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Abstract— Decision-based processes are composed of tasks 

whose application may depend on explicit decisions relying on the 
state of the process environment. In specific domains such as 
healthcare, decision-based processes are often complex and 
critical in terms of timing and resources.  
The paper presents a variety of tool-supported techniques for 
analyzing models of such processes. The analyses allow a variety 
of errors to be detected early and incrementally on partial 
models, notably: inadequate decisions resulting from inaccurate 
or outdated information about the environment state; incomplete 
decisions; non-deterministic task selections; unreachable tasks 
along process paths; and violations of non-functional process 
requirements involving time, resources or costs. The proposed 
techniques are based on different instantiations of the same 
generic algorithm that propagates decorations iteratively through 
the process model. This algorithm in particular allows event-
based models to be automatically decorated with state-based 
invariants. 
A formal language supporting both event-based and state-based 
specifications is introduced as a process modeling language to 
enable such analyses. This language mimics the informal 
flowcharts commonly used by process stakeholders. It extends 
High-Level Message Sequence Charts with guards on task-related 
and environment-related variables. The language provides 
constructs for specifying task compositions, task refinements, 
decision trees, multi-agent communication scenarios, and time 
and resource constraints.  
The proposed techniques are demonstrated on the incremental 
building and analysis of a complex model of a real protocol for 
cancer therapy. 
 

Index Terms—Process modeling, process analysis, model 
verification, decision errors, safety-critical workflows, non-
functional requirements, domain-specific languages, formal 
specification. 
 

I. INTRODUCTION 

The growing maturity of software engineering technologies 
makes it possible to export them to other areas in need of more 
systematic approaches. This is in particular the case for 
domain-specific processes such as medical processes [13, 25, 
37, 68, 69] where process safety is a key concern [16, 39, 44]. 
Conversely, such domains raise new challenges on modeling 
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and analysis techniques. For example, cancer therapy 
processes are composed of safety-critical subprocesses, such 
as radiotherapy, surgery and chemotherapy processes, to be 
coordinated over long periods of time, at multiple sites, 
according to critical decisions often made under incomplete 
information, and subject to a variety of non-functional 
requirements. The latter refer to strict timing and dose 
constraints, resource limitations, cost restrictions, and so forth. 
Such processes are continuously evolving from progress in 
research and practice.  
Models in this context may be used for a variety of purposes, 
e.g., for process orchestration, conformance checking, process 
documentation, or the generation of directives, explanations or 
other operational information targeted at specific parties 
[13, 25].  
Process models should therefore be as error-free as possible. 
Building an adequate, complete, and consistent model may be 
far from easy in such domains. Techniques should therefore 
help detect and fix severe flaws –in the model being built or in 
the actual process itself [12, 25].  
To enable tool-supported analysis, the target processes should 
be captured through some adequate formal model. Many 
languages are available for modeling processes and 
workflows, e.g., UML Activity Diagrams [62], BPMN [63], 
Yawl [27, 75] and Little-Jil [78] to cite just a few.  When a 
formal semantics is available, such languages support various 
analyses such as model checking against event-based 
properties [28, 54, 79], verification of process termination [73] 
or of absence of deadlocks [54, 80], or conformance checking 
between the process model and its execution [73]. Model 
enactment can also be used for runtime support [78]. 
The modeling techniques available to date do not allow 
process decisions to be formally captured in terms of state 
variables characterizing the process environment (e.g., state 
variables about the patient under treatment). As a 
consequence, the properties that can be model-checked are 
purely event-based; they refer to task applications only. When 
alternative branches in a task flow are supported, the choice 
among them is non-deterministic. 
The paper focusses on decision-based processes to address this 
current limitation. In a decision-based process, decisions 
relying on the state of the process environment regulate the 
subsequent tasks to be specifically performed. For example, a 
specific sequencing of weekly chemotherapy sessions is the 
outcome of a medical decision relying on environment state 
variables such as the patient’s blood platelet level.   
The possible unobservability of the environment state at which 
a decision must be made is a challenging issue raised by such 
processes. State variables approximating the environment state 
are needed; such variables do not necessarily reflect the exact 
state of the process environment at the corresponding decision 
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point. In our example, the exact value of the patient's platelet 
level might not be the one used in the state where the specific 
therapy decision is taken. A modeling/reasoning framework 
must be able to cope with this.  
The main contribution of the paper is a coherent set of 
complementary techniques for early and incremental analysis 
of critical decision-based process models. 
As a prerequisite, we need a formal modeling language to 
enable those analyses. For ease of communication and 
validation, the models should be as close as possible to the 
material commonly used by process stakeholders.  
The available documentation of medical guidelines, pathways 
and protocols [30, 43, 57, 65] together with comparative 
surveys involving process stakeholders [42] provide evidence 
that stakeholders in this domain use informal flowcharts to 
document their procedures. Such documentation typically 
shows: 

• sequences of tasks, the latter being sometimes refined 
into subtasks; 

• conditions guarding alternative task flows, possibly 
nested to form decision trees;  

• occasionally, fine-grained interaction sequences among 
process agents [66]; 

• flowchart annotations with time constraints, resource 
restrictions, or underlying goals on state variables about 
the process environment. 

This observation was confirmed by our extensive experience 
in assembling clinical process fragments supplied by medical 
staff in multiple hospitals. The unconvinced reader may check 
Google Images with the keywords “care pathway flowchart” for a 
wide variety of examples of use of flowcharts by process 
stakeholders in the medical domain. 
To support both analyzability and communicability, the 
language of High-Level Message Sequence Charts [40] is 
extended with guard constructs and non-functional 
annotations. The extended language, called Guarded High-
Level Message Sequence Charts (g-HMSCs), mimics informal 
stakeholder flowcharts while having a formal trace semantics 
in terms of labelled transition systems (LTS) [25]. 
To enable process decisions based on both task applications 
and environment states, the language should integrate the 
event-based and state-based specification paradigms [23, 47, 
56]. Specific process paths can then be governed by the truth 
value of hybrid conditions on states and events. Such 
integration is achieved in a g-HMSC by letting guards refer to 
task-related fluents [31, 59] and environment tracking 
variables. The latter, more precisely defined in Section IV, are 
intended to track environment quantities that are not 
continuously observable by the agents involved in the process.  
The analysis techniques described in this paper support the 
following types of checks on g-HMSCs. 

• Guard analysis. The guards on the various alternatives 
at any decision point in a task flow must be satisfiable 
in the state reached at that point (for subsequent tasks to 
be applicable). They may not overlap in that state (for 
decisions to be deterministic). They must cover all 
possible cases in that state (no alternative branch is 
missing).  

• Detection of inadequate decisions. A decision can be 
inadequate if it relies on incorrect information about 
the environment state. This arises from state variables 
being outdated or inaccurate due to missing tasks or 
unexpected events. Every decision in a task flow should 
be adequate. 

• Verification of non-functional requirements on the 
process. All timing, resource and cost constraints 
should be met along all possible paths of the process 
model.  

• Verification of task preconditions. All task 
preconditions should be satisfied along all possible 
paths of the model. 

These various types of checks are performed through different 
instantiations of the same generic algorithm for propagating 
decorations through the process model. This algorithm is 
designed to require as little instantiation effort as possible; for 
each type of check, the user just needs to instantiate the 
generic decoration together with the rule for propagating 
decorations through a single state transition. No correctness 
proofs of the instantiated algorithms are required; the proof of 
the generic algorithm is similarly instantiated. 
The paper expands on preliminary results described in [25]. 
The main improvements and extensions include: (a) the 
handling of environment state variables, (b) new types of 
checks, namely, the adequacy of decisions and the satisfaction 
of non-functional requirements, and (c) a uniform treatment of 
quite different types of check through a single generic model 
decoration algorithm with fairly simple instantiations. Unlike 
our model checker described in [25], all checks are performed 
here at the intermediate level of a guarded LTS, generated 
from the g-HMSC model, which avoids enumerating all LTS 
traces covered by the g-HMSC model.  
The paper is organized as follows. Section II introduces the 
running example used for explanation throughout the paper. 
Section III provides some minimal background on LTS, 
HMSCs and fluents. Section IV introduces g-HMSCs for 
process modeling. Section V defines the formal trace 
semantics of this language. Section VI describes our generic 
decoration algorithm. Section VII presents various 
instantiations for different types of check on a decision-based 
process model. Section VIII discusses tool support for those 
different analyses. Section IX evaluates the approach with 
respect to correctness; performance and scalability; 
applicability; utility; and usability. Section X discusses related 
work.  

II. MOTIVATING EXAMPLE 
The following process for treating acute manic-depressive 
troubles is used throughout the paper as a simple running 
example for explanatory purpose.  
A patient with symptoms compatible with manic-depressive disorder 
enters the workflow through an admission consultation. During this 
consultation, a psychiatrist determines whether the patient is a danger 
for himself. If so, an acute drug therapy is started. Otherwise, an 
evaluation consisting of a psychological test and a blood test is 
performed; the blood test is necessary for determining whether the 
patient is under influence of drugs. Based on test results, the 
psychiatrist provides a diagnosis and a treatment recommendation. If 
necessary, the patient may be put in observation. A long-term 
medication may also be prescribed. In case of medication, a 
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specialized consultation is planned to assess the treatment effect and 
the patient’s evolution. 

Fig. 1 shows a model sketch for the process of treating manic-
depressive troubles. Boxes there denote tasks whereas 
diamonds capture decision points with associated guards on 
alternative subsequent task flows. The precise semantics of 
such model is detailed in Section IV. 
Interesting questions may already arise from this model 
sketch, for example, 

• What is the minimal and maximal time for treating 
acute manic-depressive troubles? 

• Is it possible for the psychiatrist to make a medical 
treatment decision that would be based on outdated 
information about the patient? 

• At any process step where a decision node is reached, 
do the associated guards cover all possible cases? (If 
not, a process run might be blocked forever with no 
task prescribed.) Do they overlap? (If so, two patients 
having right the same symptoms could undergo 
different treatments.)  

The analysis techniques presented hereafter enable precise 
answers to these questions, among others. 
The flow graph in Fig.1 is a refinement of the coarser-grained 
task "Treatment for acute manic-depressive troubles" mentioned on 
the top left. Tasks that are not further refined are specified by 
scenarios showing the sequence of interaction events among 
agent instances involved in the task, see Fig. 2. 

III. BACKGROUND 
To make the paper self-contained, some basics on message 
sequence charts, high-level message sequence charts, labelled 
transition systems, and fluents are first recalled. 

A. High-level message sequence charts 
Message sequence charts (MSCs) are commonly used for 
capturing multi-agent scenarios [40]. Agents are active process 
components; they define the process scope. Their instances 
perform tasks, thereby monitoring some events or state 
variables and controlling others [48].  
An MSC is composed of vertical timelines associated with 
agent instances and horizontal arrows representing interaction 
events. A timeline label declares a class of corresponding 
agent instances. An arrow label declares an interaction event 
among the source and target agent instances; the event is 
synchronously controlled by the source and monitored by the 
target. Fig. 2 shows an MSC refining the Evaluation task for 
manic-depressive troubles. The scenario involves three agents, 
namely, a patient, a psychiatrist, and a laboratory. 
A High-level MSC (HMSC) is a directed graph where each 
node is an MSC or a finer-grained HMSC [40]. Edges indicate 
the acceptable orderings among scenarios. They allow for 
scenario sequencing and repetition. A complex scenario may 
thereby be broken into manageable parts that are ordered 
according to the HMSC specification. 

B. Labeled transition systems  
A labeled transition system (LTS) is an automaton defined by 
a structure (S, E, δ, s0), where S is a finite set of states, E is a 
set of event labels, δ is a labeled transition relation 
(δ ⊆ S×E×S), and s0 is an initial state [56, 60]. 
An LTS trace is a sequence of events <e0,…,en> accepted by 
the LTS from its initial state (ei ∈ E). 
The semantics of MSCs and HMSCs is defined in terms of 
LTS and parallel composition [72]. An MSC timeline defines a 
finite LTS trace capturing the behavior of the corresponding 
agent instance. The semantics of an entire MSC is similarly 
defined as a trace of the LTS of the entire system being 
modelled. 

C. Fluents 
A fluent FL is an atomic proposition defined by a set InitFL of 
initiating events, a set TermFL of terminating events, and an 
initial value InitiallyFL that can be true or false [31, 56, 59]. 
The sets of initiating and terminating events must be disjoint. 
A fluent definition takes the form: 

fluent FL = < InitFL, TermFL > initially InitiallyFL. 
For example, a fluent evaluated can be introduced to capture 
whether a patient is evaluated (see Fig. 1):  

fluent evaluated  =  <result_ interpretation, 
       medical_treatment_ok> 

        initially false. 
This fluent definition specifies that a patient is evaluated after 
a result_interpretation event (see Fig. 2) and stops being 
evaluated after a medical_treatment_ok event. The patient is 
initially not evaluated. The fluent thereby specifies a 
postcondition of the Evaluation task; its negation yields a 
postcondition of the Medical Treatment task.  

 
	   Evaluation	  

Patient	   Psychiatrist	   Laboratory	  

psy_questioning	  	  

blood_test	  

	  

psy_answering	  

blood_analysis_	  
request	  

blood_test_results	  	  

result_	  
interpretation	  

 
Fig. 2.  Scenario for the Evaluation task 
  

 
Fig. 1.  Process model for treating acute manic-depressive troubles 
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For any LTS trace and set of fluents, a state can be defined 
after every event in the trace. This state is characterized by the 
value of every fluent at this point in the trace. In such a fluent 
value assignment, a fluent gets true (resp. false) if either of the 
following conditions holds: 

• the fluent is initially true (resp. false) and no terminating 
(resp. initiating) event has occurred;  

• some initiating (resp. terminating) event has occurred 
with no terminating (resp. initiating) event occurring 
since then.  

Fluents are commonly used for integrating event-based and 
state-based specifications [56], in particular to enable state-
based model-checking of event-based models [31] or to 
synthesize event-based models annotated with state-based 
information [22, 23]. In an event-based specification, system 
behaviors are captured in terms of event sequences; in a state-
based specification, system behaviors are captured in terms of 
state sequences [47]. 

IV. MODELING DECISION-BASED PROCESS MODELS 
This section introduces Guarded High-Level Message 
Sequence Charts (g-HMSC) as a process modeling language. It 
first overviews the main language constructs (Section IV.A) 
before discussing the various types of events involved in a g-
HMSC (Section IV.B), the various types of variables being 
manipulated (Section IV.C), the mechanism for specifying 
initial conditions on a process (Section IV.D), and the various 
types of optional annotations for specifying task preconditions 
and non-functional features refering to time and resource 
usage (Section IV.E). 

