
IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 1

Abstract— Decision-based processes are composed of tasks

whose application may depend on explicit decisions relying on the
state of the process environment. In specific domains such as
healthcare, decision-based processes are often complex and
critical in terms of timing and resources.
The paper presents a variety of tool-supported techniques for
analyzing models of such processes. The analyses allow a variety
of errors to be detected early and incrementally on partial
models, notably: inadequate decisions resulting from inaccurate
or outdated information about the environment state; incomplete
decisions; non-deterministic task selections; unreachable tasks
along process paths; and violations of non-functional process
requirements involving time, resources or costs. The proposed
techniques are based on different instantiations of the same
generic algorithm that propagates decorations iteratively through
the process model. This algorithm in particular allows event-
based models to be automatically decorated with state-based
invariants.
A formal language supporting both event-based and state-based
specifications is introduced as a process modeling language to
enable such analyses. This language mimics the informal
flowcharts commonly used by process stakeholders. It extends
High-Level Message Sequence Charts with guards on task-related
and environment-related variables. The language provides
constructs for specifying task compositions, task refinements,
decision trees, multi-agent communication scenarios, and time
and resource constraints.
The proposed techniques are demonstrated on the incremental
building and analysis of a complex model of a real protocol for
cancer therapy.

Index Terms—Process modeling, process analysis, model
verification, decision errors, safety-critical workflows, non-
functional requirements, domain-specific languages, formal
specification.

I. INTRODUCTION

The growing maturity of software engineering technologies
makes it possible to export them to other areas in need of more
systematic approaches. This is in particular the case for
domain-specific processes such as medical processes [13, 25,
37, 68, 69] where process safety is a key concern [16, 39, 44].
Conversely, such domains raise new challenges on modeling

Manuscript received November 12, 2012. This work was partially

supported by the Regional Government of Wallonia (GISELE and PIPAS
projects, RW Conv. n° 616425 and 1017087) and the MoVES project (PAI
program of the Belgian government).

The authors are with the Department of Computing, ICTEAM Institute,
Université catholique de Louvain, e-mail: {christophe.damas,
bernard.lambeau, axel.vanlamsweerde}@uclouvain.be.

and analysis techniques. For example, cancer therapy
processes are composed of safety-critical subprocesses, such
as radiotherapy, surgery and chemotherapy processes, to be
coordinated over long periods of time, at multiple sites,
according to critical decisions often made under incomplete
information, and subject to a variety of non-functional
requirements. The latter refer to strict timing and dose
constraints, resource limitations, cost restrictions, and so forth.
Such processes are continuously evolving from progress in
research and practice.
Models in this context may be used for a variety of purposes,
e.g., for process orchestration, conformance checking, process
documentation, or the generation of directives, explanations or
other operational information targeted at specific parties
[13, 25].
Process models should therefore be as error-free as possible.
Building an adequate, complete, and consistent model may be
far from easy in such domains. Techniques should therefore
help detect and fix severe flaws –in the model being built or in
the actual process itself [12, 25].
To enable tool-supported analysis, the target processes should
be captured through some adequate formal model. Many
languages are available for modeling processes and
workflows, e.g., UML Activity Diagrams [62], BPMN [63],
Yawl [27, 75] and Little-Jil [78] to cite just a few. When a
formal semantics is available, such languages support various
analyses such as model checking against event-based
properties [28, 54, 79], verification of process termination [73]
or of absence of deadlocks [54, 80], or conformance checking
between the process model and its execution [73]. Model
enactment can also be used for runtime support [78].
The modeling techniques available to date do not allow
process decisions to be formally captured in terms of state
variables characterizing the process environment (e.g., state
variables about the patient under treatment). As a
consequence, the properties that can be model-checked are
purely event-based; they refer to task applications only. When
alternative branches in a task flow are supported, the choice
among them is non-deterministic.
The paper focusses on decision-based processes to address this
current limitation. In a decision-based process, decisions
relying on the state of the process environment regulate the
subsequent tasks to be specifically performed. For example, a
specific sequencing of weekly chemotherapy sessions is the
outcome of a medical decision relying on environment state
variables such as the patient’s blood platelet level.
The possible unobservability of the environment state at which
a decision must be made is a challenging issue raised by such
processes. State variables approximating the environment state
are needed; such variables do not necessarily reflect the exact
state of the process environment at the corresponding decision

Analyzing Critical Decision-Based Processes
Christophe Damas, Bernard Lambeau and Axel van Lamsweerde, Member, IEEE

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 2

point. In our example, the exact value of the patient's platelet
level might not be the one used in the state where the specific
therapy decision is taken. A modeling/reasoning framework
must be able to cope with this.
The main contribution of the paper is a coherent set of
complementary techniques for early and incremental analysis
of critical decision-based process models.
As a prerequisite, we need a formal modeling language to
enable those analyses. For ease of communication and
validation, the models should be as close as possible to the
material commonly used by process stakeholders.
The available documentation of medical guidelines, pathways
and protocols [30, 43, 57, 65] together with comparative
surveys involving process stakeholders [42] provide evidence
that stakeholders in this domain use informal flowcharts to
document their procedures. Such documentation typically
shows:

• sequences of tasks, the latter being sometimes refined
into subtasks;

• conditions guarding alternative task flows, possibly
nested to form decision trees;

• occasionally, fine-grained interaction sequences among
process agents [66];

• flowchart annotations with time constraints, resource
restrictions, or underlying goals on state variables about
the process environment.

This observation was confirmed by our extensive experience
in assembling clinical process fragments supplied by medical
staff in multiple hospitals. The unconvinced reader may check
Google Images with the keywords “care pathway flowchart” for a
wide variety of examples of use of flowcharts by process
stakeholders in the medical domain.
To support both analyzability and communicability, the
language of High-Level Message Sequence Charts [40] is
extended with guard constructs and non-functional
annotations. The extended language, called Guarded High-
Level Message Sequence Charts (g-HMSCs), mimics informal
stakeholder flowcharts while having a formal trace semantics
in terms of labelled transition systems (LTS) [25].
To enable process decisions based on both task applications
and environment states, the language should integrate the
event-based and state-based specification paradigms [23, 47,
56]. Specific process paths can then be governed by the truth
value of hybrid conditions on states and events. Such
integration is achieved in a g-HMSC by letting guards refer to
task-related fluents [31, 59] and environment tracking
variables. The latter, more precisely defined in Section IV, are
intended to track environment quantities that are not
continuously observable by the agents involved in the process.
The analysis techniques described in this paper support the
following types of checks on g-HMSCs.

• Guard analysis. The guards on the various alternatives
at any decision point in a task flow must be satisfiable
in the state reached at that point (for subsequent tasks to
be applicable). They may not overlap in that state (for
decisions to be deterministic). They must cover all
possible cases in that state (no alternative branch is
missing).

• Detection of inadequate decisions. A decision can be
inadequate if it relies on incorrect information about
the environment state. This arises from state variables
being outdated or inaccurate due to missing tasks or
unexpected events. Every decision in a task flow should
be adequate.

• Verification of non-functional requirements on the
process. All timing, resource and cost constraints
should be met along all possible paths of the process
model.

• Verification of task preconditions. All task
preconditions should be satisfied along all possible
paths of the model.

These various types of checks are performed through different
instantiations of the same generic algorithm for propagating
decorations through the process model. This algorithm is
designed to require as little instantiation effort as possible; for
each type of check, the user just needs to instantiate the
generic decoration together with the rule for propagating
decorations through a single state transition. No correctness
proofs of the instantiated algorithms are required; the proof of
the generic algorithm is similarly instantiated.
The paper expands on preliminary results described in [25].
The main improvements and extensions include: (a) the
handling of environment state variables, (b) new types of
checks, namely, the adequacy of decisions and the satisfaction
of non-functional requirements, and (c) a uniform treatment of
quite different types of check through a single generic model
decoration algorithm with fairly simple instantiations. Unlike
our model checker described in [25], all checks are performed
here at the intermediate level of a guarded LTS, generated
from the g-HMSC model, which avoids enumerating all LTS
traces covered by the g-HMSC model.
The paper is organized as follows. Section II introduces the
running example used for explanation throughout the paper.
Section III provides some minimal background on LTS,
HMSCs and fluents. Section IV introduces g-HMSCs for
process modeling. Section V defines the formal trace
semantics of this language. Section VI describes our generic
decoration algorithm. Section VII presents various
instantiations for different types of check on a decision-based
process model. Section VIII discusses tool support for those
different analyses. Section IX evaluates the approach with
respect to correctness; performance and scalability;
applicability; utility; and usability. Section X discusses related
work.

II. MOTIVATING EXAMPLE
The following process for treating acute manic-depressive
troubles is used throughout the paper as a simple running
example for explanatory purpose.
A patient with symptoms compatible with manic-depressive disorder
enters the workflow through an admission consultation. During this
consultation, a psychiatrist determines whether the patient is a danger
for himself. If so, an acute drug therapy is started. Otherwise, an
evaluation consisting of a psychological test and a blood test is
performed; the blood test is necessary for determining whether the
patient is under influence of drugs. Based on test results, the
psychiatrist provides a diagnosis and a treatment recommendation. If
necessary, the patient may be put in observation. A long-term
medication may also be prescribed. In case of medication, a

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 3

specialized consultation is planned to assess the treatment effect and
the patient’s evolution.

Fig. 1 shows a model sketch for the process of treating manic-
depressive troubles. Boxes there denote tasks whereas
diamonds capture decision points with associated guards on
alternative subsequent task flows. The precise semantics of
such model is detailed in Section IV.
Interesting questions may already arise from this model
sketch, for example,

• What is the minimal and maximal time for treating
acute manic-depressive troubles?

• Is it possible for the psychiatrist to make a medical
treatment decision that would be based on outdated
information about the patient?

• At any process step where a decision node is reached,
do the associated guards cover all possible cases? (If
not, a process run might be blocked forever with no
task prescribed.) Do they overlap? (If so, two patients
having right the same symptoms could undergo
different treatments.)

The analysis techniques presented hereafter enable precise
answers to these questions, among others.
The flow graph in Fig.1 is a refinement of the coarser-grained
task "Treatment for acute manic-depressive troubles" mentioned on
the top left. Tasks that are not further refined are specified by
scenarios showing the sequence of interaction events among
agent instances involved in the task, see Fig. 2.

III. BACKGROUND
To make the paper self-contained, some basics on message
sequence charts, high-level message sequence charts, labelled
transition systems, and fluents are first recalled.

A. High-level message sequence charts
Message sequence charts (MSCs) are commonly used for
capturing multi-agent scenarios [40]. Agents are active process
components; they define the process scope. Their instances
perform tasks, thereby monitoring some events or state
variables and controlling others [48].
An MSC is composed of vertical timelines associated with
agent instances and horizontal arrows representing interaction
events. A timeline label declares a class of corresponding
agent instances. An arrow label declares an interaction event
among the source and target agent instances; the event is
synchronously controlled by the source and monitored by the
target. Fig. 2 shows an MSC refining the Evaluation task for
manic-depressive troubles. The scenario involves three agents,
namely, a patient, a psychiatrist, and a laboratory.
A High-level MSC (HMSC) is a directed graph where each
node is an MSC or a finer-grained HMSC [40]. Edges indicate
the acceptable orderings among scenarios. They allow for
scenario sequencing and repetition. A complex scenario may
thereby be broken into manageable parts that are ordered
according to the HMSC specification.

B. Labeled transition systems
A labeled transition system (LTS) is an automaton defined by
a structure (S, E, δ, s0), where S is a finite set of states, E is a
set of event labels, δ is a labeled transition relation
(δ ⊆ S×E×S), and s0 is an initial state [56, 60].
An LTS trace is a sequence of events <e0,…,en> accepted by
the LTS from its initial state (ei ∈ E).
The semantics of MSCs and HMSCs is defined in terms of
LTS and parallel composition [72]. An MSC timeline defines a
finite LTS trace capturing the behavior of the corresponding
agent instance. The semantics of an entire MSC is similarly
defined as a trace of the LTS of the entire system being
modelled.

C. Fluents
A fluent FL is an atomic proposition defined by a set InitFL of
initiating events, a set TermFL of terminating events, and an
initial value InitiallyFL that can be true or false [31, 56, 59].
The sets of initiating and terminating events must be disjoint.
A fluent definition takes the form:

fluent FL = < InitFL, TermFL > initially InitiallyFL.
For example, a fluent evaluated can be introduced to capture
whether a patient is evaluated (see Fig. 1):

fluent evaluated = <result_ interpretation,
 medical_treatment_ok>

 initially false.
This fluent definition specifies that a patient is evaluated after
a result_interpretation event (see Fig. 2) and stops being
evaluated after a medical_treatment_ok event. The patient is
initially not evaluated. The fluent thereby specifies a
postcondition of the Evaluation task; its negation yields a
postcondition of the Medical Treatment task.

	 Evaluation	

Patient	 Psychiatrist	 Laboratory	

psy_questioning	 	

blood_test	

	

psy_answering	

blood_analysis_	
request	

blood_test_results	 	

result_	
interpretation	

Fig. 2. Scenario for the Evaluation task

Fig. 1. Process model for treating acute manic-depressive troubles

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 4

For any LTS trace and set of fluents, a state can be defined
after every event in the trace. This state is characterized by the
value of every fluent at this point in the trace. In such a fluent
value assignment, a fluent gets true (resp. false) if either of the
following conditions holds:

• the fluent is initially true (resp. false) and no terminating
(resp. initiating) event has occurred;

• some initiating (resp. terminating) event has occurred
with no terminating (resp. initiating) event occurring
since then.

Fluents are commonly used for integrating event-based and
state-based specifications [56], in particular to enable state-
based model-checking of event-based models [31] or to
synthesize event-based models annotated with state-based
information [22, 23]. In an event-based specification, system
behaviors are captured in terms of event sequences; in a state-
based specification, system behaviors are captured in terms of
state sequences [47].

IV. MODELING DECISION-BASED PROCESS MODELS
This section introduces Guarded High-Level Message
Sequence Charts (g-HMSC) as a process modeling language. It
first overviews the main language constructs (Section IV.A)
before discussing the various types of events involved in a g-
HMSC (Section IV.B), the various types of variables being
manipulated (Section IV.C), the mechanism for specifying
initial conditions on a process (Section IV.D), and the various
types of optional annotations for specifying task preconditions
and non-functional features refering to time and resource
usage (Section IV.E).

A. Process models as g-HMSCs
A g-HMSC is a directed graph with three types of node.

• A task node captures a process task, that is, a work unit
performed by collaboration of agent instances involved
in the process.

• A decision node captures a process decision. It is
characterized by a set of guards. Each guard is
associated with a specific outgoing branch; it specifies
the condition for the tasks along this branch to be
performed. Guards are Boolean expressions on process
variables (see Section IV.C hereafter).

• Initial and terminal nodes represent the start and end of
the process, respectively.

Nodes in a g-HMSC are connected by two types of arcs.
• An outgoing arc from a task or initial node is called

continuation. It prescribes how the connected nodes
must be sequentially composed.

• An outgoing arc from a decision node is called guarded
transition. The corresponding guard must be evaluated
to true for the arc to be followed.

Tasks may be refined. A non-terminal task is refined into
subtasks and decisions forming a finer-grained g-HMSC. A
terminal task is an MSC scenario showing sequences of
interaction events among agent instances.
A g-HMSC can be represented graphically or textually. The
graphical syntax is used here; see [46] for the guarded
command language used by the tool. A task is represented by a
box, expanded into a finer-grained g-HMSC (non-terminal

task) or an MSC (terminal task) –see Fig. 1 and Fig. 2,
respectively. A decision is represented by a diamond with a
guard labeling each outgoing branch of the decision. In simple
cases with two branches only, the guard expression may be
moved up inside the decision node with ‘yes’ or 'no’ label
being attached to the corresponding branch.

B. Task-related events
As detailed in Section V, the formal semantics of the g-HMSC
language is defined in terms of event traces. Two kinds of
events are involved.

• Interaction events are the MSC events capturing
synchronous interactions among agent instances in
terminal tasks.

• Action events correspond to task applications. Every
task T has two built-in action events associated with its
start and end; they are denoted by Tstart and Tend,
respectively.

