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Abstract
Multi-Valued Decision Diagrams (MDDs) are in-
strumental in modeling combinatorial problems
with Constraint Programming. In this paper, we
propose a related data structure called sMDD
(semi-MDD) where the central layer of the dia-
grams is non-deterministic. We show that it is easy
and efficient to transform any table (set of tuples)
into an sMDD. We also introduce a new filtering
algorithm, called Compact-MDD, which is based
on bitwise operations, and can be applied to both
MDDs and sMDDs. Our experimental results show
the practical interest of our approach.

1 Introduction
Constraint Programming (CP) is a general and flexible frame-
work for modeling and solving combinatorial constrained
problems [Rossi et al., 2006]. Many kind of constraints have
been introduced in the literature, but general forms that are
based on data structures such as tables, automatas, and MDDs
(Multi-valued Decision Diagrams) remain quite popular. For
example, over the past decade, many filtering algorithms have
been proposed for table and MDD constraints, respectively
leading to the state-of-the-art algorithms called Compact-
Table [Demeulenaere et al., 2016] and MDD4R [Perez and
Régin, 2014]. In this paper, we focus our interest on deci-
sion diagrams [Bryant, 1986] for constraint reasoning, which
is definitively a hot topic; see, e.g., [Andersen et al., 2007;
Hadzic et al., 2008; Hoda et al., 2010; Gange et al., 2011;
Bergman et al., 2014; Amilhastre et al., 2014; Bergman et
al., 2016; Perez and Régin, 2017; Perez, 2017].

In theory, it is always possible to express a constraint c un-
der the form of a table, which simply enumerates the tuples
allowed by c, or an MDD whose paths indicate them. Clearly,
tables and MDDs have the same expressive power, but the
main advantage of MDDs is their ability to compress the set
of tuples, possibly with an exponential space-saving. Hence,
when compression is high, it is very relevant to convert ta-
bles into MDDs, by using a procedure that identifies similar
prefixes and suffixes of tuples. Unfortunately, it is known that
different orderings on the variables (columns of the table) can
lead to very different MDDs in term of size, and discovering
the optimal order is an NP-hard task.

In this paper, we are interested in using decision diagrams
for representing tables (while assuming an arbitrary ordering
on the variables). We propose to relax one strong property of
MDDs (out-determinism, which is the requirement that two
arcs going out from the same node must be labeled differ-
ently). In this respect, we propose to refine the compres-
sion procedure by targeting a diagram that is no more an
MDD. More precisely, the diagram generated by our pro-
cedure is an MVD (Multi-valued Variable Diagram) [Amil-
hastre et al., 2014], and because it admits a particular struc-
ture, basically representing two connected MDDs of approx-
imately the same size (height), we shall call this structure an
sMDD (semi-MDD).

Our contributions are summarized as follows: (i) a new
structure called sMDD, adapted to the filtering of constraints,
(ii) a new algorithm for converting any table into an sMDD,
(iii) a new filtering algorithm enforcing Generalized Arc Con-
sistency on constraints defined by sMDDs, and also MDDs,
by relying on bit-set operations, as in [Wang et al., 2016;
Demeulenaere et al., 2016], (iv) some experimental results
showing that the number of nodes in sMDDs is usually far
smaller than in equivalent MDDs, while leading to a faster fil-
tering process compared to previous approaches [Cheng and
Yap, 2010; Perez and Régin, 2014].

2 Technical Background
A constraint network is composed of a set of variables and a
set of constraints. Each variable x has an associated (finite)
domain dom(x) containing the values that can be assigned
to it; this current domain is included in the initial domain
dom0(x). Each constraint c involves an ordered set of vari-
ables, called the scope of c and denoted by scp(c), and is
semantically defined by a relation rel(c) containing the tu-
ples allowed for the variables involved in c. The arity of a
constraint c is |scp(c)|. When the domain of a variable x is
(becomes) singleton, we say that x is bound.

