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Abstract

This paper introduces two feature selection methods to deal with heteroge-
neous data that include continuous and categorical variables. We propose to
plug a dedicated kernel that handles both kinds of variables into a Recursive
Feature Elimination procedure using either a non-linear SVM or Multiple
Kernel Learning. These methods are shown to offer state-of-the-art perfor-
mances on a variety of high-dimensional classification tasks.
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1. Introduction

Feature selection is an important preprocessing step in machine learning
and data mining as increasingly more data are available and problems with
hundreds or thousands of features have become common. Those high di-
mensional data appear in many areas such as gene expression array analysis,
text processing of internet documents, economic forecasting, etc. Feature
selection allows domain experts to interpret a decision model by reducing
the number of variables to analyze. It also reduces training and classification
times as well as measurement and storage requirements.

To the best of our knowledge, little effort has been dedicated to develop
feature selection methods tailored for datasets with both categorical and
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numerical values. Such heterogeneous data are found in several applications.
For instance, in the medical domain, high dimensional continuous feature
sets (e.g. gene expression data) are typically considered along with a few
clinical features. These features can be continuous (e.g. blood pressure)
or categorical (e.g. sex, smoker vs non-smoker). To highlight important
variables, a naive approach would transform heterogeneous data into either
fully continuous or categorical variables before applying any standard feature
selection algorithm. To get a continuous dataset, categorical variables can be
encoded as numerical values. The specific choice of such numerical values is
however arbitrary. It introduces an artificial order between the feature values
and can lead to largely different distance measures between instances [1].

A standard approach relies on a multivariate numerical encoding, such
as the disjunctive encoding, to represent categorical variables. For instance,
a feature having 3 categories as possible values could be encoded by consid-
ering 3 new features instead: (1, 0, 0), (0, 1, 0) and (0, 0, 1). However, they
need specific approaches, such as group lasso [2], to correctly handle feature
selection at the granularity of the original features.

The discretization of continuous features is a common alternative to rep-
resent categorical and numerical features in a similar space. Such approach
comes at the price of making the selection highly sensitive to the specific
discretization [1].

A natural alternative would consider tree ensemble methods such as Ran-
dom Forests (RF), since they can be grown from both types of variables and
these methods perform an embedded selection. RF were however shown to
bias the selection towards variables with many values [3]. The cForest method
has been introduced to correct this bias [3] but its computational time is
drastically increased and becomes prohibitive when dealing with thousands
of features2.

In this paper we propose two kernel based methods for feature selection.
They are conceptually similar to disjunctive encoding while keeping original
features throughout the whole selection process. In both approaches, the
selection is performed by the Recursive Feature Elimination (RFE) [4] mech-
anism that iteratively ranks variables according to their importances. We
propose to extract those feature importances from two different kernel meth-

2In each node of each tree of the forest, a conditional independence permutation test
needs to be performed to select the best variable instead of a simple Gini evaluation.
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ods : the Support Vector Machine (SVM) and the Multiple Kernel Learning
(MKL), with a dedicated heterogeneous kernel. We use the clinical kernel [5],
that handles both kinds of features in classification tasks.

The remainder of this document is organized as follows. Section 2 de-
scribes the two proposed methods. Section 3 briefly presents competing
approaches we compare to in our experiments. The experimental setting is
presented in Section 4. Results are discussed in Section 5. Finally, Section 6
concludes this work.

2. Material and Methods

This section presents the different building blocks that compose our two
heterogeneous feature selection methods. Recursive Feature Elimination
(RFE), the main feature selection mechanism, is presented in Section 2.1.
It internally uses a global variable ranking for both continuous and categor-
ical features. This ranking is extracted from two kernel methods (Support
Vector Machine and Multiple Kernel Learning) that use a dedicated hetero-
geneous kernel called the clinical kernel (Section 2.2). Section 2.3 details
how to obtain a feature ranking from a non-linear SVM. Finally, Section 2.4
sketches Multiple Kernel Learning, which offers an alternative way to rank
variables with the clinical kernel.