A. Process models as g-HMSCs 
A g-HMSC is a directed graph with three types of node. 

• A task node captures a process task, that is, a work unit 
performed by collaboration of agent instances involved 
in the process.  

• A decision node captures a process decision. It is 
characterized by a set of guards. Each guard is 
associated with a specific outgoing branch; it specifies 
the condition for the tasks along this branch to be 
performed. Guards are Boolean expressions on process 
variables (see Section IV.C hereafter).  

• Initial and terminal nodes represent the start and end of 
the process, respectively.  

Nodes in a g-HMSC are connected by two types of arcs.  
• An outgoing arc from a task or initial node is called 

continuation. It prescribes how the connected nodes 
must be sequentially composed.  

• An outgoing arc from a decision node is called guarded 
transition. The corresponding guard must be evaluated 
to true for the arc to be followed.  

Tasks may be refined. A non-terminal task is refined into 
subtasks and decisions forming a finer-grained g-HMSC. A 
terminal task is an MSC scenario showing sequences of 
interaction events among agent instances.  
A g-HMSC can be represented graphically or textually. The 
graphical syntax is used here; see [46] for the guarded 
command language used by the tool. A task is represented by a 
box, expanded into a finer-grained g-HMSC (non-terminal 

task) or an MSC (terminal task) –see Fig. 1 and Fig. 2, 
respectively. A decision is represented by a diamond with a 
guard labeling each outgoing branch of the decision. In simple 
cases with two branches only, the guard expression may be 
moved up inside the decision node with ‘yes’ or 'no’ label 
being attached to the corresponding branch.  

B. Task-related events 
As detailed in Section V, the formal semantics of the g-HMSC 
language is defined in terms of event traces. Two kinds of 
events are involved. 

• Interaction events are the MSC events capturing 
synchronous interactions among agent instances in 
terminal tasks. 

• Action events correspond to task applications. Every 
task T has two built-in action events associated with its 
start and end; they are denoted by Tstart and Tend, 
respectively. 

As seen below in the paper, the built-in start and end action 
events serve multiple purposes. 

• They specify the task boundaries in the event traces 
produced by the process. This provides a useful 
traceability mechanism between refinement trees in the 
g-HMSC model and event traces in the corresponding 
lower-level, LTS-based model manipulated by analysis 
tools. This mechanism is required for roundtrip 
feedback by such tools. 

• The start and end action events allow process variables 
and time distances to be more accurately defined 
through them. 

• They yield a default refinement for tasks that are not 
yet refined, thereby enabling early analyses on partial 
models. 

• They can be used for synchronizing agent instances so 
as to prevent a task from starting before its predecessor 
in the graph is not fully completed. 

C. Process variables 
The variables appearing in guards at decision nodes of a g-
HMSC model dictate which paths are to be followed in 
specific process instances. Such variables get their values from 
the occurrence of specific events; no explicit assignment is 
needed which makes g-HMSC models simpler. Process 
variables may be task-related fluents or environment tracking 
variables.  
1) Task-related fluents 
The atomic conditions found in g-HMSC guards may be 
fluents whose initiating and terminating events are interaction 
events or action events. For example, the fluent 
consultation_done in Fig.1 is defined as follows: 

fluent consultation_done =  
<{Consultationend}, 
 {Medical Treatmentend}>  initially false. 

2) Environment tracking variables 
A decision may also depend on environment quantities that are 
not necessarily observable at the corresponding g-HMSC node 
by the agent instances involved in the process. For example, a 
medical decision might depend on the patient's blood rate of 
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anxiolytic drug; the actual value for this quantity might not be 
observable at the corresponding decision point. 
Tracking variables are intended to approximate environment 
quantities as accurately as possible through some observable 
counterpart. When a tracking variable appears in a guard, the 
decision is based on its current value rather than the actual, 
unobservable counterpart. In our example, a tracking variable 
might capture the anxiolytic level found in the patient’s record. 
The decision might then be based on this quantity instead of 
the actual, unobservable anxiolytic level. 
A tracking variable has to be updated periodically through 
dedicated tasks whose applications yield measure events (see 
Fig. 3). These are events whose effect is to reset the value of 
the tracking variable to its environment counterpart; both 
values are then “re-synchronized”. For example, 
blood_test_results in Fig. 2 is a measure event for the tracking 
variable anxiolytic_tooHigh as the patient record accurately 
represents the anxiolytic level right after a blood test. 
As suggested in Fig. 3, the value of a tracking variable does 
not change between two occurrences of a measure event. 
Between such occurrences, however, some tasks might affect 
the environment quantity; the corresponding change is then not 
reflected by the tracking variable. The application of such 
tasks yields so-called outdate events. For example, the 
anxiolytic level is known to be affected by the administration 
of an anxiolytic treatment; the latter invalidates former blood 
test results. 
The value of a tracking variable resulting from a measure 
event might also be known to become outdated after a certain 
time. For example, the anxiolytic level obtained through a 
blood test might be considered outdated after 2 days. 
A tracking variable is therefore defined by a set of measure 
events, an initial value and, optionally, a set of outdate events 
and a duration during which its value remains accurate. The 
definition takes the following form: 

trackVar tV = {MeasureEvents} initially InitiallytV 
 {OutdateEvents}  duration DurtV. 

In our example, we might have: 
 trackVar anxiolytic_tooHigh =  
 {blood_test_results} initially false 
 {AnxiolyticTreatmentstart} duration 2 days. 

Tracking variables are restricted in this paper to Boolean 
variables as they are only used for formalizing decisions. They 
can be seen as predicate abstractions –e.g., the variable 
anxiolytic_tooHigh captures whether “the patient anxiolytic 

level is above 100 µg/L”. 
Tracking variables should not be confused with fluents. In 
contrast with initiating and terminating events, measure events 
do not define which value the tracking variable gets; they only 
capture that this value is accurately updated to the current 
value of the corresponding environment quantity. On the other 
hand, outdate events update the environment quantity but not 
the corresponding tracking variable; they capture that the 
tracking variable might no longer be accurate. 

D. Initial context conditions 
A flexible process model should make it possible to capture a 
process whose instances follow different paths according to 
different initial conditions. In our running example, different 
paths should be followed in Fig. 1 dependent on whether or 
not the patient had a consultation before. 
In the definition of the fluents and tracking variables used in a 
g-HMSC, we may omit the initial value for some variables to 
express that these may initially be true for some process 
instances and false for others. Initial values are thus defined at 
instance level, not at class level. For example, the definition of 
the fluent consultation_done hereafter specifies that some 
patients might initially have a consultation already done 
whereas others might not: 

fluent consultation_done =  
<{Consultationend}, {Medical Treatmentend}>.   

In case of variable definitions with no initial value, we may 
want to specify at class level that certain combinations of 
initial values are ruled out in view of domain properties known 
from a companion goal model [48]. For example, assuming 
that the initial values of the fluents consultation_done and 
evaluated were not specified, we know that the patient may 
have an evaluation only if a consultation has already been 
performed; any initial state should meet this domain property.  
In such cases, an initial context condition may be specified on 
the g-HMSC in order to constrain the acceptable initial values 
of process variables. In our example, the initial context 
condition is:  

C0:  evaluated ⇒ consultation_done. 

E.  Task annotations 
A task in a g-HMSC may be annotated with features such as 
its precondition, its duration, its cost, the resources needed to 
perform it, and so forth. Such annotations are required only for 
specific types of analysis; they are thus optional in the process 
definition. 
1) Task preconditions 
A task precondition is a necessary condition on input variables 
for the task to be applied. It must hold in any state where the 
task starts being performed.  
Preconditions are Boolean expressions on fluents and tracking 
variables. For example, the precondition of the task Medical 
Treatment in Fig. 1 is the fluent evaluated.  
Note that task postconditions are indirectly captured by fluent 
definitions. For example, the postcondition of the task 
Consultation in Fig. 1 is the fluent consultation_done since the 
end of this task is specified as an initiating event for this 
fluent, see the fluent definition in Section IV.C. 

 

associated tracking 
variable (observable by 

process) 
av av av piv piv piv 

measure measure measure 

av: accurate value 
piv: approximate, possibly inaccurate value 

environment quantity 
(controlled by 
environment) 

 
Fig. 3. Behavior of an unobservable environment quantity and its tracking 

variable  
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2) Task durations 
A duration interval may also be specified for any task. It 
captures the minimum and maximum time taken by the task, 
expressed in number of time units. Table 1 illustrates durations 
of unrefined tasks from Fig. 1. 
Such information enables us to check whether time-critical 
processes meet their timing requirements (see Section VII.D). 
More precisely, the duration of an action event Tstart or Tend is 
characterized by the following function: 

Duration: E → P (N+)  
  Duration (Tstart) = {0}, 

Duration (Tend) = [min, max], 
that is, the set of natural numbers between min and max 
(included) where min and max denote the minimum and 
maximum time taken by the corresponding task, respectively. 
(P is the standard powerset notation and N+ denotes the set of 
natural numbers). 
The duration of an interaction event is the singleton {0}. 
 
3) Other non-functional features 
A task may also be annotated with other information relevant 
to non-functional process requirements such as resources 
needed to perform it, dose to be delivered, cost, location, and 
the like. For example, a single radiotherapy task might be 
annotated with a delivered dose of 1.8 Gray. 
Such information enables us to check process models for 
requirements violations (e.g., radiation overdose or 
underdose). Counterparts to the preceding Duration function 
are used for this (see Section IX.D).  

V.  OPERATIONAL SEMANTICS: FROM G-HMSC MODELS TO G-LTS 
This section introduces an intermediate formalism between the 
g-HMSC and LTS formalisms. Roughly, a guarded LTS (g-

LTS) is a transition system whose transitions are labeled by 
events or guards.  
The g-LTS formalism provides a convenient milestone on the 
way from a g-HMSC process model to the corresponding LTS. 
In particular, it allows the set of traces accepted by the g-
HMSC to be precisely defined. This set of traces may in turn 
be converted into a set of LTS traces. A formal LTS trace 
semantics allows us to reuse existing frameworks and tools, in 
particular, model-checking techniques implemented in the 
LTSA toolset [25, 56]. 
A g-LTS is a structured form of LTS that reduces state 
explosion through guard abstractions. It is easier to understand 
and facilitates code generation. The different types of analyses 
in this paper are performed on g-LTS representations –one 
abstraction level above the LTS counterpart analyzed by the 
model checker discussed in [25].  

A. Guarded LTS 
A guarded LTS (g-LTS) is defined by a structure (S, E, VAR, 
δ, s0, C0) where  

• S is a finite set of states,  
• E is a set of event labels,  
• VAR is a set of fluents and tracking variables defined 

over E,  
• δ is a guarded transition relation:  

  δ ⊆ S × (E ∪ GUARD) × S 
where GUARD is the set of Boolean formulae over 
VAR, 

• s0 is the initial state,   
• C0 is a Boolean formula over VAR capturing an initial 

context condition. 
Fig. 4 shows a g-LTS derived from the g-HMSC shown in 
Fig. 1 and Fig. 2. The guards there appear between brackets. 
Every transition in a g-LTS is labeled by a guard or by an 
event. 

• A guard is a Boolean formula over fluents and tracking 
variables. It must be evaluated to true for the associated 
transition to be activated. 

• A g-LTS event is an interaction event from a terminal 
g-HMSC task (e.g., result_interpretation in Fig. 4) or a  
g-HMSC action event (e.g., Consultationstart).  

The initial context condition C0 plays the same role as in g-
HMSCs. 
Any g-HMSC process model can be rewritten as a g-LTS 
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Consultationstart 

13 Diagnosisend 

 
Fig. 4.  g-LTS corresponding to the g-hMSC in Fig. 1 and MSC in Fig. 2 

 
Task Min Max 

Consultation 1 1 
Diagnosis 1 1 
Evaluation 2 3 
Observation 7 15 
Medical Treatment 21 21 
Specialized Consultation 1 1 

Table 1. Task durations for treating acute manic-depressive troubles (in 
days) 
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having the same set of traces. The rewriting algorithm is 
detailed in [25, 46]. It extends the algorithm in [72] so as to 
take a g-HMSC as input and a g-LTS as output. The latter 
abstracts from agents and captures the set of global behaviors 
covered by the g-HMSC.  
The optional task annotations discussed in Section IV.E are 
not involved in the resulting operational semantics of a g-
HMSC; they are used for dedicated checks (see Section VII).  

B. Trace semantics of g-LTS 
The semantics of a g-LTS is in turn defined in terms of guard-
free event traces.  Let G denote the g-LTS (S, E, VAR, δ, s0, 
C0).  
A g-LTS execution from s0 is a pair (Init, σ) where:  

• Init is an initial variable assignment mapping every 
variable to true or false,  

• σ is a sequence of labels li, some being events and 
others being guards (li ∈ E ∪ GUARD).  

A g-LTS execution from s0 is accepted by g-LTS G iff the 
following acceptance conditions are met for every i:  

• ∃ si+1 ∈ S such that (si, li, si+1) ∈ δ     (inclusion), 
• Init ⎥= C0             (admissible start), 
• VAi ⎥= li  if li ∈ GUARD       (guard satisfaction), 

where VAi is the variable assignment after the i-th event in the 
g-LTS execution (with VA0 = Init).  
The inclusion condition states that the sequence of labels is 
accepted by the automaton. The admissible start condition 
states that the initial variable assignment must meet the initial 
context condition C0. The guard satisfaction condition ensures 
that all guards are met along the sequence. 
An event trace of g-LTS G from initial state s0 with respect to 
an initial variable assignment Init is a g-LTS execution 
accepted by G where all labels corresponding to guards have 
been removed. The set of event traces accepted by G is the 
union of all such traces, for all initial states Init meeting the 
admissible start condition. 
An algorithm for LTS generation from a g-LTS can be found 
in [25, 46]. Unlike the model checker discussed in [25], the 
analysis techniques in this paper do not require LTS traces to 
be explicitly produced.  

VI. COMPUTING GENERIC DECORATIONS ON GUARDED 
TRANSITION SYSTEMS 

The formal trace semantics of the g-HMSC process language 
enables a variety of checks on process models such as, e.g., the 
verification of guard completeness and disjointness in the 
current process state at a decision node, the verification of task 
preconditions, the verification of non-functional process 
requirements involving time or resources, and so forth. The 
overall approach proceeds in three steps. 