Given a sequence 〈x1, . . . , xr〉 of r variables, an r-tuple
τ on this sequence of variables is a sequence of values
〈a1, . . . , ar〉, where the individual value ai is also denoted
by τ [xi]. An r-tuple τ is valid on an r-ary constraint c iff
∀x ∈ scp(c), τ [x] ∈ dom(x), and τ is allowed by c iff
τ ∈ rel(c). A support on c is a tuple that is both valid on
c and allowed by c. A literal is a pair (x, a) where x is a
variable and a a value. A literal (x, a) is Generalized Arc-



Consistent (GAC) on c iff there is a support τ on c such that
τ [x] = a. A constraint c is GAC iff any literal (x, a) such
that x ∈ scp(c) and a ∈ dom(x) is GAC on c.

A directed graph is composed of nodes and arcs. Each arc
has an orientation from one node, the tail of the arc, to another
node, the head of the arc. For a given node ν, the set of
arcs with ν as tail (resp., head) is called the set of outgoing
(resp., incoming) arcs of ν. A (arc-)labeled directed graph
is a directed graph such that a label is associated with each
arc. A node is in-d (in-deterministic) iff no two incoming
arcs have the same label, in-nd otherwise. A node is out-
d (out-deterministic) iff no two outgoing arcs have the same
label, out-nd otherwise. A directed acyclic graph (DAG) is
a (finite) directed graph with no directed cycles. An MVD
(Multi-valued Variable Diagrams) [Amilhastre et al., 2014],
associated with a constraint of arity r, is a layered DAG, with
one special root node at level 0, denoted by ROOT, r layers
of arcs, one layer for each variable of the constraint scope
〈x1, . . . , xr〉, and one special sink node at level r, denoted by
SINK. The arcs going from level i − 1 to level i are on the
variable xi: any such arc is labeled by a value in dom0(xi).
A valid path in an MVD is a path from the root to the sink
such that the label of each involved arc going from level i−1
to i is a value in dom(xi). The set of supports of a constraint
c defined by an MVD M corresponds to the valid paths in
M . One classical type of MVD is the Multi-valued Decision
Diagram (MDD) [Bryant, 1986], which guarantees that each
node is out-d (each node at level i has at most |dom0(xi)|
outgoing arcs, labeled with different values), but possibly in-
nd. An example is given in Fig. 1d. We now introduce the
data structure studied in this paper.

Definition 1 A semi-MDD, or sMDD, is an MVD such that
each node at a level < b r2c is out-d and each node at a level
> b r2c+ 1 is in-d.

This means that in an sMDD, a node at a level< b r2c is possi-
bly in-nd, and a node at a level > b r2c+ 1 is possibly out-nd.
Also, a node at level b r2c or b r2c + 1 is possibly both in-nd
and out-nd. An example is given in Fig. 2h.

A table constraint c is such that rel(c) is explicitly defined
by listing the tuples that are allowed by c. A MVD (resp.,
MDD and sMDD) constraint c is such that rel(c) is defined
by a MVD (resp., MDD and sMDD).

3 From Tables to Diagrams
The table of an extensional constraint c can be compactly rep-
resented by a trie [Gent et al., 2007] in which successive lev-
els are associated with successive variables in the scope of
c. A trie can be further reduced by merging nodes1, so as to
obtain an MDD.

3.1 Generating (Reduced) MDDs
Reduction algorithms for generating diagram decisions from
tables (sets of tuples) have been proposed in the literature. A
first algorithm based on a breadth-first bottom-up exploration,
was proposed in [Bryant, 1986] for BDDs (Boolean Deci-
sion Diagrams), and a second algorithm, using a dictionary

1In the spirit of the Hopcroft algorithm for DFA minimization

and called mddify, was proposed in [Cheng and Yap, 2010;
2008] for MDDs. More recently, pReduce [Perez and
Régin, 2015] has been shown to admit a better worst-case
time complexity than mddify.

