). A CSP is usually defined by a triple
〈X, D, C〉 such that:

• X is a set of variables that represent the unknowns of the problem;

• D is a set of functions that links each variable to its domain which is a
set of values the variable can be assigned to;

• C is a set of constraints which are relations to be respected by any solution
of the problem.

1 The N-Queens problem, i.e. the generalization of the 8-Queens problem to N queens and a N×N
chess board, is not NP-Hard [13]. However, the N-Queens Completion problem, i.e. a variant of
the N-Queens problem in which some queens are already placed on the board, has recently been
proven to be NP-Complete [46].
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Figure 6.2: CSP framing of the 8-Queens problem with two assigned queens.

A solution of a CSP is an assignment of all the variables to a value of their
respective domain such that all the constraints are respected. A CSP is
unfeasible if it has no solution.

The typical CSP formulation of the 8-Queens problem is the following. We
assume that each queen is pre-assigned to a particular row so that the rule
that queens should not share a same row is enforced by default. The problem
thus becomes the one of finding a column for each queen so that:

1. no two queens share the same column;

2. no two queens share the same diagonal.

To do so, we associate each queen i to a variable Ci, with domain D(Ci) =
{1, . . . , 8}, that represents the column to which the queen could be placed in.
Figure 6.2 illustrates this formulation where two queens are already placed
on the board. The “column” and the “diagonal” rules are both enforced
on all the Ci variables with three constraints: one for the columns, one
for the upward diagonals, and one for the downward diagonals. While
those constraints might look different, they actually share, thanks to a pinch
of arithmetic2, the same combinatorial substructure: ensure that no pair of
variables is assigned to the same value. In CP, this particular substructure
is better known as the allDifferent constraint and is part of a much larger
catalogue of constraints [12]. The ability to identify those substructures is the
key that allows CP practitioners to translate complex combinatorial problems
into CSPs.

2 The Manhattan distance that separates cell (1,1) (resp. cell (1, 8)) from each cell contained in a
same upward (resp. downward) diagonal is the same.
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Though constraints enable the modeling of combinatorial problem in a
expressive way, they also play a much significant role in the solving process
of CP. Let us illustrate this by finding a solution to the problem depicted in
Figure 6.2. An intuitive way to achieve this consists in removing the cells that
are attacked by one of the already assigned queens. We perform such filtering
by selecting one of the constraints, e.g. the upward diagonal constraint, and
discarding the values that violate the constraint from the domain of the Ci
variables. In CP, the process of removing values from the domain of a variable
is called filtering, and the procedure used to perform such filtering according
to a constraint definition is called a propagator. Figure 6.3 (a) illustrates the
state of the CSP after calling the propagator of the upward diagonal constraint.
We continue our filtering by calling the propagator of another constraint, the
column constraint for instance (see Figure 6.3 (b)). This process of selecting a
constraint and calling its propagator is repeated until no further filtering of
the domains can be achieved. In CP, the algorithm that performs such process
is called the propagation algorithm and its action usually referred to as constraint
propagation or simply propagation. The state of the CSP after propagation, i.e.
when no additional filtering can be performed by the propagators, is shown
in Figure 6.3 (c).

Unfortunately, propagation alone is often not enough to infer a solution
from a CSP. Indeed, and despite the significant reduction of the variables’
domain depicted in Figure 6.3, no additional queen position was inferred by
propagation. In such contexts, to continue further, we need to:

1. guess what could be the position of an unassigned queen;

2. check if our decision was valid or not by propagating this new piece of
information.

Let us start by assigning the first queen to the 8th column, i.e. C1 = 8, and
then propagate. The result is shown in Figure 6.4. Like before, propagation
wasn’t enough to infer a solution from the assigned queens. We thus continue
our guess and propagate process by assigning C2 to 1. From this change,
propagation is able to infer the position of the third queen but removes all the
values from the domain of C6 as it is impossible, given C1 = 8 and C2 = 1,
to place a queen in the 6th row without violating at least one constraint (see
the bottom left board in Figure 6.4). We say that propagation failed. We thus
undo our last decision and try to assign the second queen to the third column
instead. Unfortunately, this also results in a fail (see the bottom right board
in Figure 6.4) thus proving that there is no solution such that the first queen
is assigned to the 8th column. This brings us back to the beginning of our
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Figure 6.3: Constraint propagation.
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search but with the additional information that value 8 can’t be a member of
D(C1) no matter the solution. We finally take the decision to assign the 7th
queen to the 6th column, which, after inferring the positions of the remaining
queens, results in the solution depicted in the middle right part of Figure 6.4.

This recursive process of guesses, propagations, and backtracks is called
backtracking search. Backtracking search implicitly develops a search tree such
that its root is the original CSP, leaves are either solutions or fails, and internal
nodes are intermediate CSPs that still have to be completed (see Figure 6.4).
Backtracking search is complete as it eventually finds all the solution to the
problem or proves that the problem was unsatisfiable because it has no solution.

6.2 large neighborhood search

CP is not restricted to solving CSP and can straightforwardly be extended to
solve combinatorial optimization problems as well.3 In CP, a combinatorial
optimization problem is modeled as a CSP with an additional variable that
represents the possible value of the objective function to be minimized. The
link between the domain of that objective variable and the rest of the model
is ensured by a constraint. Each time a solution is found, CP adds a new
constraint to the model to force the objective variable to be assigned to a
strictly lower value than the one of that solution. The optimality of a solution
is proven when no additional solution can be found. Although this algorithm
works pretty well on problems with small search trees, it often struggles to
find high quality solutions when the search tree gets larger (either because of
the size of the problem to be solved or the efficiency of the filtering algorithms).
This weakness is inherent to the DFS nature of backtracking search which
dives in the so-called “left-most” part of the search tree.

Throughout the last decades, CP researchers came up with different strate-
gies (such as discrepancy search [57], back-jumping search [29, 71, 87], or
conflict ordering search [43, 71]) to workaround this limitation. Among them,
Large Neighborhood Search (LNS) [100] turned out to be particularly efficient
to solve large scale real world industrial problems in the domain of vehicles
routing [14, 93] and scheduling [49, 70, 82]. In essence, LNS is an LS algorithm:
it starts with an initial solution and iteratively tries to improve it until a stop
condition, such as a time limit, is met. The particularity of LNS stands in
how the improvement step is performed. Rather than exploring neighborhood
solutions defined by a set of small modifications of the best-so-far solution

3 CP can actually be extended further to solve multi-objective combinatorial problems. The author
proposed two different approaches for that matter [56, 96].
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Figure 6.4: CP relies on an interleaved process made of guesses and propagations to
solve CSPs. Small queens are inferred by propagation.
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(like the edit neighborhood presented in Chapter 5), LNS selects a whole part
of the best-so-far solution called a fragment, deconstructs it, and then relies on
CP to reconstruct the missing part in a way that improves the quality of the
solution (see Figure 6.5). Concretely, LNS achieves this by generating and
solving a new subproblem P ′ such that

SP ′ ⊆ {s′ ∈ SP | f (s′) < f (s)} (26)

Let F be a fragment made of a subset of the problem’s variables and let O
denote the objective variable to be minimized, subproblem P ′ is typically
generated by adding the following constraints to the original problem:

O < f (x) and ∀i 6∈ F : Xi = si. (27)

If CP finds a solution to problem P ′ then this solution becomes the new
best-so-far solution. The typical LNS algorithm is the following:

1 function LargeNeighborhoodSearch(P) :
2 s← FindSolutionCP(P)
3 if s = null :
4 return null

5 while ¬StopCondition() :
6 P ′ ← BuildNeighborhood(P , s)
7 s′ ← FindSolutionCP(P ′)
8 if s 6= null :
9 s← s′

10 return s

LNS first uses CP to find an initial first solution s (line 2). If no solution exists,
then LNS stops knowing that the problem is unfeasible (lines 3 and 4). The
main loop of LNS (lines 5 to 9) is where the deconstruct/reconstruct iterative
process occurs. Function BuildNeighborhood generates the subproblem P ′ (line
6) which is then solved by CP (line 7). If CP finds a solution then it becomes
the new best-so-far solution (lines 8 and 9). This process is repeated, hopefully
improving the quality of the solution, until a stop condition is met (line 5).

LNS provides us with two advantages compared to “classic” LS algorithms.
First, it does not need tailored neighborhood functions to handle the con-
straints of the problem since those are naturally handled by CP during the
reconstruction phase. The second advantage is that fragment selection can be
done automatically without any prior knowledge of the problem to be solved
(e.g. by selecting a random subset of variables).4 Ultimately, LNS provides

4 However, problem specific fragment selection heuristics are likely to improve the efficiency of the
LNS algorithm [49, 83].
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a) best-so-far solution b) deconstruct c) reconstruct

Figure 6.5: Iteration of the LNS deconstruct/reconstruct improvement process on
an arbitrary instance of the Travelling Salesman Problem (TSP), i.e., the
problem of finding an Hamiltonian cycle of minimum length. The best-so-
far solution s is presented in (a); LNS deconstruct a part of s that looks
suboptimal (b), and then tries to reconstruct it with CP in a way that
improves the quality of the solution (c).

an elegant framework that combines the high expressivity and modularity of
CP with the scalability of LS but at the cost of losing CP’s ability to eventu-
ally find an optimal solution. However, many pragmatic solutions exist to
workaround that limitation such as progressively increasing the size of the
fragments or running LNS and CP in two different threads that communicate
their best-so-far solutions.5

A lot more could be said about CP and LNS. We have only scratched
the surface of the basic concepts necessary to understand the remainder of
this chapter.6 Nowadays, CP solvers such as [23, 45, 79, 81] are built with
propagation algorithms and search strategies designed to be both efficient
and correct but also fully generic: neither the propagation algorithm nor the
backtracking search depends on the nature of the propagators or the variables
as long as they both obey certain rules [54]. That makes CP solvers highly
modular and easy to extend with new propagators, variables, and modeling
abstractions.

6.3 structured domains

Not every combinatorial problem is easy to model using integer variables
only. Indeed, a wide range of problems find a (much more) natural formu-

5 A similar strategy is implemented in CP-Optimizer [110].
6 Interested readers might want to have a look at the complete — but slightly outdated — handbook

of constraint programming [94].
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lation in higher-level languages such as those of sets [47, 88], strings [97, 98],
graphs [33], or other discrete objects [94]. In the context of the SRTEP, it is
natural to formulate the problem in terms of unknown SR paths. In this
section we review different ways to extend CP solvers with such a language.

An intuitive way to implement the domain of a variable in CP is to explicitly
use a set that contains all the values in that domain. This approach usually
works pretty well for discrete variables with low cardinality domains such
as integer or boolean variables. However, it is not well suited for SR path
variables because their domain might contain an exponential number of values.
To tackle this scalability issue, CP solvers usually reason on representations
that overapproximate the actual domain of their variables, but provide more
practical space complexities. Such representations are referred to as structured
domains [94]. Rather than representing the domain of a variable exactly with
a set, structured domains rely on smaller components (such as integers)
which, when taken together in a structured way, form a representation that
overapproximate the domain. In other words, structured domains trade the
information contained in exact domain representations for scalability.