1. A g-LTS is first generated from the g-HMSC model 
using the technique described in [25].  

2. Each state of this g-LTS is automatically decorated 
with quantities that are meaningful to the specific type 
of check being considered.  

3. The computed quantities are used to perform the 
corresponding check. 

This section focuses on the computation of state decorations in 
Step 2. This is the core step common to all different types of 
checks discussed in Section VII. Depending on the specific 
check considered, the decorations might refer to assertions, 
such as state invariants, or to quantities such as the time 
elapsed from the initial state to the current process state, the 
cost incurred up to the current node, the radiation dose 
received by a patient so far, and so forth. Rather than different 
decoration algorithms for different types of decorations and 
checks, a single uniform treatment is provided. The 
meaningful decorations are made generic through so-called 
placeholders; the generic algorithm described in this section 
works then for specific placeholder instantiations. 

• A placeholder is a generic variable whose value in a 
specific g-LTS state characterizes this state whatever 
path has been followed in the model to reach it from 
the initial state.  

• A decoration of a g-LTS state is a mapping from the 
values of process variables in this state to the 
corresponding placeholder values.  

A decoration of a g-LTS state is intended to keep track of 
which value assignment of fluents and tracking variables 
corresponds to which placeholder value in this state. Such 
mapping is needed to account for guard satisfaction along the 
paths through which decorations are to be propagated. To 
visualize this, suppose that a state is decorated with an 
interval; the meaning is that the placeholder may in this state 
have any element within this interval as value. In Fig. 5(a), we 
cannot determine the placeholder values right after guards g or 
¬ g without knowing the relation between the value of variable 
g and the valid interval for such value. In Fig 5(b), we have 
this information; e.g., when variable g has the value false in 
the source state, the placeholder may belong to the interval [3, 
5] in this state. We can then propagate that information to 
determine the resulting decoration for the target states. 
Our generic decoration algorithm propagates state decorations 
through the g-LTS model until a fixpoint is reached, that is, 
until no state decoration changes if the propagation is applied 
once more to every transition [41, 51, 61]. The algorithm 
accumulates in every state the decorations contributed by 
every g-LTS execution reaching this state.  
To explain this algorithm piecewise, Section VI.A first deals 
with propagation of placeholder values along a single g-LTS 
execution regardless of corresponding assignments of fluents 
and tracking variables. Keeping track of those assignments 
along a single g-LTS execution is explained separately in 
Section VI.B. The decoration lattice structure manipulated by 
the algorithm is defined in Section VI.C. The propagation of 
decorations is then detailed in Section VI.D. The generic 
decoration algorithm is finally provided in Section VI.E.  

 

¬g |→  [3,5] 

g |→  [3,4], 
¬g |→  [3,5] 

g |→  [3,4]
  

[¬g] [g] 

[?,?] 

[3,5] 

[?,?] 

[¬g] [g] 

(a) (b) 
 

Fig. 5.  Propagating decorations through guards 
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A. Placeholder values along a single g-LTS execution  
Let PlcV denote the set of possible values of a placeholder. In 
this set, p0 denotes the value of the placeholder at the initial 
process state; the latter corresponds to an empty g-LTS 
execution. 
The plcPropag function specifies how a placeholder value is 
propagated through a single event-labelled transition. This 
value is assumed to depend only on the incoming event and 
the value in the preceding state. Placeholder values may thus 
not depend on subsequent events –e.g., the remaining time 
before reaching a subsequent task T cannot be captured as a 
placeholder instantiation.  
The plcPropag function has the following signature: 

plcPropag:  PlcV × E → P (PlcV). 
As the powerset notation in the codomain of this function 
indicates, a placeholder can have multiple propagation results. 
This happens when a single value cannot be deterministically 
determined after the occurrence of an event. For example, the 
duration of a task might vary depending on the agent instances 
performing it; the duration is then captured by an interval.  
The placeholder values pi along a single g-LTS execution are 
recursively determined as follows: 
• in the initial state, the placeholder value is p0; 
• through a guard, the value does not change, that is, pi = pi-1; 
• through an event e, the value belongs to plcPropag (pi-1, e). 

The set PlcV of placeholder values and the plcPropag function 
are parameters of the generic state decoration algorithm. Any 
algorithm instantiation for a specific analysis requires 
instantiating plcPropag through a specific propagation rule on 
a specific set of instantiated placeholder values. 

Example: Instantiation for elapsed time. To capture the 
elapsing time through tasks having some minimum/maximum 
duration, PlcV is instantiated to the set N+ of natural numbers. 
The value of the placeholder after an empty g-LTS execution 
is p0 = 0. The plcPropag function is instantiated as follows: 

plcPropag :  N+× E → P (N+), 
plcPropag (p, e) =  p ⊕ Duration (e), 

where the ⊕-operator “adds” a duration interval to a time point 
according to the following definition: 

⊕:   N+ × P (N+) →  P (N+), 
t ⊕ [min, max] = [t + min, t + max]. 

Handling unbounded g-LTS executions over infinite domains. 
As detailed below, the decoration algorithm propagates 
placeholder values from state to state until the values remain 
unchanged if the propagation is applied once more to every 
transition. Such fixpoint might not be reached for process 
models containing unbounded cycles if the set PlcV of 
possible placeholder values is infinite. In such cases, the 
algorithm might not terminate.  
To avoid this problem, the user is asked in such situations to 
provide a finite subset of PlcV, denoted by finitePlcV. If there 
are g-LTS executions yielding placeholder values out of 
finitePlcV, the algorithm outputs the element OutOfBounds for 
such executions. The set of placeholder values possibly 
produced by the algorithm, denoted by boundedPlcV, is thus: 

boundedPlcV = finitePlcV ∪ {OutOfBounds}. 

The algorithm therefore relies on a bounded version of the 
plcPropag function previously introduced. The plcPropag* 
function “wraps” plcPropag while restricting output values to 
finitePlcV and using the OutOfBounds marker when required: 

plcPropag*:  boundedPlcV × E → P (boundedPlcV) 
plcPropag* (p, e) =  

if  p = OutOfBounds  then return {OutOfBounds} 
else vals :=  plcPropag (p, e) 

 if vals ⊆ finitePlcV then return vals 
 else return (vals ∩ finitePlcV) ∪ {OutOfBounds}. 

The correctness proof of the generic decoration algorithm, 
outlined in Section IX.A, requires propagations of elements 
outside finitePlcV to remain outside finitePlcV: 

for any p ∈ PlcV \ finitePlcV and any e ∈ E: 
plcPropag (p, e) ∩ finitePlcV = ∅. 

The impact of this hypothesis is limited in practice. Getting 
out of finitePlcV might occur when the process model contains 
unbounded cycles. For medical processes, this generally 
corresponds to a modeling error, detected by our approach as a 
side effect. When all executions are finite and the bounds of 
finitePlcV are nevertheless reached, a larger finitePlcV may be 
taken to meet the hypothesis. 

Propagating sets of placeholder values. In Section VI.D 
hereafter, placeholder propagation needs be applied to a set of 
placeholder values (rather than a single value). The 
plcPropag* function is extended for this into the 
plcSetPropag* function defined as follows: 
 plcSetPropag*:  P (boundedPlcV) × E →  P (boundedPlcV) 
 plcSetPropag* (set, e) =  ∪p∈set plcPropag* (p, e) 

B. Values of process variables along a single g-LTS execution 
As introduced at the beginning of Section VI, we need to know 
in each g-LTS state what the values of fluents and tracking 
variables are; a placeholder value should not be propagated 
through a guard if the current assignment of those variables 
does not satisfy the guard (see Fig. 5). 
Let AsgV denote the set of possible value assignments of 
fluents and tracking variables. A specific assignment asg is a 
set of elements of form x |→ v where x denotes a fluent or a 
tracking variable and v denotes the value true or false. It is 
often convenient to use the equivalent propositional form 
instead, namely, 

asg =def  ∧j  xt
j ∧ ∧k ¬xf

k, 
where xt

j and xf
k denote the variables whose assigned value is 

true and false, respectively. 
The asgPropag function specifies how a value assignment for 
fluents and tracking variables is propagated through a single 
event-labelled transition: 

asgPropag:  AsgV × E → P (AsgV). 
Here again, the powerset notation in the codomain of this 
function indicates that a value assignment can have multiple 
propagation results; for a single assignment tv |→  v of a 
tracking variable tv, the propagation through a measure event 
of tv yields the two assignments tv |→  v and tv |→  ¬v. 
Unlike the propagation of placeholder values to be instantiated 
for a specific analysis, the propagation of value assignments 
always follows the same rule, namely,  
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 asgPropag (asg, e) = asg [ /Ve] ∧ ∧i  fi,e ∧ ∧t ¬ft,e , 
where  

• asg [/x] = def   asg |x=true ∨ asg |x=false  ; 
• B|x=v is the Boolean formula B where every occurrence 

of variable x has been replaced by the value v;  
• for a set V of variables x1, x2,..., xn, the notation 

generalizes through composition:   
B [/V] = def B [/x1][/x2]...[/xn]; 

• Ve is the set of variables affected by event e, that is,  
Ve = Fi,e ∪ Ft,e ∪ TVe , 

where 
- Fi,e is the set of fluents fi,e having e among their 

initiating events;  
- Ft,e is the set of fluents ft,e having e among their 

terminating events; 
- TVe is the set of tracking variables having e among 

their measure events. 
Example. Consider the following process variables appearing 
in Fig. 1: 

fluent evaluated = < {Evaluationend}, 
 {Medical Treatmentend} > 
trackVar observation_required ={Evaluationend}. 

Suppose that the current value assignment is: 
asg  = ¬ evaluated ∧ ¬ observation_required. 

After the event Evaluationend this assignment becomes: 
    asgPropag (¬evaluated∧¬observation_required,  
                   Evaluationend)  
     = (¬evaluated ∧ ¬observation_required)  
        [/ {evaluated, observation_required}]  
      ∧ evaluated  
     = evaluated. 
This means that any patient following the process is now 
evaluated; one patient might be required to undergo an 
observation whereas another one not. 
The value assignments asgi along a single g-LTS execution are 
now recursively determined as follows: 
• in the initial state, the assignment is the initial assignment 

Init; 
• through a guard, the assignment remains the same, that is, 

asgi = asgi-1; 
• through an event e, the new assignment belongs to 

asgPropag (asgi-1, e);  
- all fluents whose set of initiating (resp. terminating) 

events contains e are made true (resp. false); 
- all tracking variables whose set of measure events 

contains e are made non-deterministically true or false. 

C. The decoration lattice 
The decoration of a g-LTS state was informally introduced 
before as a mapping from the values of fluents and tracking 
variables in this state to the corresponding placeholder values. 
More precisely, it is a partial function with the following 
signature: 

dec:  AsgV → P (boundedPlcV). 
(Remember that AsgV denotes the set of possible value 
assignments of fluents and tracking variables.) 

Let dom dec denote the subset of AsgV where decoration dec 
becomes a total function; let img dec denote the subset of 
corresponding images in P (boundedPlcV). 
State decorations form a lattice (≤, ∧, ∨, ⊥, T) defined as 
follows: 

d1 ≤ d2 if   dom d1 ⊆ dom d2   
 and ∀asg ∈ dom d1:  d1 (asg) ⊆ d2 (asg) 
⊥ = ∅ 
T = { asg |→  BoundedPlcV | asg ∈ AsgV } 
d1 ∨ d2 = { asg ||→  d1 (asg) ∪ d2 (asg) | asg ∈ dom d1 ∩ dom d2 } 
     ∪ { asg |→  d1 (asg) | asg ∈ dom d1 \ dom d2 } 
     ∪ { asg ||→  d2 (asg) | asg ∈ dom d2 \ dom d1 } 
d1 ∧ d2 = { asg |→  d1 (asg) ∩ d2 (asg) | asg ∈ dom d1 ∩ dom d2 } 

The “∨” supremum operator on this lattice is of particular 
importance. As shown in the next sections, the decoration 
algorithm uses this operator to propagate decorations through 
transitions and accumulate propagation results in each state. 
Example: Supremum  for elapsed time. Consider a g-LTS with 
a single fluent evaluated. One state might be decorated with 
 {evaluated |→ {2,3}, ¬ evaluated |→ {4}}, 
meaning that any process execution reaching this state takes 2 
or 3 time units if the patient is evaluated, and exactly 4 time 
units if she is not evaluated. Taking the supremum of this 
decoration with the decoration 
   {evaluated |→  {2,5}}, 
we get: 
   {evaluated | → {2,3,5}, ¬ evaluated |→ {4}}. 

D. Propagating state decorations along a g-LTS execution 
Sections VI.A and VI.B separately discussed the propagation 
of placeholder values and the propagation of value 
assignments of process variables, respectively. As a state 
decoration is a mapping from the latter to the former, this 
section integrates the two mechanisms for decoration 
propagation. 
Let DecoV denote the set of possible values for state 
decorations, that is, the set of partial functions capturing 
decorations (see Section VI.C). The decoPropag function 
specifies how a state decoration is propagated through a single 
transition: 

decoPropag:  DecoV × (E ∪ GUARD) → DecoV. 
A g-LTS transition is labeled by a guard or by an event.  

• Through a guard g, the algorithm may only propagate 
decorations that meet g: 

decoPropag (dec, g) =  g v dec, 
where “v” denotes the domain restriction operator; 
g v dec restricts the domain of the decoration function 
dec to those assignments meeting guard g. 

• Through an event, both the domain dom  dec and the 
image set img dec of decoration dec must be updated. The 
former is updated according to the asgPropag function 
introduced in Section VI.B for propagating value 
assignments; the latter is updated according to the 
plcPropag function introduced in Section VI.A for 
propagating placeholders: 
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  decoPropag (dec, e) =  
   ∨asg ∈  dom dec{ a |→  plcSetPropag* (dec (asg), e)  
           | a ∈ asgPropag (asg, e) }, 

where plcSetPropag* is the bounded propagation 
function over sets of placeholder values introduced at the 
end of Section VI.A and asgPropag is the propagation 
function over value assignments of process variables 
introduced in Section VI.B. Given a decoration and an 
event, decoPropag is computed assignment-wise from 
the decoration domain (see Fig. 6). The results are 
accumulated through the “∨” lattice supremum operator.  

Example for elapsed time. Back to our running example, 
consider a state decorated with 
 {evaluated |→ {2,3}, ¬ evaluated |→ {4}}. 
Suppose that we want to propagate this decoration through the 
guard [¬ evaluated]. In this case, the decoration of the 
subsequent state is obtained through the v-operator: 

decoPropag ({evaluated |→  {2,3}, ¬ evaluated |→  {4}}, 
                [¬ evaluated]) 
= ¬ evaluated |→  {4}.  