As seen below in the paper, the built-in start and end action
events serve multiple purposes.

• They specify the task boundaries in the event traces
produced by the process. This provides a useful
traceability mechanism between refinement trees in the
g-HMSC model and event traces in the corresponding
lower-level, LTS-based model manipulated by analysis
tools. This mechanism is required for roundtrip
feedback by such tools.

• The start and end action events allow process variables
and time distances to be more accurately defined
through them.

• They yield a default refinement for tasks that are not
yet refined, thereby enabling early analyses on partial
models.

• They can be used for synchronizing agent instances so
as to prevent a task from starting before its predecessor
in the graph is not fully completed.

C. Process variables
The variables appearing in guards at decision nodes of a g-
HMSC model dictate which paths are to be followed in
specific process instances. Such variables get their values from
the occurrence of specific events; no explicit assignment is
needed which makes g-HMSC models simpler. Process
variables may be task-related fluents or environment tracking
variables.
1) Task-related fluents
The atomic conditions found in g-HMSC guards may be
fluents whose initiating and terminating events are interaction
events or action events. For example, the fluent
consultation_done in Fig.1 is defined as follows:

fluent consultation_done =
<{Consultationend},
 {Medical Treatmentend}> initially false.

2) Environment tracking variables
A decision may also depend on environment quantities that are
not necessarily observable at the corresponding g-HMSC node
by the agent instances involved in the process. For example, a
medical decision might depend on the patient's blood rate of

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 5

anxiolytic drug; the actual value for this quantity might not be
observable at the corresponding decision point.
Tracking variables are intended to approximate environment
quantities as accurately as possible through some observable
counterpart. When a tracking variable appears in a guard, the
decision is based on its current value rather than the actual,
unobservable counterpart. In our example, a tracking variable
might capture the anxiolytic level found in the patient’s record.
The decision might then be based on this quantity instead of
the actual, unobservable anxiolytic level.
A tracking variable has to be updated periodically through
dedicated tasks whose applications yield measure events (see
Fig. 3). These are events whose effect is to reset the value of
the tracking variable to its environment counterpart; both
values are then “re-synchronized”. For example,
blood_test_results in Fig. 2 is a measure event for the tracking
variable anxiolytic_tooHigh as the patient record accurately
represents the anxiolytic level right after a blood test.
As suggested in Fig. 3, the value of a tracking variable does
not change between two occurrences of a measure event.
Between such occurrences, however, some tasks might affect
the environment quantity; the corresponding change is then not
reflected by the tracking variable. The application of such
tasks yields so-called outdate events. For example, the
anxiolytic level is known to be affected by the administration
of an anxiolytic treatment; the latter invalidates former blood
test results.
The value of a tracking variable resulting from a measure
event might also be known to become outdated after a certain
time. For example, the anxiolytic level obtained through a
blood test might be considered outdated after 2 days.
A tracking variable is therefore defined by a set of measure
events, an initial value and, optionally, a set of outdate events
and a duration during which its value remains accurate. The
definition takes the following form:

trackVar tV = {MeasureEvents} initially InitiallytV
 {OutdateEvents} duration DurtV.

In our example, we might have:
 trackVar anxiolytic_tooHigh =
 {blood_test_results} initially false
 {AnxiolyticTreatmentstart} duration 2 days.

Tracking variables are restricted in this paper to Boolean
variables as they are only used for formalizing decisions. They
can be seen as predicate abstractions –e.g., the variable
anxiolytic_tooHigh captures whether “the patient anxiolytic

level is above 100 µg/L”.
Tracking variables should not be confused with fluents. In
contrast with initiating and terminating events, measure events
do not define which value the tracking variable gets; they only
capture that this value is accurately updated to the current
value of the corresponding environment quantity. On the other
hand, outdate events update the environment quantity but not
the corresponding tracking variable; they capture that the
tracking variable might no longer be accurate.

D. Initial context conditions
A flexible process model should make it possible to capture a
process whose instances follow different paths according to
different initial conditions. In our running example, different
paths should be followed in Fig. 1 dependent on whether or
not the patient had a consultation before.
In the definition of the fluents and tracking variables used in a
g-HMSC, we may omit the initial value for some variables to
express that these may initially be true for some process
instances and false for others. Initial values are thus defined at
instance level, not at class level. For example, the definition of
the fluent consultation_done hereafter specifies that some
patients might initially have a consultation already done
whereas others might not:

fluent consultation_done =
<{Consultationend}, {Medical Treatmentend}>.

In case of variable definitions with no initial value, we may
want to specify at class level that certain combinations of
initial values are ruled out in view of domain properties known
from a companion goal model [48]. For example, assuming
that the initial values of the fluents consultation_done and
evaluated were not specified, we know that the patient may
have an evaluation only if a consultation has already been
performed; any initial state should meet this domain property.
In such cases, an initial context condition may be specified on
the g-HMSC in order to constrain the acceptable initial values
of process variables. In our example, the initial context
condition is:

C0: evaluated ⇒ consultation_done.

E. Task annotations
A task in a g-HMSC may be annotated with features such as
its precondition, its duration, its cost, the resources needed to
perform it, and so forth. Such annotations are required only for
specific types of analysis; they are thus optional in the process
definition.
1) Task preconditions
A task precondition is a necessary condition on input variables
for the task to be applied. It must hold in any state where the
task starts being performed.
Preconditions are Boolean expressions on fluents and tracking
variables. For example, the precondition of the task Medical
Treatment in Fig. 1 is the fluent evaluated.
Note that task postconditions are indirectly captured by fluent
definitions. For example, the postcondition of the task
Consultation in Fig. 1 is the fluent consultation_done since the
end of this task is specified as an initiating event for this
fluent, see the fluent definition in Section IV.C.

associated tracking
variable (observable by

process)
av av av piv piv piv

measure measure measure

av: accurate value
piv: approximate, possibly inaccurate value

environment quantity
(controlled by
environment)

Fig. 3. Behavior of an unobservable environment quantity and its tracking

variable

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 6

2) Task durations
A duration interval may also be specified for any task. It
captures the minimum and maximum time taken by the task,
expressed in number of time units. Table 1 illustrates durations
of unrefined tasks from Fig. 1.
Such information enables us to check whether time-critical
processes meet their timing requirements (see Section VII.D).
More precisely, the duration of an action event Tstart or Tend is
characterized by the following function:

Duration: E → P (N+)
 Duration (Tstart) = {0},

Duration (Tend) = [min, max],
that is, the set of natural numbers between min and max
(included) where min and max denote the minimum and
maximum time taken by the corresponding task, respectively.
(P is the standard powerset notation and N+ denotes the set of
natural numbers).
The duration of an interaction event is the singleton {0}.

3) Other non-functional features
A task may also be annotated with other information relevant
to non-functional process requirements such as resources
needed to perform it, dose to be delivered, cost, location, and
the like. For example, a single radiotherapy task might be
annotated with a delivered dose of 1.8 Gray.
Such information enables us to check process models for
requirements violations (e.g., radiation overdose or
underdose). Counterparts to the preceding Duration function
are used for this (see Section IX.D).

V. OPERATIONAL SEMANTICS: FROM G-HMSC MODELS TO G-LTS
This section introduces an intermediate formalism between the
g-HMSC and LTS formalisms. Roughly, a guarded LTS (g-

LTS) is a transition system whose transitions are labeled by
events or guards.
The g-LTS formalism provides a convenient milestone on the
way from a g-HMSC process model to the corresponding LTS.
In particular, it allows the set of traces accepted by the g-
HMSC to be precisely defined. This set of traces may in turn
be converted into a set of LTS traces. A formal LTS trace
semantics allows us to reuse existing frameworks and tools, in
particular, model-checking techniques implemented in the
LTSA toolset [25, 56].
A g-LTS is a structured form of LTS that reduces state
explosion through guard abstractions. It is easier to understand
and facilitates code generation. The different types of analyses
in this paper are performed on g-LTS representations –one
abstraction level above the LTS counterpart analyzed by the
model checker discussed in [25].

A. Guarded LTS
A guarded LTS (g-LTS) is defined by a structure (S, E, VAR,
δ, s0, C0) where

• S is a finite set of states,
• E is a set of event labels,
• VAR is a set of fluents and tracking variables defined

over E,
• δ is a guarded transition relation:

 δ ⊆ S × (E ∪ GUARD) × S
where GUARD is the set of Boolean formulae over
VAR,

• s0 is the initial state,
• C0 is a Boolean formula over VAR capturing an initial

context condition.
Fig. 4 shows a g-LTS derived from the g-HMSC shown in
Fig. 1 and Fig. 2. The guards there appear between brackets.
Every transition in a g-LTS is labeled by a guard or by an
event.

• A guard is a Boolean formula over fluents and tracking
variables. It must be evaluated to true for the associated
transition to be activated.

• A g-LTS event is an interaction event from a terminal
g-HMSC task (e.g., result_interpretation in Fig. 4) or a
g-HMSC action event (e.g., Consultationstart).

The initial context condition C0 plays the same role as in g-
HMSCs.
Any g-HMSC process model can be rewritten as a g-LTS

[¬patient_in
_danger]

result_interpretation

[observation_
required] 0

1

2 3

4 5

12

Consultationend

6

Diagnosisstart

psy_questioning 7 psy_answering 8 blood_test

9
blood_analysis_request

11

14
Evaluationend

17

15

[¬observation_
required]

16

Observationstart

Observationend

19
[medical_
treatment_
required]

18

[¬medical_
treatment_
required]

20
Medical

Treatmentstart 21
Medical

Treatmentend

22
Specialized

Consultationend

Specialized
Consultationstart

[patient_in
_danger]

10 blood_test_results

[evaluated]
[consultation_done
∧ ¬evaluated]

Evaluationstart

[¬consultation
_done]

Consultationstart

13 Diagnosisend

Fig. 4. g-LTS corresponding to the g-hMSC in Fig. 1 and MSC in Fig. 2

Task Min Max

Consultation 1 1
Diagnosis 1 1
Evaluation 2 3
Observation 7 15
Medical Treatment 21 21
Specialized Consultation 1 1

Table 1. Task durations for treating acute manic-depressive troubles (in
days)

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 7

having the same set of traces. The rewriting algorithm is
detailed in [25, 46]. It extends the algorithm in [72] so as to
take a g-HMSC as input and a g-LTS as output. The latter
abstracts from agents and captures the set of global behaviors
covered by the g-HMSC.
The optional task annotations discussed in Section IV.E are
not involved in the resulting operational semantics of a g-
HMSC; they are used for dedicated checks (see Section VII).

B. Trace semantics of g-LTS
The semantics of a g-LTS is in turn defined in terms of guard-
free event traces. Let G denote the g-LTS (S, E, VAR, δ, s0,
C0).
A g-LTS execution from s0 is a pair (Init, σ) where:

• Init is an initial variable assignment mapping every
variable to true or false,

• σ is a sequence of labels li, some being events and
others being guards (li ∈ E ∪ GUARD).

A g-LTS execution from s0 is accepted by g-LTS G iff the
following acceptance conditions are met for every i:

• ∃ si+1 ∈ S such that (si, li, si+1) ∈ δ (inclusion),
• Init ⎥= C0 (admissible start),
• VAi ⎥= li if li ∈ GUARD (guard satisfaction),

where VAi is the variable assignment after the i-th event in the
g-LTS execution (with VA0 = Init).
The inclusion condition states that the sequence of labels is
accepted by the automaton. The admissible start condition
states that the initial variable assignment must meet the initial
context condition C0. The guard satisfaction condition ensures
that all guards are met along the sequence.
An event trace of g-LTS G from initial state s0 with respect to
an initial variable assignment Init is a g-LTS execution
accepted by G where all labels corresponding to guards have
been removed. The set of event traces accepted by G is the
union of all such traces, for all initial states Init meeting the
admissible start condition.
An algorithm for LTS generation from a g-LTS can be found
in [25, 46]. Unlike the model checker discussed in [25], the
analysis techniques in this paper do not require LTS traces to
be explicitly produced.

VI. COMPUTING GENERIC DECORATIONS ON GUARDED
TRANSITION SYSTEMS

The formal trace semantics of the g-HMSC process language
enables a variety of checks on process models such as, e.g., the
verification of guard completeness and disjointness in the
current process state at a decision node, the verification of task
preconditions, the verification of non-functional process
requirements involving time or resources, and so forth. The
overall approach proceeds in three steps.

1. A g-LTS is first generated from the g-HMSC model
using the technique described in [25].

2. Each state of this g-LTS is automatically decorated
with quantities that are meaningful to the specific type
of check being considered.

3. The computed quantities are used to perform the
corresponding check.

This section focuses on the computation of state decorations in
Step 2. This is the core step common to all different types of
checks discussed in Section VII. Depending on the specific
check considered, the decorations might refer to assertions,
such as state invariants, or to quantities such as the time
elapsed from the initial state to the current process state, the
cost incurred up to the current node, the radiation dose
received by a patient so far, and so forth. Rather than different
decoration algorithms for different types of decorations and
checks, a single uniform treatment is provided. The
meaningful decorations are made generic through so-called
placeholders; the generic algorithm described in this section
works then for specific placeholder instantiations.

• A placeholder is a generic variable whose value in a
specific g-LTS state characterizes this state whatever
path has been followed in the model to reach it from
the initial state.

• A decoration of a g-LTS state is a mapping from the
values of process variables in this state to the
corresponding placeholder values.

A decoration of a g-LTS state is intended to keep track of
which value assignment of fluents and tracking variables
corresponds to which placeholder value in this state. Such
mapping is needed to account for guard satisfaction along the
paths through which decorations are to be propagated. To
visualize this, suppose that a state is decorated with an
interval; the meaning is that the placeholder may in this state
have any element within this interval as value. In Fig. 5(a), we
cannot determine the placeholder values right after guards g or
¬ g without knowing the relation between the value of variable
g and the valid interval for such value. In Fig 5(b), we have
this information; e.g., when variable g has the value false in
the source state, the placeholder may belong to the interval [3,
5] in this state. We can then propagate that information to
determine the resulting decoration for the target states.
Our generic decoration algorithm propagates state decorations
through the g-LTS model until a fixpoint is reached, that is,
until no state decoration changes if the propagation is applied
once more to every transition [41, 51, 61]. The algorithm
accumulates in every state the decorations contributed by
every g-LTS execution reaching this state.
To explain this algorithm piecewise, Section VI.A first deals
with propagation of placeholder values along a single g-LTS
execution regardless of corresponding assignments of fluents
and tracking variables. Keeping track of those assignments
along a single g-LTS execution is explained separately in
Section VI.B. The decoration lattice structure manipulated by
the algorithm is defined in Section VI.C. The propagation of
decorations is then detailed in Section VI.D. The generic
decoration algorithm is finally provided in Section VI.E.

¬g |→ [3,5]

g |→ [3,4],
¬g |→ [3,5]

g |→ [3,4]

[¬g] [g]

[?,?]

[3,5]

[?,?]

[¬g] [g]

(a) (b)

Fig. 5. Propagating decorations through guards

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 8

A. Placeholder values along a single g-LTS execution
Let PlcV denote the set of possible values of a placeholder. In
this set, p0 denotes the value of the placeholder at the initial
process state; the latter corresponds to an empty g-LTS
execution.
The plcPropag function specifies how a placeholder value is
propagated through a single event-labelled transition. This
value is assumed to depend only on the incoming event and
the value in the preceding state. Placeholder values may thus
not depend on subsequent events –e.g., the remaining time
before reaching a subsequent task T cannot be captured as a
placeholder instantiation.
The plcPropag function has the following signature:

plcPropag: PlcV × E → P (PlcV).
As the powerset notation in the codomain of this function
indicates, a placeholder can have multiple propagation results.
This happens when a single value cannot be deterministically
determined after the occurrence of an event. For example, the
duration of a task might vary depending on the agent instances
performing it; the duration is then captured by an interval.
The placeholder values pi along a single g-LTS execution are
recursively determined as follows:
• in the initial state, the placeholder value is p0;
• through a guard, the value does not change, that is, pi = pi-1;
• through an event e, the value belongs to plcPropag (pi-1, e).

The set PlcV of placeholder values and the plcPropag function
are parameters of the generic state decoration algorithm. Any
algorithm instantiation for a specific analysis requires
instantiating plcPropag through a specific propagation rule on
a specific set of instantiated placeholder values.