We illustrate the concept of structured domain with one of its most suc-
cesful application: set variables. Let X be a set variable defined on elements
I = {1, . . . , n} so that D(X) ⊆ P(I) where P(I) is the power set of set I.
The domain D(X) grows exponentially with the number of elements n and
contains up to 2n different sets. Instead of representing the domain of variable
X exactly with a single set, we rely on two different sets Iin ⊆ I and Iout ⊆ I
which, respectively, represent the elements that must and cannot be part of
every set in D(X) [88, 115]. The structured domain built on pair 〈Iin, Iout〉 is
defined as follows:

D(〈Iin, Iout〉) = {a ∈ P(I) | Iin ⊆ a ⊆ I \ Iout} ⊆ D(X). (28)

Note that (28) implies that sets Iin and Iout respect the following invariant:

Iin ∩ Iout = ∅. (29)

Clearly, D(〈Iin, Iout〉) is more scalable than the exact representation because
it only requires two sets of n elements instead of one set of 2n elements.
However, it does not offer as much information as the exact representation
(see Example 8). The direct implication is that structured domains might lead
to faster but less effective propagation which, in turn, increases the size of the
search tree to be explored with backtracking search. Finding the right balance
between fast propagation and the size of the search tree is one among the
many skills to be mastered by CP practitioners.
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Example 8. Let X be a set variable such that D(X) = {{a}, {b}} ⊆ P({a, b}).
Sets Iin and Iout are empty because both elements a and b might (but are
not guaranteed to) be part of the assigned set. The structured domain
D(〈Iin, Iout〉) = {{}, {a}, {b}, {a, b}} thus overapproximates D(X) because
it cannot exclude {} nor {a, b}.7

6.3.1 Related work on Path variables

Path variables are useful to model combinatorial problems that involve un-
known simple paths in a graph. Path variables are thus a natural fit to model
our SR path variables as simple paths in the segment graph. Like set variables,
path variables suffer from an important scalability issue since the number
of paths (to be contained in their domain) grows exponentially with the size
of the graph. It is therefore not surprising that structured domains for path
variables have been particularly studied in the CP literature [94]. We briefly
review the two most famous of them: the link and node representations.

link representation. In a link representation, each link e ∈ E is associ-
ated with a binary variable Be, with domain D(Be) = {0, 1}, that is assigned
to 1 if link e is part of the path, or assigned to 0 otherwise. The attentive
reader probably remembers that link representation corresponds exactly to
the representation of SR paths we used in the MILP segment model presented
in Chapter 4. Link representation has a space complexity of O(|E|) which is
especially appealing when dealing with sparse graphs. However, that space
complexity reaches its worst case of Θ(|N|2) when link representation is used
to model the domain of an SR path variable (because the segment graph is a
complete graph).

Another significant issue with link representation is that only a small frac-
tion of the set of the binary variables’ possible assignments actually contains
valid simple paths between the source and the destination of the represented
SR path:

O(|N|!) < O(|N||N|) = O(2|N| log2 |N|)� O(2|N|2).

In CP, inconsistent assignments are filtered out by additional constraints
which, most of the time, slow down the propagation process. In Chapter 4,
such filtering was performed by (i) the flow conservation constraint, and
(ii) the objective function (which removed potential sub-cycles). CP solvers,

7 In practice, such overapproximations are prevented by including the cardinality of the set in its
representation.
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however, benefit from a tailored global constraint — originally named path

constraint [12] — which performs the aforementioned filtering in a more
efficient way.

node representation The idea behind node representation (also known
as successor model) is to associate each node n to a variable Sn, with D(Sn) ⊆ N,
that represents the successor of n in the path. A path is thus represented as a
sequence of “hops” from its source to its destination. If node n is not part of
the path, then its successor variable Sn is assigned to n itself (see Figure 6.7).
Node representation has been particularly successful to solve vehicle routing
problems in CP [14, 94].

Like the one of link representation, the space complexity of a node repre-
sentation is O(|E|). However, the set of all possible assignments of a node
representation is tighter than the one of a link representation. Indeed, node
representation already filters out assignments that would have contained sev-
eral links sharing the same origin. In other words, node representation can be
seen as a strengthened version of link representation in which the “successor”
constraint,

∀u ∈ E : ∑
v∈E

Bu,v = 1

is implicitly enforced by the structure. Although, sub-cycles still need to be
removed from the possible assignments (see Figure 6.7). In CP, this is typically
enforced with the subtour constraint [12] which, also, tends to slow down the
propagation process.8

6.3.2 Related work on String variables

The domain of an SR path variable can easily be represented with either link
or node representations. Both representations perform well when propagation
tries to filter out paths that cannot contain a given link. In contrast, they fail to
remove paths that contain a particular node at a given position as this cannot
be translated in removing the value of a binary/successor variable (at least
as long as all the previous nodes in the path are unknown). Another issue
with those representations is that their space complexity of O(|E|) remains
expensive when the unknown path to be represented only contains a small

8 The subtour constraint actually ensures that the successor variables form a single sub-tour, not a
simple path. This limitation is typically tackled by adding a fake edge (t, s) in the topology and
assigning St to s.
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Figure 6.6: Node representation of path s, d, b, t.
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Figure 6.7: An assignment of the successor variables with a sub-cycle a, b, d, c.
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number of links — which is likely to be the case of our unknown SR paths. The
remainder of this section focuses on an alternative way to model our SR path
variables with string variables. In particular, we present two structured domains
for string variables which do not suffer from the two previous limitations.

String variables have numerous applications in a wide variety of combinato-
rial problems such as model checking [42] and software verification [19, 37, 98].
Formally, a string s of length |s| = l is a finite sequence of l symbols, denoted
by s1s2 . . . sl , where each si belongs to an alphabet Σ. Note that, without
any loss of generality, we often represent the symbols in alphabet Σ with
the natural numbers from 0 to |Σ| − 1. The infinite set of strings that can be
composed over Σ, including the empty string, is a language denoted by Σ∗.
Language Σl is a finite subset of Σ∗ that contains all the strings over Σ of
length l.

Naturally, an SR path from node s to node t can be seen as a string
m = m0 . . . mk+1 where m0 = s, mk+1 = t, and each symbol mi in between
corresponds to a midpoints in alphabet Σ = N \ {s, t}. An unknown SR path
of at most k midpoints can thus be represented by a string variable M such
that

D(M) ⊆
⋃

l∈[0,k]

{s ·m · t ∈ Nl+2 |m ∈ (N \ {s, t})l} (30)

where · is the string concatenation operator.
Like set and path variables, the exact domain of a string variable may

contain an exponential (in the length of the considered strings) number of
values. That makes string variables good candidates for structured domains.
Structured domains for string variables are typically classified into three
categories depending on the length of the unknown strings: fixed, unbounded,
and bounded.

fixed-length. Fixed-length string variables represent unknown strings
for which the length is known a priori. In CP, fixed-length string variables can
easily be modeled as an array of integer variables on which various well known
constraints (e.g. the table constraint [31]) can be defined. Fixed-length string
variables and constraints have been particularly studied in [66, 84, 89, 97].

unbounded-length. An unbounded-length string variable represents
an unknown string of an unknown length. Unbounded string variables are
typically defined by a regular language which is implemented with a finite
automaton [1, 7, 42, 50]. Likewise, constraints over unbounded string vari-
ables are usually encoded as automata and enforced by performing automaton
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operations — mostly intersections — on the variables’ domains. While ex-
pressive, this representation suffers from expensive propagation costs that
are often quadratic in the size of the automata which, themselves, may grow
exponentially with the complexity of the strings’ regular languages. Avoiding
such exponential blowup is still a very active research area [19].

bounded-length. Bounded(-length) string variables are the best fit to
represent our SR-path variables. A bounded string variable represents an un-
known string for which its length is unknown but must remain below a known
maximum allowed length. The first apparition of bounded string variables in
CP can be credited to Maher [73] who described a model to perform propaga-
tion, by mean of open global constraints, on bounded sequences of (integer)
variables. Contrarily to a closed global constraint, for which the cardinality of
its scope is known in advance and remains fixed during the solving process,
the cardinality of an open global constraint is unknown and determined by the
solving process. In [73], the scope of an open global constraint is represented
by (i) a sequence of integer variables, and (ii) an integer variable (with an
upper bound) that corresponds to the length of the sequence. Each time the
sequence needs to be extended, a new variable is added at its end and the
length variable is updated accordingly. Later on, Scott et al. [97, 98], inspired
by Maher’s work, proposed the open-sequence representation to implement the
domain of bounded string variables. An open-sequence variable is represented
by a pair 〈M, L〉 where M is a sequence of sets (which are subsets of alphabet
Σ), and L is a set of natural numbers that represents the possible length of
the unknown string. Precisely, the domain D(〈M, L〉) of a string variable
represented by pair 〈M, L〉 is the set of all strings that have a length l ∈ L and
are constructed by selecting a symbol from Mi ⊆ Σ at each index 1 ≤ i ≤ l:

D(〈M, L〉) =
⋃
l∈L

{s ∈ Σl | ∀i ∈ [1, l] : si ∈ Mi}. (31)

Note that this representation must respect the following invariant:

∀i ∈ [1, |M|] : Mi = ∅ ⇔ max(L) < i. (32)

Figure 6.8 illustrates the open-sequence representation of an unknown string
of at most 5 symbols in alphabet Σ = {a, b, c}. Both sets M4 and M5 are empty
due to invariant (32) and length L. The variable’s domain D(〈M, L〉) contains
7 strings: a, aab, aac, abb, abc, acb, and acc. Note that D(〈M, L〉) contains no
string of two symbols since 2 6∈ L.

Constraint propagation on open-sequence string variables usually provides
good domain filtering but is computationally expensive. For example, let us
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Figure 6.8: Open-sequence representation of an unknown bounded string. Each path
from node a in M1 to a gray node represents a string in domain D(〈M, L〉).

design a simple propagator for the maxCost constraint (see Section 3.2.1) on a
SR path variable implemented with an open-sequence string variable 〈M, L〉.
Intuitively, a symbol m 6= s, t cannot be a member of Mi if there is no path
from s to t that (i) has m as its ith midpoint, and (ii) has a cost that is lower or
equal to the maximum cost k. Let the cost graph of M be a DAG made of |M|
interconnected layers such that each symbols m in Mi corresponds to a node
mi in layer i (see Figure 6.9). Each node in the first layer is connected to the
source of the SR path while every terminal layer, i.e. layer that might contain
the last midpoint, is connected to its destination t. Also, each edge (u, v) has
a weight that corresponds to the cost of reaching symbol v from symbol u in
the cost matrix C. Let path(u, v) be a function that returns the shortest path
between nodes u and v in the cost graph. Similarly to the approach proposed
by Sellmann et al. in [99], we rely on function path to rewrite the filtering rule
of the maxCost constraint as follows:

∀i ∈ [1, max(L)], ∀m ∈ Mi : path(s, m) + path(m, t) ≤ k (33)

The value of path(s, m) and path(m, t) can be computed from scratch, for
every symbol m, in O(max(L)|M∗|2) where M∗ is the Mi with the largest
cardinality. Precisely, we achieve this by computing the shortest paths tree
from s to any node, and the shortest paths tree from any node to t, using
topological ordering. While such algorithm can benefit from the typical
incremental behavior of CP solvers to reduce its computation cost (i.e. we
don’t need to recompute the shortest paths from scratch at every change),
we claim that the trade-off between filtering and computation is too poor in
practice due to the high density of the cost graph.
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Figure 6.9: The cost graph of open-sequence representation 〈M, L〉.