Fig. 1 illustrates the creation of an MDD in the spirit of
pReduce. Initially, we consider a constraint c defined by
the table shown in Fig. 1a. First, the trie corresponding to
this table is created2, Fig. 1b, and a (non-reduced) MDD can
be easily derived from this trie, Fig. 1c. Then, the MDD is
reduced by successively merging nodes when possible, from
bottom to top. Merging is done by finding nodes having simi-
lar sets of outgoing arcs. Two sets of outgoing arcs are similar
if they have the same cardinality, and for each arc in one set,
there is an arc in the other set with the same label (value)
and the same head. In our example, you can observe that
nodes M , O and P have only one outgoing arc, each one la-
beled with 1 and reaching SINK. Hence, these nodes can be
merged (node MOP in Fig. 1d). The MDD resulting from
this iterative merging process is shown in Fig. 1d.
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Figure 1: Reducing a Table into an MDD

3.2 Generating sMDDs
Now, we propose to refine the reduction procedure by tar-
geting a diagram that is an sMDD. The interest is that such
structure is expected to contain less nodes (this issue is dis-
cussed later), and that efficient algorithms can be defined on
sMDDs. The algorithm we propose is composed of five main
steps, and is called sReduce. First, the initial table is split
in two main parts:

2Here, for simplicity a table structure is kept in Fig. 1b.



• the p-table (table for the prefixes) corresponding to the
first b r2c columns (or variables),

• the s-table (table for the suffixes) corresponding to the
last r − b r2c − 1 columns (or variables),

At this point, note that all variables, except one, are involved
in one of these two partial tables. For example, on our exam-
ple with r = 5, we obtain a p-table with 2 columns (corre-
sponding to x1 and x2) and an s-table with 2 columns (cor-
responding to x4 and x5). The missing column (for variable
x3) will be considered in a later stage.

Second, duplicates are removed from the p-table and the
s-table, and the p-table and the s-table are lexicographically
sorted, respectively using an increasing and decreasing order.
Considering again the initial table depicted in Fig. 1a, after
these three steps, we obtain the p-table and the s-table shown
in Fig. 2a and 2d.

Third, we build some equivalent tables sharing prefixes and
suffixes (we call them p-trie and s-trie), and naturally derive
equivalent trees from them (we call them p-tree and s-tree).
Importantly, the order of the columns is preserved, and we
start with a special root node for the p-tree whereas we finish
with a special sink node for the s-tree. An illustration is given
by figures 2b, 2c, 2e and 2f.

Fourth, for each tuple τ in the initial table, we build an arc
between the node in the p-tree corresponding to the end of
the prefix of τ and the node in the s-tree corresponding to the
start of the suffix of τ : this arc is labeled with the value for
the intermediate variable, which was involved neither in the
p-table nor in the s-table. We obtain a new diagram, depicted
in Fig. 2g, where arcs have been added for x3.

Fifth, “classical” reduction is performed twice. On the one
hand, from bottom to top, merging can be conducted by start-
ing from the nodes that were leaves in the p-tree. For merg-
ing, the algorithm searches for similarities between sets of
outgoing arcs. As an illustration, let us consider nodes C and
E in Fig. 2g. These two nodes have both one outgoing arc
with the same label 0 and the same head: therefore, they can
be merged (node CE in Fig. 2h). On the other hand, from
top to bottom, merging can be conducted by starting from
the nodes that had no parent in the s-tree. For merging, the
algorithm searches now for similarities between sets of in-
coming arcs. As an illustration, observe how nodes H and J
in Fig. 2g can be merged (node HJ in Fig. 2h). The graph
obtained after complete reduction is depicted in Fig. 2h.

Proposition 1 The graph obtained after executing
sReduce on any specified table is an sMDD.

Proof: Before executing merging operations, the dia-
gram (at the end of step 4) is an sMDD, by construction.
Merging conducted in the first (bottom-up) pass preserves
out-determinism of any node at a level < b r2c, while merg-
ing conducted in the second (top-down) pass preserves in-
determinism of any node at a level > b r2c+ 1.

Note that the complexity of sReduce is basically the
same as pReduce as operations are essentially the same
(sorting and merging).