2.1. Recursive feature elimination

RFE [4] is an embedded backward elimination strategy that iteratively
builds a feature ranking by removing the least important features in a clas-
sification model at each step. Following [6], a fixed proportion of 20 % of
features is dropped at each iteration. The benefit of such a fixed proportion
is that the actual number of features removed at each step gradually de-
creases till be rounded to 1, allowing a finer ranking for the most important
features. This iterative process is pursued till all variables are ranked. The
number of iterations automatically depends on the total number p of features
to be ranked while following this strategy. RFE is most commonly used in
combination with a linear SVM from which feature weights are extracted.
However, it can be used with any classification model from which individual
feature importance can be deduced. A general pseudo-code for RFE is given
in Algorithm 1.
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R← empty ranking
F ← set of all features
while F is not empty do

train a classifier m using F
extract variable importances from m
remove the 20% least important features from F
put those features on top of R

end
return R

Algorithm 1: Recursive Feature Elimination

2.2. Clinical kernel

The so-called clinical kernel proposed in [5] was shown to outperform
a linear kernel for classifying heterogeneous data. It averages univariate
subkernels [7] defined for each feature.

k(xi,xj) =
1

p

p∑

f=1

kf (xif , xjf ) (1)

kf (a, b) =

{
I(a = b) if f is categorical
(maxf−minf )−|a−b|

maxf−minf
if f is continuous

(2)

where xi is a data point in p dimensions, xif is the value of xi for feature f ,
I is the indicator function, a and b are scalars and maxf and minf are the
maximum and minimum values observed for feature f . One can note that
summing kernels simply amounts to concatenating variables in the kernel
induced space.

Given two data points, the subkernel values lie between 0, when the
feature values are farthest apart, and 1 when they are identical, similarly to
the gaussian kernel. The clinical kernel is basically an unweighted average
of overlap kernels [8] for categorical features and triangular kernels [9, 10]
for continuous features. The overlap kernel can also be seen as a rescaled
l1-norm on a disjunctive encoding of the categorical variables. The clinical
kernel assumes the same importance to each original variable. We show here
the benefit of adapting this kernel for heterogeneous feature selection.

2.3. Feature importance from non-linear Support Vector Machines

The Support Vector Machine (SVM) [11] is a well-known algorithm that
is widely used to solve classification problems. It looks for the largest margin
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hyperplane that distinguishes between samples of different classes. In the
case of a linear SVM, one can measure the feature importances by looking at
their respective weights in the hyperplane. When dealing with a non-linear
SVM, we can instead look at the variation in margin size 1

‖w‖ . Since the larger

the margin, the lower the generalization error (at least in terms of bound), a
feature that does not decrease much the margin size is not deemed important
for generalization purposes. So, in order to measure feature importances with
a non-linear SVM, one can look at the influence on the margin of removing
a particular feature [12].

The margin is inversely proportional to

W 2(α) =
n∑

i=1

n∑

j=1

αiαjyiyjk(xi,xj) = ‖w‖2 (3)

where αi and αj are the dual variables of a SVM, yi and yj the labels of xi and
xj, out of n training examples, and k a kernel. Therefore, the importance of
a particular feature f can be approximated without re-estimating α by the
following formula:

JSVM(f) = |W 2(α)−W 2
(−f)(α)| (4)

W 2
(−f)(α) =

n∑

i=1

n∑

j=1

αiαjyiyjk(x−fi ,x−fj ) (5)

where x−fi is the i-th training example without considering the feature f . In
Equation (5), the α’s are kept identical to those in Equation (3). This is a
computationally efficient approximation originally proposed in [12]. The fea-
ture importance is thus evaluated with respect to the separating hyperplane
in the current feature space and hence the current decision function.

Updating k(xi,xj) to k(x−fi ,x−fj ) is pretty efficient and straightforward
with the clinical kernel (Section 2.2). There is no need to recompute the sum
of all subkernels but one only has to remove kf (Equation (2)) and normalize
accordingly. Removing one such sub-kernel is equivalent to removing features
in the projected space, which is similar to what is done with a linear kernel.

In this work, we propose to combine the JSVM feature importance (Equa-
tion (4)) with the RFE mechanism in order to provide a full ranking of the
features. This method will be referred to as RFESVM .
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2.4. Feature importance from Multiple Kernel Learning

MKL [13] learns an appropriate linear combination of M basis kernels,
each one possibly associated to a specific input variable, as well as a discrim-
inant function. The resulting kernel is a weighted combination of different
input kernels.

k(xi,xj) =
M∑

m=1

µmkm(xi,xj) s.t. µm ≥ 0 (6)