Next section presents an alternative representation, namely increasing-prefix,
that overapproximates the domain of open-sequence string variables but
enables much faster constraint propagation.

6.3.3 Increasing-Prefix Representation

Like Scott et al., we drew inspiration from Maher’s work [73] to design a new
representation for string variables called increasing-prefix.9 Increasing-prefix
representation is a lightweight representation for bounded string variables that
overapproximates the domain of open-sequence string variables but enables
faster constraint propagation. Let next(M) be a function that returns the index
of the first non-assigned sets in M,

next(M) = argmin
i∈[1,max(L)]

|Mi| > 1 (34)

so that the following invariant always holds:

∀i ∈ [1, next(M)− 1] : |Mi| = 1. (35)

The symbols assigned to the first next(M) − 1 sets of M form a prefix of
the unknown string. In particular, the symbols contained in Mnext(M) are
candidates to be appended to this prefix. The idea behind the increasing-
prefix representation is to reason only on those candidates and to assume that
they can be followed by any suffix. Formally, the domain Dpre f ix of a pair
〈M, L〉 is:

Dpre f ix(〈M, L〉) =
⋃
l∈L

{s ∈ Σl | ∀i ∈ [1, next(M)] : si ∈ Mi}. (36)

9 The work of Scott et al. was developed in parallel to this thesis.
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Clearly, all pairs 〈M, L〉 that have the same known prefix p and the same set of
next symbols N = Mnext(M) will have exactly the same domain under Dpre f ix
no matter the value of the Mi for next(M) < i ≤ max(L). In other words,
given prefix p, set of next symbols N, and length L, function Dpre f ix defines
the following equivalence class over the set of open-sequences:

{〈M, L〉 |M|p|+1 = N ∧ ∀i ∈ [1, |p|] : Mi = {pi}}. (37)

Example 9. Let us consider an alphabet Σ = {a, b, c} and two pairs

〈M1 = {a}{a, b}{b}{a, c}, L = {4}〉,

〈M2 = {a}{a, b}{a, b, c}{a, b, c}, L = {4}〉.

Both representations share the same known prefix p = a and the same set
of candidates N = {a, b}. Domains Dpre f ix(〈M1, L〉) and Dpre f ix(〈M2, L〉) are
equal and contain 18 different strings.

A direct consequence of (36) and (37) is that we can get rid of most of the
sets contained in M to represent any increasing-prefix string variable with a
triple 〈p, N, L〉 where p is the already known prefix of the unknown string, N
is a set of symbols that can possibly be appended to prefix p, and L is a range
that represent the possible length of the unknown string. The domain of an
increasing-prefix string variable based on a triple 〈p, N, L〉 is the following

D(〈p, N, L〉) =
⋃
l∈L

{p′ ·m · s ∈ Σl | p′ = p ∧ m ∈ N ∧ s ∈ Σ∗} (38)

To ensure the consistency of the representation, we need to ensure that the
following invariant always holds:

|p| = L ⇔ N = ∅ (39)

Therefore, each time a new character is added to the prefix, the set of can-
didates N is either reinitialized to Σ if |p| < max(L), or becomes empty to
indicate that the variable is assigned, i.e., p contains the whole string.

6.4 variable implementations

This section presents two different way to implement an SR path variable
based on an increasing-prefix representation. First, we show how to implement
such a variable with objects that are commonly implemented by any CP solver:
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assigned(P) Return whether the variable P is assigned or not, i.e., if
its prefix contains the whole path.

next(P) Return the set of candidates to be possibly appended to
the prefix of P; or {t} if the path is assigned.

prefix(P) Return the known prefix of variable P.

remove(P, m) Remove midpoint m from the set of candidates. The func-
tion returns an inconsistency if m is the only remaining
candidates.

append(P, m) Append candidate m to the prefix of P and reset the set of
candidates if the P is not assigned. The function returns
an inconsistency if m is not a valid candidate.

Table 3: List of operations supported by SR path variables.

integer variables and binary constraints. We then spend some time to present
the sparse-set data structure which is at the core of our second implementation.
We then conclude by presenting our second implementation which is based
on a tailored data structure that achieves good time complexity while keeping
a very low space complexity. In particular, both implementations implement
the operations listed in Table 3 where P is an SR path variable and m is a node
in N.

6.4.1 Hybrid implementation

Our first implementation, namely hybrid implementation, consists in imple-
menting our SR path variable as if it was relying on an open-sequence rep-
resentation of its domain. This has two advantages. The first is that our
hybrid implementation only relies on simple objects that are ubiquitous in CP
solvers: integer variables and binary constraints. Our implementation is thus
portable and easy to integrate on top of many solvers. The second advantage
of our implementation is that it offers both domain representations at the
same time. Constraints can thus benefit from having access to both domains
to select the propagator that is the most suited for a particular context. For
instance, a constraint might rely on a fast propagator that filters the domain
of the increasing-prefix representation in the beginning of the solving process,
and then switch to an open-sequence propagator once more information is
available. Other strategies, such as relying on open-sequence propagators
for specific constraints (and on increasing-prefix propagators for others) are
totally possible too.
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The hybrid implementation is implemented exactly like the open-sequence
representation proposed by Scott et al. in [98]. Precisely, let us consider an
open-sequence representation 〈M, L〉 defined on an alphabet N of natural
numbers. The sequence of sets M is implemented with an array of integer
variables I = I1, . . . , I|M| such that D(Ii) = Mi. The length of the string is
implemented with an integer variable IL with D(IL) = L. Note that invariant
(32) needs to be slightly adapted since emptying the domain of variable is
likely to lead to a failure in many CP solvers. We solve that issue by assigning
variables that represent symbols that are not part of the path to its destination
t. The invariant thus becomes the following:

I1 = s ∧ ∀i ∈ 1, . . . , |I| : Ii = t ⇔ L ≤ i. (40)

It is implemented with simple binary constraints.
Pseudo code 6.1 shows how the hybrid implementation actually implements

the interface of our SR path variable. We assume that methods removeInt

and assignInt are implemented by the CP solver and can be used to remove
and assign a value from/to the domain of an integer variable.

6.4.2 Sparse-sets

A sparse-set [21] is a data structure to represent a subset S of the n first natural
numbers:

S ⊆ {0, . . . , n− 1}. (41)

A sparse-set is implemented with three components: an integer size, and two
arrays of length n named values and positions. Array values contains all the
values in the range [0, n[ but not necessarily in order. The size first elements
in values are the elements contained in S while the remaining elements are
not:

S = {values[0], . . . , values[size− 1]}. (42)

Array positions links each element to its position in values so that the follow-
ing invariant always holds:

∀i ∈ [0, n[ : values[positions[i]] = i. (43)

Using (43), we rewrite the definition of set S (42) as follows:

S = {i ∈ [0, n[ | positions[i] < size}. (44)

Figure 6.10 illustrates the link between values, positions, and size on a
possible sparse-set representation of a set of 4 elements.
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1 function prefixLength(P) {
2 if |D(I1)| > 1 return 0
3 return argmaxi∈1,...,|I| |D(Ii)| = 1

4 }

5 function assigned(P) {
6 return prefixLength(P) = |I|
7 }

8 function next(P) {
9 if assigned(P) return D(I|I|)
10 return D(I

prefixLength(P)+1)

11 }

12 function prefix(P) {
13 return D(I1), . . . , D(I

prefixLength(P))

14 }

15 method remove(P, m) {
16 removeInt(next(P), m)

17 }

18 method append(P, m) {
19 assignInt(next(P), m)

20 }

Pseudocode 6.1: Hybrid implementation of an SR path variable.

a b c d e f

values

positions

b f d c e a

5 0 3 2 4 1

0 1 2 3 4 5

S

size = 4

Figure 6.10: A sparse-set representing set S = {b, c, d, f } ⊆ {a, b, c, d, e, f }.
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Iterate on the content of the set. Θ(|S|)
Return the size of the set. O(1)
Test if an element is in the set. O(1)
Remove an element. O(1)
Assign the set to a single element. O(1)
Undo the k last removals. O(1)

Table 4: Time complexity of various sparse-set operations.

The advantages of the sparse-set representation compared to other set
representation, e.g. bit-vectors, is that it offers optimal time complexity for
many interesting operations such as the ones listed in Table 4.10 Indeed,
most of those operations could trivially implemented by exchanging element
positions and/or changing the value of size. For example, both remove and
assign operations are presented in Pseudocode 6.2.

1 method remove(m) {
2 size← size− 1
3 swap(m, size)
4 }
5 method assign(m) {
6 swap(m, 0)
7 size← 1
8 }

1 method swap(v1, p2) {
2 p1 ← positions[v1]

3 v2 ← values[p2]

4 positions[v1]← p2
5 positions[v2]← p1
6 values[p1]← v2
7 values[p2]← v1
8 }

Pseudocode 6.2: Sparse-set remove and assign operations.

The last operation in Table 4 is particularly interesting. At a first glance,
adding back k elements with a single O(1) operation looks suspicious. How-
ever, readers who are familiar with the implementation of a stack in an array
might have identified a similar pattern in the way sparse-sets handle their
set of removed elements. Let us consider a stack implemented from right
to left in the values array such that values[n− 1] is the first element of the
stack, its size is n− size, and values[size] is its last element. Each time an
element is removed from the set, using the remove operation presented in
Pseudocode 6.2, the size of the stack is increased (by decreasing size) and the

10 In [27], le Clément et al. compare the efficiency of sparse-set operations to the ones of other
representations. Note that Table 1 in [27] is not complete as it is also possible to find the
minimum/maximum value contained in a sparse-set in O(N) by iterating on the positions array.
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removed element is moved at the end of the stack. The direct consequence
of this invariant is that the stack maintains the order in which elements have
been removed from set S. Therefore, to restore the k last removed elements,
we just have to increment size by k. In particular, we don’t have to change
anything in values and positions to ensure that invariants (43) and (44) still
hold (see Figure 6.11).11

6.4.3 Compact representation

We now show how to benefit from sparse-sets to implement an SR path
variable in a compact and efficient way. In contrast with the hybrid imple-
mentation, which has a space complexity of O(max(L)|N|), our compact
implementation has a tight space complexity of O(|N|). Moreover, the com-
pact implementation offers an optimal time complexity for all operations listed
in Table 4.