One interest of sMDDs over MDDs is the potential reduc-
tion of the number of nodes. Assuming an uniform variable
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Figure 2: Reducing a Table into an sMDD

domain size equal to d, the number of nodes in the initial trie
isO(dr) for the MDD while it isO(dr/2) for the sMDD. The
gain can thus be very substantial although merging renders
precise predictions difficult to make. On our example, from
the same table, the generated MDD contains 14 nodes and 19
arcs, and the sMDD 12 nodes and 18 arcs.

4 Compact-MDD
In this section, we describe a new filtering algorithm that can
be applied to any MVD (and so, to any MDD and sMDD).
It is called Compact-MDD (or CMDD), and borrows some
principles from CT [Demeulenaere et al., 2016] and MDD4R
[Perez and Régin, 2014]. Its description is given under the
form of an object-oriented programming class in Algorithm 1.

4.1 Data Structures
As fields of Class Constraint-CMDD, we first find scp
for representing the scope 〈x1, . . . , xr〉 of c and currArcs
for representing the current set of valid arcs of the di-
agram. More precisely, a reversible sparse bit-set from
Class RSparseBitSet, as described in [Demeulenaere
et al., 2016], is associated with each variable x of scp:
currArcs[x] keeps track of the valid arcs on x. Each arc



in the diagram admits an associated bit in currArcs: the
arc is valid iff the bit is set to 1. Note that this is simi-
lar to currTable that keeps track of the valid tuples in CT.
As an example, for the MDD in Fig. 1d, currArcs[x2] and
currArcs[x3] respectively correspond to sequences of 4 and
5 bits (all set to 1, initially). In this data structure, one field is
words, an array of w-bit words (e.g., w = 64), which defines
the current value of the bit-set. Each reversible sparse bit-
set has another field: a bit-set called mask that is useful for
performing and recording intermediate computations. Inter-
estingly, operations on mask are optimized so as to only con-
sider non-zero words (i.e., words with not all bits set to 0). We
now succinctly describe the methods in RSparseBitSet.
Method isEmpty() simply checks whether the number of non-
zero words is different from zero. Method clearMask() sets
to zero all words of mask whereas Method reverseMask() re-
verses all words of mask. Method addToMask() applies a
word by word logical bit-wise or operation. Finally, Method
intersectIndex() checks if a given bit-set intersects with the
current bit-set: it returns the index of the first word where
the intersection is non-zero, -1 otherwise. For the sake of
simplicity, we shall use currArcs[x][i] as a shortcut for
currArcs[x].words[i], and currArcs[x].intxn as a shortcut
for currArcs[x].intersectIndex.

e1 e2 e3 e4

supports[x4, 0] 1 0 1 1
supports[x4, 1] 0 1 0 0

arcsT[GIJ, x4] 1 0 0 0
arcsT[H,x4] 0 1 0 0
arcsT[L, x4] 0 0 1 0
arcsT[K,x4] 0 0 0 1

arcsH[x4,MOP ] 1 0 0 0
arcsH[x4, NR] 0 1 1 0
arcsH[x4, Q] 0 0 0 1

Figure 3: Data structures related to arcs on x4 of Fig. 1d

We also have three fields Sval, Ssup and lastSizes in the
spirit of STR2 [Lecoutre, 2011]. The set Sval contains vari-
ables whose domains have been reduced since the previous
call to CMDD on c. To set up Sval, we need to record the
domain size of each variable x right after the execution of
CMDD on c: this value is recorded in lastSizes[x]. The
set Ssup contains unbound variables whose domains contain
each at least one value for which a support must be found.
These two sets allow us to restrict loops on variables to rele-
vant ones. To ease computations, at each level we find three
types of precomputed bit-sets: these bit-sets are never modi-
fied. First, supports[x, a] indicates for each arc on the vari-
able x whether or not the value a is initially supported by this
arc (bit set to 1 iff a is supported). Second, arcsT[ν, x] and
arcsH[x, ν′] indicates for each arc on x whether ν and ν′ are
respectively the tail and the head of this arc. Fig. 3 displays
these structures associated with x4 in the MDD depicted in
Fig. 1d. Finally, we have dynamic bit-sets for handling so-
called residues. We shall see their role when describing the
algorithm.
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Figure 4: Updating the MDD from Fig. 1d after x3 6= 1 ∧ x4 6= 1