Example: Instantiation for elapsed time. To capture the
elapsing time through tasks having some minimum/maximum
duration, PlcV is instantiated to the set N+ of natural numbers.
The value of the placeholder after an empty g-LTS execution
is p0 = 0. The plcPropag function is instantiated as follows:

plcPropag : N+× E → P (N+),
plcPropag (p, e) = p ⊕ Duration (e),

where the ⊕-operator “adds” a duration interval to a time point
according to the following definition:

⊕: N+ × P (N+) → P (N+),
t ⊕ [min, max] = [t + min, t + max].

Handling unbounded g-LTS executions over infinite domains.
As detailed below, the decoration algorithm propagates
placeholder values from state to state until the values remain
unchanged if the propagation is applied once more to every
transition. Such fixpoint might not be reached for process
models containing unbounded cycles if the set PlcV of
possible placeholder values is infinite. In such cases, the
algorithm might not terminate.
To avoid this problem, the user is asked in such situations to
provide a finite subset of PlcV, denoted by finitePlcV. If there
are g-LTS executions yielding placeholder values out of
finitePlcV, the algorithm outputs the element OutOfBounds for
such executions. The set of placeholder values possibly
produced by the algorithm, denoted by boundedPlcV, is thus:

boundedPlcV = finitePlcV ∪ {OutOfBounds}.

The algorithm therefore relies on a bounded version of the
plcPropag function previously introduced. The plcPropag*
function “wraps” plcPropag while restricting output values to
finitePlcV and using the OutOfBounds marker when required:

plcPropag*: boundedPlcV × E → P (boundedPlcV)
plcPropag* (p, e) =

if p = OutOfBounds then return {OutOfBounds}
else vals := plcPropag (p, e)

 if vals ⊆ finitePlcV then return vals
 else return (vals ∩ finitePlcV) ∪ {OutOfBounds}.

The correctness proof of the generic decoration algorithm,
outlined in Section IX.A, requires propagations of elements
outside finitePlcV to remain outside finitePlcV:

for any p ∈ PlcV \ finitePlcV and any e ∈ E:
plcPropag (p, e) ∩ finitePlcV = ∅.

The impact of this hypothesis is limited in practice. Getting
out of finitePlcV might occur when the process model contains
unbounded cycles. For medical processes, this generally
corresponds to a modeling error, detected by our approach as a
side effect. When all executions are finite and the bounds of
finitePlcV are nevertheless reached, a larger finitePlcV may be
taken to meet the hypothesis.

Propagating sets of placeholder values. In Section VI.D
hereafter, placeholder propagation needs be applied to a set of
placeholder values (rather than a single value). The
plcPropag* function is extended for this into the
plcSetPropag* function defined as follows:
 plcSetPropag*: P (boundedPlcV) × E → P (boundedPlcV)
 plcSetPropag* (set, e) = ∪p∈set plcPropag* (p, e)

B. Values of process variables along a single g-LTS execution
As introduced at the beginning of Section VI, we need to know
in each g-LTS state what the values of fluents and tracking
variables are; a placeholder value should not be propagated
through a guard if the current assignment of those variables
does not satisfy the guard (see Fig. 5).
Let AsgV denote the set of possible value assignments of
fluents and tracking variables. A specific assignment asg is a
set of elements of form x |→ v where x denotes a fluent or a
tracking variable and v denotes the value true or false. It is
often convenient to use the equivalent propositional form
instead, namely,

asg =def ∧j xt
j ∧ ∧k ¬xf

k,
where xt

j and xf
k denote the variables whose assigned value is

true and false, respectively.
The asgPropag function specifies how a value assignment for
fluents and tracking variables is propagated through a single
event-labelled transition:

asgPropag: AsgV × E → P (AsgV).
Here again, the powerset notation in the codomain of this
function indicates that a value assignment can have multiple
propagation results; for a single assignment tv |→ v of a
tracking variable tv, the propagation through a measure event
of tv yields the two assignments tv |→ v and tv |→ ¬v.
Unlike the propagation of placeholder values to be instantiated
for a specific analysis, the propagation of value assignments
always follows the same rule, namely,

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 9

 asgPropag (asg, e) = asg [/Ve] ∧ ∧i fi,e ∧ ∧t ¬ft,e ,
where

• asg [/x] = def asg |x=true ∨ asg |x=false ;
• B|x=v is the Boolean formula B where every occurrence

of variable x has been replaced by the value v;
• for a set V of variables x1, x2,..., xn, the notation

generalizes through composition:
B [/V] = def B [/x1][/x2]...[/xn];

• Ve is the set of variables affected by event e, that is,
Ve = Fi,e ∪ Ft,e ∪ TVe ,

where
- Fi,e is the set of fluents fi,e having e among their

initiating events;
- Ft,e is the set of fluents ft,e having e among their

terminating events;
- TVe is the set of tracking variables having e among

their measure events.
Example. Consider the following process variables appearing
in Fig. 1:

fluent evaluated = < {Evaluationend},
 {Medical Treatmentend} >
trackVar observation_required ={Evaluationend}.

Suppose that the current value assignment is:
asg = ¬ evaluated ∧ ¬ observation_required.

After the event Evaluationend this assignment becomes:
 asgPropag (¬evaluated∧¬observation_required,
 Evaluationend)
 = (¬evaluated ∧ ¬observation_required)
 [/ {evaluated, observation_required}]
 ∧ evaluated
 = evaluated.
This means that any patient following the process is now
evaluated; one patient might be required to undergo an
observation whereas another one not.
The value assignments asgi along a single g-LTS execution are
now recursively determined as follows:
• in the initial state, the assignment is the initial assignment

Init;
• through a guard, the assignment remains the same, that is,

asgi = asgi-1;
• through an event e, the new assignment belongs to

asgPropag (asgi-1, e);
- all fluents whose set of initiating (resp. terminating)

events contains e are made true (resp. false);
- all tracking variables whose set of measure events

contains e are made non-deterministically true or false.

C. The decoration lattice
The decoration of a g-LTS state was informally introduced
before as a mapping from the values of fluents and tracking
variables in this state to the corresponding placeholder values.
More precisely, it is a partial function with the following
signature:

dec: AsgV → P (boundedPlcV).
(Remember that AsgV denotes the set of possible value
assignments of fluents and tracking variables.)

Let dom dec denote the subset of AsgV where decoration dec
becomes a total function; let img dec denote the subset of
corresponding images in P (boundedPlcV).
State decorations form a lattice (≤, ∧, ∨, ⊥, T) defined as
follows:

d1 ≤ d2 if dom d1 ⊆ dom d2
 and ∀asg ∈ dom d1: d1 (asg) ⊆ d2 (asg)
⊥ = ∅
T = { asg |→ BoundedPlcV | asg ∈ AsgV }
d1 ∨ d2 = { asg ||→ d1 (asg) ∪ d2 (asg) | asg ∈ dom d1 ∩ dom d2 }
 ∪ { asg |→ d1 (asg) | asg ∈ dom d1 \ dom d2 }
 ∪ { asg ||→ d2 (asg) | asg ∈ dom d2 \ dom d1 }
d1 ∧ d2 = { asg |→ d1 (asg) ∩ d2 (asg) | asg ∈ dom d1 ∩ dom d2 }

The “∨” supremum operator on this lattice is of particular
importance. As shown in the next sections, the decoration
algorithm uses this operator to propagate decorations through
transitions and accumulate propagation results in each state.
Example: Supremum for elapsed time. Consider a g-LTS with
a single fluent evaluated. One state might be decorated with
 {evaluated |→ {2,3}, ¬ evaluated |→ {4}},
meaning that any process execution reaching this state takes 2
or 3 time units if the patient is evaluated, and exactly 4 time
units if she is not evaluated. Taking the supremum of this
decoration with the decoration
 {evaluated |→ {2,5}},
we get:
 {evaluated | → {2,3,5}, ¬ evaluated |→ {4}}.

D. Propagating state decorations along a g-LTS execution
Sections VI.A and VI.B separately discussed the propagation
of placeholder values and the propagation of value
assignments of process variables, respectively. As a state
decoration is a mapping from the latter to the former, this
section integrates the two mechanisms for decoration
propagation.
Let DecoV denote the set of possible values for state
decorations, that is, the set of partial functions capturing
decorations (see Section VI.C). The decoPropag function
specifies how a state decoration is propagated through a single
transition:

decoPropag: DecoV × (E ∪ GUARD) → DecoV.
A g-LTS transition is labeled by a guard or by an event.

• Through a guard g, the algorithm may only propagate
decorations that meet g:

decoPropag (dec, g) = g v dec,
where “v” denotes the domain restriction operator;
g v dec restricts the domain of the decoration function
dec to those assignments meeting guard g.

• Through an event, both the domain dom dec and the
image set img dec of decoration dec must be updated. The
former is updated according to the asgPropag function
introduced in Section VI.B for propagating value
assignments; the latter is updated according to the
plcPropag function introduced in Section VI.A for
propagating placeholders:

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 10

 decoPropag (dec, e) =
 ∨asg ∈ dom dec{ a |→ plcSetPropag* (dec (asg), e)
 | a ∈ asgPropag (asg, e) },

where plcSetPropag* is the bounded propagation
function over sets of placeholder values introduced at the
end of Section VI.A and asgPropag is the propagation
function over value assignments of process variables
introduced in Section VI.B. Given a decoration and an
event, decoPropag is computed assignment-wise from
the decoration domain (see Fig. 6). The results are
accumulated through the “∨” lattice supremum operator.

Example for elapsed time. Back to our running example,
consider a state decorated with
 {evaluated |→ {2,3}, ¬ evaluated |→ {4}}.
Suppose that we want to propagate this decoration through the
guard [¬ evaluated]. In this case, the decoration of the
subsequent state is obtained through the v-operator:

decoPropag ({evaluated |→ {2,3}, ¬ evaluated |→ {4}},
 [¬ evaluated])
= ¬ evaluated |→ {4}.

Suppose now that we want to propagate the same decoration
though the event Evaluationend. The latter is an initiating event
for fluent evaluated; its duration is between 2 and 3 time units.
The decoration of the subsequent state is therefore:

 decoPropag ({evaluated |→ {2,3}, ¬ evaluated |→ {4} },
 Evaluationend)
= { evaluated |→ {4,5,6} ∨ evaluated |→ {6,7} }
= { evaluated |→ {4,5,6,7} }

E. The generic decoration algorithm
For any state s, the decoration computed by the algorithm
should be the most accurate one in the following sense.

a) Not-too-general: any generated placeholder value should
be produced by at least one g-LTS execution reaching s.

b) Not-too-specific: any placeholder value produced by a g-
LTS execution reaching state s should be generated.

To make the notion of most accurate decoration further
precise, let us introduce the stateDeco function mapping every
g-LTS state to its generated decoration:

stateDeco: S → DecoV,
where DecoV was introduced before as the set of partial
functions mapping assignments of process variables to
placeholder values. Let us also consider the set of possible
placeholder values in the decoration of state s regardless of the
corresponding value assignments of process variables in that
state:

Placeholders (s) = ∪pl ∈ img stateDeco(s) pl
The two preceding conditions for a generated decoration
stateDeco (s) to be the most accurate one are made more
precise as follows.

a) Every element of Placeholders(s) must be a placeholder
value produced by at least one g-LTS execution reaching
s. If OutOfBounds ∈ Placeholders(s), there must exist at
least one g-LTS execution yielding a placeholder value
outside finitePlcV.

b) For every placeholder value p produced by a g-LTS
execution reaching s, we must have:

o p ∈ Placeholders(s) if p ∈ finitePlcV,

o OutOfBounds ∈ Placeholders(s) otherwise.
The specification of the decoration algorithm is the following.

GIVEN
• a g-LTS (S, E, VAR, δ, s0, C0),
• a set PlcV of placeholder values with finite subset

finitePlcV,
• a placeholder propagation function

plcPropag: PlcV x E → P (PlcV),
• a value p0 for the placeholder in the initial state (p0 ∈

finitePlcV),
FIND the most accurate decoration stateDeco (s) for every

g-LTS state s.
The decoration algorithm is given in Fig. 7. The symbols ≤, ∨
and ⊥ there correspond to the partial order, supremum operator
and bottom element of the lattice introduced in Section VI.C,
respectively. The algorithm propagates decorations from state
to state until a fixpoint is reached, that is, until no state
decoration changes if the propagation is applied once more to
every transition.
The initial decoration maps all value assignments satisfying
the initial condition to the initial placeholder value p0. It is
used for the initial g-LTS state s0. Other states are initially
decorated with the bottom element of the decoration lattice.
The algorithm keeps track of the set ToExpl of states to which
the propagation should be further applied. It terminates when
the set ToExpl is empty, that is, when no state requires further
decoration propagation.
For a given source state in ToExpl, its decoration is
successively propagated to successor states through the
decoPropag function introduced in Section VI.D. If the
propagation result is not already covered by the decoration of
the target state, it is accumulated through the lattice supremum
operator. The target state is then added to the states to be
further explored.
The correctness proof of this algorithm is outlined in Section
IX.A; the full details are found in [21].

Fig. 6. Propagating decorations using the decoPropag function

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 11

F. Instantiating the decoration algorithm for specific analyses
The generic decoration algorithm is designed to be applicable
to a wide variety of analyses on the g-LTS generated from a g-
HMSC process model. For each type of analysis, the same
instantiation steps are required.

1. The placeholder domain PlcV is instantiated so as to meet
the desired type of analysis. If PlcV is not finite, a finite
subdomain is defined. An initial placeholder value p0 is
then selected.

2. The plcPropag function is instantiated by specifying how
instantiated placeholder values get transformed through a
single event-labelled transition.

These steps were already illustrated in Section VI.A for the
time elapsing through tasks having some minimum/maximum
duration. The next section illustrates the whole instantiation
process on a variety of analyses.

VII. DECORATION-BASED ANALYSIS OF PROCESS MODELS
This section presents instantiations of the generic decoration
algorithm for a variety of analyses on process models. A first
instantiation concerns the generation of state invariants
(Section VII.A). Section VII.B shows how the guards at a
decision node can be checked for disjointness, completeness
and satisfiability in the current state where the decision is
made. Section VII.C shows how preconditions on tasks can be
verified or even generated. Section VII.D describes a
technique for verifying time constraints and other resource-
related requirements on the process model. Finally, Section
VII.E presents a technique for checking whether the decision
made at a decision node is adequate, that is, whether the values
of the process variables are sufficiently accurate in the current
state where the decision is made.

A. Generating state invariants
A state invariant is an assertion on a specific state of the
process that holds every time this state is visited. The most
accurate state invariant at a state is the one that accounts for
all possible process executions reaching that state and only
those. This invariant will be referred to as MAS invariant for
short.
The annotation of process models with MAS invariants
provides multiple benefits.

• The documentation and understandability of the
process model is improved.

• The invariants can be used for model validation and
anomaly detection.

• The invariants can be exploited by analysis tools for
increased efficiency [9, 41].

• Other process analysis techniques may rely on them
(see Sections VII.B, VII.C, and VII.E).

1) Placeholder instantiation
To generate MAS invariants over process variables, the
generic decoration algorithm is instantiated in a quite simple
way. No specific placeholder is required as we only need
information about possible values of fluents and tracking
variables.

• PlcV contains one single element, p0;
• plcPropag is the identity function.

2) Using decorations for state invariant generation
The instantiated decoration algorithm generates the possible
value assignments of process variables at each state, see
Section VI.B. The MAS invariant SI (s) for state s is then
simply obtained by taking the disjunction of all values
obtained for this state:

SI (s) = ∨asg ∈ dom stateDeco(s) asg.

3) Example
Each node of the g-LTS model in Fig. 4 may thereby be
annotated with its MAS invariant. For example, the invariant
generated at state 15 is:

evaluated ∧ consultation_done ∧ observation_required.
Note that the assertion

evaluated ∧ consultation_done
 is also a state invariant but not the most accurate one.

B. Analyzing guards at decision nodes
The following guard-related checks are worth considering in
decision-based process models.