In the compact implementation, each component of the increasing-prefix
representation 〈p, N, L〉 is implemented in a different data structure. As before,
we use an integer variable IL, such that D(IL) = L, to implement the length
of the string. Prefix p is implemented with a stack of integers so that the top
element of the stack corresponds to the last (right most) node in the prefix.
This allows us to easily restore the previous state of the prefix by popping its
last elements when a backtrack requires it. Set of candidates N is implemented
with a sparse-set. Each time N is assigned to a node, that node is appended
to the prefix by pushing it on the stack. Set N is then reset to contain a new
whole set of candidates.12

The consistency between p, N, and the length variable IL is ensured by the
three following invariants:

|p| ≤ min(IL) (45)

|p| = max(IL) ⇔ p|p| = t ⇔ N = ∅ (46)

11 The efficiency of this operation is one of the main reasons that explain the success of sparse-sets
in CP solvers.

12 The cost of restoring the state of set N significantly depends on the state restoration mechanism
implemented by the CP solver. We assume that the solver relies on trailing [54, 94] which is a
common design choice in CP solvers. Otherwise, the solver might need to store any change
applied to the structure which increases the actual space complexity of the representation
to O(max(L)|N|) in the worst case. In such context, we recommend to rely on the hybrid
implementation which has a similar cost.
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a b c d e f
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2)  Remove a

3)  Remove c

a b c d e f
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f b e d c a
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5)  Undo last 2 removals

a b c d e f

0 1 2 3 4 5

size = 5

f b e d c a
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4)  Remove d

S

S

Figure 6.11: Remove and undo operations of a sparse-set. The k last removals can be
undone in O(1).
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|p|+ 1 < min(IL)⇔ t 6∈ N (47)

The first invariant (45) ensures that the length variable is at least equal to the
size of the current prefix. The second invariant (46) defines the state of each
object when the SR path variable is assigned:

• the length variable IL is assigned to the length of p;

• the last element prefix p is the destination t; and

• set of candidates N is empty.13

Finally, invariant (47) ensures that destination t is not a midpoint.
More often than not, it is possible to turn an SR path that contains a cycle

to an SR path that doesn’t without breaking any constraint (service chaining
aside) and without impacting (negatively) the quality of the solution. In
such context, it might be interesting to forbid cycles at first hand. Although
this could be easily be achieved with a constraint, we propose to extend
the compact implementation so that it implicitly enforces this property. We
achieve this by implementing both p and N in a single sparse-set.14 Rather
than using a single integer size, our data structure now uses two integers N

and R. Both integers partition array values into three parts. The first is made
of the N elements of values and represents prefix p:

p = values[0], . . . , values[L - 1]. (48)

Elements from position N to R excluded represent the set of candidates N (with
no guarantee on their order):

D(N) = {i ∈ [0, |N|[ | N ≤ positions[i] < R}. (49)

The last part, starting with the element at position R, represents the nodes that
have been removed from the set of candidates.

The implementation of all the SR path variable’s operations is presented in
Pseudo code 6.3. We can see that most of them can be easily implemented in
terms of sparse-set operations. The time complexity of those operations (and
a few more) is presented in Table 5.

13 This is not an issue here because N is not implemented with an integer variable.
14 The idea is actually quite similar to the way set variables are implemented with sparse-sets [27]
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1 function assigned(P) {
2 return N = R and values[N] = t
3 }

4 function next(P) {
5 return values[N], . . . , values[R− 1]
6 }

7 function prefix(P) {
8 return values[0], . . . , values[N− 1]
9 }

10 method remove(P, m) {
11 R = R− 1
12 swap(m, R)
13 }

14 method append(P, m) {
15 swap(m, N)
16 N = N+ 1
17 R = N

18 }

Pseudocode 6.3: Compact implementation of an SR path variable.

Iterate on the known prefix. Θ(|p|)
Iterate on the content of the set of candidates. Θ(|N|)
Test if a node is a candidate. O(1)
Test if a node is in the prefix. O(1)
Get the position of a node in the prefix. O(1)
Remove an element from the set of candidates. O(1)
Append an element to the prefix and reset the set of candidates. O(1)

Table 5: Time complexity of various compact implementation’s operations.
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6.5 constraints on sr path variables

Let P = 〈p, N, L〉 be an SR path variable implemented with a increasing prefix
representation of its domain. Increasing prefix representation P = 〈p, N, L〉
is not a conventional representation of string variables. Therefore, dedicated
propagators might be needed to maintain the property of the constraints. In
this section, we describe such propagators.

All propagators follow the same incremental scheme, they maintain an
incremental structure based on the value of p, this structure is restored each
time p is restored during search. At each step, the constraint assumes that p
does not break the filtering rule of the constraint and filters out candidate that
would break this property if they were added to the prefix.

6.5.1 MaxCost

Let C be a cost matrix such that Cu,v is the cost of edge (u, v) in the segment
graph (i.e. the cost of forwarding graph FGu,v). We define function slack such
that, given SR path variable P = 〈p, N, L〉 and maximum cost k, it returns the
total cost still available for P to reach its destination t:

slack(P) = k−
|p|

∑
i=2

Cpi−1,pi (50)

Definition (1) of constraint maxCost(P, C, k) can thus be rewritten as follows:

slack(P) ≥ 0. (51)

Given cost matrix C, we compute a shortest path matrix C∗ such that C∗u,v
is the cost of the shortest path between node u and node v with regard to C.
Shortest path matrix C∗ allows us to define the following filtering rule:

∀m ∈ N : Cp|p| ,m + C∗m,t ≤ slack(P) (52)

We can easily strengthen this filtering rule by considering the length L of SR
path P. Let Cl be a shortest path matrix such that Cl

u,v is the cost of a shortest
path of exactly l edges between node u and node v. In particular, C1 = C and
C0 has a cost of 0 for any pair (u, v). The strengthened filtering rule of our
propagator is the following:

∀l ∈ L, ∀m ∈ N : Cp|p| ,m + Cl−|p|−1
m,t ≤ slack(P) (53)
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Given matrices Cl for l ∈ [1, max(L)], both filtering rules (strengthened or
not) can be evaluated in constant time for each value of N and L. The light
and strengthened propagators thus have a time complexity of Θ(|N|) ans
Θ(|N||L|) respectively. Note that each matrix Cl only needs to be computed
once for all the search process.15

6.5.2 Service Chaining

Let P = 〈p, N, L〉 be an SR path variable and S = S1, . . . , Sk be a sequence of
services such that Si ⊆ N \ {s, t} for all i ∈ {1, . . . , k}. The service chaining
constraint, serviceChaining(P, S), enforces the following property:

p = s, . . . , m1, . . . , m2, . . . , mk, . . . , t (54)

where mi ∈ Si. Let suffixS be a function that returns the suffix of S = S1, . . . , Sk
that still have to be visited by SR path P. We rely on function suffixS to maintain
(54) with two simple filtering rules to:

|suffixS(P)| ≤ min(L)− |p|, (55)

and
∀m ∈ N : |suffixS(P)| < max(L)− |p| ∨m ∈ suffixS(P)1. (56)

where suffixS(P)1 denotes the next set of service to visit. Filtering rule (55)
ensures that length L is large enough to visit all the services that still have to
be visited. In contrast, filtering rule (56) forces the visit of the next services
when length L does not allow SR path P to visit any other node. First filtering
rule is performed in O(1) while the second filtering rule is performed in
O(|N|) since it might remove up to |N| − 3 nodes from N.

6.5.3 Disjoint Paths

Let function visited return the set of links visited by SR path variable P:

visited(P) =
|p|⋃
i=2

{(u, v) ∈ E | FGpi−1,pi (u, v) > 0} (57)

Constraint disjoint(P1, P2) ensures that SR paths P1 and P2 do not visit the
same link:

visited(P1) ∩ visited(P2) = ∅. (58)

15 Cost matrices Cl for all l ∈ [1, max(L)] can be computed in O(|N|3 max(L)) with a dynamic
programming algorithm [32].
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where link (u, v) and link (v, u) are considered to be different. Let us define a
second function, shared, which returns the set of links that will be visited next
by SR path P no matter the candidate appended to its known prefix:

shared(P) =
⋂

m∈N
{(u, v) ∈ E | FGp|p| ,m(u, v) > 0} (59)

We finally use both functions (58) and (59) to define a third function

visited∗(P) = visited(P) ∪ shared(P) (60)

which returns the set of links that have already been visited or that will be
visited next by SR path P. The filtering rule for the disjoint constraint is the
following:

∀m ∈ N1 : {(u, v) ∈ E | FGp1
|p1 |

,m(u, v) > 0} ∩ visited∗(P2) = ∅ (61)

Given visited(P2), a propagator for filtering rule (61) has a time complexity
of O(|E|) for each candidate m. Note that the filtering rule needs to applied
symmetrically to P2 too.

6.5.4 Flow

To the contrary of maxCost, serviceChaining, or disjoint, constraint flow does
not aim at stating a property to be respected by the problem’s solutions, but
to help to formulate the problem as a CP model. Such constraints are often
referred to as channeling constraint and are essential to ensure the link between
different combinatorial structures within a CP model. Precisely, constraint
flow maintains the link between an SR path variable P and a float variable
FP

u,v which represents the quantity of flow that P could possibly send through
link (u, v). Let f low(P, u, v) be the quantity of flow already sent through link
(u, v) by SR path variable P:

f low(P, u, v) =
|p|

∑
i=2

FGpi−1,pi (u, v) (62)

so that constraint flow(P, FP
u,v) ultimately enforces the following property:

f low(P, u, v) = FP
u,v. (63)

This definition is maintained with three filtering rules:

∀m ∈ N : FGp|p| ,m(u, v) + f low(P, u, v) ≤ max(FP
u,v), (64)
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min
m∈N

FGp|p| ,m(u, v) + f low(P, u, v) ≤ min(FP
u,v), (65)

and
N = ∅ ⇒ max(FP

u,v) = min(FP
u,v) = f low(P, u, v) (66)

Filtering rule (64) is used to filter candidates that would send too much flow on
link (u, v). Note that we can’t use the lower bound of Fu,v to filter candidates
because SR path P might visit link (u, v) more than once.16 Filtering rule (65)
updates the lower bound to match the minimum quantity of flow that could
be sent by the next candidate. Filtering rule (66) ensures that flow variable
Fu,v is assigned when SR path P is.

6.6 link-guided large neighborhood search

The SR path variables and constraints developed in the previous sections
provide us with a complete language to naturally model the SRTEP as a CP
problem. First, we associate each demand d ∈ D with an SR path variable Pd
and |E| float variables Fd

u,v, where (u, v) ∈ E, that represent the quantity of
data sent by SR path Pd on each link:17

∀(u, v) ∈ E : flow(Fd
u,v, Pd). (67)

For each link (u, v), we have an additional float variable Lu,v to represent the
load of link (u, v). The link between the flow variables and the load variable
is ensured by a sum and division constraints:

Lu,v = division(sum({Fd
u,v | d ∈ D}), cu,v) (68)

where cu,v is the capacity of link (u, v). Finally, we model the network utiliza-
tion with the an objective variable L and a maximum constraint over all the Lu,v
variables so that:

L = maximum({Lu,v | (u, v) ∈ E}). (69)

In total, our model contains |D| SR path variables and |D||E|+ |E|+ 1 float
variables. Assuming that SR path variables are implemented with the compact
representation, which has a linear space complexity in the number of nodes,

16 We could actually filter candidates using the lower bound of FP
u,v if no possible SR path, given the

current prefix and set of candidates, would visit link (u, v).
17 Float variables are not mandatory and it is possible to model the SRTEP with integer variables

only by scaling up and rounding the forwarding graph functions (see Definition 6).
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the total space complexity of the model is O(|D||E|) which is competitive
with the MILP models from Chapter 4.

