Symbolic Model Checking of Domain Models for Autonomous Spacecrafts

Charles Pecheur (RIACS / NASA Ames)
Introduction

Past:
Time-stamped control sequences

Future:
On-board intelligence

+ Can respond to unanticipated scenarios!

– How do we verify all those scenarios?

Remote Agent
In flight on DS-1, May 99
Outline

• Model-Based Autonomy and Livingstone

• Symbolic Model Checking and SMV

• Verification of Livingstone Models
Model-Based Autonomy

Goal: "intelligent" autonomous spacecrafts
- cheaper (smaller ground control)
- more capable (delays, blackouts)

• General reasoning engine + application-specific model
• Use model to respond to unanticipated situations
• For planning, diagnosis
• Huge state space, reliability is critical
Remote Agent's model-based diagnosis sub-system

Livingstone

Plan Execution System

High level operational plan

Goals

Model

Mode updates

Livingstone

Reconfig Command

Command

MI

MR

current state

Discretized Observations

Courtesy Autonomous Systems Group, NASA Ames
Outline

• Model-Based Autonomy and Livingstone

• Symbolic Model Checking and SMV

• Verification of Livingstone Models
Model ...
Model Checking

Modeling Abstraction

Verification

“Valve is closed when Tank is empty”

AG (tank=empty => valve=closed)
Symbolic Model Checking

Instead of considering each individual state, Symbolic model checking...
Symbolic Model Checking

Instead of considering each individual state, Symbolic model checking...

- Manipulates sets of states,
Symbolic Model Checking

Instead of considering each individual state, Symbolic model checking...

- Manipulates sets of states,
- Represented as boolean formulas,
Symbolic Model Checking

Instead of considering each individual state, Symbolic model checking...

- Manipulates sets of states,
- Represented as boolean formulas,
- Encoded as binary decision diagrams.
Symbolic Model Checking

Instead of considering each individual state, Symbolic model checking...

• Manipulates sets of states,
 – Can handle very large state spaces ($10^{50}+$)
• Represented as boolean formulas,
 – Suited for boolean/abstract models

• Encoded as binary decision diagrams.
 – The limit is BDD size (hard to control)
Boolean Functions

• Represent a state as boolean variables
 \[s = b_1, \ldots, b_n \]
 Non-boolean variables => use boolean encoding

• A set of states as a boolean function
 \[s \text{ in } S \iff f(b_1, \ldots, b_n) = 1 \]

• A transition relation as a boolean function over two states
 \[s \rightarrow s' \iff f(b_1, \ldots, b_n, b'_1, \ldots, b'_n) = 1 \]
Binary Decision Trees

• Encoding for boolean functions

• Notational convention:
 \[= \text{if } c \text{ then } e \text{ else } e' \]
 \[= (c ? e : e') \]

• Always exists but not unique

\[(a \mid b) \Rightarrow c \]
From Trees to Diagrams

- Fixed variable ordering
 "layered" tree

\[(a | b) \Rightarrow c\]
From Trees to Diagrams

- Fixed variable ordering
 "layered" tree
- Merge equal subtrees

\[(a \mid b) \Rightarrow c\]
From Trees to Diagrams

- Fixed variable ordering
 "layered" tree
- Merge equal subtrees
- Remove nodes with equal subtrees

\[(a \mid b) \Rightarrow c\]

\(\Rightarrow\) Ordered Binary Decision Diagram
[Ordered] Binary Decision Diagrams

- [O]BDDS for short
- Unique normal form
 - for a given ordering and
 - up to isomorphism
 \Rightarrow compare in constant time
 (using hash table)

\[(a \mid b) \Rightarrow c\]
Computations with BDDs

• All needed operations can be efficiently computed using BDDS

• Example: boolean combinator \(f \& g \):
 \[(b \oplus f' : f'') \& (b \oplus g' : g'') = (b \oplus f' \& g' : f'' \& g'')\]
cache results → O(|f|.|g|) time