• Guard completeness: The guards on the various
alternatives at a decision node must cover all possible
cases in the state reached at that node; no alternative
branch may be missing. Otherwise the process might be
blocked forever in that state with no guard evaluated to
true and, correspondingly, no task being prescribed
when the missing guard is true.

• Guard disjointness: The guards on the various
alternatives at a decision node may not overlap in the
state reached at that node; two guards may not be both
evaluated to true in that state. Non-deterministic
decisions where different courses of action are taken by
different process instances applied to right the same
situation are most often to be precluded. Clinical
guidelines, for example, prescribe patients in identical
conditions to be treated identically.

• Guard satisfiability: The guards on the various
alternatives at a decision node must all be satisfiable in
the state reached at that node. Otherwise the subsequent
tasks prescribed along some branch would be
unreachable.

stateDeco (s0) := { (x | → {p0}) ⎪ x |= C0 }

forall s ∈ S \ {s0} do
stateDeco (s) := ⊥

ToExpl := {s0}
while ToExpl ≠ ∅ do
 source := getOne (ToExpl)
 ToExpl := ToExpl \ {source}
 forall (source, target, label) ∈ δ do
 newVal := decoPropag (stateDeco (source), label)

 if not (newVal ≤ stateDeco (target)) then
 stateDeco (target):= newVal ∨ stateDeco (target)
 ToExpl := ToExpl ∪ {target}
return stateDeco

Fig. 7. Generic algorithm for g-LTS decoration

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 12

Such checks are close in spirit to those in [36] for SCR tables.
Beyond different formalisms there is a notable difference,
however. The checks here must take into account the
contextual conditions holding at the point in the process model
where the decision node is reached. These conditions are
captured by the MAS invariant at that point.
1) Placeholder instantiation
The instantiation for guard analysis is therefore similar to the
one in Section VII.A for generating MAS invariants on fluents
and tracking variables.
2) Using decorations for guard analysis
The MAS invariant right before the decision node is first
generated. The result of this step is used in various types of
satisfiability checks at the next step. Let sD denote the state
reached at decision node D and let SI (sD) denote the generated
MAS invariant at sD.
 (SC1) For guard completeness at D, we need to check that:

 SI (sD) ⎥= ∨i gi.
In case of incompleteness, our tool returns all value
assignments of process variables that are not covered by
the guards gi on outgoing branches from D.

(SC2) For guard disjointness at D, we need to check that:
for every pair of guards gi, gj from D:
 gi ∧ gj ∧ SI (sD) ⎥= false.

In case of overlap, the tool returns all value assignments of
process variables that satisfy several guards at D.

(SC3) For guard satisfiability at D, we need to check that:
for every guard g from D: g ∧ SI (sD) is satisfiable.

In case of unsatisfiability, the tool indicates outgoing
transitions that are unreachable.

Checks (SC1)-(SC3) are fairly simple once the contextual
MAS invariant SI (sD) is generated as a first step thanks to the
decoration algorithm.
3) Example
Consider the top decision node of the process model in Fig. 1.
Let us assume that the initial context condition on this model
is ¬ evaluated. The guards on the three outgoing transitions
are: ¬ consultation_done, consultation_done ∧ ¬ evaluated,
and evaluated. The generated MAS invariant right before the
decision node is: ¬ evaluated. The three guards are verified to
be complete and disjoint. However, the tool points out that the
third guard is unsatisfiable in view of the generated invariant.
The problem is easily fixed by removing the corresponding
guarded transition. The second guard may then be simplified
into consultation_done.

C. Verifying or generating task preconditions
As discussed in Section IV.E, tasks in a g-HMSC process
model may be annotated with their precondition. It is worth
checking that task preconditions cannot be violated through
some path in the model. Even better, we may want to generate
them automatically when they are not given.
1) Placeholder instantiation
Here again, the first step consists of generating the MAS
invariant for each state. The instantiation is therefore similar to
the one described in Section VII.A.

2) Using decorations to check or generate preconditions
Checking that the precondition PRET of task T is never
violated amounts to the following satisfiability check
performed as a second step:

 for every source node s of a Tstart event: SI (s) |= PRET,
where SI (s) denotes the MAS invariant generated at this node.
When task preconditions are not provided by the modeler, the
tool uses the same decorations to generate them. For a task T,
it retrieves all source states of Tstart events and takes the
disjunction of their MAS invariants.
The preconditions thereby inferred may need to be further
simplified to remove redundant parts that state known domain
properties.
3) Example
Let us assume that the Medical Treatment task at the bottom of
Fig. 1 has been annotated with evaluated as precondition. The
precondition check reveals a violation; medical treatment can
be prescribed without evaluation when the patient is in danger
(see Fig. 1).
Two alternative resolutions might fix the problem: (a) change
the precondition or (b) require an evaluation before medical
treatment of patients in danger. If (a) is selected, the new
precondition may be inspired from the one generated by the
tool, namely,

¬ evaluated ∧ ¬ consultation_done ∧ patient_in_danger
∨ consultation_done ∧ evaluated
 ∧ medical_treatment_required

4) Discussion
Guard analysis and precondition checks might at first glance
appear fairly obvious types of checks. Such feeling may arise
from the simplicity of the second instantiation step once the
MAS invariant has been generated as a first step. Thanks to the
latter, the second step must not deal with the intricacies of
propagating possible values of process variables along all
guard-satisfying paths leading to the considered state; it must
only deal with propagations of placeholder values through
events, which is much simpler here as plcPropag is
instantiated to the identity function. Moreover, the first
invariant generation step is common to both techniques and
can therefore be shared among them.
The examples of detected errors provided as illustrations might
appear fairly simple as well. They are however representative
of uncovered errors found in real process documentations used
daily in clinical environments (see Sections IX.C and IX.D).

D. Verifying non-functional requirements involving time or
resources

Safety-critical processes such as those found in the medical
domain often involve critical time constraints. The latter
should be inferred from the corresponding model or verified
on it. For example,

• we may want to know how long a process can take in
best-case or worst-case situations;

• we may want to check whether strict timing
requirements on a task or process are always met by the
model.

General time-related properties can be verified on behavior
models by dedicated tools such as temporal model checkers

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 13

[53]. The instantiation in this section provides a more
lightweight technique for checking or infering specific types of
time constraints on process models. As discussed later, the
instantiation extends to other resource-related requirements on
process models and can easily be combined with other
instantiations of the generic algorithm for other types of
checks.
1) Placeholder instantiation
The placeholder here captures the discrete time elapsed from
the initial state. This instantiation was already introduced as an
illustration at the end of Section VI.A.

• PlcV is the set N+ of naturals. The initial elapsed time is
p0 = 0.

• The placeholder propagation function is instantiated as
follows:

plcPropag (p, e) = p ⊕ Duration (e),
 with ⊕: N+ × P (N+) → P (N+)
 t ⊕ [min, max] = [t + min, t + max]

• As PlcV here is infinite, a finite subset is taken by
restricting PlcV to the interval [0, TMAX] where TMAX
is some user-defined upper time bound.

The instantiated decoration algorithm can be used for checking
a variety of time-related properties. In particular, inferring or
verifying the minimum and maximum time taken by a process
or by a composite task is achieved by looking at the fixpoint
decoration generated at the last process/task state (e.g., state 18
in Fig. 4); the least and greatest time points are then taken in
the image set of the decoration function in this state.
As discussed in Section VI.A, getting OutOfBounds within
output decorations means that either the process contains
undesired infinite executions or the TMAX upper bound is not
large enough. In the latter case, a larger value should be
estimated based on known maximum durations of tasks and
quick checks on task loops.
2) Instantiated algorithm in action
Let us illustrate the first steps of the instantiated algorithm on
the simple example shown in Fig. 8.
Step 0: The decorations are initialized to ⊥ for each state
except for the initial one whose decoration is the function
mapping every value assignment meeting the initial context C0
to the initial placeholder value:

stateDeco (State0) = {evaluated |→ {0}, ¬ evaluated |→ {0}}.
Step1: State0 is in ToExpl. Following the algorithm in Fig. 7,
its decoration is propagated to all its successor states, that is,
State1 and State2. For State1, since ¬ evaluated is a guard, the
decoration of State0 gets restricted to the specific value
assignment ¬ evaluated. We obtain:

stateDeco (State1) = {¬ evaluated |→ {0}}.
Similarly, for State2 we obtain:

stateDeco (State2) = {evaluated |→ {0}}.
State1 and State2 are added to ToExpl since their decoration
has changed.
Step 2: Assume that State1 is selected in ToExpl. Its
decoration is propagated to its only successor, State0. The
evaluation event is an initiating one for fluent evaluated; its
duration is in the interval [2, 3]. Since

asgPropag (¬ evaluated, evaluation) = evaluated,
plcSetPropag* ({0}, evaluation) = {2, 3},

we obtain:
decoPropag ({¬ evaluated | → {0}}, evaluation) =
 {evaluated |→ {2, 3}},

and thus:
newVal = {evaluated |→ {2, 3}}.

The new decoration of State0 is computed from its old
decoration and newVal:

stateDeco (State0) = { evaluated |→ {0} ∪ {2, 3} }
 ∪ {¬ evaluated |→ {0} }
 = {¬ evaluated |→ {0}, evaluated |→ {0, 2, 3}}.

State0 is added to ToExpl as its decoration has changed.
Step 3: Assume that State0 is selected in ToExpl. Its
decoration is propagated to State1 and State2. For State1,
newVal has the same value as its decoration; no update is
required. For State2, we obtain:

 newVal = {evaluated |→ {0, 2, 3}}.
The new decoration of State2 gets the value of newVal:

 stateDeco (State2) = {evaluated |→ {0, 2, 3}}.
State2 is added to ToExpl.
Step 4: State2 is the only element remaining in ToExpl. Its
decoration is propagated to State3. The treatment event is
among the terminating ones of fluent evaluated; the duration
of treatment is in the interval [2, 3]. Therefore, State3 is
decorated with:

stateDeco (State3) = {¬ evaluated |→ {15, 17, 18}}.
State3 is added to ToExpl. As State3 was the only element
remaining in ToExpl and has no successor, the algorithm
terminates.
3) Example
For the process in Fig. 1, the minimum overall process time
returned by the instantiated algorithm is 3 days whereas the
maximum one is OutOfBounds. This means that the treatment
might continue forever for patients whose variable
medical_treatment_required remains indefinitely true (see
Fig. 1). This property should be validated with medical staff. If
process executions are expected to be finite, the model should
be changed accordingly to avoid this.
4) Other time-related requirements
The preceding technique may also be used to verify or infer
temporal requirements on processes or tasks. The annotation
of a refined task by a time constraint might be either a
requirement we would like to impose on it or a preliminary
estimate to be replaced by a more accurate duration interval
inferred from the refinement of the task.

treatment

State0

[evaluated]

State1 State2 State3

evaluation

fluent evaluated = <{evaluation}, {treatment}>
C0 = true

Duration (evaluation) = [2, 3]
Duration (treatment) = [15, 15]

[¬evaluated]

Fig. 8. Executing the algorithm for decorating g-LTS states with time

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 14

In the latter case, we need to locally apply the instantiated
decoration algorithm on the refining subprocess. This requires
the initial context condition C0 to be known for this specific
subprocess. The latter condition is directly obtained by use of
the other algorithm instantiation described in Section VII.A.
Yet another check variant consists in checking time bounds for
specific process paths. To achieve this, the initial values of
fluents and tracking variables at the initial state are restricted
by strengthening the initial context condition C0 so as to cover
those paths specifically.
5) Resource-related requirements
The instantiation of the generic decoration algorithm discussed
in this section can be extended for reasoning about other
cumulative properties involving costs, resource consumption,
doses in a medical process (e.g., drug doses or radiation
doses), and so forth. Non-functional requirements on resource
usage are then checked similarly. Section IX shows this on an
example of underdose detection.

E. Checking the adequacy of decisions
As discussed in Section IV.C, tracking variables are intended
to capture relevant quantities in the environment of the
process. It is therefore worth checking that every time a
tracking variable is used in the process model its value
accurately reflects the actual corresponding value in the
process environment. This is particularly important for
tracking variables appearing in decision nodes; inaccurate
values for tracking variables at these nodes may result in
inadequate decisions where the outgoing branch taken might
differ from the one that should have been taken with accurate
values.
Inadequate decisions may result from two different sources of
inaccuracy.

• Task-dependent inadequacies: some tasks affect the
environment quantity without updating the tracking
variable accordingly.

• Time-dependent inadequacies: the value of a tracking
variable becomes outdated after some time.

Checking the process model for these two types of
inadequacies require different instantiations of the generic
decoration algorithm.

1) Task-dependent decision inadequacies
In a task-dependent inadequacy, the decision relies on
inaccurate information about the environment due to the
occurrence of intermediate interfering events.
It is therefore worth checking whether each tracking variable
appearing in the guard on an outgoing branch of a decision
node is accurate in the source state of the corresponding
guarded transition. To achieve this, a so-called accuracy meta-
fluent is introduced.

• In states where this fluent is true, the value of the
associated tracking variable accurately reflects its
environment counterpart.

• In states where the fluent is false, the value might be
inaccurate.

Every tracking variable tv in the process model has an
associated accuracy meta-fluent tv-acc defined as follows.

• The set Inittv-acc of initiating events contains its measure
events, that is, all the events synchronizing the tracking
variable with its environment counterpart (see Section
IV.C and Fig. 3).

• The set Termtv-acc of terminating events contains its
outdate events, that is, all the events potentially
affecting the environment quantity without
synchronizing the tracking variable with its
environment counterpart.

• The initial value is always false.
A decision adequacy check on a specific tracking variable
amounts to checking whether its accuracy meta-fluent is true
at the source node of the corresponding guarded transition.
Note that accuracy meta-fluents are not visible at the g-HMSC
level. They are automatically derived from the definitions of
tracking variables in order to perform adequacy checks at the
g-LTS level.

a) Placeholder instantiation
The placeholder here captures the value of the accuracy meta-
fluent associated with the target tracking variable tv.

• PlcV = finitePlcV = {true, false}; p0 = false.
• The placeholder propagation function is instantiated as

follows:
 plcPropag (p, e) =

 {true} if e ∈ Initv-acc ,
 {false} if e ∈ Termtv-acc ,
 {p} otherwise.

b) Using decorations for decision adequacy checking
Once the instantiated decorations are thereby computed, the
following formula must be verified for every source state
source and tracking variable tV appearing in the guard on an
outgoing transition:

 false ∉ Placeholders (stateDeco (source)),
where Placeholders (s) was defined in Section VI.E as the set
of possible placeholder values in the decoration of state s
regardless of the corresponding value assignments of process
variables in that state.
If this formula is not satisfied, we know that there is a task
sequence reaching the decision node in the model such that the
value of the tracking variable at this node is inaccurate; the
decision on which subsequent path to follow may therefore be
inadequate. The class of patients affected by such inadequate
decisions is given by dom stateDeco (source).
Inadequate decisions should be resolved in a corrected version
of the process model. A simple resolution heuristics consists in
adding a task right before the decision node that includes a
measure event for the problematic tracking variable.

c) Example

Consider the tracking variable medical_treatment_required in
the process model for treating acute manic-depressive troubles
in Fig. 1. A value true means that the patient needs to undergo
a Medical Treatment task. This value is expected to be
accurate right after the Evaluation task. It becomes inaccurate
when the medical treatment is terminated; a new evaluation of
the patient is required in order to decide whether the treatment
should continue. The tracking variable is therefore defined in

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 15

terms of measure and outdate events as follows (see Section
IV.C):

trackVar medical_treatment_required =
 {Evaluationend}
 {Medical Treatmentend}.

Checking the decision node medical_treatment_required in
Fig. 1 reveals that the decision captured there is adequate. The
decoration of state 17 in Fig. 4 tells us that the meta-fluent
medical_treatment_required-acc is true at this point; an
evaluation is always performed before making the decision
(see Fig. 1).
Section IX shows an example where this check reveals an
inadequate decision in the documentation of a real safety-
critical process.