We provide the CP solver with a basic search heuristic, that we refer to as
complete-first, to drive its solving process. Let Dunassigned be the set of demands
that have an unassigned SR path variable. At each node of the search tree,
heuristic complete-first selects one demand d ∈ Dunassigned randomly where
the probability pd of being selected is determined by the demand’s bandwidth
bwd:

pd =
bwd

∑d′∈Dunassigned
bwd′

. (70)

The heuristic then tries to complete SR path Pd by extending its prefix with
its destination. If the path cannot be completed (i.e. if the destination is
not a valid candidate), then complete-first tries to extend the prefix with the
midpoint that induces the smaller increase of the network utilization (ties are
broken randomly).

In theory, any CP solver running this framework should, eventually, find
an optimal solution (and prove its optimality) to any instance of the SRTEP.
In practice, though, CP solvers are unlikely to optimally solve the SRTEP in
reasonable time. We evaluated our CP framework by solving all instances
with less than 40 nodes on the 3-SRTEP. Results are presented in Figure 6.12

where the vertical axis is the ratio obtained by dividing the best objective
value found, in a 5 minutes search, by the optimal one. While the results don’t
necessarily look bad — the algorithm reached optimality (though it wasn’t
able to prove it) on 32% of the considered instances and was “only” 84.11%
higher than the optimal solution in the worst case — they are actually only
comparable to the one obtained by the simple LS greedy algorithm presented
in Chapter 5.

Those results are not surprising because the language we previously defined
is purposely built on building lightweight structured domains and constraints
that will perform fast constraint propagation but poor pruning. The goal of
this trade-off is to build an LNS algorithm with our CP representation. We do
that by updating the Link Guided Variable Search so that it relies on CP to
explore its neighborhoods. The algorithm is the following:

1 function LinkGuidedLargeNeighborhoodSearch(P , maxSize) :
2 s← FindSolutionCP(P)
3 if s = null :
4 return null

5 n← 1
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Figure 6.12: Comparison of the CP with the optimal instance of 3-SRTEP. The algorithm
reaches optimality on 32% of the instances and is 84.11% higher than the
optimal solution in the worst case.

6 while ¬StopCondition() :
7 (u, v)← SelectLink(s)
8 d1, . . . , dn ← SortedDemands(u, v)
9 s′ ← ExploreNeighborhood(P , s, d1, . . . , dn)

10 if s′ 6= null :
11 s← s′

12 n← 1
13 else :
14 n← n + 1
15 return s

While most of LGLNS operates like LGVS, it differs in two simple but im-
portant ways. The first is that LGLNS does not rely on a provided initial
solution and is able to compute its own with CP or to report that the problem
is unfeasible if no solution exists (lines 2 to 4). The second difference appears
in the neighborhood evaluation (line 9) which relies on ExploreNeighborhood

(see below) instead of OrderedImprovement. Those differences aside, the
algorithm operates exactly like LGVS: it first selects one of the most loaded
link, selects n demands to be moved, and then explores the neighborhood.18

The main difference is that we’ve replaced the call to OrderedImprovement

in line 7 by a call to ExploreNeighborhood:

1 function ExploreNeighborhood(P , s, d1, . . . , dn) :
2 P ′ ← P
3 add(P ′, L < f (s))

18 LGLNS and LGVS have the same behavior when solving the 2-SRTEP with n = 1.
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4 for d ∈ D \ {d1, . . . , dn} :
5 add(P ′, Pd = sd)

6 return FindSolutionCP(P ′)

First, a new problem P ′ is created as a copy of problem P (line 2). New
constraints are added to P ′ to force the objective to be better (line 3), and to
force unselected demands to be assigned to the same exact path than in the
best-so-far solution (lines 4 and 5). CP finally tries to solve problem P ′ and
returns the solution if any (line 6).

6.7 evaluation

In this section, we compare the efficiency of LGLNS with the models and
algorithms presented in Chapters 4 and 5. In particular, we structure this
section to answer three questions:

1. Can LGLNS solve constrained instances efficiently?

2. Can LGLNS find high quality solutions?

3. Can LGLNS scale?

As before, we base our answers on extensive experiments realized on the data
set presented in Appendix A.

6.7.1 Can LGLNS solve constrained instances efficiently?

Yes, We have evaluated LGLNS by solving constrained instances of the 3-
SRTEP with no more than 40 nodes.19 For each instance, we’ve compared
the value of the optimal solution (computed with the MILP path model) to
the one obtained by LGLNS after 10000 iterations.20 Our results, presented
in Figure 6.13, suggest that LGLNS is a competitive technique to solve con-
strained instances of the SRTEP when MILP techniques are not applicable,
e.g., for scalability reasons. Indeed, LGLNS found solutions that are less than
1% apart from the optimal ones in 11% of the cases, and less than 1.31% apart
in 75% of the cases. However, the quality of the solutions degrades for the last
25 percentiles, especially after the 95th. The most extreme case being 35.66%
higher than the optimal objective value.

19 Constraints have been generated as described in Section A.3.
20 LGLNS required 92 seconds to perform its 10000 iterations in the most extreme case.
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Figure 6.13: Efficiency of LGLNS on constrained instances of the 3-SRTEP. LGLNS
reaches optimality in 11% of the cases and is 35.66% higher than the
optimal value in the most extreme case.

6.7.2 Can LGLNS find high quality solutions?

Yes, but not as fast as “pure” LS algorithms. We have compared the results
obtained by LGS, LGVS and LGLNS on our usual data set of instances of the
3-SRTEP with less than 40 nodes. For each instance, each algorithm was ran
twice: with a limit of 10000 iterations and with a time limit of 30 seconds.
Figure 6.14 shows that LGLNS achieves the best results in terms of iterations.
This is interesting because LGS and LGLNS have exactly the same behavior
if n = 1. Therefore, the fact that LGLNS manages to tackle the outliers
(see oranges points) on which LGS gets stuck is due to LGLNS’s ability to
increase the size of its neighborhoods to escape local optima. Results are less
convincing on the time limit side. Indeed, LGLNS performed pretty badly
within the 30 seconds. This is interesting because LGLNS was able to perform
its 10000 iterations in 92 seconds in the worst case. We explain this drastic
difference by the computational cost induced by the additional data structures
and algorithms used in LGLNS (e.g. state restoration, backtracking search, ...)
that add a substantial overhead to its internal operations when used without
any constraint.

6.7.3 Can LGLNS scale?

Looking at our previous results, the answer to that question was probably
going to be “no” though it turned out that LGLNS has a very good scaling
behavior if it is given with enough time to “warm-up”. For this final experi-
ment, we compared the results of the best approaches presented in this thesis
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Figure 6.14: Comparison of LGS, LGVS, and LGLNS. LGNS performs better than both
LS algorithms in terms of iterations but is significantly slowed down by
its more complex internal data structures.
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on our entire data set made of 3615 instances ranging from 3 to 284 nodes. In
particular, we’ve divided our dataset into the three following categories:

• Small: instances with no more than 40 nodes;

• Medium: instances with a number of nodes that is between 41 and 80;

• Large: instances with more than 80 nodes.

Unfortunately, we weren’t able to compute the optimal solution of all the
3-SRTEP instances neither with the path nor the segment models due to the
size of the largest instances.21 Therefore, for each instance, we ran each of the
approaches presented in this thesis for 30 minutes and used the best solution
found as a baseline for this experiment. Figure 6.15 shows the performance of
the path model (MILP), LGVS, and LGLNS on the above categories given a
time limit of 300 seconds.

We see that LGLNS is the clear winner on all instances. While MILP remains
competitive on small instances, it disappears quickly from the ranking when
the size of the instances increase. Indeed the path model was only able to solve
a few instances (but not to prove their optimality) in the medium category and
none in the large category. Results from LGVS and LGLNS are consistent on
all the instances. On the first hand, LGLNS always performs better than LGVS
in 300 seconds. On the other hand, LGVS is able to find similar solutions
but much faster than LGLNS. Ultimately, both LGLNS and LGVS have very
good scaling behavior compared to the path and segment models. It is also
interesting to see that LGVS and LGLNS performs better on large instances.
The main reason is that the best solutions found (on the medium and large
datasets) were actually provided by LGVS and LGLNS. Therefore, results
on the medium and large datasets essentially measure the ability of LGVS
and LGLNS to converge quickly. However, we observed that most of these
solutions are really close (if not equal) to the value of lower bound obtained by
solving the MCFP. Our assumption is that large instances offer more flexibility
(in terms of decisions) thus increasing the likelihood of escaping a local optima
by moving a single demand.

6.8 conclusion

In this chapter, we considered the use of Constraint Programming (CP) and
Large Neighborhood Search (LNS) to design a fast and modular local search

21 Solving instances of the 3-SRTEP with 40 nodes on Gurobi 7.0 [52] already requires approxima-
tively 30GB of memory.
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MILP vs LGVS vs LGLNS

Medium Large

190%
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Figure 6.15: Comparison of MILP (path model), LGVS and LGLNS on all instances
with a time limit of 300 seconds.
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algorithm, called Link-Guided Large Neighborhood Search (LGNS), to solve
constrained instances of the SRTEP. To achieve this, we defined a new do-
main representation as well as new propagators which, together, form a new
language that extends CP solvers to model the SRTEP in a natural way. In
particular, we focus on the design of lightweight structured domains that
enable fast constraint propagation but at the cost of a weak filtering of the
domain. This trade-off allows LGLNS to scale well to large instances while
keeping a low space complexity of O(|D||E|) no matter the number of seg-
ments. Indeed, our results show that LGLNS is the best approach presented
in this thesis to find high quality solutions on large instances. However, our
results also highlighted that LGVS remains the best approach in terms of
speed. We explain this by the computational cost associated to the more
complex data structure and algorithms embedded in LGLNS. Though, this
limitation is nothing that can’t be tackled by a careful implementation of
LGLNS’s components as well as more computational power.
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C O N C L U S I O N A N D F U T U R E W O R K

This thesis aimed at providing network operators with the necessary traffic
engineering tools to build reliable and efficient segment routing SDN con-
trollers. The first step of this long journey was to formalize the problem to
be solved as a combinatorial optimisation problem that we refer to as the
Segment Routing Traffic Engineering Problem (SRTEP). We showed that the
SRTEP is difficult to solve in the general case as it belongs to the class of
NP-Hard problems. Providing network operators with high quality solutions
of the SRTEP is thus not a trivial task and we dedicated this thesis to the
design of different algorithms built on a large set of technologies to tackle this
combinatorial problem as efficiently as possible.

Our first step was to study the properties of the SRTEP using two Mixed
Linear Integer Programming (MILP) models, namely, the path and segment
models. Those models allowed us to answer important open questions about
SR. First, it showed us that SR is a good technology from a traffic engineering
stand point as it is able to reach the best possible network utilization on most
of the considered instances. Our second — more interesting — observation is
that IGP weights (which define the underlying forwarding graph that compose
the SR paths) are critical to SR’s ability to reach good network configuration.
Indeed, we showed that random IGP weights often result in poor optimal
solution while unary weights tend to behave extremely well (and better than
the famous “inverse capacity” industry standard). Our third observation
is that allowing SR paths with more than one midpoint can significantly
improve the quality of the network configuration. In particular, we showed
that increasing the number of midpoints from one to two typically results
in significant improvement (however, increasing the limit to more than two
midpoints only has a minor impact).