Suppose now that we want to propagate the same decoration 
though the event Evaluationend. The latter is an initiating event 
for fluent evaluated; its duration is between 2 and 3 time units. 
The decoration of the subsequent state is therefore: 

 decoPropag ({evaluated |→  {2,3}, ¬ evaluated |→  {4} }, 
               Evaluationend ) 
= { evaluated |→  {4,5,6} ∨ evaluated |→  {6,7} } 
= { evaluated |→  {4,5,6,7} } 

E. The generic decoration algorithm 
For any state s, the decoration computed by the algorithm 
should be the most accurate one in the following sense. 

a)  Not-too-general: any generated placeholder value should 
be produced by at least one g-LTS execution reaching s. 

b)  Not-too-specific: any placeholder value produced by a g-
LTS execution reaching state s should be generated. 

To make the notion of most accurate decoration further 
precise, let us introduce the stateDeco function mapping every 
g-LTS state to its generated decoration: 

stateDeco:  S →  DecoV, 
where DecoV was introduced before as the set of partial 
functions mapping assignments of process variables to 
placeholder values. Let us also consider the set of possible 
placeholder values in the decoration of state s regardless of the 
corresponding value assignments of process variables in that 
state: 

Placeholders (s) = ∪pl ∈ img stateDeco(s) pl 
The two preceding conditions for a generated decoration 
stateDeco (s) to be the most accurate one are made more 
precise as follows. 

a)  Every element of Placeholders(s) must be a placeholder 
value produced by at least one g-LTS execution reaching 
s. If OutOfBounds ∈ Placeholders(s), there must exist at 
least one g-LTS execution yielding a placeholder value 
outside finitePlcV. 

b)  For every placeholder value p produced by a g-LTS 
execution reaching s, we must have: 

o p ∈ Placeholders(s) if p ∈ finitePlcV,  

o OutOfBounds ∈ Placeholders(s)  otherwise. 
The specification of the decoration algorithm is the following. 

GIVEN 
• a g-LTS (S, E, VAR, δ, s0, C0), 
• a set PlcV of placeholder values with finite subset 

finitePlcV, 
• a placeholder propagation function 

plcPropag: PlcV x E → P (PlcV), 
• a value p0 for the placeholder in the initial state (p0 ∈ 

finitePlcV), 
FIND the most accurate decoration stateDeco (s) for every 

g-LTS state s. 
The decoration algorithm is given in Fig. 7. The symbols ≤, ∨ 
and ⊥ there correspond to the partial order, supremum operator 
and bottom element of the lattice introduced in Section VI.C, 
respectively. The algorithm propagates decorations from state 
to state until a fixpoint is reached, that is, until no state 
decoration changes if the propagation is applied once more to 
every transition. 
The initial decoration maps all value assignments satisfying 
the initial condition to the initial placeholder value p0. It is 
used for the initial g-LTS state s0. Other states are initially 
decorated with the bottom element of the decoration lattice. 
The algorithm keeps track of the set ToExpl of states to which 
the propagation should be further applied. It terminates when 
the set ToExpl is empty, that is, when no state requires further 
decoration propagation. 
For a given source state in ToExpl, its decoration is 
successively propagated to successor states through the 
decoPropag function introduced in Section VI.D. If the 
propagation result is not already covered by the decoration of 
the target state, it is accumulated through the lattice supremum 
operator. The target state is then added to the states to be 
further explored. 
The correctness proof of this algorithm is outlined in Section 
IX.A; the full details are found in [21]. 

 
Fig. 6. Propagating decorations using the decoPropag function  
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F. Instantiating the decoration algorithm for specific analyses 
The generic decoration algorithm is designed to be applicable 
to a wide variety of analyses on the g-LTS generated from a g-
HMSC process model. For each type of analysis, the same 
instantiation steps are required. 

1. The placeholder domain PlcV is instantiated so as to meet 
the desired type of analysis. If PlcV is not finite, a finite 
subdomain is defined. An initial placeholder value p0 is 
then selected. 

2. The plcPropag function is instantiated by specifying how 
instantiated placeholder values get transformed through a 
single event-labelled transition. 

These steps were already illustrated in Section VI.A for the 
time elapsing through tasks having some minimum/maximum 
duration. The next section illustrates the whole instantiation 
process on a variety of analyses. 

VII. DECORATION-BASED ANALYSIS OF PROCESS MODELS 
This section presents instantiations of the generic decoration 
algorithm for a variety of analyses on process models. A first 
instantiation concerns the generation of state invariants 
(Section VII.A). Section VII.B shows how the guards at a 
decision node can be checked for disjointness, completeness 
and satisfiability in the current state where the decision is 
made. Section VII.C shows how preconditions on tasks can be 
verified or even generated. Section VII.D describes a 
technique for verifying time constraints and other resource-
related requirements on the process model. Finally, Section 
VII.E presents a technique for checking whether the decision 
made at a decision node is adequate, that is, whether the values 
of the process variables are sufficiently accurate in the current 
state where the decision is made.  

A. Generating state invariants 
A state invariant is an assertion on a specific state of the 
process that holds every time this state is visited. The most 
accurate state invariant at a state is the one that accounts for 
all possible process executions reaching that state and only 
those. This invariant will be referred to as MAS invariant for 
short. 
The annotation of process models with MAS invariants 
provides multiple benefits. 

• The documentation and understandability of the 
process model is improved. 

• The invariants can be used for model validation and 
anomaly detection. 

• The invariants can be exploited by analysis tools for 
increased efficiency [9, 41]. 

• Other process analysis techniques may rely on them 
(see Sections VII.B, VII.C, and VII.E). 

1) Placeholder instantiation 
To generate MAS invariants over process variables, the 
generic decoration algorithm is instantiated in a quite simple 
way. No specific placeholder is required as we only need 
information about possible values of fluents and tracking 
variables. 

• PlcV contains one single element, p0; 
• plcPropag is the identity function.  

2) Using decorations for state invariant generation 
The instantiated decoration algorithm generates the possible 
value assignments of process variables at each state, see 
Section VI.B. The MAS invariant SI (s) for state s is then 
simply obtained by taking the disjunction of all values 
obtained for this state: 

SI (s) = ∨asg ∈ dom stateDeco(s) asg. 

3) Example 
Each node of the g-LTS model in Fig. 4 may thereby be 
annotated with its MAS invariant. For example, the invariant 
generated at state 15 is:  

evaluated ∧ consultation_done ∧ observation_required. 
Note that the assertion  

evaluated ∧ consultation_done 
 is also a state invariant but not the most accurate one.  

B. Analyzing guards at decision nodes 
The following guard-related checks are worth considering in 
decision-based process models. 

• Guard completeness: The guards on the various 
alternatives at a decision node must cover all possible 
cases in the state reached at that node; no alternative 
branch may be missing. Otherwise the process might be 
blocked forever in that state with no guard evaluated to 
true and, correspondingly, no task being prescribed 
when the missing guard is true. 

• Guard disjointness: The guards on the various 
alternatives at a decision node may not overlap in the 
state reached at that node; two guards may not be both 
evaluated to true in that state. Non-deterministic 
decisions where different courses of action are taken by 
different process instances applied to right the same 
situation are most often to be precluded. Clinical 
guidelines, for example, prescribe patients in identical 
conditions to be treated identically. 

• Guard satisfiability: The guards on the various 
alternatives at a decision node must all be satisfiable in 
the state reached at that node. Otherwise the subsequent 
tasks prescribed along some branch would be 
unreachable.  

stateDeco (s0) := { (x | →    {p0}) ⎪ x |=  C0 } 

forall s ∈ S \ {s0} do  
stateDeco (s) := ⊥ 

ToExpl := {s0} 
while ToExpl  ≠ ∅ do 
 source := getOne  (ToExpl) 
 ToExpl := ToExpl \ {source} 
 forall (source, target, label) ∈ δ do 
  newVal := decoPropag (stateDeco (source), label) 

 if not (newVal ≤ stateDeco (target)) then 
   stateDeco (target):= newVal ∨ stateDeco (target) 
   ToExpl := ToExpl ∪ {target} 
return stateDeco 
 

Fig. 7. Generic algorithm for g-LTS decoration 
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Such checks are close in spirit to those in [36] for SCR tables. 
Beyond different formalisms there is a notable difference, 
however. The checks here must take into account the 
contextual conditions holding at the point in the process model 
where the decision node is reached. These conditions are 
captured by the MAS invariant at that point. 
1) Placeholder instantiation 
The instantiation for guard analysis is therefore similar to the 
one in Section VII.A for generating MAS invariants on fluents 
and tracking variables. 
2) Using decorations for guard analysis 
The MAS invariant right before the decision node is first 
generated. The result of this step is used in various types of 
satisfiability checks at the next step. Let sD denote the state 
reached at decision node D and let SI (sD) denote the generated 
MAS invariant at sD. 
 (SC1) For guard completeness at D, we need to check that: 

 SI  (sD) ⎥= ∨i gi. 
In case of incompleteness, our tool returns all value 
assignments of process variables that are not covered by 
the guards gi on outgoing branches from D. 

(SC2) For guard disjointness at D, we need to check that: 
for every pair of guards gi, gj from D:   
 gi  ∧ gj ∧ SI   (sD) ⎥=  false. 

In case of overlap, the tool returns all value assignments of 
process variables that satisfy several guards at D. 

(SC3) For guard satisfiability at D, we need to check that: 
for every guard g from D:  g ∧ SI   (sD)  is satisfiable. 

In case of unsatisfiability, the tool indicates outgoing 
transitions that are unreachable. 

Checks (SC1)-(SC3) are fairly simple once the contextual 
MAS invariant SI (sD) is generated as a first step thanks to the 
decoration algorithm. 
3) Example 
Consider the top decision node of the process model in Fig. 1. 
Let us assume that the initial context condition on this model 
is ¬ evaluated. The guards on the three outgoing transitions 
are: ¬ consultation_done, consultation_done ∧ ¬ evaluated, 
and evaluated.  The generated MAS invariant right before the 
decision node is: ¬ evaluated. The three guards are verified to 
be complete and disjoint. However, the tool points out that the 
third guard is unsatisfiable in view of the generated invariant. 
The problem is easily fixed by removing the corresponding 
guarded transition. The second guard may then be simplified 
into consultation_done. 

C.  Verifying or generating task preconditions 
As discussed in Section IV.E, tasks in a g-HMSC process 
model may be annotated with their precondition. It is worth 
checking that task preconditions cannot be violated through 
some path in the model. Even better, we may want to generate 
them automatically when they are not given. 
1) Placeholder instantiation 
Here again, the first step consists of generating the MAS 
invariant for each state. The instantiation is therefore similar to 
the one described in Section VII.A.  

2) Using decorations to check or generate preconditions 
Checking that the precondition PRET of task T is never 
violated amounts to the following satisfiability check 
performed as a second step: 

 for every source node s of a Tstart event:  SI (s) |= PRET, 
where SI (s) denotes the MAS invariant generated at this node. 
When task preconditions are not provided by the modeler, the 
tool uses the same decorations to generate them. For a task T, 
it retrieves all source states of Tstart events and takes the 
disjunction of their MAS invariants.  
The preconditions thereby inferred may need to be further 
simplified to remove redundant parts that state known domain 
properties. 
3) Example 
Let us assume that the Medical Treatment task at the bottom of 
Fig. 1 has been annotated with evaluated as precondition. The 
precondition check reveals a violation; medical treatment can 
be prescribed without evaluation when the patient is in danger 
(see Fig. 1).  
Two alternative resolutions might fix the problem: (a) change 
the precondition or (b) require an evaluation before medical 
treatment of patients in danger. If (a) is selected, the new 
precondition may be inspired from the one generated by the 
tool, namely,  

¬ evaluated ∧ ¬ consultation_done ∧ patient_in_danger  
∨  consultation_done ∧ evaluated  
         ∧  medical_treatment_required 

4) Discussion 
Guard analysis and precondition checks might at first glance 
appear fairly obvious types of checks. Such feeling may arise 
from the simplicity of the second instantiation step once the 
MAS invariant has been generated as a first step. Thanks to the 
latter, the second step must not deal with the intricacies of 
propagating possible values of process variables along all 
guard-satisfying paths leading to the considered state; it must 
only deal with propagations of placeholder values through 
events, which is much simpler here as plcPropag is 
instantiated to the identity function. Moreover, the first 
invariant generation step is common to both techniques and 
can therefore be shared among them. 
The examples of detected errors provided as illustrations might 
appear fairly simple as well. They are however representative 
of uncovered errors found in real process documentations used 
daily in clinical environments (see Sections IX.C and IX.D). 

D.  Verifying non-functional requirements involving time or 
resources 

Safety-critical processes such as those found in the medical 
domain often involve critical time constraints. The latter 
should be inferred from the corresponding model or verified 
on it. For example, 

• we may want to know how long a process can take in 
best-case or worst-case situations;  

• we may want to check whether strict timing 
requirements on a task or process are always met by the 
model.  

General time-related properties can be verified on behavior 
models by dedicated tools such as temporal model checkers 
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[53]. The instantiation in this section provides a more 
lightweight technique for checking or infering specific types of 
time constraints on process models. As discussed later, the 
instantiation extends to other resource-related requirements on 
process models and can easily be combined with other 
instantiations of the generic algorithm for other types of 
checks. 
1) Placeholder instantiation 
The placeholder here captures the discrete time elapsed from 
the initial state. This instantiation was already introduced as an 
illustration at the end of Section VI.A. 

• PlcV is the set N+ of naturals. The initial elapsed time is 
p0 = 0. 

• The placeholder propagation function is instantiated as 
follows: 

plcPropag (p, e) =  p ⊕ Duration (e), 
      with  ⊕: N+ × P (N+) →  P (N+) 
          t ⊕ [min, max] = [t + min, t + max] 

• As PlcV here is infinite, a finite subset is taken by 
restricting PlcV to the interval [0, TMAX] where TMAX 
is some user-defined upper time bound.  