Summing kernels is equivalent to concatenating the respective feature
maps ψ1, . . . , ψm induced by those kernels. The associated decision function
f(x) is a generalized linear model in the induced space:

f(x) =
M∑

m=1

√
µmw

T
mψm(x) + b (7)

where µm, wm and ψm are respectively the kernel weight, feature weight and
explicit feature map corresponding to the m-th kernel, and b a bias term.
Those parameters are estimated by minimizing the following objective

argmin
w,b,µ≥0

C

n∑

i=1

`(f(xi), yi) +
1

2

M∑

m=1

‖wm‖22 such that ‖µ‖22 ≤ 1 (8)

where C > 0 and ` denotes the hinge loss `(f(x), y) = max{0, 1 − yf(x)}.
We note that the kernel weight vector µ is l2-regularized in contrast to MKL
approaches using sparsity inducing norms [14]. Indeed, non-sparse MKL
has been shown to be more effective on various computational biology prob-
lems [15]. It is also more convenient in our context since we interpret |µm|
as a feature importance measure and look for a full ranking of all features.

In this work, we adapt the clinical kernel (Equation (2)) with MKL to
learn a non-uniform combination of the basis kernels, each one associated to
a single feature. As we can see in Equation (7), µf reflects the influence of
kernel kf in the decision function [13]. µf can thus be seen as the importance
JMKL(f) of feature f .

The combination of RFE with this feature importance extracted from
MKL will be referred to as RFEMKL. It specifically uses the kernel weights
|µf | as feature importance value to eliminate at each iteration a prescribed
fraction of the least relevant features.
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3. Competing approaches

This section presents the three competing methods we compare to in
the experiments: Random Forest [16] and two variants of Hybrid Feature
Selection [1].

The Random Forest (RF) algorithm builds an ensemble of T decision
trees. Each one is grown on a bootstrap sample of the dataset. The subset
of data points that are used to build a particular tree forms its bag. The
remaining set of points is its out-of-bag. To compute variable importances,
Breiman [16] proposes a permutation test. It uses the out-of-bag samples
to estimate how much the predictive performances of the RF decrease when
permuting a particular variable. The bigger the drop in accuracy, the higher
the variable importance. In order to obtain good and stable feature selection
from RF, a large ensemble of 10,000 trees (RF10000) is considered according
to the analysis in [17].

An alternative method performs a greedy forward selection aggregating
separate rankings for each type of variables into a global ranking [1]. The
authors report improved results over those of the method proposed in [18],
which is based on neighborhood relationships between heterogeneous sam-
ples. Out of a total of p variables, categorical and continuous features are first
ranked independently. Mutual information (MI) was originally proposed for
those rankings but a reliable estimate of MI is difficult to obtain whenever
fewer samples than dimensions are available. Instead we use the p-values
of a t-test to rank continuous features and of a Fisher exact test for cat-
egorical ones. The two feature rankings are then combined into a global
ranking by iteratively adding the first categorical or continuous variable that
maximizes the predictive performance of a Naive Bayes or a 5-NN classi-
fier (consistently with the choices made in [1]). The NN classifier uses the
Heterogeneous Euclidian-Overlap Metric [19] between pairs of instances as
follows:

d(xi,xj) =

√√√√
p∑

f=1

df (xif , xjf )2 (9)

df (a, b) =

{
I(a 6= b) if f is categorical
|a−b|

maxf−minf
if f is continuous

(10)

= 1− kf (a, b) (11)
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This metric is closely related to the clinical kernel (Equation (2)). For each
feature, df takes value 0 for identical points and value 1 for points that are
farthest apart in that dimension. We refer to these approaches as HFSNB

and HFS5NN in the sequel.

4. Experiments

In order to compare the five feature selection methods, we report predic-
tive performances of classifiers built on selected variables as well as quality
measures on those feature sets. A statistical analysis is also performed to
assess if there are significant differences between the performances of the
various methods. This section presents the experimental protocol, the vari-
ous evaluation metrics and the datasets that we use in our experiments.

4.1. Experimental protocol

When a sufficient amount of data is available, 10-fold cross validation
(10-CV) provides a reliable estimate of model performances [20]. However,
it may lead to inaccurate estimates on small-sized datasets, due to a higher
variability in the different folds. We thus make use of a resampling strategy
consisting of 200 random splits of the data into training (90%) and test (10%).
Such a protocol has the same training/test proportions as 10-CV but benefits
from a larger number of tests. It also keeps the training size sufficiently large
so as to report performances close enough to those of a model estimated on
the whole available data.