The path and segment MILP models allowed us to answer important ques-
tions about SR. However, they turned out to be too limited by their poor
scaling behavior when used to solve large instances for the SRTEP. While more
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sophisticated MILP techniques such as column generation (see below) could
have been considered, we chose to tackle this scalability issue by designing
two Local Search (LS) algorithms: Link-Guided Variable Search (LGVS) and
Link-Guided Large Neighborhood Search (LGLNS). LGVS is a pure local
search algorithm that focuses on the fast re-optimisation of a given solution.
LGLNS improves over LGVS by its ability to (i) compute the initial solution to
be optimized by itself, and (ii) to dynamically adjust the size of its neighbor-
hood to escape local optima. Our results showed that, despite being slower
than LGVS, LGLNS remains highly scalable and performs better than any
of the considered approaches to solve large instances of the SRTEP under
reasonable time constraint (and small computational resources).

So, what techniques should you implement? The answer can actually vary
from “all” to “none” depending on your requirements. If your network is
small (less than 30 nodes) then MILP is probably the only approach you need
to consider as it will be able to provide you with optimal solutions (in relatively
short delays) while taking constraints in consideration. Another advantage
of MILP is that state-of-the-art MILP solvers are in constant evolution and
that you’d be able to benefit from the latest improvements in the domain
without having to change anything to your model (thanks to declarativity)
thus reducing your maintenance cost. Of course, the story is different if you
need to build a fast controller for a large network (more than 100 nodes). In
such contexts, LGVS and/or LGLNS might be the only practical solutions
(especially if your computational resources are limited). The truth is that
none of the proposed approaches wins in all contexts. Therefore, the best
algorithm is probably the one that takes advantage of all the techniques
simultaneously. For instance, one can easily come up with an hybrid approach
that would run a MILP model, LGVS, and LGLNS in parallel, exchanging the
best-so-far solutions found by each approach (thus speeding up the solving
process of MILP) while letting MILP take care of eventually finding the
optimal solution. As mentioned above, the technique presented in this thesis
are not the only ones that could have been considered to solve the SRTEP.
For example, the path model is particularly suited for column generation
algorithms which are likely to improve the scalability of the MILP. Pseudo
boolean SAT solvers [18, 34] (an extension of SAT to solve weighted binary
sums) as well as LCG solvers [38, 79, 103] are good candidates to solve the
SRTEP. Of course, all the local search algorithms presented in this thesis could
easily be extended and improved with new neighborhood and meta-heuristics.

From a traffic engineering perspective, a few questions remain open on
segment routing. The impact of the IGP weights on the ability of SR to find
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good solution is not well understood yet. We showed in Chapter 4 that poorly
chosen weights can drastically hamper the ability of SR to find a high quality
solution. However, we still don’t know how to compute IGP weights that
would leverage the power of SR. IGP weights that respect a strict triangle
inequality (thus allowing the definition of any simple path as a sequence of
midpoints) tend to behave very well in general but it is easy to come up with
a small network topology that contradicts this conjecture. Optimizing both
the IGP weights and the SR paths simultaneously is a challenging compu-
tational problem. Designing algorithms to solve this problem is definitely
an interesting research topic but we believe that the impact of such research
are limited in practice due to the disadvantages of dynamically changing the
weights (see Chapter 2). We encourage network operators to optimize their
link weight only once, to be good for a large set of scenario and to rely on SR
to “fix” the configuration by rerouting the traffic and enforcing SLAs such as
service chaining.

Minimizing the number of SR tunnels, i.e. the number of demands that
are not routed the shortest paths directly, is another important issue that we
did not directly addressed in this thesis. The problem with SR tunnels is
that they need to be configured on the ingress node and therefore induce
a configuration cost each time they are modified. Providing solutions that
minimize the network utilization while minimizing the number of tunnels thus
have significant practical advantages. Fortunately, the hybrid model can easily
be extended for this matter by adding a new term to the objective function
that is the sum of the number of paths that are the shortest paths. Network
operators can then fine tune the coefficient to find different compromises and
pick the one that best fits their needs. Measuring the impact of the number of
midpoints on the number of tunnels is also an interesting research topic for
future work.

This paragraph brings this thesis to an end. We hope that the reader
enjoyed learning about the algorithms and techniques we developed to tackle
the SRTEP and that our work will ultimately contribute to the development
of new and innovative ideas. In particular, we hope that our model and
algorithms will help to promote SR as a new standard for traffic engineering,
and — who knows — to drive the implementation of the next generation SDN
controllers responsible for managing many autonomous systems.
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D ATA S E T

An instance of the SRTEP is made of a network topology, a set of demands,
and an optional set of additional constraints to be respected by the SR path of
those demands. While random topologies and demands are easy to produce,
they are likely to be far from the real world traffic engineering problems
on which traffic engineering algorithms eventually have to exhibit good per-
formances. This stresses the need to rely on a dataset made of real, or at
least realistic, networks and demands. Unfortunately, real network datasets
are likely to contain sensitive information for the network stakeholders and
are, therefore, kept confidential.1 This privacy consideration reduces the
reproducibility — and thus the credibility — of important researches in the
network community. It also hampers comparisons of approaches on the same
scenario and ultimately hurts innovation. For all those reasons, we chose to
(re-) evaluate the algorithms presented in this thesis on a large open-source
dataset.

In this chapter, we present the dataset we built and used throughout this
thesis. Basically, our dataset is an adaptation of the Repetita open source
dataset [44] which regroups various open source datasets into a consistent and
uniform one (see Section 1). We performed three transformations on Repetita
to build our dataset. The first one, presented in Section 2, was to reduce the
size of the topologies by removing parts that are not relevant for our traffic
engineering problem. The second transformation was to extend Repetita with
randomly generated sets of constraints. The way we have generated those
constraints is explained in Section 3. Finally we rescaled all the demands of

1 We experienced a similar situation when developing Defo (see Chapter 6) conjointly with
researchers from Cisco Systems. Defo was first evaluated on real topologies kindly provided by
Cisco Systems but unfortunately protected by a non-disclosure agreement. Therefore, for the
sake of reproducibility, the experiments presented in the Defo paper [55] were conducted on
topologies randomly generated using IGen [91] and coming from the Rocket Fuel dataset [102].
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Figure 1.1: Distribution of Repetita’s network sizes in terms of nodes. The 25th, 50th,
and 75th percentiles are respectively 19, 29 and 53 nodes.

each instances so that the optimal network utilisation is 100%. The resulting
dataset is presented in Section 4.

a.1 repetita

The Repetita dataset, or simply Repetita, is made of 269 strongly connected
topologies. Those topologies range from tiny infrastructures of 4 nodes to
mastodons of 319 nodes, but most of them are made of roughly 40 nodes (see
Figure 1.1). Repetita’s topologies mainly come from open-source datasets such
as Topology Zoo [68] and Rocket Fuel [102]. Because of their various origins,
the topologies in those datasets are often encoded in different file formats and
provided with incomplete information. Rocket-fuel topologies, for instance,
do not contain information about their link capacities. We briefly describe
the methodology Repetita’s authors used to normalize and complete those
topologies to provide users with a consistent dataset.2

connectivity If the topology is not connected, i.e. it is made of several
connected components, only the largest component is kept and completed
such that each link (u, v) has exactly one sibling (v, u).

link capacity Missing link capacities in a topology are set to the median
of all the provided ones. If the topology contains no link capacities, then they
are all set to a symbolic value of 1 Gb/s. A post processing phase is then
performed to increase the lowest link capacities so that they are not smaller

2 Repetita is still being developed at the time of writing this chapter. The observations and remarks
made in this chapter are thus likely to become outdated with an upcoming version of Repetita.
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than 1/20-th of the largest capacity. This aims at avoiding too large capacity
range (e.g. including both Kb/s and Gb/s link capacities) that would likely
lead to unavoidable performance bottlenecks which, in turn, hamper traffic
engineering solutions.

demands Every topology in Repetita is provided with five randomly gen-
erated set of demands, and each of those sets contains exactly one demand
between each pair of distinct nodes in the topology. To generate such demands,
Repetita’s authors relied on a variation of the gravity model [95]. Precisely, the
demand to be forwarded from node u to node v, denoted by Du,v, is generated
using the following function

Du,v =
(pout

u ∑(u,w)∈E cu,w)(pin
v ∑(w,v)∈E cw,v)

∑(w,v)∈E cw,v
(71)

where pout
u and pin

v are independent, identically distributed exponential ran-
dom variables. Demands are then normalized so that the value of the optimal
network utilisation, assuming no constraint on the path demands are for-
warded on, is 90%.3

a.2 island removal

This section presents a simple way to reduce the size of traffic engineering
instances — and thus SRTEP instances — by analyzing the structure of the
network topology. In Definition 1, we made the assumption that each edge
(u, v) ∈ E has a sibling (v, u) ∈ E. This assumption is convenient to analyze
the properties of network topologies as if they were undirected graphs —
which is precisely what we are doing here.4

Trees are boring from a traffic engineering perspective. The reason is that
there is exactly one path between each pair of nodes in a tree. In other words,
there is only one possible trivial solution to the SRTEP if the topology is a
tree. While trees nullify the need for traffic engineering solutions, network
designers tend to avoid them because they are extremely vulnerable to link
failures. Indeed, any link failure will cut the network into two separated
sub-networks that won’t be able to communicate until the failure is repaired.5

3 Techniques to compute this optimal value are presented in Chapter 4.
4 This assumption does not reduce the generality of our approach since we can implicitly forbid

the use of an edge by setting its capacity to 0.
5 Robust networks should actually be able to stay connected even when a node is removed thus

removing several edges at the same time.
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Figure 1.2: A topology made of 3 bridges (B1 to B3), 4 biconnected components (C1 to
C4) and an island (C1).

Such critical links are best known as bridges and have been the subject of much
study in graph theory.

Definition 17. A connected component, or simply component, of an undirected
graph is a subgraph in which any pair of nodes is connected by a path in that
subgraph.

Definition 18. A bridge is an edge of a component whose removal splits the
component into two disconnected components.

Definition 19. a biconnected component — or 1-link-failure resilient component
in networking jargon — is a maximal component that contains no bridge.
A biconnected component can be made of a single node though there is no
biconnected component of two nodes by definition.

To sum up, a topology can be decomposed into a set of biconnected com-
ponents that are connected by bridges. If the topology is a tree, then it is
composed of |N| biconnected components, each being made of a single node,
connected by |N| − 1 bridges.

Definition 20. An island is a component of one node that is connected, by a
bridge, to a single component.

Figure 1.2 illustrates the concepts of bridge, biconnected component, and
island.

We now analyze some properties and theorems of islands and demands.
Note that for the sake of conciseness, we only describe them for demands
having an island as source. Demands having an island as destination are
handled in a symmetrical way.
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Property 2. Let us consider a topology made of an island i connected to
component C by bridge (i, b). Then the forwarding graph from i to b is made
of edge (i, b) only, i.e.,

∀(u, v) ∈ E \ {(i, b)} : FGi,b(u, v) = 0.