The instantiated decoration algorithm can be used for checking 
a variety of time-related properties. In particular, inferring or 
verifying the minimum and maximum time taken by a process 
or by a composite task is achieved by looking at the fixpoint 
decoration generated at the last process/task state (e.g., state 18 
in Fig. 4); the least and greatest time points are then taken in 
the image set of the decoration function in this state.  
As discussed in Section VI.A, getting OutOfBounds within 
output decorations means that either the process contains 
undesired infinite executions or the TMAX upper bound is not 
large enough. In the latter case, a larger value should be 
estimated based on known maximum durations of tasks and 
quick checks on task loops. 
2) Instantiated algorithm in action 
Let us illustrate the first steps of the instantiated algorithm on 
the simple example shown in Fig. 8. 
Step 0: The decorations are initialized to ⊥ for each state 
except for the initial one whose decoration is the function 
mapping every value assignment meeting the initial context C0 
to the initial placeholder value: 

stateDeco (State0) = {evaluated |→ {0}, ¬ evaluated |→ {0}}. 
Step1: State0 is in ToExpl. Following the algorithm in Fig. 7, 
its decoration is propagated to all its successor states, that is, 
State1 and State2. For State1, since ¬ evaluated is a guard, the 
decoration of State0 gets restricted to the specific value 
assignment ¬ evaluated. We obtain: 

stateDeco (State1) = {¬ evaluated |→  {0}}. 
Similarly, for State2 we obtain: 

stateDeco (State2) = {evaluated |→  {0}}. 
State1 and State2 are added to ToExpl since their decoration 
has changed. 
Step 2: Assume that State1 is selected in ToExpl. Its 
decoration is propagated to its only successor, State0. The 
evaluation event is an initiating one for fluent evaluated; its 
duration is in the interval [2, 3]. Since 

asgPropag (¬ evaluated, evaluation) = evaluated,  
plcSetPropag* ({0}, evaluation) = {2, 3}, 

we obtain: 
decoPropag  ({¬ evaluated |  → {0}}, evaluation) =  
   {evaluated |→ {2, 3}}, 

and thus: 
newVal = {evaluated |→ {2, 3}}. 

The new decoration of State0 is computed from its old 
decoration and newVal: 

stateDeco (State0) = { evaluated |→  {0} ∪ {2, 3} }  
      ∪ {¬ evaluated |→  {0} } 
 = {¬ evaluated |→  {0}, evaluated |→  {0, 2, 3}}. 

State0 is added to ToExpl as its decoration has changed. 
Step 3: Assume that State0 is selected in ToExpl. Its 
decoration is propagated to State1 and State2. For State1, 
newVal has the same value as its decoration; no update is 
required. For State2, we obtain: 

 newVal = {evaluated  |→  {0, 2, 3}}. 
The new decoration of State2 gets the value of newVal: 

 stateDeco (State2) = {evaluated  |→  {0, 2, 3}}. 
State2 is added to ToExpl. 
Step 4: State2 is the only element remaining in ToExpl. Its 
decoration is propagated to State3. The treatment event is 
among the terminating ones of fluent evaluated; the duration 
of treatment is in the interval [2, 3]. Therefore, State3 is 
decorated with: 

stateDeco (State3) = {¬ evaluated  |→  {15, 17, 18}}. 
State3 is added to ToExpl. As State3 was the only element 
remaining in ToExpl and has no successor, the algorithm 
terminates. 
3) Example 
For the process in Fig. 1, the minimum overall process time 
returned by the instantiated algorithm is 3 days whereas the 
maximum one is OutOfBounds. This means that the treatment 
might continue forever for patients whose variable 
medical_treatment_required remains indefinitely true (see 
Fig. 1). This property should be validated with medical staff. If 
process executions are expected to be finite, the model should 
be changed accordingly to avoid this.   
4) Other time-related requirements 
The preceding technique may also be used to verify or infer 
temporal requirements on processes or tasks. The annotation 
of a refined task by a time constraint might be either a 
requirement we would like to impose on it or a preliminary 
estimate to be replaced by a more accurate duration interval 
inferred from the refinement of the task.  

 

treatment 

State0 

[evaluated] 

State1 State2 State3 

evaluation 

fluent evaluated = <{evaluation}, {treatment}>  
C0 = true 
 
Duration (evaluation) = [2, 3] 
Duration (treatment) = [15, 15] 
 

[¬evaluated] 

 
Fig. 8. Executing the algorithm for decorating g-LTS states with time 
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In the latter case, we need to locally apply the instantiated 
decoration algorithm on the refining subprocess. This requires 
the initial context condition C0 to be known for this specific 
subprocess. The latter condition is directly obtained by use of 
the other algorithm instantiation described in Section VII.A.  
Yet another check variant consists in checking time bounds for 
specific process paths. To achieve this, the initial values of 
fluents and tracking variables at the initial state are restricted 
by strengthening the initial context condition C0 so as to cover 
those paths specifically. 
5) Resource-related requirements 
The instantiation of the generic decoration algorithm discussed 
in this section can be extended for reasoning about other 
cumulative properties involving costs, resource consumption, 
doses in a medical process (e.g., drug doses or radiation 
doses), and so forth. Non-functional requirements on resource 
usage are then checked similarly. Section IX shows this on an 
example of underdose detection. 

E.  Checking the adequacy of decisions 
As discussed in Section IV.C, tracking variables are intended 
to capture relevant quantities in the environment of the 
process. It is therefore worth checking that every time a 
tracking variable is used in the process model its value 
accurately reflects the actual corresponding value in the 
process environment. This is particularly important for 
tracking variables appearing in decision nodes; inaccurate 
values for tracking variables at these nodes may result in 
inadequate decisions where the outgoing branch taken might 
differ from the one that should have been taken with accurate 
values.  
Inadequate decisions may result from two different sources of 
inaccuracy.  

• Task-dependent inadequacies: some tasks affect the 
environment quantity without updating the tracking 
variable accordingly.  

• Time-dependent inadequacies: the value of a tracking 
variable becomes outdated after some time. 

Checking the process model for these two types of 
inadequacies require different instantiations of the generic 
decoration algorithm. 

1) Task-dependent decision inadequacies 
In a task-dependent inadequacy, the decision relies on 
inaccurate information about the environment due to the 
occurrence of intermediate interfering events.  
It is therefore worth checking whether each tracking variable 
appearing in the guard on an outgoing branch of a decision 
node is accurate in the source state of the corresponding 
guarded transition. To achieve this, a so-called accuracy meta-
fluent is introduced. 

• In states where this fluent is true, the value of the 
associated tracking variable accurately reflects its 
environment counterpart.  

• In states where the fluent is false, the value might be 
inaccurate.  

Every tracking variable tv in the process model has an 
associated accuracy meta-fluent tv-acc defined as follows. 

• The set Inittv-acc of initiating events contains its measure 
events, that is, all the events synchronizing the tracking 
variable with its environment counterpart (see Section 
IV.C and Fig. 3). 

• The set Termtv-acc of terminating events contains its 
outdate events, that is, all the events potentially 
affecting the environment quantity without 
synchronizing the tracking variable with its 
environment counterpart. 

• The initial value is always false. 
A decision adequacy check on a specific tracking variable 
amounts to checking whether its accuracy meta-fluent is true 
at the source node of the corresponding guarded transition. 
Note that accuracy meta-fluents are not visible at the g-HMSC 
level. They are automatically derived from the definitions of 
tracking variables in order to perform adequacy checks at the 
g-LTS level. 

a) Placeholder instantiation 
The placeholder here captures the value of the accuracy meta-
fluent associated with the target tracking variable tv.  

• PlcV = finitePlcV = {true, false};  p0 = false. 
• The placeholder propagation function is instantiated as 

follows: 
 plcPropag (p, e) =  

    {true}   if e ∈ Initv-acc , 
    {false}   if e ∈ Termtv-acc , 
    {p}   otherwise. 

b) Using decorations for decision adequacy checking 
Once the instantiated decorations are thereby computed, the 
following formula must be verified for every source state 
source and tracking variable tV appearing in the guard on an 
outgoing transition: 

    false ∉ Placeholders (stateDeco (source)), 
where Placeholders (s) was defined in Section VI.E as the set 
of possible placeholder values in the decoration of state s 
regardless of the corresponding value assignments of process 
variables in that state. 
If this formula is not satisfied, we know that there is a task 
sequence reaching the decision node in the model such that the 
value of the tracking variable at this node is inaccurate; the 
decision on which subsequent path to follow may therefore be 
inadequate. The class of patients affected by such inadequate 
decisions is given by dom stateDeco (source). 
Inadequate decisions should be resolved in a corrected version 
of the process model. A simple resolution heuristics consists in 
adding a task right before the decision node that includes a 
measure event for the problematic tracking variable. 

c) Example 

Consider the tracking variable medical_treatment_required in 
the process model for treating acute manic-depressive troubles 
in Fig. 1. A value true means that the patient needs to undergo 
a Medical Treatment task. This value is expected to be 
accurate right after the Evaluation task. It becomes inaccurate 
when the medical treatment is terminated; a new evaluation of 
the patient is required in order to decide whether the treatment 
should continue. The tracking variable is therefore defined in 
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terms of measure and outdate events as follows (see Section 
IV.C): 

trackVar  medical_treatment_required =  
  {Evaluationend} 
  {Medical Treatmentend}. 

Checking the decision node medical_treatment_required in 
Fig. 1 reveals that the decision captured there is adequate. The 
decoration of state 17 in Fig. 4 tells us that the meta-fluent 
medical_treatment_required-acc is true at this point; an 
evaluation is always performed before making the decision 
(see Fig. 1).  
Section IX shows an example where this check reveals an 
inadequate decision in the documentation of a real safety-
critical process. 

2) Time-dependent decision inadequacies 
It is often the case that tracking variables remain accurate for a 
certain period of time only. The environment quantities they 
reflect may change beyond that period due to potential events 
that are unobservable by the process agents. In a time-
dependent decision inadequacy, the decision relies on out-of-
date information about the environment. 
To check the process model for such situations, the accuracy 
duration of the considered tracking variable is taken into 
account in the meta-fluent definition (see Section IV.C): 

fluent tV-acc = <Inittv-acc, Termtv-acc>  duration Durtv-acc. 
The fluent then holds iff an initiating event has occurred, no 
terminating event has occurred since then, and the elapsed 
time is less than Durtv-acc (in discrete time units). 

a) Placeholder instantiation 
The placeholder here captures the discrete time remaining 
before the value of the associated tracking variable becomes 
outdated. Beyond that time, the accuracy meta-fluent must be 
false as the tracking variable may no longer accurately reflect 
its environment counterpart. When the accuracy meta-fluent is 
known to be false (e.g., immediately after a terminating event), 
the value of the placeholder is considered to be 0.  Hence the 
following instantiation: 

• PlcV = finitePlcV = [0, Durtv-acc];   p0 = 0. 
• The plcPropag propagation function updates the value 

of the placeholder as follows. If the considered event is 
among the initiating events of the accuracy meta-fluent, 
the placeholder is reset; if it is among the terminating 
events of the fluent, the placeholder is set to 0; 
otherwise, the placeholder is decremented by the 
duration of the task associated with the event –without 
going beyond the lower bound. The propagation 
function is thus instantiated as follows: 
 plcPropag (p, e) =  

   {Durtv-acc}     if e ∈ Inittv-acc , 
   {0}        if e ∈ Termtv-acc , 

      p (−) Duration (e)  otherwise, 
where the “(−)” operator removes a duration interval 
from the remaining time according to the following 
definition: 

    (−) :   N+ × P (N+) → P (N+) 

   T (−) [min, max] = {x | x ∈ N+, T - max ≤ x ≤ T- min} 

b) Using decorations for time-dependent decision 
adequacy checking 

Once the instantiated decorations are thereby computed, the 
following formula must be verified for each source state 
source and tracking variable tV appearing in the guard on an 
outgoing transition: 

0 ∉ Placeholders (stateDeco (source)). 
If this formula is not satisfied, we know that there is a task 
sequence reaching the decision node in the model such that the 
value of the tracking variable at this node is outdated; the 
decision on which subsequent path to follow may therefore be 
inadequate.  

c) Example 
In our example of treatment for acute manic-depressive 
troubles, there was an implicit assumption so far that the 
decision of treating the patient medically does not change after 
an evaluation. This is of course not the case in practice. Let us 
assume that the decision is accurate after an evaluation and 
remains accurate for 10 days unless a medical treatment has 
been performed in the meantime (the latter corresponds to an 
outdate event). The definition of the tracking variable is 
extended as follows: 

trackVar medical_treatment_required =  
 {Evaluationend} 
 {Medical Treatmentend} duration 10 

The adequacy checker finds that the decoration of state 17 in 
Fig. 4 contains the following mapping: 

{ observation_required ∧ … |→  {0,…}}. 
This means that the clinical decision of requiring a treatment, 
made during the Evaluation task, might be inadequate. The 
patient observation, when required, may indeed last more than 
10 days (see Table 1) which possibly invalidates the previous 
decision. This might for example result in patients not 
receiving a treatment in spite of their state aggravating during 
the observation. 
This problem might be resolved in different ways. 

• The patient state might be re-evaluated after the 
observation through a new Evaluation task to be added 
in the model. 

• A new measure event Observationend might be added to 
the definition of the tracking variable. This would 
model the fact that the decision of providing a 
treatment is reconsidered at the end of the observation. 

• The accuracy duration might be set to more than the 
maximum duration of the observation task –that is, over 
15 days. 

Interactions with medical experts are required to decide which 
resolution makes more sense. 

VIII. TOOL SUPPORT 
The various types of analysis detailed in the previous section 
are all supported by a toolset called GISELE. This section 
discusses a few design decisions and highlights key points of 
the implementation.  
The main facilities provided by GISELE are the following. 

• Editing and visualization of g-HMSC process models 
and their refinements. 
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• Visual means for eliciting process models, 
documenting them with process stakeholders, unfolding 
them for specific analyses, composing them, and 
projecting them on specific subclasses of instances. 

• Multiple types of analyses including model checking 
[25] and the various analyses discussed in Section VII. 

Figure 9 shows a tool screenshot. More details about the tool 
can be found in [46]. 

A. Design decisions 
The toolset was designed for analysts to (a) elicit critical 
medical processes from interviews with experts and from 
available documentation of medical protocols and guidelines; 
(b) analyze them incrementally and on the fly; and (c) produce 
browsable process documentation. These objectives led to two 
main design decisions. 

• Textual input: To enable rapid process capture by an 
analyst, a simple textual language is provided as input 
language to the tool (rather than a graphical one). This 
language amounts to a guarded-command language 
with constructs for sequential composition, guarded 
alternatives, iteration, and refinement. A graphical 
layout is automatically produced in full synchronization 
with the textual input (see Fig. 9). 