4.2 Algorithm
The main method in Constraint-CMDD is enforceGAC().
After the initialization of the sets Sval and Ssup, calling up-
dateGraph() allows us to update the graph, and more specifi-
cally currArcs to filter out (indices of) arcs that are no more
valid. Once the graph is updated, it is possible to test whether
each value has still a support, by calling filterDomains(). If
ever a domain wipe-out (failure due to a domain becoming
empty) occurs, an exception is thrown during the update of
the graph (and so, this is not directly managed in this main
method). At the end of enforceGAC(), lastSizes is up-
dated in view of the next call.

Updating the Graph. As in MDD4R, the goal of update-
Graph() is to remove the arcs that are no more part of a valid
path. An arc can be: (i) trivially removed when the value of
the label of the arc has been removed from the variable do-
main (since the previous call) (ii) or untrivially removed when
all paths involving the arc are no more valid. Method update-
Graph() follows this observation: it identifies first the arcs
that can be trivially removed before identifying those that can
be untrivially removed. Fig. 4 illustrates the whole updating
process, considering the effect of having two deleted values
on the MDD depicted in Fig. 1d. We shall refer to this illus-
tration all along the description of this part of the algorithm.



Algorithm 1: Class Constraint-CMDD
1 Method enforceGAC()
2 Sval ← {x ∈ scp : lastSizes[x] 6= |dom(x)|}
3 Ssup ← {x ∈ scp : |dom(x)| > 1}
4 updateGraph()
5 filterDomains()
6 foreach variable x ∈ Sval ∪ Ssup do
7 lastSizes[x]← |dom(x)|

8 Method updateGraph()
9 foreach variable x ∈ scp do

10 currArcs[x].clearMask()

11 updateMasks()
12 propagateDown(x1, false)
13 propagateUp(xr, false)

14 Method updateMasks()
15 foreach variable x ∈ Sval do
16 if |∆x| < |dom(x)| then // Incremental update
17 foreach value a ∈ ∆x do
18 currArcs[x].addToMask(supports[x, a])

19 else // Reset-based update
20 foreach value a ∈ dom(x) do
21 currArcs[x].addToMask(supports[x, a])

22 currArcs[x].reverseMask()

23 Method propagateDown(xi, localChange)
24 if xi ∈ Sval or localChange then
25 currArcs[xi].removeMask()
26 if currArcs[xi].isEmpty() then
27 throw Backtrack
28 if xi 6= xr then
29 localChange← false
30 foreach node ν ∈ {ν :

currArcs[xi+1].intxn(arcsT[ν, xi+1]) 6= −1} do
31 j ← residuesH[xi, ν]

32 if currArcs[xi][j] & arcsH[xi, ν][j] = 064 then
33 j ← currArcs[xi] .intxn(arcsH[xi, ν])
34 if j 6= −1 then
35 residuesH[xi, ν]← j
36 else
37 currArcs[xi+1] .addToMask(arcsT[ν, xi+1])
38 localChange← true

39 propagateDown(xi+1, localChange)
40 else if xi 6= xr then
41 propagateDown(xi+1, false)

42 Method propagateUp(xi, localChange)
/* Similar to propagateDown with x1 instead of xr,

xi−1 instead of xi+1, inverted use of arcsT and

arcsH, inverted use of residuesT and residuesH. */

43 Method filterDomains()
44 foreach variable x ∈ Ssup do
45 foreach value a ∈ dom(x) do
46 i← residues[x, a]

47 if currArcs[x][i] & supports[x, a][i] = 064 then
48 i← currArcs[x].intxn(supports[x, a])
49 if i 6= −1 then
50 residues[x, a]← i
51 else
52 dom(x)← dom(x) \ {a}