• Other operations:
 – Negation \(!f\)
 – Instantiation \(f[b=1], f[b=0]\)
 – Quantifiers exists \(b . f\), forall \(b . f\)
Transition Systems with BDDs

Given boolean state variables \(v = b_1, \ldots, b_n \)

a set of states as a BDD \(p(v) \)

a transition relation as a BDD \(T(v, v') \)

we can compute the predecessors and successors of \(p \) as BDDs:

\[
(p_{\text{pred}} p)(v) = \exists v'. T(v, v') \land p(v')
\]

\[
(p_{\text{succ}} p)(v) = \exists v'. p(v') \land T(v', v)
\]
Computation Tree Logic (branching):
Consider the tree of possible executions

Always ...

$\neg\neg p$

Δ

$AX p$

Sometimes ...

$\neg\neg p$

∇

$EX p$

... Next p

... Globally p

$AG p$

In all states

$duals$

... Finally p

$AF p$

In some state

$EF p$

$E[p U q]$

... p Until q

$A[p U q]$
Evaluating CTL with BDDS

Example: compute $\text{EF } p$ from p with BDDs:

$$\text{EF } p = \text{lfp } U . (p | \text{EX } U)$$

$= \text{least solution of } U = p | \text{EX } U$

$U_0 = 0$

$U_1 = p | \text{EX } U_0 = p$

\ldots

$U_{n+1} = p | \text{EX } U_n = p | \text{EX } p | \ldots | \text{EX}^n p$

until $U_n = U_{n+1} = \text{EF } p$

– Convergence assured because finite domain

– Backward search from p to $\text{EF } p$
Variable Ordering

• Must be the same for all BDDs
• Size of BDDs depends critically on ordering
• Worst case: exponential w.r.t. #variables
 – sometimes exponential for any ordering
 e.g. middle output bit of n-bit multiplier
• Finding optimum is hard (NP-complete)
 => optimization uses heuristics
SMV

• **SMV** = *Symbolic Model Verifier.*
• Modeling language based on parallel assignments.
• Specifications in temporal logic **CTL**.
• **BDD-based symbolic model checking.**
• Several versions:
 - (CMU) SMV: original work by McMillan (Carnegie Mellon)
 - NuSMV: clean re-writing, faster (ITC-IRST and CMU)
 - Cadence SMV: following McMillan (Cadence Berkeley Labs)
What SMV Does

Model

```plaintext
MODULE user(...) ...
MODULE main
VAR turn: {1, 2};
user1: user(...);
...
```

Specification

```plaintext
SPEC AG !(user1.state = c) & (user2.state = c)
```

Counter-example

```plaintext
-- specification AG ... is false
-- as demonstrated by ...
state 1.1:
  turn = 1
  user1.state = n
  user2.state = n
state 1.2:
...
resources used: ...
```
MODULE user(turn, id, other)
VAR state: {n, t, c};
DEFINE my_turn :=
 (other=n) | ((other=t) & (turn=id));
ASSIGN
init(state) := n;
next(state) := case
 (state = n) : {n, t};
 (state = t) & my_turn: c;
 (state = c) : n;
 1 : state;
esac;

SPEC AG((state = t) -> AF (state = c))
MODULE main
VAR turn: {1, 2};
 user1: user(turn, 1, user2.state);
 user2: user(turn, 2, user1.state);
ASSIGN
init(turn) := 1;
next(turn) := case
 (user1.state=n) & (user2.state=t): 2;
 (user2.state=n) & (user1.state=t): 1;
 1: turn;
esac;

SPEC AG !(user1.state=c) & (user2.state=c)
SPEC AG !(user1.state=c) -- false!
Diagnostic Trace Example

-- specification AG (state = t -> AF state = c) (in module user1) is true
-- specification AG (state = t -> AF state = c) (in module user2) is true
-- specification AG (!(user1.state = c & user2.state = c))... is true
-- specification AG (!user1.state = c) is false
-- as demonstrated by the following execution sequence
state 1.1:
 turn = 1
 user1.state = n
 user2.state = n

state 1.2:
 user1.state = t

state 1.3:
 user1.state = c
The SMV program defines:
- a finite transition model M (Kripke structure),
- a set of possible initial states I (may be several),
- specifications $P_1 \ldots P_m$ (CTL formulas).