2) Time-dependent decision inadequacies
It is often the case that tracking variables remain accurate for a
certain period of time only. The environment quantities they
reflect may change beyond that period due to potential events
that are unobservable by the process agents. In a time-
dependent decision inadequacy, the decision relies on out-of-
date information about the environment.
To check the process model for such situations, the accuracy
duration of the considered tracking variable is taken into
account in the meta-fluent definition (see Section IV.C):

fluent tV-acc = <Inittv-acc, Termtv-acc> duration Durtv-acc.
The fluent then holds iff an initiating event has occurred, no
terminating event has occurred since then, and the elapsed
time is less than Durtv-acc (in discrete time units).

a) Placeholder instantiation
The placeholder here captures the discrete time remaining
before the value of the associated tracking variable becomes
outdated. Beyond that time, the accuracy meta-fluent must be
false as the tracking variable may no longer accurately reflect
its environment counterpart. When the accuracy meta-fluent is
known to be false (e.g., immediately after a terminating event),
the value of the placeholder is considered to be 0. Hence the
following instantiation:

• PlcV = finitePlcV = [0, Durtv-acc]; p0 = 0.
• The plcPropag propagation function updates the value

of the placeholder as follows. If the considered event is
among the initiating events of the accuracy meta-fluent,
the placeholder is reset; if it is among the terminating
events of the fluent, the placeholder is set to 0;
otherwise, the placeholder is decremented by the
duration of the task associated with the event –without
going beyond the lower bound. The propagation
function is thus instantiated as follows:
 plcPropag (p, e) =

 {Durtv-acc} if e ∈ Inittv-acc ,
 {0} if e ∈ Termtv-acc ,

 p (−) Duration (e) otherwise,
where the “(−)” operator removes a duration interval
from the remaining time according to the following
definition:

 (−) : N+ × P (N+) → P (N+)

 T (−) [min, max] = {x | x ∈ N+, T - max ≤ x ≤ T- min}

b) Using decorations for time-dependent decision
adequacy checking

Once the instantiated decorations are thereby computed, the
following formula must be verified for each source state
source and tracking variable tV appearing in the guard on an
outgoing transition:

0 ∉ Placeholders (stateDeco (source)).
If this formula is not satisfied, we know that there is a task
sequence reaching the decision node in the model such that the
value of the tracking variable at this node is outdated; the
decision on which subsequent path to follow may therefore be
inadequate.

c) Example
In our example of treatment for acute manic-depressive
troubles, there was an implicit assumption so far that the
decision of treating the patient medically does not change after
an evaluation. This is of course not the case in practice. Let us
assume that the decision is accurate after an evaluation and
remains accurate for 10 days unless a medical treatment has
been performed in the meantime (the latter corresponds to an
outdate event). The definition of the tracking variable is
extended as follows:

trackVar medical_treatment_required =
 {Evaluationend}
 {Medical Treatmentend} duration 10

The adequacy checker finds that the decoration of state 17 in
Fig. 4 contains the following mapping:

{ observation_required ∧ … |→ {0,…}}.
This means that the clinical decision of requiring a treatment,
made during the Evaluation task, might be inadequate. The
patient observation, when required, may indeed last more than
10 days (see Table 1) which possibly invalidates the previous
decision. This might for example result in patients not
receiving a treatment in spite of their state aggravating during
the observation.
This problem might be resolved in different ways.

• The patient state might be re-evaluated after the
observation through a new Evaluation task to be added
in the model.

• A new measure event Observationend might be added to
the definition of the tracking variable. This would
model the fact that the decision of providing a
treatment is reconsidered at the end of the observation.

• The accuracy duration might be set to more than the
maximum duration of the observation task –that is, over
15 days.

Interactions with medical experts are required to decide which
resolution makes more sense.

VIII. TOOL SUPPORT
The various types of analysis detailed in the previous section
are all supported by a toolset called GISELE. This section
discusses a few design decisions and highlights key points of
the implementation.
The main facilities provided by GISELE are the following.

• Editing and visualization of g-HMSC process models
and their refinements.

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 16

• Visual means for eliciting process models,
documenting them with process stakeholders, unfolding
them for specific analyses, composing them, and
projecting them on specific subclasses of instances.

• Multiple types of analyses including model checking
[25] and the various analyses discussed in Section VII.

Figure 9 shows a tool screenshot. More details about the tool
can be found in [46].

A. Design decisions
The toolset was designed for analysts to (a) elicit critical
medical processes from interviews with experts and from
available documentation of medical protocols and guidelines;
(b) analyze them incrementally and on the fly; and (c) produce
browsable process documentation. These objectives led to two
main design decisions.

• Textual input: To enable rapid process capture by an
analyst, a simple textual language is provided as input
language to the tool (rather than a graphical one). This
language amounts to a guarded-command language
with constructs for sequential composition, guarded
alternatives, iteration, and refinement. A graphical
layout is automatically produced in full synchronization
with the textual input (see Fig. 9).

• Real-time proactive mode: Instead of performing
specific checks on demand, the tool lets the analyst
navigate through the graphical model via its GUI
running inside a web browser. Every time the user
looks at a specific task, the tool highlights in red the
problematic nodes in the model (if any). These are
nodes where a check failed, revealing an inadequate
decision, incomplete or overlapping guards, a pre-
condition violation, a time constraint violation, and so
forth. A corresponding diagnosis is produced (see
Fig. 11). Our experience suggests that such
incremental, non-obtrusive highlighting of problems
provides natural and effective guidance towards
continuous improvement during model building. Error
detections stimulate discussions between stakeholders
and the analyst, thereby contributing to the model

elicitation process. Section IX provides some evidence
on this.

B. Architecture
The toolset is implemented in Ruby using a MVC-like design
pattern. Its user interface is implemented in HTML5, CSS3
and Javascript, therefore running on any recent web browser.
The graphical model layout is generated server-side using the
well-known dot utility, and presented in Scalable Vector
Graphics in the browser.
Our analyses make intensive use of dedicated libraries for
manipulating automata and binary decision diagrams (BDD).
The automaton toolkit is the one implemented for the
STAMINA contest [76] co-organized by two co-authors of this
paper, see also http://stamina.chefbe.net/. The Buddy BDD
library is available at http://buddy.sourceforge.net. As it is
implemented in C, an interface binding for Ruby is used; it is
available at http://people.cs.aau.dk/~adavid/BDD/.

IX. EVALUATION
This section evaluates the process analysis techniques
proposed in this paper according to five criteria hierarchically
organized –the idea being broadly that the evaluation criterion
at one level is a prerequisite for considering the evaluation
criterion at the next upper level. The criteria are the following:

• Correctness: are the techniques meeting their
specification?

• Performance and scalability: are the techniques
efficient enough to potentially deal with real-sized
problems?

• Applicability: are the techniques working in the
context of real-world situations?

• Utility: Are the techniques solving a real problem?
• Usability: Are the techniques accessible to process

analysts? Are their results accessible to process
stakeholders?

Those criteria are considered successively from bottom to top
in Sections IX.A to IX.E, respectively.

	

Fig. 9. Using the GISELE tool: top-level g-HMSC model for treating rectal cancer

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 17

A. Correctness
As discussed in Section VI, each analysis technique consists of
two steps once a g-LTS is generated from the g-HMSC model:

• the decoration algorithm is instantiated in a specific
way to quantities that are meaningful to the target
check;

• the instantiated decorations generated by the algorithm
are used in a specific way to perform the check.

The correctness of each technique thus depends on (a) the
correctness of the generic decoration algorithm, (b) the correct
placeholder instantiation for the considered check, and (c) the
correct use of instantiated placeholders for this check. While
(b) and (c) appear fairly straightforward for the various types
of checks discussed in Section VII, (a) is not.
A detailed proof that the generic decoration algorithm
computes the most accurate decoration stateDeco (s) for every
g-LTS state s is given in [21]. The main steps of the proof are
outlined here.
As discussed in Section VI.E, the most accurate decoration at
state s must be both “not too specific” and “not too general”
with regard to g-LTS executions reaching state s. This may be
further characterized in terms of the decoration lattice defined
in Section VI.C:

• the computed decoration for s is sufficiently high in the
lattice, that is, it covers all placeholder values produced
by g-LTS executions reaching s (Theorem 1);

• the computed decoration for s is not too high in the
lattice, that is, it only covers placeholder values
produced by at least one g-LTS execution reaching s
(Theorem 2).

The proof of Theorem 1 relies on the following lemma.
When the algorithm terminates, the decoration of every state s
is higher in the lattice than the results of propagating the
decoration of the predecessor states s’ through the transition
connecting s’ to s.

This property is proved first for any iteration step of the
algorithm and any state not in ToExpl at this step. Next, the
property is proved for any state by noticing that ToExpl is
empty when the algorithm terminates.
Using the preceding lemma, Theorem 1 is proved by structural
induction on the length of an arbitrary g-LTS execution.
Theorem 2 is proved by computational induction on the main
loop of the algorithm. The proof shows that all placeholder
values added in state decorations are always values produced
by at least one g-LTS execution reaching the corresponding
state.
The algorithm terminates as the set ToExpl is eventually
empty. Decorations can only go upwards in the lattice; this
lattice is finite and a state can change its decoration a finite
number of times only.

B. Performance and Scalability
This section discusses the theoretical complexity and practical
performance of our approach.
Before a fixpoint is reached and the decoration algorithm
terminates, a state can change its decoration at most H times,
where H is the height of the decoration lattice. This height is
exponential in the number ⎟VAR⎟ of process variables and the
size ⎟boundedPlcV⎟ of the finite set of placeholder values. Let

n denote the number of g-LTS states to be decorated; this
number is linear in the number of tasks in the corresponding g-
HMSC model [25]. The theoretical complexity of the
decoration algorithm is thus O (n × 2⎟VAR⎟ ×

⎟boundedPlcV⎟).
The size of the LTS equivalent to the g-LTS manipulated by
the decoration algorithm is exponential in the number of
fluents and tracking variables. The algorithm, however, does
not build this LTS explicitly; it explores the same process state
space symbolically.
In addition to symbolic exploration at the g-LTS level, the
theoretical state blow-up problem is attenuated in various
ways.

• The worst-case situation occurs when all g-LTS states
are decorated with the highest lattice element. This
generally corresponds to infinite executions resulting
from unbounded loops. Process models are normally
expected to contain finite executions only.

• As illustrated in Section IX.C hereafter, the g-HMSC
refinement mechanism supports local and incremental
checks. The model refinement structure effectively
reduces both the size of the decorated g-LTS and the
number of process variables to be considered for a
specific analysis at a specific level of granularity.

• As mentioned at the end of Section VII.C, the
decoration generation cost may be distributed among
multiple types of checks. A single decoration
generation, such as the computation of MAS invariants
at every g-LTS state, may be exploited by multiple
types of checks –in particular, for invariant generation,
guard analysis, and precondition checks.

• Our implementation uses compact representations for
the decoration functions dec, namely, binary decision
diagrams (BDDs) for invariants, guards, and value
assignments in dom dec; and intervals for placeholder
values in img dec.

Those attenuating factors make our tool work in interactive
mode quite effectively in practical situations. The user rarely
waits more than a few milliseconds for a check on a typical
clinical process model –for example, the model consolidated
in Section IX.C hereafter has 25 tasks, 10 decision nodes, 3
fluents and 5 tracking variables; there are 4 levels of
refinement and the corresponding g-LTS model has 98 states.
It is worth noticing that real-sized medical process models
generally have a relatively small set of states (unlike software
models). A clinical pathway model for breast cancer treatment,
considered as a highly complex process, includes 150 tasks to
be coordinated [70].
The longest response time we experienced in our medical
projects was around one second. It was observed with models
erroneously containing infinite executions. For desirable
unbounded loops in a process model, a timeout may be used to
produce prompter feedback.
Further performance improvements might be achieved in the
future for analyzing larger and/or unstructured models.

• The convergence of the decoration algorithm might be
sped up through effective strategies for selecting states
in the set ToExpl of states to be considered for further
propagation (see Fig. 7). Such strategies might

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 18

significantly impact on the number of iterations
required before a fixpoint is reached. Some
propagations appear useless as their resulting
decorations will be overridden by subsequent
propagations. States having a long-lasting impact on
decorations of successor states should be selected first.
One effective strategy might consist of implementing
ToExpl as a priority queue where elements are
topologically sorted; a state would always be selected
after the states leading to it.

• The algorithm computes the most accurate decoration
for each state. This best mapping from assignments of
process variables to instantiated placeholder values
might not always be necessary for some analyses. The
use of abstract interpretation [20] in such situations
might significantly improve the efficiency of the
instantiated algorithms by generating “good”
approximations for those mappings instead (see Section
X.D).

C. Applicability
This section addresses the next evaluation question after
correctness and performance, namely, are the proposed
techniques working in the context of real-world situations?
To answer this question, we show our techniques in action on
the incremental building and consolidation of a clinical
pathway model for treating rectal cancer.
This case study was directly inspired from various practical
projects in clinical environments (see Section IX.D on utility
hereafter) while carefully designed to deploy our multiple
instantiated techniques working in combination.
The clinical pathway for rectal cancer can be described in
high-level terms as follows.

A patient generally gets in for cancer consultation (usually
through a general practitioner). After this first meeting, a
cancer diagnosis is established and a spread evaluation is
performed. Such an evaluation is aimed at estimating
parameters about cancer invasiveness and extension,
namely,
• T (for local Tumor invasion),
• N (for lymphatic Node invasion),
• M (for distant Metastasis).
If rectal cancer is confirmed, the medical staff envisions some
appropriate therapy strategy based on the evaluation. If the
patient can undergo surgery, the main curative treatment
consists in surgery. This task may be preceded or followed by
chemotherapy sessions or a combination of radiotherapy and
chemotherapy sessions. When the patient cannot undergo
surgery, palliative care may be provided, consisting of
chemotherapy sessions only or a combination of radiotherapy
and chemotherapy sessions. Patients may also enter the
process through an emergency service. In this case, surgery
is directly prescribed.

In the various projects we were involved in, high-level
descriptions of this kind were typically elicited from existing
documentation of medical guidelines and from interviews with
medical staff. In both cases, flowchart sketches showing tasks
and decision nodes were available. These sketches were
literally translated into portions of an initial g-HMSC model
using our tool. The translation often stimulated fruitful
discussions with medical staff. Issues about the process were
raised and discussed, leading to early clarification of the
preliminary, informal “model” fragments available on paper.

1) Top-Level g-HMSC for rectal cancer treatment
Fig. 9 shows a top-level g-HMSC model draft based on the
description we elicited. In the general case, a treatment
consists of a sequence of diagnosis, staff meeting, pre-
treatment, surgery, and post-treatment tasks. The StaffMeeting
task in Fig. 9 is a critical meeting where all medical agents
involved in the process make clinical decisions about the
subsequent treatment of the patient.
The tasks appearing in Fig. 9 are to be refined in other g-
HMSCs. In the case where the patient comes from an
emergency service with occlusion or bleeding symptoms, the
patient goes directly to surgery without pre-treatment. If the
cancer is not confirmed, the process is completed. If no
surgery is envisioned by the medical staff, the process is also
completed and the patient follows another, separate palliative
care process.
The formalization of guards at decision nodes requires fluents
and tracking variables to be identified and defined. Here,
rectal_cancer and surgery_envisioned are tracking variables
defined as follows:

trackVar rectal_cancer = {Diagnosisend},
trackVar surgery_envisioned = {StaffMeetingend}.

The first definition expresses that rectal_cancer gets an
accurate value (true or false) dependent on whether the
Diagnosis task has revealed the presence of a cancer or not.
Similarly, surgery_envisioned gets an accurate value (true or
false) dependent on whether or not the medical staff has
decided that surgery is the best plan to fight the patient’s
cancer.
Task preconditions on process variables might be specified at
this point. In particular, the PreTreatment, Surgery, and
PostTreatment tasks may be annotated with the following
precondition:

rectal_cancer ∧ surgery_envisioned.
This means that we only proceed to these tasks if the cancer is
confirmed and the surgery is envisioned for the patient. The
precondition of the StaffMeeting task is the fluent diag_known,
defined as follows:
fluent diag_known = <{Diagnosisend}, {PostTreatmentend}>.

This precondition expresses that the staff at the meeting should
not discuss about a patient whose diagnosis is not known.
At this overall level, early checks may already be performed
even though there are a few tasks only and such tasks are
coarse-grained as they are not refined yet.