Proof. The proof directly comes from Definitions 6 and 18. Since forwarding
graphs are DAGs and that (i, b) is the only way to reach b from i then any
other path contains a cycle and cannot be part of a forwarding graph. �

Property 3. A bridge that connects an island to another component C is the
first edge visited by any path that connects that island to a node in C.

Property 3 is illustrated in Figure 1.2 where bridge B1 is the first edge of any
path that connects C1 to a node in C2, C3, or C4. Similarly, B2 is the first edge
of any path that connects C2 to a node in C3 or C4.

Theorem 2. Let us consider an instance of the SRTEP such that its topology is made
of an island i connected to a component C by bridge (i, b). Then every solution S
such that an SR path p has i among its midpoints, p = s, ..., i, ..., t, can be turned
into a solution S′ such that p = s, ..., b, ..., t and that φS′ ≤ φS.

Proof. By Definition 18 and Property 2, we know that every SR path p having
i as midpoint must pass by b before and after reaching i such that b can be
inserted before and after i in the SR path of the demand without affecting the
value of the solution:

∀(u, v) ∈ E : f low(s, ..., i, ..., t)(u, v) = f low(s, ..., b, i, b, ..., t)(u, v)

The subsequence b, i, b introduces a cycle and can be removed such that:

∀(u, v) ∈ E : f low(s, ..., b, ..., t)(u, v) =

f low(s, ..., i, ..., t)(u, v)− FGb,i(u, v)− FGi,b(u, v)

�

Theorem 3. Let I = 〈T(N, E), D〉 be an instance of the SRTEP such that the
topology is made of an island i, a bridge made of (i, b) and (b, i), and a component
C(NC, EC) such that

NC = N \ {i}, EC = E \ {(i, b), (b, i)}.

Then there is a reduced instance IR = 〈T(NC, EC), DR〉 such that |DR| ≤ |D|
and that the optimal solution of IR can be turned into an optimal solution of I in
polynomial time.
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Proof. Let us partition the set of demands D into three subsets Di,b, Di,C, and
DC such that:

• Di,b = {(i, b, k) ∈ D} contains the demands from island i to node b;

• DC = {(c1, c2, k) ∈ D | c1, c2 ∈ NC} contains the demands between two
nodes in C;

• Di,C = D \ (Di,b ∪DC) contains the demands from island i to a node
c ∈ C with c 6= b.

Clearly, the path of each demand in Di,b is already fixed to i, b. By Theorem 2,
we know that every demand in DC will never visit island i thus making
C the only part of the topology on which those demands will be routed.
Demands in Di,C are less convenient because they visit both the bridge (i, b)
and at least one edge of C. In other words, demands in Di,C prevent us
from splitting the instance into two independent smaller instances. However,
by Properties 3 and 2, we know that demands in Di,C start by forwarding
graph FGi,b no matter the rest of their path. This allows us to split every
demand d = (i, c ∈ NC, k) from Di,C into two subdemands d′i,b = (i, b, k) and
d′C = (b, c, k). We denote the set of all the d′i,b as D′i,b and the set of all the
d′C as D′C. As before, we know that the path of each demand in Di,b ∪D′i,b is
already fixed to i, b. Also, we know that all demands in DC ∪D′C will only be
routed through component C. We can thus compute the load of bridge (i, b)
and use it to compute a lower bound on the network utilisation:

φlb = ∑
(i,b,k)∈Di,b∪D′i,b

k/ci,b.

Since all demands that will visit (i, b) have been processed and that we
know the load of (i, b), we can remove it from the topology and remove
Di,b ∪ D′i,b from the demands. This leaves us with instance IR made of
topology T(NC, EC), demands DR = DC ∪D′C, and lower bound φlb.

Once found, we can turn the optimal solution of IR into an optimal solution
of I by fixing all demands in Di,C to the same path as their corresponding
subdemand in D′i,b — we just have to change the source of the SR path from b
to i. Demands in Di,b and DC keep the same SR path as their corresponding
demands in DR. �

Figure 1.3 illustrates the use of the island removal theorem to reduce the
instance on the left to the instance on the right. Of course, the reduction rule
of Theorem 3 can be applied recursively to the reduced instance to produce
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Figure 1.3: An instance of the SRTEP (left) and its reduction (right).

an instance that contains no island. Algorithm A.1 describes how to compute
such a reduction in O(|D|+ |E|). The resulting instance is such that it contains
no component that contains less than tree nodes. For example, Figure 1.4
shows the reduction obtained on Repetita’s Colt topology.

We measured the impact of the island removal on Repetita’s topologies by
comparing the number of nodes before and after applying Algorithm A.1 (see
Figure 1.5 or Tables 6–14 for more precise results). From the 269 topologies
contained in Repetita, 28 were trees and thus completely removed from the
dataset. The remaining reduced topology are the basis on which our dataset
is built.

a.3 additional constraints

Each topology in Repetita is provided with 5 different sets of demands (thus
making 5 different instances per topology) but no set of constraints to be
respected by the way those demands must be forwarded. That makes sense
since Repetita is intended to be used to compare various traffic engineering
approaches. This section describes how we randomly generated segment
routing forwarding constraints in order to evaluate the efficiency of our
algorithms in constrained traffic engineering scenarios. In particular, we
generated three type of constraints, namely: delay, disjoint, and firewall.

delay The delay constraint is an instantiation of the maxCost constraint in
which demands must be routed on an SR path that does not exceed 120% of
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Figure 1.4: Colt topology where the white nodes have been removed by Algorithm A.1.
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Figure 1.5: Number of nodes before and after applying Algorithm A.1 to Repetita’s
topologies.
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1 function reduce(T(N, E), D) :
2 NR = N , ER = E , DR = D
3 deg = [a1, ..., a|E|]
4 S = ∅
5 φlb = 0

6 for (u, v) ∈ ER :
7 deg[u] = deg[u] + 1

8 for n ∈ NR :
9 if deg[n] = 1 :
10 S = S ∪ {n}

11 while S 6= ∅ :
12 remove a node i from S
13 let (i, b) and (b, i) be both links of the only bridge of node i

14 loadi,b = ∑(i,c,k)∈DR k
15 loadb,i = ∑(c,i,k)∈DR k
16 φlb = max(φlb, loadi,b/cR

i,b, loadb,i/cR
b,i)

17 NR = NR \ {i}
18 ER = ER \ {(i, b), (b, i)}
19 DR = DR \ ({(i, c, k) ∈ DR} ∪ {(c, i, k) ∈ DR})

20 deg[b] = deg[b]− 1
21 if deg[b] = 1 :
22 S = S ∪ {b}

23 return 〈T(NR, ER), DR, φlb〉

Pseudocode A.1: A linear algorithm for island removal.
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the delay of the SR path with no midpoint (i.e. the delay of the forwarding
graph between the demand’s source and destination). We assume that each
link in the network is associated with a constant delay so that (i) the delay
of a (simple) path is the sum of the delay of its links, and (ii) the delay of a
forwarding graph is the maximum delay of any path in that forwarding graph.
In other words, the delay of a forwarding graph corresponds to the delay-wise
worst path on which a packet could be forwarded. We chose to enforce the
delay constraint on 20% of the demands, selected randomly.

disjoint The disjoint constraint is exactly the same as the one presented
in the previous chapter. We randomly selected 5% of the pairs of demands
and constrained them to be routed on SR paths that do not share a same edge
(if possible).

firewall The firewall constraint is a serviceChaining constraint in which
a demand must visit one of the firewalls of the network. We generate the set of
firewall by selecting 10% of the nodes randomly, where the probability pn of
selecting node n is proportional to the total capacity of all the links connected
to that node

pn =
∑(n,v)∈E cn,v

2 ∑(u,v)∈E cw,v
.

The intuition behind this probability is that services, like firewalls, are more
likely to be deployed on nodes that can handle important volume of traffic.
We randomly selected 5% of the demands and constrained them to visit at
least one of those firewalls.

Randomly generated sets of constraints are likely to lead to unfeasible
instance of the SRTEP — especially if the generated sets are large. For instance,
depending on the forwarding graphs, it might be impossible to forward two
demands on two link-disjoint SR paths. Also, it might be impossible for a
demand to visit a firewall (far in the network) without exceeding its maximum
delay. Therefore, for each instance, we only kept the first random set of
constraints for which a feasible solution exists.6

6 We used the MILP models presented in the next chapter to check the feasibility of each set of
constraints.
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a.4 new dataset

The result of all the transformation presented in this chapter is a dataset made
of the 241 (non-empty) reduced topology of Repetita (see Tables 6–14). For
each of these topology, we rescaled the sets of demands, provided in Repetita,
so that the optimal network utilisation, assuming no constraint on the path
demands are forwarded on, is exactly 100% — which, we believe, eases the
reading of the analyses presented in the subsequent chapters7. We then used
each of these instances to create three additional instances in which shortest
paths are computed using unary, inverse (of link capacity), and random IGP
cost. Our final dataset is made of 3615 instances (241 topologies × 5 sets of
demands × 3 sets of IGP weights) for which we have randomly generated a
set of constraints as explained in the previous section.

7 We do understand that this might look extreme from a networking perspective.
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Name |N| |E| |NR| |ER| Density
Aarnet 19 48 15 40 19.04%
Abilene 11 28 11 28 25.45%
Abvt 23 62 22 60 12.98%
Aconet 23 62 18 52 16.99%
Agis 25 60 16 42 17.5%
Ai3 10 18 - - -
Airtel 16 74 8 36 64.28%
Amres 25 48 - - -
Ans 18 50 17 48 17.64%
Arn 30 58 - - -
Arnes 34 94 31 86 9.24%
Arpanet196912 4 8 3 6 100.00%
Arpanet19706 9 20 8 18 32.14%
Arpanet19719 18 44 18 44 14.37%
Arpanet19723 25 56 24 54 9.78%
Arpanet19728 29 64 29 64 7.88%
AsnetAm 65 158 25 74 12.33%
Atmnet 21 44 19 40 11.69%
AttMpls 25 114 25 112 18.66%
Azrena 22 50 5 8 40.00%
Bandcon 21 56 20 54 14.21%
Basnet 7 12 - - -
Bbnplanet 27 56 10 22 24.44%
Bellcanada 48 130 39 110 7.42%
Bellsouth 51 132 21 72 17.14%
Belnet2003 23 86 19 70 20.46%
Belnet2004 23 86 19 70 20.46%
Belnet2005 23 88 20 76 20.00%
Belnet2006 23 88 20 76 20.00%
Belnet2007 21 62 21 48 11.42%

Table 6: Topologies contained in our dataset (1/9).