For each data partition, the training set is used to rank features and
build predictive models using different numbers of features. The ranking is
recorded and predictive performances are measured while classifying the test
set. Average predictive performances are reported over all test folds and the
stability of various signature sizes is computed from the 200 feature rankings.
The average number of selected categorical features is also computed for each
signature size. This number does not reflect a specific performance value of
the feature selection methods but rather gives some insight into how they
deal with the selection of heterogeneous variables.

Whenever a SVM is trained with the clinical kernel, the regularization pa-
rameter is fixed to a predefined value estimated from preliminary experiments
on independent datasets. Such a value is set to 0.1 for the feature selection
itself and to 10 when learning a final classifier on the selected features.
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4.2. Performance metrics

Predictive performances are reported here in terms of balanced classifi-
cation rate (BCR), which is the average between sensitivity and specificity.
These metrics are particularly popular in the medical domain and BCR, un-
like AUC, easily generalizes to multi-class with unbalanced priors. For binary
classification, it is defined as follows :

BCR =
1

2

(
TP

P
+
TN

N

)
(12)

where TP (resp. TN) is the number of true positives (resp. negatives) and
P (resp. N) the number of positive (resp. negative) samples in the dataset.

Selection stability is assessed here through the Kuncheva’s index (KI) [21]
which measures to which extent K sets of s selected features share common
elements.

KI({S1, ..., SK}) =
2

K(K − 1)

K−1∑

i=1

K∑

j=i+1

|Si ∩ Sj| − s2

p

s− s2

p

(13)

where p is the total number of features and s2

p
is a correction for the random

chance that 2 feature sets Si and Sj share common features. KI takes values
in (−1, 1]. A value of 0 indicates random selection. The larger KI, the larger
the number of commonly selected features.

In order to globally compare the five feature selection methods, a Fried-
man statistical test [22] is performed across all datasets and all feature set
sizes. A low p-value indicates that there is indeed a difference between the
various algorithm performances. In that case, a Nemenyi post-hoc test [22]
is performed to find out which methods perform significantly differently than
others.

4.3. Datasets

We report results on 7 binary classification datasets briefly described in
Table 1 in terms of number of features and class priors. The Arrhythmia [23]
dataset aims at distinguishing between the presence or absence of cardiac ar-
rhythmia from features extracted from electrocardiograms. The Bands [23]
dataset tackles the problem of band (grooves) detection on cylinders engraved
by rotogravure printing. It consists of physical measurements and technical
printing specifications. The task associated to the Heart [23] dataset is to
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Name Continuous Categorical Class priors
features features

Arrhythmia [23] 198 64 245/185
Bands [23] 20 14 312/228
Heart [23] 6 7 164/139

Hepatitis [23] 6 13 32/123
Housing [24] 15 2 215/291

Rheumagene [25] 100 3 28/21
van’t Veer [26] 4353 2 44/33

Table 1: Datasets overview

detect the presence of a heart disease in the patient. Variables come from
clinical measurements. The Hepatitis [23] dataset is about predicting survival
to hepatitis from clinical variables. The goal of the Housing [24] dataset is
to evaluate the median value of owner-occupied homes from local statistics.
The two classes are defined by a cutoff at $20,000. The Rheumagene [25]
dataset aims at diagnosing arthritis at a very early stage of the disease. Ge-
nomic variables are provided along with 3 clinical variables. Finally, the van’t
Veer [26] dataset tackles a breast cancer prognosis problem. This very high
dimensional dataset consists of genomic features from microarray analysis
and seven clinical variables, two of them being categorical.

5. Results and discussion

We compare here RFEMKL and RFESVM to HFSNB, HFS5NN and
RF of 10,000 trees on 7 real-life datasets resulting in more than 7,000 exper-
iments. These methods essentially provide a ranking of the features, without
defining specific feature weights3. Predictive performances can then be as-
sessed on a common basis for all techniques by selecting all features up to a
prescribed rank and estimating a classifier restricted to those features. We
use here a non-linear SVM with the clinical kernel reduced to the selected
features as final classifier. Other final classifiers such as RF, Naive Bayes or
5-NN offer similar predictive performances and are not reported here.

We compare first all selection techniques across all feature set sizes and

3Feature weights are used at each RFE iteration but those weights need not be com-
parable globally across iterations.
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datasets to give a general view of the performances. Choosing a specific
number of features is indeed often left to the final user who, for instance,
might favor the greater interpretability of a reduced feature set at the price of
some predictive performance decrease. Our second analysis focuses on a fixed
number of features offering a good trade-off between predictive performances
and sparsity.