In Method updateGraph(), after initializing all masks as-
sociated with the variables in the scope of the constraint, all
arcs that can be trivially removed are handled by calling up-
dateMasks(). For each variable x ∈ Sval, i.e., each variable x
whose domain has changed since the last time the filtering al-
gorithm was called, updateMasks() operates on the associated
masks. This method assumes an access to the set of values ∆x

removed from dom(x) since the last call to enforceGAC().
There are two ways of updating the masks (before updating
currArcs from these masks, later): either incrementally or
from scratch after resetting as proposed in [Perez and Régin,
2014]. This is the strategy implemented in updateMasks(), by
considering a reset-based computation when the size of the
domain is smaller than the number of deleted values. In case
of an incremental update (line 16), the union of the arcs to be
removed is collected by calling addToMask() for each bit-set
(of supports) corresponding to removed values, whereas in
case of a reset-based update (line 19), we perform the union
of the arcs to be kept. To get masks ready to apply, we just
need to reverse them when they have been built from present
values. Unlike CT, the update of currArcs from the com-
puted masks is not done immediately. Fig. 4a shows in gray
the arcs that are added to the masks.

Last but not least, we need now to determine which arcs
can be untrivially removed: this is achieved by calling the
methods propagateDown() and propagateUp(), which, simi-
larly to MDD4R, perform two passes on the diagram. During
the downward (resp., upward) pass, each level is examined
from the root (resp., sink) to the sink (resp., root)3.

In Method propagateDown(), for a specified variable xi,
provided that that some arcs on xi have been removed (the
presence of arcs trivially removed are tested at Line 24 with
xi ∈ Sval, and the presence of arcs untrivially removed are
given by the Boolean variable localChange), we have to
process (and propagate) them. To start, currArcs is first up-
dated (Line 25), and if no more arcs on xi remain, a backtrack
is forced because there is necessarily a domain-wipe-out. If
xi is not the last variable in the scope of the constraint, we
have to deal with xi+1. Specifically, every node4 ν that is the
tail of a currently valid arc on xi+1 is tested: when there is no
more valid arcs on xi with ν as head, all arcs on xi+1 with ν
as tail are then untrivially removed. In other words, if there
is no more valid incoming arc for a node ν at level i, then all
outgoing arcs of ν become invalid: this is implemented by the
code at Lines 29..38. Note that the search of supporting arcs
is improved by keeping track in residuesH of the last valid
incoming arc, and starting with it. This increases the odds
of not testing too many words of currArcs. Also, note how
the variable localChange becomes true as soon as an arc is
untrivially removed.

Fig. 4b shows the behavior of downward propagation on
our example. For the two first levels, nothing happens. How-
ever, at the level of x3, we can see that all incoming arcs of
the node L have been removed. Hence, the outgoing arcs of L

3Actually, we can start propagation from the first and last un-
bound variables. For experiments, we used this code optimization.

4Those are maintained in practice in a reversible sparse-set as in
[Perez and Régin, 2014].



are added to the mask associated with the next level, and re-
moved when reaching this level. On the other hand, the node
GIJ has still one valid incoming arc. Fig. 4c shows the re-
sult of upward propagation (after the downward one has been
completed).

Filtering Domains. The process of filtering domains is
very similar to that described in CT [Demeulenaere et al.,
2016]. This is given by Method filterDomains() in Algo-
rithm 1. For each remaining unbound variable x in Ssup, and
each value a in dom(x), the intersection between the valid
arcs on x, currArcs[x], and the arcs labeled with value a,
supports[x, a], determines if a is still supported. An empty
intersection means that a can be deleted, at Line 52. This
is correct because all “remaining” arcs in currArcs[x] are
necessarily part of a valid path in the graph. The search of
supports starts by using residues.

Back to our example, remaining arcs as defined by
currArcs corresponds to the MDD depicted in Fig. 4d. Re-
garding x5, currArcs[x5] is 1001. Because supports[x5, 0]
is 0101 and supports[x5, 1] is 1010, we can deduce (from
bitwise intersections) that both values are still valid for x5.