• Real-time proactive mode: Instead of performing 
specific checks on demand, the tool lets the analyst 
navigate through the graphical model via its GUI 
running inside a web browser. Every time the user 
looks at a specific task, the tool highlights in red the 
problematic nodes in the model (if any). These are 
nodes where a check failed, revealing an inadequate 
decision, incomplete or overlapping guards, a pre-
condition violation, a time constraint violation, and so 
forth. A corresponding diagnosis is produced (see 
Fig. 11). Our experience suggests that such 
incremental, non-obtrusive highlighting of problems 
provides natural and effective guidance towards 
continuous improvement during model building. Error 
detections stimulate discussions between stakeholders 
and the analyst, thereby contributing to the model 

elicitation process. Section IX provides some evidence 
on this. 

B. Architecture 
The toolset is implemented in Ruby using a MVC-like design 
pattern. Its user interface is implemented in HTML5, CSS3 
and Javascript, therefore running on any recent web browser. 
The graphical model layout is generated server-side using the 
well-known dot utility, and presented in Scalable Vector 
Graphics in the browser. 
Our analyses make intensive use of dedicated libraries for 
manipulating automata and binary decision diagrams (BDD). 
The automaton toolkit is the one implemented for the 
STAMINA contest [76] co-organized by two co-authors of this 
paper, see also http://stamina.chefbe.net/. The Buddy BDD 
library is available at http://buddy.sourceforge.net. As it is 
implemented in C, an interface binding for Ruby is used; it is 
available at http://people.cs.aau.dk/~adavid/BDD/. 

IX. EVALUATION  
This section evaluates the process analysis techniques 
proposed in this paper according to five criteria hierarchically 
organized –the idea being broadly that the evaluation criterion 
at one level is a prerequisite for considering the evaluation 
criterion at the next upper level. The criteria are the following: 

• Correctness: are the techniques meeting their 
specification? 

• Performance and scalability: are the techniques 
efficient enough to potentially deal with real-sized 
problems? 

• Applicability:  are the techniques working in the 
context of real-world situations?  

• Utility: Are the techniques solving a real problem?  
• Usability: Are the techniques accessible to process 

analysts? Are their results accessible to process 
stakeholders? 

Those criteria are considered successively from bottom to top 
in Sections IX.A to IX.E, respectively. 

	  
 

Fig. 9.  Using the GISELE tool:  top-level g-HMSC model for treating rectal cancer 
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A. Correctness 
As discussed in Section VI, each analysis technique consists of 
two steps once a g-LTS is generated from the g-HMSC model: 

• the decoration algorithm is instantiated in a specific 
way to quantities that are meaningful to the target 
check; 

• the instantiated decorations generated by the algorithm 
are used in a specific way to perform the check. 

The correctness of each technique thus depends on (a) the 
correctness of the generic decoration algorithm, (b) the correct 
placeholder instantiation for the considered check, and (c) the 
correct use of instantiated placeholders for this check. While 
(b) and (c) appear fairly straightforward for the various types 
of checks discussed in Section VII, (a) is not. 
A detailed proof that the generic decoration algorithm 
computes the most accurate decoration stateDeco (s) for every 
g-LTS state s is given in [21].  The main steps of the proof are 
outlined here. 
As discussed in Section VI.E, the most accurate decoration at 
state s must be both “not too specific” and “not too general” 
with regard to g-LTS executions reaching state s. This may be 
further characterized in terms of the decoration lattice defined 
in Section VI.C: 

• the computed decoration for s is sufficiently high in the 
lattice, that is, it covers all placeholder values produced 
by g-LTS executions reaching s (Theorem 1);  

• the computed decoration for s is not too high in the 
lattice, that is, it only covers placeholder values 
produced by at least one g-LTS execution reaching s 
(Theorem 2). 

The proof of Theorem 1 relies on the following lemma. 
When the algorithm terminates, the decoration of every state s 
is higher in the lattice than the results of propagating the 
decoration of the predecessor states s’ through the transition 
connecting s’ to s.  

This property is proved first for any iteration step of the 
algorithm and any state not in ToExpl at this step. Next, the 
property is proved for any state by noticing that ToExpl is 
empty when the algorithm terminates.  
Using the preceding lemma, Theorem 1 is proved by structural 
induction on the length of an arbitrary g-LTS execution. 
Theorem 2 is proved by computational induction on the main 
loop of the algorithm. The proof shows that all placeholder 
values added in state decorations are always values produced 
by at least one g-LTS execution reaching the corresponding 
state. 
The algorithm terminates as the set ToExpl is eventually 
empty. Decorations can only go upwards in the lattice; this 
lattice is finite and a state can change its decoration a finite 
number of times only.  

B. Performance and Scalability 
This section discusses the theoretical complexity and practical 
performance of our approach. 
Before a fixpoint is reached and the decoration algorithm 
terminates, a state can change its decoration at most H times, 
where H is the height of the decoration lattice. This height is 
exponential in the number ⎟VAR⎟ of process variables and the 
size ⎟boundedPlcV⎟ of the finite set of placeholder values. Let 

n denote the number of g-LTS states to be decorated; this 
number is linear in the number of tasks in the corresponding g-
HMSC model [25]. The theoretical complexity of the 
decoration algorithm is thus O (n × 2⎟VAR⎟ × 

⎟boundedPlcV⎟). 
The size of the LTS equivalent to the g-LTS manipulated by 
the decoration algorithm is exponential in the number of 
fluents and tracking variables. The algorithm, however, does 
not build this LTS explicitly; it explores the same process state 
space symbolically. 
In addition to symbolic exploration at the g-LTS level, the 
theoretical state blow-up problem is attenuated in various 
ways. 

• The worst-case situation occurs when all g-LTS states 
are decorated with the highest lattice element. This 
generally corresponds to infinite executions resulting 
from unbounded loops. Process models are normally 
expected to contain finite executions only.  

• As illustrated in Section IX.C hereafter, the g-HMSC 
refinement mechanism supports local and incremental 
checks. The model refinement structure effectively 
reduces both the size of the decorated g-LTS and the 
number of process variables to be considered for a 
specific analysis at a specific level of granularity. 

• As mentioned at the end of Section VII.C, the 
decoration generation cost may be distributed among 
multiple types of checks. A single decoration 
generation, such as the computation of MAS invariants 
at every g-LTS state, may be exploited by multiple 
types of checks –in particular, for invariant generation, 
guard analysis, and precondition checks. 

• Our implementation uses compact representations for 
the decoration functions dec, namely, binary decision 
diagrams (BDDs) for invariants, guards, and value 
assignments in dom dec; and intervals for placeholder 
values in img  dec. 

Those attenuating factors make our tool work in interactive 
mode quite effectively in practical situations. The user rarely 
waits more than a few milliseconds for a check on a typical 
clinical process model –for example, the model consolidated 
in Section IX.C hereafter has 25 tasks, 10 decision nodes, 3 
fluents and 5 tracking variables; there are 4 levels of 
refinement and the corresponding g-LTS model has 98 states. 
It is worth noticing that real-sized medical process models 
generally have a relatively small set of states (unlike software 
models). A clinical pathway model for breast cancer treatment, 
considered as a highly complex process, includes 150 tasks to 
be coordinated [70]. 
The longest response time we experienced in our medical 
projects was around one second. It was observed with models 
erroneously containing infinite executions. For desirable 
unbounded loops in a process model, a timeout may be used to 
produce prompter feedback. 
Further performance improvements might be achieved in the 
future for analyzing larger and/or unstructured models. 

• The convergence of the decoration algorithm might be 
sped up through effective strategies for selecting states 
in the set ToExpl of states to be considered for further 
propagation (see Fig. 7). Such strategies might 
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significantly impact on the number of iterations 
required before a fixpoint is reached. Some 
propagations appear useless as their resulting 
decorations will be overridden by subsequent 
propagations. States having a long-lasting impact on 
decorations of successor states should be selected first. 
One effective strategy might consist of implementing 
ToExpl as a priority queue where elements are 
topologically sorted; a state would always be selected 
after the states leading to it.   

• The algorithm computes the most accurate decoration 
for each state. This best mapping from assignments of 
process variables to instantiated placeholder values 
might not always be necessary for some analyses. The 
use of abstract interpretation [20] in such situations 
might significantly improve the efficiency of the 
instantiated algorithms by generating “good” 
approximations for those mappings instead (see Section 
X.D).  

C. Applicability 
This section addresses the next evaluation question after 
correctness and performance, namely, are the proposed 
techniques working in the context of real-world situations?  
To answer this question, we show our techniques in action on 
the incremental building and consolidation of a clinical 
pathway model for treating rectal cancer. 
This case study was directly inspired from various practical 
projects in clinical environments (see Section IX.D on utility 
hereafter) while carefully designed to deploy our multiple 
instantiated techniques working in combination. 
The clinical pathway for rectal cancer can be described in 
high-level terms as follows. 

A patient generally gets in for cancer consultation (usually 
through a general practitioner). After this first meeting, a 
cancer diagnosis is established and a spread evaluation is 
performed. Such an evaluation is aimed at estimating 
parameters about cancer invasiveness and extension, 
namely,  
• T   (for local Tumor invasion),  
• N   (for lymphatic Node invasion),  
• M   (for distant Metastasis).  
If rectal cancer is confirmed, the medical staff envisions some 
appropriate therapy strategy based on the evaluation. If the 
patient can undergo surgery, the main curative treatment 
consists in surgery. This task may be preceded or followed by 
chemotherapy sessions or a combination of radiotherapy and 
chemotherapy sessions. When the patient cannot undergo 
surgery, palliative care may be provided, consisting of 
chemotherapy sessions only or a combination of radiotherapy 
and chemotherapy sessions. Patients may also enter the 
process through an emergency service. In this case, surgery 
is directly prescribed. 

In the various projects we were involved in, high-level 
descriptions of this kind were typically elicited from existing 
documentation of medical guidelines and from interviews with 
medical staff. In both cases, flowchart sketches showing tasks 
and decision nodes were available. These sketches were 
literally translated into portions of an initial g-HMSC model 
using our tool. The translation often stimulated fruitful 
discussions with medical staff. Issues about the process were 
raised and discussed, leading to early clarification of the 
preliminary, informal “model” fragments available on paper.  

1) Top-Level g-HMSC for rectal cancer treatment 
Fig. 9 shows a top-level g-HMSC model draft based on the 
description we elicited. In the general case, a treatment 
consists of a sequence of diagnosis, staff meeting, pre-
treatment, surgery, and post-treatment tasks. The StaffMeeting 
task in Fig. 9 is a critical meeting where all medical agents 
involved in the process make clinical decisions about the 
subsequent treatment of the patient. 
The tasks appearing in Fig. 9 are to be refined in other g-
HMSCs. In the case where the patient comes from an 
emergency service with occlusion or bleeding symptoms, the 
patient goes directly to surgery without pre-treatment. If the 
cancer is not confirmed, the process is completed. If no 
surgery is envisioned by the medical staff, the process is also 
completed and the patient follows another, separate palliative 
care process. 
The formalization of guards at decision nodes requires fluents 
and tracking variables to be identified and defined. Here, 
rectal_cancer and surgery_envisioned are tracking variables 
defined as follows: 

trackVar rectal_cancer = {Diagnosisend}, 
trackVar surgery_envisioned = {StaffMeetingend}. 

The first definition expresses that rectal_cancer gets an 
accurate value (true or false) dependent on whether the 
Diagnosis task has revealed the presence of a cancer or not. 
Similarly, surgery_envisioned gets an accurate value (true or 
false) dependent on whether or not the medical staff has 
decided that surgery is the best plan to fight the patient’s 
cancer. 
Task preconditions on process variables might be specified at 
this point. In particular, the PreTreatment, Surgery, and 
PostTreatment tasks may be annotated with the following 
precondition:  

rectal_cancer ∧ surgery_envisioned. 
This means that we only proceed to these tasks if the cancer is 
confirmed and the surgery is envisioned for the patient. The 
precondition of the StaffMeeting task is the fluent diag_known, 
defined as follows: 
fluent diag_known = <{Diagnosisend}, {PostTreatmentend}>. 

This precondition expresses that the staff at the meeting should 
not discuss about a patient whose diagnosis is not known.  
At this overall level, early checks may already be performed 
even though there are a few tasks only and such tasks are 
coarse-grained as they are not refined yet.  

Checking preconditions. The precondition checker based on 
the decoration algorithm instantiation in Section VII.C tells us 

 
Fig. 11.  Pop-up window for problematic decision node:  

overlapping guards 
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that the preconditions of tasks Surgery and PostTreatment can 
be violated; if the patient comes from an emergency service, 
the tracking variables rectal_cancer and surgery_envisioned 
are not necessarily true.  
To fix these problems, alternative resolution strategies may be 
proposed to the medical staff. 

• The preconditions of Surgery and PostTreatment might 
be weakened as they might appear too strong.  

• Two decision nodes “rectal_cancer?” and 
“surgery_envsioned?” might be inserted right after the 
Emergency task, requiring these two conditions to be 
met before the Surgery task.  

• A distinction between two different surgeries might be 
made, namely, NormalSurgery and EmergencySurgery. 
The tasks to be performed after EmergencySurgery 
should then be elicited from medical experts. 

• The treatment of rectal cancer for a patient coming 
from an emergency service might be too different from 
“normal” treatment. Two completely different 
processes might be envisaged for those two cases.  

At this early stage, all tasks are to be refined. The next sections 
select some interesting ones for further refinement. 
2) Refining the PreTreatment task 
A refinement of the PreTreatment task appearing in Fig. 9 is 

shown in Fig. 10. During the StaffMeeting task preceding Pre-
Treatment in Fig. 9, a specific treatment must be decided for 
the patient. The decision is captured by the decision node at 
the top of Fig. 10. The three outgoing branches and their 
respective guards were taken literally from a process 
documentation given to us by medical staff. The documented 
alternatives are the following. 

• In case of a small tumor with no invaded lymphatic 
nodes, no pre-treatment needs to be envisioned.  

• In case of a large tumor or in presence of invaded 
lymphatic nodes, the pre-treatment consists of 
intertwined radiotherapy and chemotherapy sessions.  

• In presence of metastases, the treatment consists of 
radiotherapy sessions only. 