Checking preconditions. The precondition checker based on
the decoration algorithm instantiation in Section VII.C tells us

Fig. 11. Pop-up window for problematic decision node:

overlapping guards

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 19

that the preconditions of tasks Surgery and PostTreatment can
be violated; if the patient comes from an emergency service,
the tracking variables rectal_cancer and surgery_envisioned
are not necessarily true.
To fix these problems, alternative resolution strategies may be
proposed to the medical staff.

• The preconditions of Surgery and PostTreatment might
be weakened as they might appear too strong.

• Two decision nodes “rectal_cancer?” and
“surgery_envsioned?” might be inserted right after the
Emergency task, requiring these two conditions to be
met before the Surgery task.

• A distinction between two different surgeries might be
made, namely, NormalSurgery and EmergencySurgery.
The tasks to be performed after EmergencySurgery
should then be elicited from medical experts.

• The treatment of rectal cancer for a patient coming
from an emergency service might be too different from
“normal” treatment. Two completely different
processes might be envisaged for those two cases.

At this early stage, all tasks are to be refined. The next sections
select some interesting ones for further refinement.
2) Refining the PreTreatment task
A refinement of the PreTreatment task appearing in Fig. 9 is

shown in Fig. 10. During the StaffMeeting task preceding Pre-
Treatment in Fig. 9, a specific treatment must be decided for
the patient. The decision is captured by the decision node at
the top of Fig. 10. The three outgoing branches and their
respective guards were taken literally from a process
documentation given to us by medical staff. The documented
alternatives are the following.

• In case of a small tumor with no invaded lymphatic
nodes, no pre-treatment needs to be envisioned.

• In case of a large tumor or in presence of invaded
lymphatic nodes, the pre-treatment consists of
intertwined radiotherapy and chemotherapy sessions.

• In presence of metastases, the treatment consists of
radiotherapy sessions only.

Checking guards for completeness, disjointness, and
satisfiability. The instantiation described in Section VII.B is
used to analyze the three guards at the decision node in
Fig. 10. The guards are verified to be complete and satisfiable.
However, the tool opens a pop-up window explaining that they
are not disjoint (see Fig. 11); the third guard overlaps the two
first ones. As a consequence, the patient might be non-
deterministically directed to one treatment or another. For each
pair of overlapping guards, the tool gives all value assignments
for the relevant process variables that satisfy them both.
The problem is easily fixed in this case by adding the conjunct
¬ M+ in the first two guards, as advised by medical staff.
3) Refining the task PreOpRadioChemoTherapy
The task PreOpRadioChemoTherapy in Fig. 10 consists of
intertwined presurgical radio- and chemotherapy cures. It is
refined into another g-HMSC.
The task more precisely consists of five radio-chemotherapy
cures. According to available medical guidelines, the protocol
requires the total radiation dose to be exactly 45 Grays (Gy),
with 1.8 Gy per day, administered 5 days a week. For specific
reasons, the duration of this task may not exceed 40 days.
Fig. 12 shows a first refinement attempt where protocol
excerpts were literally translated from the medical guidelines,
in particular:

"The decision to treat a patient is related to the platelet level. ...
A blood sample is taken after each cure. ...".

In this g-HMSC, the notation (D days) is used for the duration
interval [D days, D days] required to perform the
corresponding task. A task box with “nX” inside unfolds in a
sequence of n occurrences of this task.
Fig. 12 also introduces the tracking variable platelet_low
defined as follows:

trackVar platelet_low = {BloodTestend}
 {RadioChemoTreatmentend }.

This definition expresses that the platelet level is accurately
known after a blood test and remains accurate until the end of
a subsequent RadioChemTreatment task. The corresponding
accuracy meta-fluent is therefore:

fluent platelet_low-acc =
 <{BloodTestend}, {RadioChemoTreatmentend}>
 initially false.

The tool detects two problems at this stage.

 Pre-Treatment

Consultations

PreoOpRadio
ChemoTherapy

(40 days)

Consultations

ReStaging

PreOp
Radiotherapy

[M+] [(T+ ∧¬N+)∨N+] [¬T+ ∧ ¬N+]

Fig. 10. g-HMSC for the Pre-Treatment task

	

BloodTest
(2 days)

platelet_low?

RadioChemo
Treatment
(5 days)

PreSurgicalCure

5X

PreSurgicalCure

PreoOpRadioChemoTherapy

no

yes

Fig. 12. Refinement of task PreOpRadioChemoTherapy (initial attempt)

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 20

Checking decision adequacy. The instantiation described in
Section VII.E reveals a task-dependent decision inadequacy.
The treatment decision is based on the tracking variable
platelet_low whose value may not be accurate at the decision
point –e.g., in case of first cure. The accuracy meta-fluent
platelet_low-acc may indeed be false when the decision node
is evaluated.
The problem may be fixed by moving the BloodTest task so
that it appears right before the decision point (see Fig. 13a).

Checking dose requirements. A second, more subtle problem
remains after rechecking the revised model in Fig. 13a. The
problem is detected by a variant for dose constraints of the
instantiation described in Section VII.D for time constraints.
The instantiated checker finds that the total dose administered
in five cures is less than the required 45 Gy in cases where the
RadioChemoTreatment task is bypassed at least one time
because of low platelet level.
This problem may be fixed if treatment cancelation is replaced
by a waiting period of 5 days to allow for normalization of the
platelet level. The revised model after the latter fix is shown in
Fig. 13b.

Checking time requirements. If we now recheck the revised
model in Fig. 13b, the tool highlights another kind of problem.
The instantiation described in Section VII.D for time
constraints detects that, when the treatment is delayed too
often, the 40-day duration requirement can be violated.
A model-based discussion with process stakeholders suggests
that a delay between radiotherapy cures is not advisable. To
resolve the new problem, the radiotherapy and chemotherapy
treatments might be uncoupled. Following medical advice, the
possibility of delaying treatment only on first occurrence of a
platelet fall is introduced, see Fig. 14. The variable
first_occurence introduced there is a fluent defined as follows:
 fluent first_occurence = <{Waitend}, { } > initially false.

Re-checking time requirements. When rechecked again, the
revised model still violates the 40-day duration requirement;
the longest possible process execution may take 42 days. The
latter duration is reached for all process runs where the Wait
task is applied for blood platelet normalization.
A discussion with oncologists suggests that the 40-day
duration requirement might be a bit too unrealistic; a decision
is made to weaken the requirement to 42 days.
With this weakened requirement, the model revised after three
iterations meets the time, dose, and adequacy requirements
expressed in the medical protocol. This revised version may

raise further discussion about the possibility of dose reduction
rather than a mere skip of chemotherapy.

D. Utility
After correctness, performance, and applicability, this section
addresses the next evaluation question, namely, are the
proposed techniques solving a real, practical problem?
The incremental model building and analysis process in the
previous section was directly inspired from our experience in
multiple projects targeted at real, complex process models for
cancer treatment, in particular:

• the clinical pathway for treating rectal cancer at the UC
Louvain university hospital in Brussels;

• the clinical pathway for treating breast cancer at St
Elisabeth hospital in Namur (Belgium);

• the workflow of the radiotherapy department at the UC
Louvain university hospital in Brussels;

• the workflow of the radiotherapy department at Bordet
hospital (University of Brussels).

Two different kinds of medical processes were covered [24]:
• clinical pathways are multi-disciplinary processes for

the medical treatment of a specific class of patients
presenting the same pathology;

• department workflows capture the various decisions and
tasks across multiple pathologies in a specific hospital
department.

In those various projects, each of the problems illustrated in
the previous section was detected multiple times using the
instantiated checkers described in Section VII.
In all projects, members of the medical staff were acting as
process stakeholders. In general, they appeared highly
motivated in view of the growing, widespread concern for
better support towards higher-quality treatments [16, 37, 39,
44, 70]. In particular, the role of high-quality process models
is being increasingly recognized for documenting, replicating,
orchestrating and improving complex therapies [25, 30, 37, 43,
65, 70]. Such driving models should obviously be error-free.
The multiple errors found with our formal techniques were
specification and modeling errors originating from the
informal documentations and flowcharts being currently used
by medical staff. These errors in practice called for on-the-fly
fixes at process runtime by generally overloaded medical staff.
In addition, the feedback from the tool often generated
discussions with stakeholders beyond the model itself,
suggesting improvements of the medical process on the field.

BloodTest
(2 days)

platelet_low?

RadioChemo
Treatment
(5 days)

no

yes Wait
(5 days)

PreSurgicalCure (2nd iteration)

BloodTest
(2 days)

platelet_low?

RadioChemo
Treatment
(5 days)

no

yes

PreSsurgicalCure (1st iteration)

(a) (a) (b)
Fig. 13. Check-driven refinement of task PreSurgicalCure

(first and second iteration)

	

Blood test
(2 days)

platelet_low?

Radio-chemo
treatment
(5 days)

no

yes Wait
(5 days)

first_
occurence?

Radiotherapy
treatment
(5 days)

yes

no

PreSurgicalCure

Fig. 14. Refinement of the PreSurgicalCure task (third iteration)

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 21

E. Usability
This section addresses the last evaluation question after
correctness, performance, applicability, and utility, namely,
are the proposed techniques accessible to process analysts?
Are their results accessible to process stakeholders?
Let us address the second question first. The g-HMSC
language was specifically designed to support analyzability by
tools while remaining as close as possible to the material used
by process stakeholders. The available documentation of
medical guidelines, pathways and protocols [30, 43, 65] and
comparative surveys involving process stakeholders [42]
provide evidence that stakeholders in this domain commonly
use informal flowcharts to document their procedures. Our
own experience in assembling clinical process fragments
supplied by medical staff confirmed this. See also Google
Images with the keywords “care pathway flowchart” for a
wide variety of examples of use of flowcharts by medical
process stakeholders. Commercial tools in clinical
environments are often based on flowcharts too –see, e.g.,
[57].
In our experience, the g-HMSC modeling language provides a
good balance between (a) simplicity and communicability to
medical stakeholders and (b) formality for analyzability of
process specifications involving critical decisions. Restrictions
were made to keep the language simple enough –at the price of
limiting its expressive power, e.g., by ruling out
parameterization or complex concurrency schemes and by
replacing explicit assignments of arbitrary process variables by
event-controlled Boolean variables.
Beyond language accessibility, the level of tool feedback in
case of errors is important too for effective stakeholder
involvement in process elicitation and model debugging. The
roundtrip feedback of the GISELE toolset was felt essential in
practice. Errors are highlighted in dedicated colors in the g-
HMSC model (see upper right part of Fig. 9), and their
explanation is provided at this level too (see Fig. 10 and Fig.
11) –rather than at the g-LTS level where the checks are made.
As for the first question of accessibility to process analysts,
our decoration algorithm was specifically designed to be as
easy to instantiate to dedicated analyses as possible. For each
type of placeholder, the analyst only needs to instantiate the
rule for propagating placeholders through a single event. The
instantiator does not need to reason about all possible guard-
satisfying paths leading to a decision nor define a lattice
structure specific to the instantiation.
However, the role of process analyst in all aforementioned
projects was played by ourselves. The main reason was that
this role corresponds to a new, emerging type of staff profile
within large clinical organizations.

X. RELATED WORK
This section compares our results with related work along four
directions. Section X.A reviews process modeling languages
together with techniques available for analyzing them. Section
X.B focuses on process modeling languages that are specific to
the medical domain. Section X.C relates our techniques with
those available for the analysis of software behavior models.
Finally, Section X.D compares our analysis techniques with

program analysis techniques such as data flow analysis and
abstract interpretation.

A. Process modeling and analysis
UML activity diagrams [62] and the Business Process
Modeling Notation (BPMN) [63] are standard graphical
representations for business process models. Like g-HMSCs,
they have a flowchart flavor. Their specification in [62, 63],
however, does not provide a precise semantics. Process
descriptions based on those specifications are therefore
ambiguous and cannot be verified for behavioral
correctness [79]. To address this problem, various formal
semantics were proposed to enable model analysis.

a) A semantics for a subset of UML 1.5 activity diagrams,
inspired from the STATEMATE semantics of Statecharts
[34], allows structural consistency properties to be
checked on activity diagrams [28] using the NuSMV
model checker [14].

b) Two semantics for a subset of BPMN are defined in the
CSP process algebra [79]: an untimed one and a relative
timed one. These semantics allow behavioral properties
of BPMN models to be verified through model checking.
In addition, interacting BPMN processes can be checked
by verifying that their composition is deadlock-free [80].

c) A formal semantics for UML activity diagrams was
proposed in terms of the REO coordination language
[45]. It enables model-checking of activity diagrams
against properties described in the µ calculus.

UML activity diagrams and BPMN are more expressive than
g-HMSC. They support parallelism among sub-processes,
dataflows among process agents, and transactions. On the
other hand, they do not support important features enabling
analyses of g-HMSC models, namely,

• decisions based on process variables –decisions in
activity diagrams or BPMN are based on non-
deterministic choice;

• state-based properties over process variables, in
addition to event-based properties. In the work (a) and
(b) hereabove, the supported properties may only refer
to events associated with task performance. In (c), the
properties refer to low-level concepts from the REO
model (rather than concepts from the activity diagram).

Business Entity Lifecycles [17], in particular the Guard-Stage-
Milestone (GSM) notation [38], combine data and process
views for modeling business operations. In GSM, stages
capture the lifecycle of business entities through abstract
states; these states become active under specific guard
conditions and until business milestones are achieved or
invalidated. Guards and milestones are Boolean expressions
that may refer to data attributes and event occurrences.
External events are sent by the process environment whereas
internal events may refer to state transitions of milestones and
stages. Stages can be hierarchically refined down to low-level
tasks such as service invocations. GSM supports state-based
model checking of CTL properties on milestones [6, 32]. The
GSM and g-HMSC approaches are similar in that both
integrate event-based and state-based specifications; formal
guards may refer to state variables. There are important
differences, however.

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 22

• GSM models do not capture task flows explicitly. Such
flows are to be inferred from responses to events in
terms of guard enabling, state activation and milestone
achievement. This might be more expressive. However,
stakeholder involvement in the model building process
appears questionable as natural task flows are implicit.

• GSM supports complex data modeling through an
information model and assignments of variables. In
contrast, g-HMSC restricts data modeling to fluents and
tracking variables, defined in terms of events only.
Lower expressiveness is the price to pay for language
simplicity and separation of concerns. Tracking
variables allow modellers to reason about the critical
boundary between the process state and the
environment state; they have no equivalent in GSM.

Fluents were originally introduced in the Event Calculus [59].
The variant used here is directly taken from [22, 31, 56]. Our
fluents are slightly less expressive than those in the Event
Calculus as they may not refer to other fluents. Tracking
variables provide a simple means for reasoning about an open
system where components in the process environment and their
features may be unknown to the process or changing.
Although fairly restricted, such variables support our target of
analyzing decision adequacy. More expressive g-HMSC
variables is subject to future work, see Section XI.
YAWL (Yet Another Workflow Language) is a process
modeling language based on Petri nets. It was originally
introduced for describing workflow patterns [74, 75]. Its
expressive power is definitely higher than g-HMSCs. In
particular, the modelled workflows may involve multiple
instances with complex synchronization schemes, dataflows,
and resource allocations. Such models, however, appear much
more complex and lower-level. Guards in decision nodes are
not formalized. YAWL models support different kinds of
analysis based on their underlying Petri-net semantics;
standard Petri-net tools are used for, e.g., verifying process
termination [73] or conformance of process executions with
the model [71]. As far as we know, none of the analyses
discussed in Section VII are supported –even though some of
them could be provided by adapting Petri-net techniques (in
particular, for checking time constraints).
Little-JIL is another process language in which processes are
modelled as task trees [78]. The language provides structuring
constructs for composing tasks such as sequencing, parallel
composition and non-deterministic choice. An exception
mechanism inspired from programming languages is also
available for specifying exception handling [55]. This appears
quite useful in the medical domain as exceptions turn to be
frequent there [33]. Little-JIL tasks may also be annotated with
informal pre- and post-conditions. Decision nodes with guards
are not supported. Little-JIL has a formal semantics in terms of
finite state machines. Various types of analysis are therefore
supported. A model checker may verify event-based properties
on a process model and the absence of deadlocks [54]. Unlike
our state-based properties on fluents and tracking variables,
the properties there refer to events associated with task
performance. A heuristic technique is also available in the
Little-JIL toolset for producing fault trees from the process
model in order to highlight tasks that might be wrongly

executed, communications that might fail, etc. [11]. This
technique somewhat corresponds to the one available for
building obstacle trees against Achieve goals associated with
g-HMSC tasks [48, 50].
Other process modeling languages were specifically designed
for process enactment rather than formal analysis, notably,
SPADE [3]; see [29] for a thorough review.
Dedicated temporal analysis techniques were also developed
for specific languages [5, 26]. Typically, a state machine
model is first derived from the input model and then checked
against temporal properties. In [26], workflow models are
encoded into timed automata [2] and then model-checked. No
high-level language is available to process modelers that could
be validated by stakeholders. Process decisions are not
supported. In [5], medical guidelines are written in ASBRU
[58] and then rewritten in SMV for model checking. False
negatives may however appear due too coarse time
abstractions. Our tool is also based on a preliminary
transformation of the input model into a lower-level, machine-
processable form; unlike [5, 26], the tool feedback is provided
on the high-level input formalism rather than the lower-level
one. Similarly to the other process formalisms mentioned
before, state/event-based guards in decision nodes are not
supported in [5, 26].