Figure 1 reports the statistical analysis across all datasets and all feature
set sizes using a Friedman test, followed by a Nemenyi post-hoc test. Fig-
ures 2, 3, 4 and 5 report more detailed results. They show the predictive
performance, the stability of feature selection and the average number of
selected categorical features on each signature size of each dataset.

The Friedman test [22] can be seen as a non-parametric equivalent to
the repeated-measures ANOVA. It tests whether the methods significantly
differ based on their average ranks. In our experiments, it shows significant
differences of the predictive performances of the 5 feature selection meth-
ods across all datasets and all feature set sizes (p-value < 10−6). According
to the Nemenyi post-hoc test, (see Figure 1, left), RFEMKL is best ranked
(i.e. it has the lowest mean rank) and performs significantly better than
HFS5NN and RFESVM which appear at the end of the ranking. Our data
does not show significant differences between the predictive performances of
RFEMKL, RF10000 and HFSNB. A Friedman test on the feature selection
stability also shows highly significant differences (p-value < 10−29) between
the 5 feature selection approaches. According to a Nemenyi post-hoc test
(see Figure 1, right), our RFE approaches are at the bottom of the ranking.
RFEMKL is however not significantly less stable than HFSNB and RF10000.
In addition, the two HFS approaches may have the natural advantage that
they are based on filter methods that are more stable than embedded meth-
ods [27]. Moreover, the RFs had to be run with a very large number of
trees (10,000) to provide a stable feature selection [17]. This leads to in-
creased computational times and heavier models, especially on datasets with
a higher number of instances. On the Arrhythmia and Bands datasets, the
200 resamplings require 1.5 more CPU time with RF10000 (single-core imple-
mentation in the randomForest R-package [28]) than with the RFE methods
(in the Shogun [29] implementation of MKL and SVM). On the Housing

11



BCR

mean rank

CD

2.6 3 3.2 3.6

RFEMKL

RF10000

HFSNB HFS5NN

RFESVM

KI

mean rank

CD

2 2.5 3 3.5 4 4.5

HFS5NN

HFSNB

RF10000 RFEMKL

RFESVM

Figure 1: Nemenyi critical difference diagrams [22] : comparison of the predictive per-
formances (BCR) and stability (KI) of the five algorithms over all signature sizes of all
datasets. Horizontal black lines group together methods whose mean ranks do not differ
significantly. CD represents the rank difference needed to have a 95% confidence that
method performances are significantly different.

dataset, the RF implementation is 5 times slower than the RFE methods4

The top left graph of Figure 2 shows predictive performances of the
five methods on the Arrhythmia dataset. We can see that RFEMKL and
RF10000 perform best since they avoid to select categorical features which
happen to be noisy on this dataset (Figure 2, left). The bottom right plot
of Figure 4 reports the average number of categorical features among se-
lected features for the Rheumagene dataset. It shows that all but RFESVM

and HFS5NN select two categorical variables first, leading to already good
predictive performances with very few selected variables (top right graph of
Figure 4). The third categorical variable is actually never selected since it
happens to convey very few information to predict the class label5. On the
van’t Veer dataset, the HFS approaches tend to keep selecting the two cate-
gorical variables even when the feature selection is very aggressive (Figure 5,
bottom). They show a peak in predictive performances when 5 features are
kept (Figure 5, left). However, the best predictive performance (Figure 5,
left) is obtained with RFEMKL which selects one of the two categorical vari-
ables. It also corresponds to a very good feature selection stability, as shown

4Specifically, CPU times were measured on a 2.60 Ghz machine with 8GB Ram memory.
On this dataset, RFEMKL, RFESVM , and RF10000 took respectively 23 min, 26 min
and 114 min to be run.

5Out of 49 samples (28 negative, 21 positive), this variable takes value ‘0’ 46 times and
‘1’ only 3 times.
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in the right graph of Figure 5. Finally, on the three high dimensional datasets
(Arrhythmia, Rheumagene and van’t Veer), RFESVM is significantly less
stable.