Checking guards for completeness, disjointness, and 
satisfiability. The instantiation described in Section VII.B is 
used to analyze the three guards at the decision node in 
Fig. 10. The guards are verified to be complete and satisfiable. 
However, the tool opens a pop-up window explaining that they 
are not disjoint (see Fig. 11); the third guard overlaps the two 
first ones. As a consequence, the patient might be non-
deterministically directed to one treatment or another. For each 
pair of overlapping guards, the tool gives all value assignments 
for the relevant process variables that satisfy them both. 
The problem is easily fixed in this case by adding the conjunct 
¬ M+ in the first two guards, as advised by medical staff.  
3) Refining the task PreOpRadioChemoTherapy   
The task PreOpRadioChemoTherapy in Fig. 10 consists of 
intertwined presurgical radio- and chemotherapy cures. It is 
refined into another g-HMSC.  
The task more precisely consists of five radio-chemotherapy 
cures. According to available medical guidelines, the protocol 
requires the total radiation dose to be exactly 45 Grays (Gy), 
with 1.8 Gy per day, administered 5 days a week. For specific 
reasons, the duration of this task may not exceed 40 days. 
Fig. 12 shows a first refinement attempt where protocol 
excerpts were literally translated from the medical guidelines, 
in particular:  

"The decision to treat a patient is related to the platelet level. ...  
A blood sample is taken after each cure. ...".  

In this g-HMSC, the notation (D days) is used for the duration 
interval [D days, D days] required to perform the 
corresponding task. A task box with “nX” inside unfolds in a 
sequence of n occurrences of this task.  
Fig. 12 also introduces the tracking variable platelet_low 
defined as follows: 

trackVar platelet_low  = {BloodTestend} 
 {RadioChemoTreatmentend }. 

This definition expresses that the platelet level is accurately 
known after a blood test and remains accurate until the end of 
a subsequent RadioChemTreatment task. The corresponding 
accuracy meta-fluent is therefore: 

fluent platelet_low-acc = 
  <{BloodTestend}, {RadioChemoTreatmentend}> 
 initially false. 

The tool detects two problems at this stage. 

 Pre-Treatment 

Consultations 

PreoOpRadio 
ChemoTherapy 

(40 days) 

Consultations 

ReStaging 

 

PreOp 
Radiotherapy 

[M+] [(T+ ∧¬N+)∨N+] [¬T+ ∧ ¬N+] 

 
Fig. 10.   g-HMSC for the Pre-Treatment task 
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Fig. 12.  Refinement of task PreOpRadioChemoTherapy (initial attempt) 
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Checking decision adequacy. The instantiation described in 
Section VII.E reveals a task-dependent decision inadequacy. 
The treatment decision is based on the tracking variable 
platelet_low whose value may not be accurate at the decision 
point –e.g., in case of first cure. The accuracy meta-fluent 
platelet_low-acc may indeed be false when the decision node 
is evaluated.  
The problem may be fixed by moving the BloodTest task so 
that it appears right before the decision point (see Fig. 13a). 

Checking dose requirements. A second, more subtle problem 
remains after rechecking the revised model in Fig. 13a. The 
problem is detected by a variant for dose constraints of the 
instantiation described in Section VII.D for time constraints. 
The instantiated checker finds that the total dose administered 
in five cures is less than the required 45 Gy in cases where the 
RadioChemoTreatment task is bypassed at least one time 
because of low platelet level.  
This problem may be fixed if treatment cancelation is replaced 
by a waiting period of 5 days to allow for normalization of the 
platelet level. The revised model after the latter fix is shown in 
Fig. 13b. 

Checking time requirements. If we now recheck the revised 
model in Fig. 13b, the tool highlights another kind of problem. 
The instantiation described in Section VII.D for time 
constraints detects that, when the treatment is delayed too 
often, the 40-day duration requirement can be violated.  
A model-based discussion with process stakeholders suggests 
that a delay between radiotherapy cures is not advisable. To 
resolve the new problem, the radiotherapy and chemotherapy 
treatments might be uncoupled. Following medical advice, the 
possibility of delaying treatment only on first occurrence of a 
platelet fall is introduced, see Fig. 14. The variable 
first_occurence introduced there is a fluent defined as follows: 
 fluent first_occurence = <{Waitend}, { } > initially false. 

Re-checking time requirements. When rechecked again, the 
revised model still violates the 40-day duration requirement; 
the longest possible process execution may take 42 days. The 
latter duration is reached for all process runs where the Wait 
task is applied for blood platelet normalization.  
A discussion with oncologists suggests that the 40-day 
duration requirement might be a bit too unrealistic; a decision 
is made to weaken the requirement to 42 days.  
With this weakened requirement, the model revised after three 
iterations meets the time, dose, and adequacy requirements 
expressed in the medical protocol. This revised version may 

raise further discussion about the possibility of dose reduction 
rather than a mere skip of chemotherapy. 

D. Utility 
After correctness, performance, and applicability, this section 
addresses the next evaluation question, namely, are the 
proposed techniques solving a real, practical problem? 
The incremental model building and analysis process in the 
previous section was directly inspired from our experience in 
multiple projects targeted at real, complex process models for 
cancer treatment, in particular: 

• the clinical pathway for treating rectal cancer at the UC 
Louvain university hospital in Brussels; 

• the clinical pathway for treating breast cancer at St 
Elisabeth hospital in Namur (Belgium); 

• the workflow of the radiotherapy department at the UC 
Louvain university hospital in Brussels; 

• the workflow of the radiotherapy department at Bordet 
hospital (University of Brussels). 

Two different kinds of medical processes were covered [24]: 
• clinical pathways are multi-disciplinary processes for 

the medical treatment of a specific class of patients 
presenting the same pathology; 

• department workflows capture the various decisions and 
tasks across multiple pathologies in a specific hospital 
department. 

In those various projects, each of the problems illustrated in 
the previous section was detected multiple times using the 
instantiated checkers described in Section VII.  
In all projects, members of the medical staff were acting as 
process stakeholders. In general, they appeared highly 
motivated in view of the growing, widespread concern for 
better support towards higher-quality treatments [16, 37, 39, 
44, 70]. In particular, the role of high-quality process models 
is being increasingly recognized for documenting, replicating, 
orchestrating and improving complex therapies [25, 30, 37, 43, 
65, 70]. Such driving models should obviously be error-free. 
The multiple errors found with our formal techniques were 
specification and modeling errors originating from the 
informal documentations and flowcharts being currently used 
by medical staff. These errors in practice called for on-the-fly 
fixes at process runtime by generally overloaded medical staff.  
In addition, the feedback from the tool often generated 
discussions with stakeholders beyond the model itself, 
suggesting improvements of the medical process on the field. 
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E. Usability 
This section addresses the last evaluation question after 
correctness, performance, applicability, and utility, namely, 
are the proposed techniques accessible to process analysts? 
Are their results accessible to process stakeholders? 
Let us address the second question first. The g-HMSC 
language was specifically designed to support analyzability by 
tools while remaining as close as possible to the material used 
by process stakeholders. The available documentation of 
medical guidelines, pathways and protocols [30, 43, 65] and 
comparative surveys involving process stakeholders [42] 
provide evidence that stakeholders in this domain commonly 
use informal flowcharts to document their procedures. Our 
own experience in assembling clinical process fragments 
supplied by medical staff confirmed this. See also Google 
Images with the keywords “care pathway flowchart” for a 
wide variety of examples of use of flowcharts by medical 
process stakeholders. Commercial tools in clinical 
environments are often based on flowcharts too –see, e.g., 
[57]. 
In our experience, the g-HMSC modeling language provides a 
good balance between (a) simplicity and communicability to 
medical stakeholders and (b) formality for analyzability of 
process specifications involving critical decisions. Restrictions 
were made to keep the language simple enough –at the price of 
limiting its expressive power, e.g., by ruling out 
parameterization or complex concurrency schemes and by 
replacing explicit assignments of arbitrary process variables by 
event-controlled Boolean variables. 
Beyond language accessibility, the level of tool feedback in 
case of errors is important too for effective stakeholder 
involvement in process elicitation and model debugging. The 
roundtrip feedback of the GISELE toolset was felt essential in 
practice. Errors are highlighted in dedicated colors in the g-
HMSC model (see upper right part of Fig. 9), and their 
explanation is provided at this level too (see Fig. 10 and Fig. 
11) –rather than at the g-LTS level where the checks are made. 
As for the first question of accessibility to process analysts, 
our decoration algorithm was specifically designed to be as 
easy to instantiate to dedicated analyses as possible. For each 
type of placeholder, the analyst only needs to instantiate the 
rule for propagating placeholders through a single event. The 
instantiator does not need to reason about all possible guard-
satisfying paths leading to a decision nor define a lattice 
structure specific to the instantiation. 
However, the role of process analyst in all aforementioned 
projects was played by ourselves. The main reason was that 
this role corresponds to a new, emerging type of staff profile 
within large clinical organizations. 

X.  RELATED WORK 
This section compares our results with related work along four 
directions. Section X.A reviews process modeling languages 
together with techniques available for analyzing them. Section 
X.B focuses on process modeling languages that are specific to 
the medical domain. Section X.C relates our techniques with 
those available for the analysis of software behavior models. 
Finally, Section X.D compares our analysis techniques with 

program analysis techniques such as data flow analysis and 
abstract interpretation. 

A. Process modeling and analysis 
UML activity diagrams [62] and the Business Process 
Modeling Notation (BPMN) [63] are standard graphical 
representations for business process models. Like g-HMSCs, 
they have a flowchart flavor. Their specification in [62, 63], 
however, does not provide a precise semantics. Process 
descriptions based on those specifications are therefore 
ambiguous and cannot be verified for behavioral 
correctness [79]. To address this problem, various formal 
semantics were proposed to enable model analysis. 

a) A semantics for a subset of UML 1.5 activity diagrams, 
inspired from the STATEMATE semantics of Statecharts 
[34], allows structural consistency properties to be 
checked on activity diagrams [28] using the NuSMV 
model checker [14]. 

b) Two semantics for a subset of BPMN are defined in the 
CSP process algebra [79]: an untimed one and a relative 
timed one. These semantics allow behavioral properties 
of BPMN models to be verified through model checking. 
In addition, interacting BPMN processes can be checked 
by verifying that their composition is deadlock-free [80]. 

c) A formal semantics for UML activity diagrams was 
proposed in terms of the REO coordination language 
[45].  It enables model-checking of activity diagrams 
against properties described in the µ calculus. 

UML activity diagrams and BPMN are more expressive than 
g-HMSC. They support parallelism among sub-processes, 
dataflows among process agents, and transactions. On the 
other hand, they do not support important features enabling 
analyses of g-HMSC models, namely, 

• decisions based on process variables –decisions in 
activity diagrams or BPMN are based on non-
deterministic choice; 

• state-based properties over process variables, in 
addition to event-based properties. In the work (a) and 
(b) hereabove, the supported properties may only refer 
to events associated with task performance. In (c), the 
properties refer to low-level concepts from the REO 
model (rather than concepts from the activity diagram). 

Business Entity Lifecycles [17], in particular the Guard-Stage-
Milestone (GSM) notation [38], combine data and process 
views for modeling business operations. In GSM, stages 
capture the lifecycle of business entities through abstract 
states; these states become active under specific guard 
conditions and until business milestones are achieved or 
invalidated. Guards and milestones are Boolean expressions 
that may refer to data attributes and event occurrences. 
External events are sent by the process environment whereas 
internal events may refer to state transitions of milestones and 
stages. Stages can be hierarchically refined down to low-level 
tasks such as service invocations. GSM supports state-based 
model checking of CTL properties on milestones [6, 32]. The 
GSM and g-HMSC approaches are similar in that both 
integrate event-based and state-based specifications; formal 
guards may refer to state variables. There are important 
differences, however. 
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• GSM models do not capture task flows explicitly. Such 
flows are to be inferred from responses to events in 
terms of guard enabling, state activation and milestone 
achievement. This might be more expressive. However, 
stakeholder involvement in the model building process 
appears questionable as natural task flows are implicit. 

• GSM supports complex data modeling through an 
information model and assignments of variables. In 
contrast, g-HMSC restricts data modeling to fluents and 
tracking variables, defined in terms of events only. 
Lower expressiveness is the price to pay for language 
simplicity and separation of concerns. Tracking 
variables allow modellers to reason about the critical 
boundary between the process state and the 
environment state; they have no equivalent in GSM.  

Fluents were originally introduced in the Event Calculus [59]. 
The variant used here is directly taken from [22, 31, 56]. Our 
fluents are slightly less expressive than those in the Event 
Calculus as they may not refer to other fluents.  Tracking 
variables provide a simple means for reasoning about an open 
system where components in the process environment and their 
features may be unknown to the process or changing. 
Although fairly restricted, such variables support our target of 
analyzing decision adequacy. More expressive g-HMSC 
variables is subject to future work, see Section XI. 
YAWL (Yet Another Workflow Language) is a process 
modeling language based on Petri nets. It was originally 
introduced for describing workflow patterns [74, 75]. Its 
expressive power is definitely higher than g-HMSCs. In 
particular, the modelled workflows may involve multiple 
instances with complex synchronization schemes, dataflows, 
and resource allocations. Such models, however, appear much 
more complex and lower-level. Guards in decision nodes are 
not formalized. YAWL models support different kinds of 
analysis based on their underlying Petri-net semantics; 
standard Petri-net tools are used for, e.g., verifying process 
termination [73] or conformance of process executions with 
the model [71]. As far as we know, none of the analyses 
discussed in Section VII are supported –even though some of 
them could be provided by adapting Petri-net techniques (in 
particular, for checking time constraints). 
Little-JIL is another process language in which processes are 
modelled as task trees [78]. The language provides structuring 
constructs for composing tasks such as sequencing, parallel 
composition and non-deterministic choice. An exception 
mechanism inspired from programming languages is also 
available for specifying exception handling [55]. This appears 
quite useful in the medical domain as exceptions turn to be 
frequent there [33]. Little-JIL tasks may also be annotated with 
informal pre- and post-conditions. Decision nodes with guards 
are not supported. Little-JIL has a formal semantics in terms of 
finite state machines. Various types of analysis are therefore 
supported. A model checker may verify event-based properties 
on a process model and the absence of deadlocks [54]. Unlike 
our state-based properties on fluents and tracking variables, 
the properties there refer to events associated with task 
performance. A heuristic technique is also available in the 
Little-JIL toolset for producing fault trees from the process 
model in order to highlight tasks that might be wrongly 

executed, communications that might fail, etc. [11]. This 
technique somewhat corresponds to the one available for 
building obstacle trees against Achieve goals associated with 
g-HMSC tasks [48, 50]. 
Other process modeling languages were specifically designed 
for process enactment rather than formal analysis, notably, 
SPADE [3]; see [29] for a thorough review.  
Dedicated temporal analysis techniques were also developed 
for specific languages [5, 26]. Typically, a state machine 
model is first derived from the input model and then checked 
against temporal properties. In [26], workflow models are 
encoded into timed automata [2] and then model-checked. No 
high-level language is available to process modelers that could 
be validated by stakeholders. Process decisions are not 
supported. In [5], medical guidelines are written in ASBRU 
[58] and then rewritten in SMV for model checking. False 
negatives may however appear due too coarse time 
abstractions. Our tool is also based on a preliminary 
transformation of the input model into a lower-level, machine-
processable form; unlike [5, 26], the tool feedback is provided 
on the high-level input formalism rather than the lower-level 
one. Similarly to the other process formalisms mentioned 
before, state/event-based guards in decision nodes are not 
supported in [5, 26].  