One can show that CMDD enforces GAC (proof omitted,
due to lack of space). Overall, the worst-case time complex-
ity of CMDD is O(max(n, d)r a

w ), where r is the arity, d the
greatest domain size, n (a) the maximum number of nodes
(arcs) per level, andw the size of the computer words. Indeed,
updateMasks(), propagateDown()+propagateUp() and filter-
Domains() are respectively O(dr a

w ), O(nr a
w ) and O(dr a

w ).
It has to be compared with the worst-case time complexity of
CT, which is O(dr t

w ) with t being the size of the table.
Interestingly enough, the main features of diagrams gener-

ated by sReduce are substantially different from those gen-
erated by pReduce: the number of nodes can be dramati-
cally lower while the number of arcs can be slightly higher
(this will be confirmed by our experimental results). If we
reasonably assume that d < n, the complexity of CMDD
becomes O(rn a

w ). Hence, what we can expect is that exe-
cuting CMDD on sMDDs will be beneficial (because highly
decreasing n has a stronger impact than slightly increasing
a).

5 Experimental Results
In our system, we have implemented pReduce, MDD4R
[Perez and Régin, 2014], CT [Demeulenaere et al., 2016],
and the two algorithms proposed in this paper, namely,
sReduce and CMDD. We have conducted an experimen-
tation on the 4, 111 available XCSP3 instances [Boussemart
et al., 2016] that only contain table constraints. We have
compared the relative efficiency of MDD4R (after execut-
ing pReduce to convert tables), CMDDp (i.e., CMDD after
executing pReduce), CMDDs (i.e., CMDD after executing
sReduce) and CT (on the original tables). We have filtered
out the instances taking less than 2 seconds or leading to a
time out (10 minutes) for all algorithms. Results are reported
using performance profiles [Dolan and Moré, 2002].

We first compared sReduce with pReduce. Similar ex-
ecution times were observed for sReduce and pReduce.

Concerning the size of the diagrams, Fig. 5 shows two perfor-
mance profiles that allow us to compare globally the number
of nodes and arcs in the generated MDDs and sMDDs for all
the tables involved in our benchmark (around 230, 000 tables
of arity greater than or equal to 3). As we predicted, the num-
ber of nodes is significantly reduced in the generated sMDDs
(more than a factor 8 for at least 70% of the tables), while the
number of arcs tends to be slightly higher.

Figure 5: Comparing the size of the generated MDDs and sMDDs

On the left of Fig. 6, execution times of MDD4R, CMDDp

and CMDDs are compared. Clearly, CMDD outperforms
MDD4R, even when it is executed on “simple” MDDs. Us-
ing sMDDs just makes it more robust. For example, CMDDs,
CMDDp and MDD4R are at least 2 times slower than the best
(virtual) algorithm on 5%, 20% and 35% of the instances, re-
spectively. On the right of Fig. 6, CT is additionally con-
sidered. In general, CT still outperforms decision diagram
approaches, but the gap is reduced: 40% of the instances are
solved by CMDDs within a factor 2 compared to the time
taken by CT, instead of 5% previously with MDD4R.

It is important to note that these global results do not tell the
entire story. Indeed, when the compression is high, using de-
cision diagrams remains the appropriate approach. For exam-
ple, on the instance pigeonsPlus-11-06, the execution
times of CT, MDD4R, CMDDp and CMDDs are respectively
T.O.(> 600s), 328s, 128s and 126s. This confirms the real
interest of approaches based on decision diagrams.

Figure 6: Comparing MDD4R, CMDDp, CMDDs and CT

6 Conclusion
We have proposed an original variant of decision diagrams
for representing (table) constraints, and have introduced an
original efficient filtering algorithm, based on it. The new al-
gorithm, CMDD, outperforms the state-of-the-art algorithm
MDD4R, and is close to CT in general. Interestingly, when
the compression is high, CMDD becomes the fastest ap-
proach. As a future work, we would like to study if sMDDs
could be used to represent other types of constraints.
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