SMV checks that each specification P is satisfied in all initial states s_o of model M.

$$\forall s_o \in I . \ M, s_o \models P$$
Outline

• Model-Based Autonomy and Livingstone

• Symbolic Model Checking and SMV

• Verification of Livingstone Models
Livingstone Models

- concurrent transition systems (components)
- synchronous product
- enumerated types
 => finite state

Essentially ≈ SMV model

+ nominal/fault modes, commands/monitors (I/O), probabilities on faults, ...

Diagnosis = find the most likely assumptions (modes) that are consistent with the observations (commands/monitors)

Courtesy Autonomous Systems Group, NASA Ames
Large State Space?

- Example: model of ISPP = $7.16 \cdot 10^{55}$ states
- This is only the Livingstone model – a complete verification model could be
 - Exec driver (10-100 states)
 - Spacecraft simulator (10^{55} states)
 - Livingstone system (keeps history – $10^n \cdot 55$ states)
- Verify a system that analyzes a large state space!
- Approach: the model is the program
 - Verify it (using symbolic model checking)
 - Assume Livingstone correct (and complete)
MPL2SMV

Autonomy

Livingstone
Livingstone Model
Livingstone Requirement
Livingstone Trace

Verification

SMV Model
SMV Requirement
SMV Trace
SMV

MPL2SMV

MLP
2
SMV
Translator from Livingstone to SMV

• Co-developed with CMU (Reid Simmons)
• Similar semantics => translation is easy
• Properties in temporal logic + pre-defined patterns
• Initially for Livingstone 1 (Lisp), upgraded to Livingstone 2 (C++/Java)
Principle of Operations

Lisp shell

```
(load "mpl2smv.lisp")
;; load the translator
;; Livingstone not needed!

(translate "ispp.lisp" "ispp.smv")
;; do the translation

(smv "ispp.smv")
;; call SMV
;; (as a sub-process)
```

SMV output

```
(defcomponent heater ...)
(defmodule valve-mod ...)
...
(defverify
  :structure (ispp)
  :specification (all (globally ...)))

MODULE Mheater ...
MODULE Mvalve-mod ...
...
MODULE main
VAR Xispp:Mispp
SPEC AG ...

Specification AG ... is false as shown ...
State 1.1: ...
State 1.2: ...
```
Simple Properties

• Supported by the translator:
 – syntax sugar
 – iterate over model elements (e.g. all component modes)

• Examples
 – Reachability (no dead code)
 EF heater.mode = on
 – Path Reachability (scenario)
 AG (s1 -> EF (s2 & EF (s3 & EF s4)))
Probabilistic Properties

• Use probabilities associated to failure transitions
• Use order of magnitude: \(-\log(p)\), rounded to a small integer
• Combine additively, OK for BDD computations
• Approximate – but so are the proba. values

heater.mode = overheat -> heater.proba = 2; \quad (p = 0.01)
proba = heater.proba + valve.proba + sensor.proba;
SPEC AG (broken & proba < 3 \rightarrow \text{EF working})
Functional Dependency

- Check that \(y = f(x) \) for some unknown \(f \)
- Use universally quantified variables in CTL
 = undetermined constants in SMV

\[
\text{VAR } x_0, y_0 : \{a, b, c\}; \\
\text{TRANS } \text{next}(x_0) = x_0 \\
\text{TRANS } \text{next}(y_0) = y_0 \\
\text{SPEC } (\text{EF } x=x_0 \& y=y_0) \rightarrow (\text{AG } x=x_0 \rightarrow y=y_0)
\]