B. Modeling and Analyzing Medical Processes 
Various languages dedicated to the medical domain have been 
proposed, notably, ASBRU [58] and Proforma [30].  These 
languages are generally inspired from knowledge 
representation techniques in artificial intelligence. They 
provide constructs for modeling plans composed of tasks. Few 
analyses are available on them. When available, such analyses 
are fairly syntactic or not process-specific. A thorough review 
of these languages may be found in [43].  
LEMMA [4] appears closer to our efforts. It is a graphical 
language for modeling medical processes with a formal 
semantics in terms of Petri nets. A LEMMA model is a graph 
whose nodes may capture clinical tests and symptom selectors. 
Such nodes appear similar to our decision nodes. However, 
clinical tests and symptom selectors guide patients through 
different paths according to their current state without 
reference to specific process variables. This obviously reduces 
the expressiveness of decisions and of what can be analyzed. 
In particular, references to previous decisions is not possible 
(unlike in g-HMSC models).  
Some of the process modelling languages reviewed before 
were also applied to the medical domain. Little-Jil, in 
particular, has been used to model and analyze transfusion 
therapies [37] and chemotherapy processes [13]. 

C. Analyzing Software Behavior Models 
Our analysis techniques are also related to those available for 
analyzing software behavior models. 
Invariant generation. The instantiation of our generic 
decoration algorithm in Section VII.A generalizes our previous 
algorithm for state invariant generation [22] by computing 
most accurate state invariants. It might be seen as a fluent-
based counterpart of the algorithm for generating condition 
lists along scenario timelines in [52], as used in [77] for 
statecharts synthesis. Our algorithm, however, propagates 
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decorations along multiple paths to a state (rather than a single 
timeline); moreover, the propagation is driven by fluent 
definitions (rather than pre- and post-conditions). 
The algorithm for generating mode invariants for SCR state 
machines in [41] computes one invariant per SCR mode. Like 
ours, it is a fixpoint one. This algorithm cannot be used for 
generating invariants on g-LTS states as SCR state machines 
are quite different. In particular, they are state-based over 
monitored and controlled variables, whereas g-LTS are event-
based.  
Consistency/completeness checking. Our checks on guards are 
close in spirit to those supported in [36] for SCR tables. 
Beyond the use of different formalisms, there is a notable 
difference, however. The checks here must account for the 
local contextual condition holding at the point in the process 
model where the decision node is reached. This condition is 
the state invariant at that point, generated by our decoration 
algorithm. 
The technique described in [64] checks whether an RSML 
specification is consistent, that is, whether two outgoing 
transitions from the same state, triggered by the same event, 
have mutually exclusive guarding conditions. This technique is 
somewhat similar to our technique for detecting overlapping 
guards; it also first generates an invariant on the source of the 
outgoing transitions. The guards and invariants are however 
quite different; in RSML, they are conjunctions of predicates, 
each capturing whether a given state in the parallel state 
machine is active or not. 
Model-checking. Some of the analyses in Section VII might in 
principle be performed through model checking [7, 14, 15, 61, 
67].  As fluents and tracking variables may themselves be 
represented by state machines, we might model-check the 
parallel composition of the system extended with the state 
machines for each variable [25, 46]. The main benefit in 
comparison with decoration-based analysis would be the 
counterexample trace generated when the target property is not 
satisfied. 
In particular, checking that precondition P on task T is never 
violated might be achieved by verifying the property 

£ (Occurs (Tstart)→ P). 
Checking decision adequacy might be achieved by verifying a 
property of form 

£ (Cond → tV-acc), 
where Cond is a condition to be determined so as to be true 
right at the point where the corresponding decision node on 
tracking variable tV is evaluated, and false elsewhere; and 
where tV-acc is the accuracy meta-fluent associated with tV.  
Checks for guard completeness and disjointness are not 
straightforward through model checking; the target properties 
appear difficult to translate in terms of temporal logic 
formulas. In case of guard overlap, our decoration-based tool 
returns all value assignments meeting multiple guards. Such 
information would not be provided by the model checker. 
Moreover, our time-related analyses cannot be translated to 
fluent-based LTL properties supported by our model checker. 
Last but not least, the decoration-based analyses are performed 
at a more abstract level that the LTS level, resulting in easier 
roundtrip feedback to the input g-HMSC model and more 

efficient analysis due to symbolic exploration at the g-LTS 
level. 
Some analyses could be translated to model-checking 
problems for NuSMV [14] (e.g., decision adequacy checks) or 
Uppaal [53] (e.g., time constraint checks). The integration of 
multiple model checkers relying on different semantics within 
a coherent and consistent framework appears, however, more 
difficult than the simple, uniform decoration-based approach 
presented here. Moreover, most checks appear fairly 
straightforward once decorations are generated; the decoration 
algorithm handles the intricacies of propagating possible 
values of process variables along all guard-satisfying paths 
leading to the considered state. The cost of generating 
decorations may thereby be distributed among multiple 
checks; a single decoration generation may be used for 
multiple analyses. In this uniform and reusable framework, 
new dedicated analyses may be added in a quite easy and 
semantically consistent way, as shown by the radiation dose 
check in Section VII.C. 
Timing analysis is commonly recognized to be complex and 
computationally expensive in state-of-the-art verification 
technology [7]. Our instantiated techniques involving time are 
less exposed to such problems thanks to the restrictions 
naturally arising from our context –namely, the exclusiveness 
of tasks ensured by the guards and the representation of time 
through discrete sets of time points. 

D. Program Analysis  

Our techniques can also be related to those used for compile-
time verification of program properties. Data flow analysis 
[35, 61] and abstract interpretation [18, 19, 20, 61] are 
complementary approaches for program analysis. Data flow 
analysis computes relevant information about the possible set 
of values of program variables at every node of the program’s 
control flow graph. Such information is generally obtained by 
setting up data flow equations at each node of the graph. These 
equations are solved by repeated calculations of outputs from 
inputs until a fixpoint is reached. To guarantee termination, 
constraints are imposed on value domains –typically, a lattice 
structure or partial order with finite height. To improve 
efficiency while preserving correctness, data flow analyses are 
in general combined with abstract interpretation –see, e.g., [8, 
61]. Abstract interpretation symbolically executes the program 
at some level of abstraction where irrelevant details about the 
semantics and the specification are ignored; abstract values 
are used instead of concrete ones.  
Like data flow analysis and abstract interpretation, our 
analysis techniques compute, for every g-LTS node, relevant 
information about the possible values of process variables. In 
the presence of process loops, the computation of meaningful 
quantities similarly proceeds by “climbing” a lattice until a 
fixpoint is reached. Such fixpoint calculation is also found in 
other invariant generation techniques [41, 51]. 
Unlike abstract interpretation techniques, however, our 
techniques compute exact values for placeholders, not 
approximated ones. Approximations may be avoided for 
several reasons. First, our process language is higher-level 
than a programming language, with much simpler constructs 
such as Boolean variables and guarded branching over them, 



IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 24 

event-based transitions, sequential tasks, and time 
representation through discrete time points. Moreover, some 
constructs are already built-in abstractions; in particular, 
Boolean tracking variables capture predicate abstractions over 
environment quantities. 
Abstract interpretation techniques might however be worth 
considering in future work. 

• They might be needed for enriching the process 
language with more expressive and complex constructs 
such as, e.g., guards with comparison operators over 
integer variables.  

• The most accurate mapping might not always be 
required for certain analyses. Full accuracy might be 
sacrified to efficiency. As an example, let us consider a 
process for which we would like to know whether all 
executions last less than a specific duration d. 
Computing the exact mapping between value 
assignments of process variables and sets of time 
points, as in Section VII.D, might result in poor 
performance on very large processes with many 
variables. A similar algorithm might then be used 
without taking assignments of fluents and tracking 
variables into account; guarded branches would be 
selected non-deterministically. With such over-
generalization, the target property would be verified for 
all patients in case the maximum time computed by the 
algorithm is less than d. However, getting a greater 
value might yield a false positive as the trace reaching 
the maximum time might not be a valid one (see the 
guard satisfaction condition on the g-LTS semantics in 
Section V.B).   

Unlike our techniques, abstract interpretation requires 
dedicated proofs for every specific abstraction. In particular, 
the abstract semantics must each time be proved correct with 
respect to the concrete one.  

XI. CONCLUSION 
Model-driven engineering requires high-quality models of 
artefacts or processes in mission-critical domains. The models 
must be correct for their safe use and readable by stakeholders 
for their elicitation and validation. Model elaboration may be 
complex and error-prone.  
The paper presented a variety of tool-supported analysis 
techniques for building more adequate, complete, and 
consistent process models in which explicit decisions regulate 
task flows. Such decisions generally depend on the process 
state and on the state of the environment in which the process 
operates.  
The analysis techniques described in the paper may be applied 
incrementally and locally to partial models at various levels of 
refinement. The models may thereby be elaborated, verified, 
corrected, and refined through successive iterations. The 
approach thereby reduces the difficulties and cost of late fixing 
of errors disseminated through a large, complex model. 
More specifically, the paper makes the following 
contributions. 

• The formalism for modeling decision-based processes 
is close to the informal sketches provided by process 

stakeholders while introducing process variables for 
higher precision of decision nodes. The language has a 
formal operational semantics expressed in a lower-level 
formalism to enable various types of automated 
analysis. The high-level user language combines event-
based and state-based specifications to extend the class 
of properties that can be checked. 

• A generic algorithm computes state decorations by 
propagations through the lower-level model. 
Instantiations of this algorithm yield various types of 
analyses. The decorations map value assignments for 
the process variables to generic placeholders so as to 
account for the various guard-satisfying paths leading 
to the corresponding state.  

• A variety of complementary techniques allow decision-
based process models to be analyzed formally. The 
techniques may be used for generating state invariants, 
checking precondititions, analyzing guards at decision 
nodes, checking the adequacy of decisions, and 
verifying non-functional process requirements 
involving time and resources. These techniques are 
obtained through different instantiations of the same 
generic decoration algorithm. The instantiations require 
minimal effort; the analyst just needs to define the set 
of placeholder values and provide the function 
specifying how instantiated placeholder values are to be 
propagated through a single state transition. 

• A roundtrip tool implements those techniques to 
proactively and non-obtrusively highlight the problems 
detected during model elaboration. 

The paper provides an evaluation of the techniques in terms of 
correctness, performance, applicability on a complex cancer 
treatment process, utility in the medical domain, and usability. 
Compared with process notations such as BPMN [63] or 
YAWL [75], the g-HMSC language appears intuitive and 
simple enough to involve process stakeholders in the model 
elicitation/validation loop: 

• the analyses are performed on models that are close to 
the material provided by them; 

• the flaws are highlighted by the tool on this high-level 
model (rather than on the lower-level one it 
manipulates); they can therefore be more easily fixed 
with stakeholders –at least in our experience with 
medical staff involved in complex cancer therapies.  

The techniques presented in the paper raise various issues for 
further work. 
On the language side, the price to pay for simplicity is limited 
expressiveness.  

• Our focus on decision-based processes led us to leave 
aside language constructs for concurrency among sub-
processes and exception handling [33, 55]. While not 
necessarily needed for medical processes such as 
clinical pathways, such constructs are required for 
multi-instance processes, their enactment and 
orchestration. The integration of a suitable exception 
handling mechanism might also simplify decisions and 
their corresponding guards in specific situations. 

• The process models should also be extended with goals 
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underlying tasks. Goals provide the rationale for tasks; 
moreover, they prove to be more stable than the tasks 
operationalizing them [48]. In our experience, some 
critical tasks appear difficult to refine into subtasks 
(e.g., the StaffMeeting task in Fig. 10). A goal 
refinement tree may then appear much more 
appropriate.  The integration of goals would also enable 
complementary analyses [48]. Goal refinements may be 
checked for completeness; incomplete refinements lead 
to the identification of new goals and therefore new 
tasks operationalizing them. Missing tasks or missing 
paths could thereby be found. Obstacle analysis might 
further improve the model by generating unexpected 
risk conditions and exploring corresponding resolutions 
through countermeasure goals and tasks [1, 50].  

• The g-HMSC process variables are currently limited to 
propositional variables; more complex domains should 
be supported.  

• The mechanism for refining tasks might be improved 
through multiple time granularities and macro-events 
[10] in order to remove the need for action events 
having durations.  

New constructs require extending the language, its semantics, 
and the analyses accordingly. A good tradeoff should however 
be kept between expressiveness, analyzability, and usability by 
process stakeholders. 
On the analysis side, the feedback provided by the tool should 
be improved. Currently, the tool highlights error states in the 
process model and provides a corresponding state invariant. 
As additional feedback, a counterexample trace should be 
generated to help understanding the root causes of the 
problem.  
Domain properties [48] should also be integrated in the model 
in order to simplify generated decorations such as 
preconditions or invariants. By removing redundant 
information known as domain properties the resulting 
decorations would sometimes be more compact and more 
understandable. 
As discussed in Section IX.D, some instantiations of the 
generic decoration algorithm might raise efficiency concerns 
in the process state space exploration. Abstract interpretation 
techniques might help increase efficiency at the price of 
introducing approximations. 
The integration of multiple interfering process models is 
another challenging issue. For example, a patient following 
both diabetes and colorectal cancer therapies is exposed to 
“feature interaction” problems: a medication contributing 
positively to the patient’s state along one process might 
contribute negatively to that state along the other process. 
Goals might prove useful for detecting conflicts among the 
processes operationalizing them [49]. We might also use the 
model checker described in [25] to detect interferences in the 
parallel composition of the process models. There are different 
stages for detecting and resolving conflicts –at modeling time 
or at runtime during process enactment. This should be further 
investigated in order to know which approach would work 
best. 

New instantiations of our generic decoration algorithm should 
be considered as well –for verifying other non-functional 
process requirements or for other uses in the model building 
process. For example, other instantiations recently allowed 
model engineering operators to be defined, including the union 
of paths from multiple models, the restriction of a model to 
specific paths, the projection of a model on a specific set of 
tasks, and the merge of concurrent models [24]. 
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