118



A.4 new dataset

Name |N| |E| |NR| |ER| Density
Belnet2008 21 62 21 48 11.42%
Belnet2009 21 62 21 48 11.42%
Belnet2010 22 64 22 50 10.82%
BeyondTheNetwork 53 130 28 80 10.58%
Bics 33 96 27 84 11.96%
Biznet 29 66 26 60 9.23%
Bren 37 76 13 28 17.94%
BsonetEurope 18 48 12 34 25.75%
BtAsiaPac 20 62 14 50 27.47%
BtEurope 24 74 17 60 22.05%
BtLatinAmerica 45 100 19 48 14.03%
BtNorthAmerica 36 152 36 152 12.06%
Canerie 32 82 20 58 15.26%
Carnet 44 86 - - -
Cernet 41 118 30 94 10.80%
Cesnet1993 10 18 - - -
Cesnet1997 13 24 - - -
Cesnet1999 13 24 - - -
Cesnet2001 23 46 4 8 66.66%
Cesnet200304 29 66 11 30 27.27%
Cesnet200511 39 88 11 32 29.09%
Cesnet200603 39 88 11 32 29.09%
Cesnet200706 44 102 11 36 32.72%
Cesnet201006 52 126 19 60 17.54%
Chinanet 42 132 20 88 23.15%
Claranet 15 36 9 24 33.33%
Cogentco 197 490 167 426 1.53%
Colt 153 382 106 260 2.33%
Columbus 70 170 57 144 4.51%
Compuserve 14 34 11 28 25.45%

Table 7: Topologies contained in our dataset (2/9).
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Name |N| |E| |NR| |ER| Density
CrlNetworkServices 33 76 32 74 7.45%
Cudi 51 104 8 18 32.14%
Cwix 36 82 21 52 12.38%
Cynet 30 58 - - -
Darkstrand 28 62 28 62 8.20%
Dataxchange 6 22 5 20 100.00%
Deltacom 113 366 104 304 2.83%
DeutscheTelekom 30 110 26 102 15.69%
Dfn 58 174 51 160 6.27%
DialtelecomCz 138 302 106 238 2.13%
Digex 31 76 31 70 7.52%
Easynet 19 58 13 40 25.64%
Eenet 13 32 5 10 50.00%
EliBackbone 20 60 20 60 15.78%
Epoch 6 14 6 14 46.66%
Ernet 30 64 7 18 42.85%
Esnet 68 184 30 82 9.42%
Eunetworks 14 38 14 32 17.58%
Evolink 37 90 22 60 12.98%
Fatman 17 42 8 24 42.85%
Fccn 23 54 7 18 42.85%
Forthnet 62 124 3 6 100.00%
Funet 26 62 23 54 10.67%
Gambia 28 56 6 12 40.00%
Garr199901 16 36 4 12 100.00%
Garr199904 23 50 4 12 100.00%
Garr199905 23 50 4 12 100.00%
Garr200109 22 48 4 12 100.00%
Garr200112 24 52 4 12 100.00%
Garr200212 27 58 4 10 83.33%

Table 8: Topologies contained in our dataset (3/9).
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A.4 new dataset

Name |N| |E| |NR| |ER| Density
Garr200404 22 48 4 12 100.0%
Garr200902 54 142 23 74 14.62%
Garr200908 54 136 22 72 15.58%
Garr200909 55 138 22 72 15.58%
Garr200912 54 136 22 72 15.58%
Garr201001 54 136 22 72 15.58%
Garr201003 54 142 23 74 14.62%
Garr201004 54 142 23 74 14.62%
Garr201005 55 144 23 74 14.62%
Garr201007 55 148 25 78 13.00%
Garr201008 55 148 25 78 13.00%
Garr201010 56 150 25 78 13.00%
Garr201012 56 150 25 78 13.00%
Garr201101 56 152 25 78 13.00%
Garr201102 57 154 25 78 13.00%
Garr201103 58 162 28 84 11.11%
Garr201104 59 166 28 86 11.37%
Garr201105 59 168 30 90 10.34%
Garr201107 59 170 30 90 10.34%
Garr201108 59 170 30 90 10.34%
Garr201109 59 172 31 92 9.89%
Garr201110 59 174 31 92 9.89%
Garr201111 60 174 30 88 10.11%
Garr201112 61 178 31 90 9.67%
Garr201201 61 178 31 90 9.67%
Gblnet 8 14 - - -
Geant2001 27 76 18 58 18.95%
Geant2009 34 104 30 96 11.03%
Geant2010 37 116 33 104 9.84%
Geant2012 40 122 32 106 10.68%

Table 9: Topologies contained in our dataset (4/9).
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Name |N| |E| |NR| |ER| Density
Getnet 7 16 5 12 60.00%
Globalcenter 9 72 9 72 100.00%
Globenet 67 226 58 172 5.20%
Goodnet 17 62 13 54 34.61%
Grena 16 30 - - -
Gridnet 9 40 9 40 55.55%
Grnet 37 94 13 36 23.07%
GtsCe 149 386 136 360 1.96%
GtsCzechRepublic 32 66 19 40 11.69%
GtsHungary 30 62 13 28 17.94%
GtsPoland 33 74 26 60 9.23%
GtsRomania 21 48 9 24 33.33%
GtsSlovakia 35 74 8 20 35.71%
Harnet 21 50 8 20 35.71%
Heanet 7 26 7 22 52.38%
HiberniaCanada 13 28 11 24 21.81%
HiberniaGlobal 55 162 54 160 5.59%
HiberniaIreland 8 16 5 10 50.00%
HiberniaNireland 18 44 18 42 13.72%
HiberniaUk 15 30 13 26 16.66%
HiberniaUs 22 58 15 44 20.95%
Highwinds 18 106 17 60 22.05%
HostwayInternational 16 42 15 40 19.04%
HurricaneElectric 24 74 17 60 22.05%
Ibm 18 48 17 46 16.91%
Iij 37 132 27 110 15.66%
Iinet 31 70 8 24 42.85%
Ilan 14 30 5 12 60.00%
Integra 27 72 23 64 12.64%
Intellifiber 73 194 66 176 4.10%

Table 10: Topologies contained in our dataset (5/9).
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A.4 new dataset

Name |N| |E| |NR| |ER| Density
Internetmci 19 90 19 66 19.29%
Internode 66 156 19 60 17.54%
Interoute 110 316 104 280 2.61%
Intranetwork 39 106 32 88 8.87%
Ion 125 300 116 274 2.05%
IowaStatewideFiberMap 33 82 27 70 9.97%
Iris 51 128 45 116 5.85%
Istar 23 46 3 6 100.0%
Itnet 11 20 - - -
Janetbackbone 29 90 29 90 11.08%
JanetExternal 10 18 - - -
Janetlense 20 80 17 62 22.79%
Jgn2Plus 18 34 - - -
Karen 25 60 14 34 18.68%
KentmanApr2007 22 48 6 14 46.66%
KentmanAug2005 27 58 6 16 53.33%
KentmanFeb2008 26 56 6 14 46.66%
KentmanJan2011 38 78 5 10 50.00%
KentmanJul2005 16 34 8 18 32.14%
Kreonet 13 24 - - -
LambdaNet 42 92 35 78 6.55%
Latnet 69 148 15 40 19.04%
Layer42 6 14 4 10 83.33%
Litnet 43 86 5 10 50.00%
Marnet 20 54 10 34 37.77%
Marwan 16 36 8 18 32.14%
Missouri 67 166 58 148 4.47%
Mren 6 10 - - -
Myren 37 80 6 16 53.33%
Napnet 6 14 4 10 83.33%

Table 11: Topologies contained in our dataset (6/9).
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Name |N| |E| |NR| |ER| Density
Navigata 13 34 7 22 52.38%
Netrail 7 20 7 20 47.61%
NetworkUsa 35 78 33 74 7.00%
Nextgen 17 40 17 38 13.97%
Niif 36 82 19 48 14.03%
Noel 19 50 16 44 18.33%
Nordu1989 7 12 - - -
Nordu1997 14 26 - - -
Nordu2005 9 20 4 8 66.66%
Nordu2010 15 30 3 6 100.00%
Nsfcnet 9 20 6 14 46.66%
Nsfnet 13 30 10 24 26.66%
Ntelos 47 122 40 102 6.53%
Ntt 32 432 28 118 15.60%
Oteglobe 83 204 61 154 4.20%
Oxford 20 52 20 52 13.68%
Pacificwave 18 54 11 30 27.27%
Packetexchange 21 54 19 50 14.61%
Padi 7 12 - - -
Palmetto 45 140 45 128 6.46%
Peer1 16 40 12 32 24.24%
Pern 127 258 9 22 30.55%
PionierL1 36 82 29 68 8.37%
PionierL3 38 104 28 70 9.25%
Psinet 24 50 15 32 15.23%
Quest 20 62 19 60 17.54%
RedBestel 84 202 59 136 3.97%
Rediris 19 64 18 60 19.60%
Renam 5 8 - - -
Renater1999 24 46 - - -

Table 12: Topologies contained in our dataset (7/9).
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A.4 new dataset

Name |N| |E| |NR| |ER| Density
Renater2001 24 54 12 30 22.72%
Renater2004 30 72 19 50 14.61%
Renater2006 33 86 27 74 10.54%
Renater2008 33 86 27 74 10.54%
Renater2010 43 112 38 102 7.25%
Restena 19 42 10 24 26.66%
Reuna 37 72 - - -
RF1221 104 302 50 194 7.91%
RF1239 315 1944 284 1882 2.34%
RF1755 87 322 75 298 5.36%
RF3257 161 656 115 564 4.30%
RF3967 79 294 72 280 5.47%
RF6461 138 744 129 726 4.39%
Rhnet 16 36 13 30 19.23%
Rnp 31 68 17 40 14.70%
Roedunet 42 100 8 24 42.85%
RoedunetFibre 48 104 23 54 10.67%
Sago 18 34 - - -
Sanet 43 90 25 54 9.00%
Sanren 7 14 7 14 33.33%
Savvis 19 40 17 36 13.23%
Shentel 28 70 20 54 14.21%
Sinet 74 152 12 28 21.21%
Singaren 11 20 - - -
Spiralight 15 32 15 32 15.23%
Sprint 11 36 10 34 37.77%
Sunet 26 98 26 64 9.84%
Surfnet 50 146 48 132 5.85%
Switch 74 184 52 140 5.27%
SwitchL3 42 126 30 102 11.72%

Table 13: Topologies contained in our dataset (8/9).
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Name |N| |E| |NR| |ER| Density
Synth100 100 572 100 572 5.77%
Synth200 199 1044 197 1040 2.69%
Synth50 50 276 50 276 11.26%
Syringa 74 148 35 70 5.88%
TataNld 145 388 137 356 1.91%
Telcove 71 140 - - -
Telecomserbia 6 12 6 12 40.00%
Tinet 53 178 48 168 7.44%
TLex 12 32 5 12 60.0%
Tw 71 236 64 216 5.35%
Twaren 20 40 4 8 66.66%
Ulaknet 82 164 3 6 100.00%
UniC 25 58 15 34 16.19%
Uninet 13 50 12 34 25.75%
Uninett2010 74 202 58 170 5.14%
Uninett2011 69 196 57 168 5.26%
Uran 24 48 4 8 66.66%
UsCarrier 158 378 135 332 1.83%
UsSignal 61 158 60 154 4.35%
Uunet 49 168 38 146 10.38%
Vinaren 25 52 6 14 46.66%
VisionNet 24 46 - - -
VtlWavenet2008 88 184 88 184 2.40%
VtlWavenet2011 92 192 88 184 2.40%
WideJpn 30 66 11 28 25.45%
Xeex 24 68 22 64 13.85%
Xspedius 34 98 33 96 9.09%
York 23 48 20 42 11.05%
Zamren 35 68 - - -

Table 14: Topologies contained in our dataset (9/9).
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