- Limitation: counter-example needs two traces, SMV gives only one
 \(\Rightarrow \) instantiate second half by hand, re-run SMV
Temporal Queries

• Temporal Query = CTL formula with a hole:
 \[AG (\ ? \rightarrow EF \text{ working}) \]

• Search (canonical) condition for \(?\) that satisfies the formula (computable for useful classes of queries)

• Recent research, interrupted (William Chan, †1999)

• Problem: visualize solutions (CNF, projections, ...)

• Core algorithm implemented in NuSMV (Wolfgang Heinle)

• Deceptive initial results, to probe further
SMV with Macro Expansion

- Custom version of SMV (Bwolen Yang, CAV 99)
- Eliminates variables by Macro Expansion:
 - analyzes static constraints of the model (invariants),
 - find dependent variables $x=f(x_1,...,x_n)$,
 - substitute $f(x_1,...,x_n)$ for x everywhere,
 - eliminate x from the set of BDD variables.

- For models with lots of invariants
 => useful for Livingstone models

- Full ISPP model in < 1 min, vs. SMV runs out of memory.
ISPP Model Statistics

- In Situ Propellant Production (ISPP) = turn Mars atmosphere into rocket fuel (NASA KSC)
- Original model state = 530 bits (trans. = 1060 bits)
- Total BDD vars = 588 bits
 - Macro expanded = -209 bits
 - Reduced BDD vars = 379 bits
- Reachable state space $7.16 \cdot 10^{55} = 2^{185.5}$
- Total state space $1.06 \cdot 10^{81} = 2^{269.16}$
- Reachability of all modes (163): 29.14" CPU time in 63.6 Mb RAM
Diagnosis Properties

• Can fault F always be diagnosed? (assuming perfect diagnosis and accurate model)
 $= \text{is } F \text{ unambiguously observable?}$
 $\forall \text{obs0} . (EF F \& \text{obs}=\text{obs0}) \rightarrow (AG F \rightarrow \text{obs}=\text{obs0})$

• Similar to functional dependency

• $\text{obs} = \text{observable variables (many of them)}$

• Static variant (ignore transitions):
 SAT on two states S, S' such that
 $F \& \neg F' \& \text{obs} = \text{obs'}$
• Very recent (yesterday), with Alessandro Cimatti
• Can fault F be diagnosed knowing the last n steps?
• Apply SAT to:

Variants are possible (e.g. fork at n-1 instead of 0)
Diagnosis Properties (cont'd)

• Does it work?
 – Computational cost of extra variables

• Has it been done?
 – Similar work in hardware testability?

• Is it useful?
 – It is unrealistic to expect all faults to be immediately observable (e.g. valve closed vs. stuck-closed)
 – What weaker properties? Are they verifiable?

• To be explored
Summary

• Verification of model-based diagnosis:
 – Space flight => safety critical.
 – Huge state space (w.r.t. fixed command sequence).
• Focus on models (the model is the program)
• Quite different from executable programs
 – Loose coupling, no threads of control, passive.
 – Huge but shallow state spaces.
• Symbolic model checking is very appropriate
• Verify well-formedness + validity w.r.t. hardware
• Verify suitability for diagnosis: to be explored
Thank You
Symbolic Model Checking

References

The seminal paper on Binary Decision Diagrams.

Survey paper on the principles of symbolic model checking.

Paper on SAT-based bounded model checking.
Symbolic Model Checking

References (cont'd)

Symbolic model checking of CTL with fairness.

Verifying LTL using symbolic model checking.
SMV

References

Based on Ken McMillan's PhD thesis on SMV.

http://www.cs.cmu.edu/~modelcheck/smv/smvmanual.r2.2.ps

The (old) user manual provided with the SMV program.

Survey paper on NuSMV.