B. Modeling and Analyzing Medical Processes
Various languages dedicated to the medical domain have been
proposed, notably, ASBRU [58] and Proforma [30]. These
languages are generally inspired from knowledge
representation techniques in artificial intelligence. They
provide constructs for modeling plans composed of tasks. Few
analyses are available on them. When available, such analyses
are fairly syntactic or not process-specific. A thorough review
of these languages may be found in [43].
LEMMA [4] appears closer to our efforts. It is a graphical
language for modeling medical processes with a formal
semantics in terms of Petri nets. A LEMMA model is a graph
whose nodes may capture clinical tests and symptom selectors.
Such nodes appear similar to our decision nodes. However,
clinical tests and symptom selectors guide patients through
different paths according to their current state without
reference to specific process variables. This obviously reduces
the expressiveness of decisions and of what can be analyzed.
In particular, references to previous decisions is not possible
(unlike in g-HMSC models).
Some of the process modelling languages reviewed before
were also applied to the medical domain. Little-Jil, in
particular, has been used to model and analyze transfusion
therapies [37] and chemotherapy processes [13].

C. Analyzing Software Behavior Models
Our analysis techniques are also related to those available for
analyzing software behavior models.
Invariant generation. The instantiation of our generic
decoration algorithm in Section VII.A generalizes our previous
algorithm for state invariant generation [22] by computing
most accurate state invariants. It might be seen as a fluent-
based counterpart of the algorithm for generating condition
lists along scenario timelines in [52], as used in [77] for
statecharts synthesis. Our algorithm, however, propagates

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 23

decorations along multiple paths to a state (rather than a single
timeline); moreover, the propagation is driven by fluent
definitions (rather than pre- and post-conditions).
The algorithm for generating mode invariants for SCR state
machines in [41] computes one invariant per SCR mode. Like
ours, it is a fixpoint one. This algorithm cannot be used for
generating invariants on g-LTS states as SCR state machines
are quite different. In particular, they are state-based over
monitored and controlled variables, whereas g-LTS are event-
based.
Consistency/completeness checking. Our checks on guards are
close in spirit to those supported in [36] for SCR tables.
Beyond the use of different formalisms, there is a notable
difference, however. The checks here must account for the
local contextual condition holding at the point in the process
model where the decision node is reached. This condition is
the state invariant at that point, generated by our decoration
algorithm.
The technique described in [64] checks whether an RSML
specification is consistent, that is, whether two outgoing
transitions from the same state, triggered by the same event,
have mutually exclusive guarding conditions. This technique is
somewhat similar to our technique for detecting overlapping
guards; it also first generates an invariant on the source of the
outgoing transitions. The guards and invariants are however
quite different; in RSML, they are conjunctions of predicates,
each capturing whether a given state in the parallel state
machine is active or not.
Model-checking. Some of the analyses in Section VII might in
principle be performed through model checking [7, 14, 15, 61,
67]. As fluents and tracking variables may themselves be
represented by state machines, we might model-check the
parallel composition of the system extended with the state
machines for each variable [25, 46]. The main benefit in
comparison with decoration-based analysis would be the
counterexample trace generated when the target property is not
satisfied.
In particular, checking that precondition P on task T is never
violated might be achieved by verifying the property

£ (Occurs (Tstart)→ P).
Checking decision adequacy might be achieved by verifying a
property of form

£ (Cond → tV-acc),
where Cond is a condition to be determined so as to be true
right at the point where the corresponding decision node on
tracking variable tV is evaluated, and false elsewhere; and
where tV-acc is the accuracy meta-fluent associated with tV.
Checks for guard completeness and disjointness are not
straightforward through model checking; the target properties
appear difficult to translate in terms of temporal logic
formulas. In case of guard overlap, our decoration-based tool
returns all value assignments meeting multiple guards. Such
information would not be provided by the model checker.
Moreover, our time-related analyses cannot be translated to
fluent-based LTL properties supported by our model checker.
Last but not least, the decoration-based analyses are performed
at a more abstract level that the LTS level, resulting in easier
roundtrip feedback to the input g-HMSC model and more

efficient analysis due to symbolic exploration at the g-LTS
level.
Some analyses could be translated to model-checking
problems for NuSMV [14] (e.g., decision adequacy checks) or
Uppaal [53] (e.g., time constraint checks). The integration of
multiple model checkers relying on different semantics within
a coherent and consistent framework appears, however, more
difficult than the simple, uniform decoration-based approach
presented here. Moreover, most checks appear fairly
straightforward once decorations are generated; the decoration
algorithm handles the intricacies of propagating possible
values of process variables along all guard-satisfying paths
leading to the considered state. The cost of generating
decorations may thereby be distributed among multiple
checks; a single decoration generation may be used for
multiple analyses. In this uniform and reusable framework,
new dedicated analyses may be added in a quite easy and
semantically consistent way, as shown by the radiation dose
check in Section VII.C.
Timing analysis is commonly recognized to be complex and
computationally expensive in state-of-the-art verification
technology [7]. Our instantiated techniques involving time are
less exposed to such problems thanks to the restrictions
naturally arising from our context –namely, the exclusiveness
of tasks ensured by the guards and the representation of time
through discrete sets of time points.

D. Program Analysis

Our techniques can also be related to those used for compile-
time verification of program properties. Data flow analysis
[35, 61] and abstract interpretation [18, 19, 20, 61] are
complementary approaches for program analysis. Data flow
analysis computes relevant information about the possible set
of values of program variables at every node of the program’s
control flow graph. Such information is generally obtained by
setting up data flow equations at each node of the graph. These
equations are solved by repeated calculations of outputs from
inputs until a fixpoint is reached. To guarantee termination,
constraints are imposed on value domains –typically, a lattice
structure or partial order with finite height. To improve
efficiency while preserving correctness, data flow analyses are
in general combined with abstract interpretation –see, e.g., [8,
61]. Abstract interpretation symbolically executes the program
at some level of abstraction where irrelevant details about the
semantics and the specification are ignored; abstract values
are used instead of concrete ones.
Like data flow analysis and abstract interpretation, our
analysis techniques compute, for every g-LTS node, relevant
information about the possible values of process variables. In
the presence of process loops, the computation of meaningful
quantities similarly proceeds by “climbing” a lattice until a
fixpoint is reached. Such fixpoint calculation is also found in
other invariant generation techniques [41, 51].
Unlike abstract interpretation techniques, however, our
techniques compute exact values for placeholders, not
approximated ones. Approximations may be avoided for
several reasons. First, our process language is higher-level
than a programming language, with much simpler constructs
such as Boolean variables and guarded branching over them,

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 24

event-based transitions, sequential tasks, and time
representation through discrete time points. Moreover, some
constructs are already built-in abstractions; in particular,
Boolean tracking variables capture predicate abstractions over
environment quantities.
Abstract interpretation techniques might however be worth
considering in future work.

• They might be needed for enriching the process
language with more expressive and complex constructs
such as, e.g., guards with comparison operators over
integer variables.

• The most accurate mapping might not always be
required for certain analyses. Full accuracy might be
sacrified to efficiency. As an example, let us consider a
process for which we would like to know whether all
executions last less than a specific duration d.
Computing the exact mapping between value
assignments of process variables and sets of time
points, as in Section VII.D, might result in poor
performance on very large processes with many
variables. A similar algorithm might then be used
without taking assignments of fluents and tracking
variables into account; guarded branches would be
selected non-deterministically. With such over-
generalization, the target property would be verified for
all patients in case the maximum time computed by the
algorithm is less than d. However, getting a greater
value might yield a false positive as the trace reaching
the maximum time might not be a valid one (see the
guard satisfaction condition on the g-LTS semantics in
Section V.B).

Unlike our techniques, abstract interpretation requires
dedicated proofs for every specific abstraction. In particular,
the abstract semantics must each time be proved correct with
respect to the concrete one.

XI. CONCLUSION
Model-driven engineering requires high-quality models of
artefacts or processes in mission-critical domains. The models
must be correct for their safe use and readable by stakeholders
for their elicitation and validation. Model elaboration may be
complex and error-prone.
The paper presented a variety of tool-supported analysis
techniques for building more adequate, complete, and
consistent process models in which explicit decisions regulate
task flows. Such decisions generally depend on the process
state and on the state of the environment in which the process
operates.
The analysis techniques described in the paper may be applied
incrementally and locally to partial models at various levels of
refinement. The models may thereby be elaborated, verified,
corrected, and refined through successive iterations. The
approach thereby reduces the difficulties and cost of late fixing
of errors disseminated through a large, complex model.
More specifically, the paper makes the following
contributions.

• The formalism for modeling decision-based processes
is close to the informal sketches provided by process

stakeholders while introducing process variables for
higher precision of decision nodes. The language has a
formal operational semantics expressed in a lower-level
formalism to enable various types of automated
analysis. The high-level user language combines event-
based and state-based specifications to extend the class
of properties that can be checked.

• A generic algorithm computes state decorations by
propagations through the lower-level model.
Instantiations of this algorithm yield various types of
analyses. The decorations map value assignments for
the process variables to generic placeholders so as to
account for the various guard-satisfying paths leading
to the corresponding state.

• A variety of complementary techniques allow decision-
based process models to be analyzed formally. The
techniques may be used for generating state invariants,
checking precondititions, analyzing guards at decision
nodes, checking the adequacy of decisions, and
verifying non-functional process requirements
involving time and resources. These techniques are
obtained through different instantiations of the same
generic decoration algorithm. The instantiations require
minimal effort; the analyst just needs to define the set
of placeholder values and provide the function
specifying how instantiated placeholder values are to be
propagated through a single state transition.

• A roundtrip tool implements those techniques to
proactively and non-obtrusively highlight the problems
detected during model elaboration.

The paper provides an evaluation of the techniques in terms of
correctness, performance, applicability on a complex cancer
treatment process, utility in the medical domain, and usability.
Compared with process notations such as BPMN [63] or
YAWL [75], the g-HMSC language appears intuitive and
simple enough to involve process stakeholders in the model
elicitation/validation loop:

• the analyses are performed on models that are close to
the material provided by them;

• the flaws are highlighted by the tool on this high-level
model (rather than on the lower-level one it
manipulates); they can therefore be more easily fixed
with stakeholders –at least in our experience with
medical staff involved in complex cancer therapies.

The techniques presented in the paper raise various issues for
further work.
On the language side, the price to pay for simplicity is limited
expressiveness.

• Our focus on decision-based processes led us to leave
aside language constructs for concurrency among sub-
processes and exception handling [33, 55]. While not
necessarily needed for medical processes such as
clinical pathways, such constructs are required for
multi-instance processes, their enactment and
orchestration. The integration of a suitable exception
handling mechanism might also simplify decisions and
their corresponding guards in specific situations.

• The process models should also be extended with goals

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 25

underlying tasks. Goals provide the rationale for tasks;
moreover, they prove to be more stable than the tasks
operationalizing them [48]. In our experience, some
critical tasks appear difficult to refine into subtasks
(e.g., the StaffMeeting task in Fig. 10). A goal
refinement tree may then appear much more
appropriate. The integration of goals would also enable
complementary analyses [48]. Goal refinements may be
checked for completeness; incomplete refinements lead
to the identification of new goals and therefore new
tasks operationalizing them. Missing tasks or missing
paths could thereby be found. Obstacle analysis might
further improve the model by generating unexpected
risk conditions and exploring corresponding resolutions
through countermeasure goals and tasks [1, 50].

• The g-HMSC process variables are currently limited to
propositional variables; more complex domains should
be supported.

• The mechanism for refining tasks might be improved
through multiple time granularities and macro-events
[10] in order to remove the need for action events
having durations.

New constructs require extending the language, its semantics,
and the analyses accordingly. A good tradeoff should however
be kept between expressiveness, analyzability, and usability by
process stakeholders.
On the analysis side, the feedback provided by the tool should
be improved. Currently, the tool highlights error states in the
process model and provides a corresponding state invariant.
As additional feedback, a counterexample trace should be
generated to help understanding the root causes of the
problem.
Domain properties [48] should also be integrated in the model
in order to simplify generated decorations such as
preconditions or invariants. By removing redundant
information known as domain properties the resulting
decorations would sometimes be more compact and more
understandable.
As discussed in Section IX.D, some instantiations of the
generic decoration algorithm might raise efficiency concerns
in the process state space exploration. Abstract interpretation
techniques might help increase efficiency at the price of
introducing approximations.
The integration of multiple interfering process models is
another challenging issue. For example, a patient following
both diabetes and colorectal cancer therapies is exposed to
“feature interaction” problems: a medication contributing
positively to the patient’s state along one process might
contribute negatively to that state along the other process.
Goals might prove useful for detecting conflicts among the
processes operationalizing them [49]. We might also use the
model checker described in [25] to detect interferences in the
parallel composition of the process models. There are different
stages for detecting and resolving conflicts –at modeling time
or at runtime during process enactment. This should be further
investigated in order to know which approach would work
best.

New instantiations of our generic decoration algorithm should
be considered as well –for verifying other non-functional
process requirements or for other uses in the model building
process. For example, other instantiations recently allowed
model engineering operators to be defined, including the union
of paths from multiple models, the restriction of a model to
specific paths, the projection of a model on a specific set of
tasks, and the merge of concurrent models [24].

ACKNOWLEDGMENT
Warmest thanks are due to our medical colleagues François

Roucoux, Yves Humblet and Pierre Scalliet, and to the
medical staff at the Chemotherapy and Radiotherapy units of
the UCL Saint-Luc University Hospital for their time and
experience sharing. Thanks also to Baudouin Le Charlier for
helping us clarify the relationship and difference between
abstract interpretation and our approach. We are grateful to
George Avrunin and the reviewers for useful comments and
clarification questions on earlier versions of this paper. The
layered organization of our evaluation in Section IX arose
from discussions with Emmanuel Letier.

The work reported herein was partially supported by the
Regional Government of Wallonia (GISELE project nr.
616425 and PIPAS project nr. 1017087).

REFERENCES
[1] D. Alrajeh, J. Kramer, A. van Lamsweerde, A. Russo and S.
Uchitel, "Generating obstacle conditions for requirements
completeness", Proc. ICSE'2012: 34th Intl. Conf. on Software
Engineering, Zürich, ACM-IEEE, pp. 705-715, 2012.

[2] R. Alur and D. L. Dill, “A Theory of Timed Automata”,
Theoretical Computer Science, Vol. 126 No. 2, pp. 183-235, 1994.

[3] S. Bandinelli, A. Fuggetta, C. Ghezzi and L. Lavazza, “SPADE:
an environment for software process analysis, design, and
enactment”. In Software Process Modelling and Technology, A.
Finkelstein, J. Kramer and B. Nuseibeh (Eds.), Research Studies
Press Ltd., Taunton, UK, pp. 223-247, 1994.

[4] L. Baresi, F. Consorti, M. Di Paola, A. Gargiulo, and M. Pezzè,
"LEMMA: a language for easy medical model analysis”, Journal of
Medical Systems, Vol. 21 No 6, pp. 369-388, 1997.