We further analyze below the various feature selection methods for a fixed
number of selected features. One could indeed be interested in selecting a
feature set as small as possible with only a marginal decrease in predictive
performances. For each dataset, we choose the smaller feature set size such
that the BCR of RFEMKL lies in the 95% confidence interval of the best
RFEMKL predictive performance. Those signature sizes are highlighted in
Figures 2–5 by vertical dashed lines. A Friedman test on those predictive
performances finds significant differences (p-value of 0.008). A Nemenyi post-
hoc test (Figure 6, left) shows that the two best ranked methods, RF10000
and RFEMKL, perform significantly better than RFESVM in terms of BCR.
Feature selection stabilities also significantly differ according to a Friedman
test (p-value of 0.02). Figure 6 illustrates that the ranking among the five
methods is the same for stability and BCR. Those results on a fixed number
of features show that the RFEMKL and RF10000 are the two best perform-
ing methods without significant differences between them, but at a larger
computational cost for the latter.

6. Conclusion and perspectives

We introduce two heterogeneous feature selection techniques that can deal
with continuous and categorical features. They combine Recursive Feature
Elimination with variable importances extracted from MKL (RFEMKL) or a
non-linear SVM (RFESVM). These methods use a dedicated kernel combin-
ing continuous and categorical variables. Experiments show that RFEMKL

produces state-of-the-art predictive performances and is as good as compet-
ing methods in terms of feature selection stability. It offers results similar
to Random Forests with smaller computational times. RFESVM performs
worse than RFEMKL. It also seems less efficient in terms of prediction and
stability than competing approaches, even though not significantly different
from all competitors.

The two kernel based methods proposed here are among the few existing
selection methods that specifically tackle heterogeneous features. Yet, we
plan in our future work to improve their stability possibly by resorting to an
ensemble procedure [6].
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Figure 2: Predictive performances (BCR), feature selection stability (KI) and number of
selected categorical features for each signature size of the Arrhythmia and Bands datasets.
The dashline defines the minimal number of features to select without loosing much in
predictive performances (see text).
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Figure 3: Predictive performances (BCR), feature selection stability (KI) and number of
selected categorical features for each signature size of the Heart and Hepatitis datasets.
The dashline defines the minimal number of features to select without loosing much in
predictive performances (see text).
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Figure 4: Predictive performances (BCR), feature selection stability (KI) and number
of selected categorical features for each signature size of the Housing and Rheumagene
datasets. The dashline defines the minimal number of features to select without loosing
much in predictive performances (see text).
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Figure 5: Predictive performances (BCR), feature selection stability (KI) and number of
selected categorical features for each signature size of the van’t Veer dataset. The dash-
line defines the minimal number of features to select without loosing much in predictive
performances (see text).
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differ significantly. CD represents the rank difference needed to have a 95% confidence
that methods performances are significantly different.
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We observed that the proposed methods run faster than the competing
approaches on various datasets. Those differences would be worth to reassess
in a further study relying on parallel implementations.
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[22] J. Demšar, Statistical comparisons of classifiers over multiple data sets,
J. Mach. Learn. Res. 7 (2006) 1–30.
URL http://jmlr.org/papers/volume7/demsar06a/demsar06a.pdf

20



[23] A. Frank, A. Asuncion, UCI ML repository (2010).
URL http://archive.ics.uci.edu/ml

[24] F. Leisch, E. Dimitriadou, mlbench: Machine Learning Benchmark
Problems, R package version 2.1-1 (2010).

[25] I. Focant, D. Hernandez-Lobato, J. Ducreux, P. Durez, A. Toukap,
D. Elewaut, F. Houssiau, P. Dupont, B. Lauwerys, Feasibility of a molec-
ular diagnosis of arthritis based on the identification of specific tran-
scriptomic profiles in knee synovial biopsies, Arthritis & Rheumatism
63 (2011) 751.

[26] L. van ’t Veer, H. Dai, M. van de Vijver, Y. He, A. Hart, M. Mao,
H. Peterse, K. van der Kooy, M. Marton, A. Witteveen, G. Schreiber,
R. Kerkhoven, C. Roberts, P. Linsley, R. Bernards, S. Friend, Gene
expression profiling predicts clinical outcome of breast cancer., Nature
415 (6871) (2002) 530–536. doi:10.1038/415530a.

[27] A.-C. Haury, P. Gestraud, J.-P. Vert, The influence of fea-
ture selection methods on accuracy, stability and interpretabil-
ity of molecular signatures, PLoS ONE 6 (12) (2011) e28210.
doi:10.1371/journal.pone.0028210.

[28] A. Liaw, M. Wiener, Classification and regression by randomforest, R
News 2 (3) (2002) 18–22.
URL http://CRAN.R-project.org/doc/Rnews/
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