[5] S. Bäumler, M. Balser, A. Dunets, W. Reif, J. Schmitt,
“Verification of medical guidelines by model checking: a case study”,
Proc. SPIN 2006, pp. 219-233, 2006.

[6] F. Belardinelli, A. Lomuscio, and F. Patrizi, "Verification of
GSM-based artifact-centric systems through finite abstraction",
Service-Oriented Computing, Springer-Verlag, pp. 17-31, 2012.

[7] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L.
Petrucci, and Ph. Schnoebelen, Systems and Software Verification –
Model Checking Techniques and Tools. Springer-Verlag, 2001.

[8] D. Beyer, T. A. Henzinger, and G. Théoduloz, “Configurable
software verification: concretizing the convergence of model
checking and program analysis”, Proc. CAV’2007: Intl. Conf. on
Computer-Aided Verification, LNCS 4590, Springer-Verlag, pp. 504-
518, 2007.

[9] N. Bjorner, A. Browne and Z. Manna, “Automatic generation of
invariants and intermediate assertions”, Theoretical Computer
Science Vol. 173 No. 1, pp. 49-87.

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 26

[10] I. Cervesato and A. Montanari. "A calculus of macro-events:
progress report", Proc. TIME’2000: 7th IEEE Intl. Workshop on
Temporal Representation and Reasoning, pp. 47-58, 2000.

[11] B. Chen, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil,
“Automatic fault tree derivation from Little-JIL process definitions”,
Proc. SPW 2006: Software Process Workshop, Shanghai, LNCS
3966, Springer-Verlag, pp. 150-158, 2006.

[12] B. Chen, G. S. Avrunin, E. A. Henneman, L. A. Clarke, L. J.
Osterweil, P. L. Henneman, “Analyzing medical processes”, Proc.
ICSE’2008: 30th Intl. Conf. on Software Engineering, ACM-IEEE,
pp. 623-632, 2008.

[13] S. Christov, B. Chen, G. S. Avrunin, L. A. Clarke, L. J.
Osterweil, D. Brown, L. Cassells, and W. Mertens, "Rigorously
defining and analyzing medical processes: an experience report". In
H. Giese (Ed.): MODELS 2007 Workshops, LNCS 5002, Springer-
Verlag, pp. 118-131, 2008.

[14] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M.
Pistore, M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: an
opensource tool for symbolic model checking”, Proc. CAV’2002:
Intl. Conf. on Computer-Aided Verification, LNCS 2404, Springer-
Verlag, pp. 359-364, 2002.

[15] E.M. Clarke and E.A. Emerson, “Automatic verification of
finite-State concurrent systems using temporal logic specifications”,
ACM Trans. Program. Lang. Systems Vol. 8 No. 2, pp. 244-263,
1986.

[16] M. R. Cohen, "Causes of medication errors", Medication Errors,
M.R. Cohen (Ed.), Jones and Bartlett, Toronto, pp. 55-66, 1999.

[17] D. Cohn and R. Hull, “Business Artifacts: A Data-centric
approach to modeling business operations and processes”, Bulletin of
the IEEE Computer Society Technical Committee on Data
Engineering, Vol. 32 No. 3, pp. 3-9, 2009.

[18] P. Cousot, “Abstract interpretation”, ACM Computing Surveys
Vol. 28, No 2, pp. 324-328, 1996.

[19] P. Cousot, “Abstract interpretation based formal methods and
future challenges”, Informatics, Springer-Verlag, pp. 138-156, 2001.

[20] P. Cousot and R. Cousot, “Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints”, Proc. POPL’1977: 4th ACM Symp. on
Principles of Programming Languages, pp. 238-252, 1977.

[21] C. Damas, Analyzing Multi-View Models of Software Systems.
Ph.D. Thesis, Université catholique de Louvain, 2011.

[22] C. Damas, B. Lambeau, P. Dupont, and A. van Lamsweerde,
“Generating annotated behavior models from end-user scenarios”,
IEEE Trans. on Software Engineering, Vol. 31 No.12, pp. 1056-1073,
2005.

[23] C. Damas, B. Lambeau and A. van Lamsweerde, “Scenarios,
goals, and state machines: a win-win partnership for model
synthesis”, Proc. FSE’06, 14th ACM International Symp. on the
Foundations of Software Engineering, Portland (OR), pp. 197-207,
2006.

[24] C. Damas, B. Lambeau, and A. van Lamsweerde,
“Transformation operators for easier engineering of medical process
models”, Proc. SEHC'2013: 5th ICSE Workshop on Software
Engineering in Health Care, San Francisco, ACM-IEEE, 2013.

[25] C. Damas, B. Lambeau, F. Roucoux, and A. van Lamsweerde,
“Analyzing critical process models through behavior model
synthesis”, Proc. ICSE’2009: 31st Intl. Conf. on Software
Engineering, ACM-IEEE, pp. 441-451, 2009.

[26] E. De Maria, A. Montanari, and M. Zantoni, “An automaton-
based approach to the verification of timed workflow schemas”, Proc.
TIME 2006, pp. 87-94, 2006.

[27] M. Dumas, W. van der Aalst, A. ter Hofstede, Process-Aware
Information Systems. Wiley, 2005.

[28] R. Eshuis, “Symbolic model checking of UML activity
diagrams”, ACM Trans. on Software Eng. and Methodology
(TOSEM) Vol. 15, No. 1, pp. 1-38, 2006.

[29] A. Finkelstein, J. Kramer and B. Nuseibeh (Eds.), Software
Process Modelling and Technology. John Wiley & Sons, 1994.

[30] J. Fox, N. Johns, A. Rahmanzadeh, “Disseminating medical
knowledge: the ProForma approach”, Artif. Intell. Med. Vol. 14, pp.
157-181, 1998.

[31] D. Giannakopoulou and J. Magee, “Fluent model checking for
event-based systems”, Proc. ESEC/FSE’2003: European Software
Engineering Conference and ACM International Symp. on the
Foundations of Software Engineering, Helsinki, pp. 257-266, 2003.

[32] P. Gonzalez, A. Griesmayer, and A. Lomuscio, "Verifying
GSM-based business artifacts", Proc. 19th Intl. Conference on. Web
Services (ICWS), IEEE, pp. 25-32, 2012.

[33] M. Han, T. Thiery, X. Song, “Managing exceptions in medical
workflow systems”, Proc. ICSE’06, 28th Intl. Conf. on Software
Engineering, Shanghai, ACM-IEEE, pp. 741-750, 2006.

[34] D. Harel and A. Naamad, "The STATEMATE semantics of
Statecharts", ACM Transactions on Software Engineering and
Methodology (TOSEM), Vol. 5 No. 4, pp. 293-333, 1996.

[35] M. S. Hecht, Flow analysis of computer programs. Elsevier
Science, 1977.

[36] C.L. Heitmeyer, R. D. Jeffords, and B. G. Labaw, "Automated
consistency checking of requirements specifications", ACM Trans. on
Software Eng. and Methodology (TOSEM) Vol. 5 No. 3, pp. 231-261,
1996.

[37] E. Henneman, G. S. Avrunin, L. A. Clarke, L. J. Osterweil, C.
Andrzejewski, K. Merrigan, R. Cobleigh, K. Frederick, E. Katz-
Bassett, and P. Henneman, "Increasing patient safety and efficiency
in transfusion therapy using formal process definitions", Transfusion
Medicine Reviews, Vol 21 No 1, pp. 49-57, 2007.

[38] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. T. Heath III, S.
Hobson, M. Linehan, S. Maradugu, A. Nigam, S. Sukaviriya, and R.
Vaculin, “Introducing the Guard-Stage-Milestone approach for
specifying business entity lifecycles”, Proc. Intl. Workshop on Web
Services and Formal Methods, 2010.

[39] Institute of Medicine, “A New Health System for the 21st
Century”. In Crossing the Quality Chasm, National Academy Press,
Washington (D.C.), pp. 23-38, 2001.

[40] ITU, Message Sequence Charts. Recommendation Z.120, Intl.
Telecom Union, Telecom. Standardization Sector, 1996.

[41] R. Jeffords and C. Heitmeyer, “Automatic generation of state
invariants from requirements specifications”, Proc. FSE’1998: 6th
ACM Symp. Foundations of Software Engineering, Los Alamitos
(CA), pp. 56-69, 1998.

[42] G.T. Jun, J.R. Ward and Z. Morris, “Health care process
modelling: which method when?”, International Journal for Quality
in Health Care, Vol. 21 No.3, pp. 214-224, 2009.

[43] S. Kaiser and S. Miksch, Modeling Computer-Supported
Clinical Guidelines and Protocols: A Survey. Vienna Univ.
Technology, Report Asgaard-TR-2005-2, 2005.

IEEE Transactions on Software Engineering Vol. 40 No. 4, April 2014, 338-365. 27

[44] L.T. Kohn, J.M. Corrigan, M.S. Donaldson (eds.), To Err is
Human: Building a Safer Health System. National Academy Press,
Washington (D.C.), 1999.

[45] N. Kokash C. Krause and E. de Vink, "Reo+ mCRL2: A
framework for model-checking dataflow in service
compositions", Formal Aspects of Computing Vol. 24 No.2, pp. 187-
216, 2012.

[46] B. Lambeau, Synthesizing Multi-Model Views of Software
Systems. Ph.D. Thesis, Université catholique de Louvain, 2011.

[47] A. van Lamsweerde, “Formal specification: a roadmap”. In The
Future of Software Engineering, A. Finkelstein (Ed.), ACM Press, pp.
147-159, 2000.

[48] A. van Lamsweerde, Requirements Engineering: From System
Goals to UML Models to Software Specifications. John Wiley &
Sons, 2009.

[49] A. van Lamsweerde, R. Darimont, E. Letier, “Managing
conflicts in goal-driven requirements engineering”, IEEE
Transactions on Software Engineering Vol. 24 No. 11, pp. 908-926,
1998.

[50] A. van Lamsweerde and E. Letier, “Handling obstacles in goal-
oriented requirements engineering”, IEEE Transactions on Software
Engineering Vol. 26 No. 10, pp. 978-1005, 2000.

[51] A. van Lamsweerde and M. Sintzoff, “Formal derivation of
strongly correct concurrent programs”, Acta Informatica Vol.12 No.
1, Springer-Verlag, pp. 1-31, 1979.

[52] A. van Lamsweerde and L. Willemet, “Inferring declarative
requirements specifications from operational scenarios”, IEEE Trans.
on Software. Engineering Vol. 24 No. 12, pp. 1089-114, 1998.

[53] K. G. Larsen, P. Pettersson, and W. Yi, “Uppaal in a nutshell”,
Int. Journal on Software Tools for Technology Transfer Vol. 1 No. 1-
2, pp. 134-152, 1997.

[54] B. S. Lerner, “Verifying process models built using
parameterised state machines”, Proc. ISSTA’2004: ACM SIGSOFT
Symp. Software Testing and Analysis, pp. 274–284, 2004.

[55] B. S. Lerner, S. Christov, L.J. Osterweil, R. Bendraou, U.
Kannengiesser, and A. Wise, "Exception handling patterns for
process modeling", IEEE Transactions on Software Engineering Vol.
36 No. 2, pp. 162-183, 2010.

[56] J. Magee and J. Kramer, Concurrency: State Models and Java
Programs. Second Edition, John Wiley & Sons, 2006.

[57] Mapofmedecine, www.mapofmedicine.com/solution/
whatisthemap/, 2013.

[58] S. Miksch, Y. Shahar, and P. Johnson. "Asbru: A task-specific,
intention-based and time-oriented language for representing skeletal
plans", Proc. KEML’97: 7th Workshop on Knowledge Engineering -
Methods & Languages, pp 9-19, 1997.

[59] R. Miller, M. Shanahan, “The Event Calculus in classical logic –
alternative axiomatisations”, Linkoping Electronic Articles in
Computer and Information Science Vol. 4 No. 16, pp. 1-27, 1999.

[60] R. Milner, Communication and Concurrency. Prentice-Hall,
1989.

[61] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program
Analysis. Springer-Verlag, 2004.

[62] OMG, UML 2.0 Superstructure Specification, 2003.

[63] OMG, Business Process Modeling Notation, v1.1, 2008.

[64] D. Park, J. Skakkebæk, and D. Dill, “Static analysis to identify
invariants in RSML specifications” Proc. FTRTFT’98: 5th Intl. Symp.

on Formal Techniques in Real-Time and Fault-Tolerant Systems,
LNCS 1486, Springer-Verlag, pp. 133-142, 1998.

[65] M. Peleg, S. Tu, J. Bury, P. Ciccarese, J. Fox, R. A. Greenes, R.
Hall, P. Johnson, N. Jones, A. Kumar, S. Miksch, S. Quaglini, A.
Seyfang, E. Shortliffe, and M. Stefanelli, "Comparing computer-
interpretable guideline models: a case-study approach", Journal of the
American Medical Informatics Association Vol.10 No.1, pp. 52-68,
2003.

[66] M. Pradhan, M. Edmonds, and W. Runciman, “Sequence
diagrams for visualizing healthcare processes”. In Quality in
Healthcare : Process, Best Practice & Research Clinical
Anaesthesiology Vol. 15 No. 4, pp. 555-571, 2001.

[67] J. Queille and J. Sifakis, “Specification and verification of
concurrent systems in CAESAR”, Proc. 5th Intl. Symp. on
Programming, LNCS 137, Springer-Verlag, pp. 337-351, 1982.

[68] A. Rae, D. Jackson, P. Ramanan, J. Flanz, and D. Leyman,
"Critical feature analysis of a radiotherapy machine", Reliability
Engineering & System Safety Vol. 89 No. 1, pp. 48-56, 2005.

[69] M.S. Raunak and L.J. Osterweil, "Resource management for
complex, dynamic environments", IEEE Transactions on Software
Engineering Vol. 39 No. 3, 2013.

[70] F. Roucoux, R. Florquin, C. Quintens and V. Remouchamps,
“Applying a computerized care pathway orchestration system in the
hospital”, Proc. ECPC’2013: European Care Pathways Conference,
Glasgow, June 2013.

[71] A. Rozinat and W. M. P. van der Aalst, “Conformance checking
of processes based on monitoring real behavior”, Information Systems
Vol. 33 No. 1, pp. 64-95, 2008.

[72] S. Uchitel, J. Kramer, and J. Magee, “Synthesis of behavioral
models from scenarios”, IEEE Trans. Softw. Engineering Vol. 29 No.
2, pp. 99-115, 2003.

[73] W. M. P. van der Aalst, “Verification of workflow nets”, Proc.
Application and Theory of Petri Nets 1997, LNCS 1248, Springer-
Verlag, pp. 407-426, 1997.

[74] W. M. P. van der Aalst, A. H. M. ter Hofstede, B.
Kiepuszewski, and A. P. Barros, “Workflow patterns”, Distributed
and Parallel Databases Vol. 14 No.1, pp. 5-51, 2003.

[75] W. M. P. van der Aalst and A. H. M. ter Hofstede, “YAWL: yet
another workflow language”, Information Systems Vol. 30 No. 4, pp.
245-275, 2005.

[76] N. Walkinshaw, B. Lambeau, C. Damas, K. Bogdanov, P.
Dupont, "STAMINA: a competition to encourage the development
and assessment of software model inference techniques", Empirical
Software Engineering Vol. 18 No.4, pp. 791-824, 2013.

[77] J. Whittle and J. Schumann, “Generating statechart designs from
scenarios”, Proc. ICSE’2000: 22nd Intl. Conference on Software
Engineering, Limerick, ACM-IEEE, pp. 314-323, 2000.

[78] A. Wise, A. G. Cass, B. S. Lerner, E. K. McCall, L. J.
Osterweil, and S. M. Sutton, “Using Little-JIL to coordinate agents in
software engineering”, Proc. ASE’2000: Automated Software
Engineering Conference, Grenoble, IEEE, pp. 155-163, 2000.

[79] P. Y. H. Wong and J. Gibbons, “Formalisations and applications
of BPMN”, Science of Computer Programming Vol. 76 No. 8, pp.
633-650, 2011.

[80] P. Y. H. Wong and J. Gibbons, “Property specifications for
workflow modelling’, Science of Computer Programming Vol. 76
No.10, pp. 942-967, 2011.

