
1

Prof. Yves Deville

Computing & Engineering Department

Université catholique de Louvain

CLP(BioNet) : Towards a CLP
framework for the analysis of
Biochemical Networks

Yves Deville

SweConsNet 2004

Linköping 15 January 2004

2INGI

Overview

! Bioinformatics

! Biological networks

! CLP(BioNet)

! Constraints for bio.net analysis

! Constraints for bio.net matching

! Perspectives

2

3INGI

What is Bioinformatics ?

! An intersection of AI and genetics
! Two very popular (most wanted) sciences

! An opportunity
! To use some of the most interesting computational

techniques to solve some of the most important and
rewarding questions

! Where Frankenstein meets the Terminator

4INGI

What is Bioinformatics?
Informatics

Computer Science
Computer Engineering

Information Science

Biology &
Other

Natural
Sciences

Mathematics
& Statistics

Bioinformatics

! Bioinformatics : the study of the application of
! molecular biology, computer science, artificial intelligence, statistics

and mathematics
! to model, organize, understand and discover interesting information

associated with the large scale molecular biology databases
! to guide essays for biological experiments

3

5INGI

Why is bioinformatics Important ?

! Genome sequencing, microarrays, …
lead to large amounts of data to be analyzed

! Leads to important discoveries
! SmartMoney ranks Bioinformatics as #1

among next HotJobs
! Exciting research potential

6INGI

Database Growth

4

7INGI

Challenges in Bioinformatics
! Many NP-hard problems: multiple alignment, distant

homology, motif finding, protein folding, phylogeny, gene
relationship in expression data, mining and learning, …

! From whole genome to functioning system of a biological
organism

! Predicting interactions between genes and molecules

Can CP be helpful in some of these challenges ?

8INGI

Topics in Bioinformatics

! Sequencing genome

! Sequence alignment

! Searching databases

! Machine learning

! Hidden Markov Model

! Phylogenetic trees

! Functional genomics

! Simulation

! Structure prediction

! Microarrays (DNA chips)

! Biochemical databases

! Biochemical network

analysis

! Ethical, legal & social

issues

! …

5

9INGI

Overview

! Bioinformatics

! Biological networks

! CLP(BioNet)

! Constraints for bio.net analysis

! Constraints for bio.net matching

! Experimental results

! Perspectives

10INGI

Biological Networks

Inhibition
Catalysis

Reaction

Protein

1.2.3.4
Protein

Reaction

1.2.3.4

Compound

ComplexProtein

Protein

! Networks of interactions between biological
entities within the cell

! Bioentities and Interactions observed in experiments

! Stored in databases

6

11INGI

Bioentities

! Gene (part of the DNA)

! Polypeptide (Protein)

! Complex (formed by several polypeptides)

! Compound (ATP, ADP, Water,Proline, …)

12INGI

Interactions

! An interaction may be a transformation of
bioentities into other bioentities
! Reaction : chemical reaction occurring within the cell

! Expression : Gene → polypeptide

! Assembly : polypeptide forming a complex

! An interaction may be a control of a transformation
! Catalysis of a reaction by some enzyme (protein)

! Regulation of the expression of a gene

7

13INGI

Biochemical networks
One usually distinguish different types of networks :
! Metabolic network

! Series of reactions, possible controlled by enzymes, leading to some
specific product

! Regulatory network
! Focus on the regulation of the enzyme activity, or on the stimulation

of the enzyme expression

! Signal transduction network
! Transport of information (from membrane to gene)

These networks are usually represented using
different models, and stored in different databases

14INGI

The aMAZE project
! Database for biological networks
! Prof. Shoshana Wodak, Molecular Biology &

Bioinformatics, ULB, Belgium

! Based on a rich Object Oriented model:
! Integration of different types of networks

! metabolism
! regulation
! signal transduction, etc

! Extendable model

www.amaze.ulb.ac.be

8

15INGI

TFx

Gx

Gz

TFy

Feedforward loop

TFy

GmGlGk

Single input motif
(SIM)

view 3

view 2view 1

Regulatory modules analysis

Pathway analysis

Protein interactions

Boolean
modeling

ODE
simulationsView (n-1)

view n

Database
Model of

Cellular Network

Database representation should be rich enough
to enable various data models

[aMAZE, Wodak 2003]

16INGI

Bio.Net as Object Graphs

Interaction

Transformation Control

Reaction Catalysis

Biochemical
Entity

Gene complexCompound Protein

Inhibition
Catalysis

Reaction

Protein

1.2.3.4
Protein

Reaction

1.2.3.4

Compound

ComplexProtein

Protein

! Bioentities and interactions are objects

! Object hierarchy

! Relations between objects

9

17INGI

BioEntity

Transformation
1

* Transform_Output

Transform_Input 1
1

1 * *

*

*
ControlControl_Input

1*

1
* 1

Reaction

Assembly

Expression

Translmocation

ReactionCalalysis

AssemblyCatalysis

Transcriptional
Regulation

TransportFacilitation

Activation/
Inhibition

1*

1*

1*

1

*

Compound

Gene

Polypeptide

Complex

Polypeptide
inState

Reference

Location
PTM

Classification
0-1

*

GOTerm

*

*

Pathway Pathway
Node

Pathway
Arc

1 *

1

*
1

*
sourcetarget

1

*

1

*

subunit

Indirect

1

*

0-1 reverse

0-1

subpathway

*

*

complexWithoutState

0-1

*

18INGI

Methionine Biosynthesis in
Escherichia coli

L-aspartate

L-Aspartate-4-P

2.7.2.4

1.2.1.11

L-Homoserine

L-Aspartate semialdehyde

1.1.1.3

aspartate biosynth.aspartate biosynth.

aplha-succinyl-L-Homoserine

2.3.1.46

4.2.99.9

Homocysteine

Cystathionine

4.4.1.8

L-Methionine

2.1.1.13

2.5.1.6

L-Adenosyl-L-Methionine

2.1.1.14

AporepressorAporepressor

metJmetJ

codes for

is part ofassembly

is part ofassembly inhibitsinhibition

inhibitsinhibition

lysine biosynth.lysine biosynth.

threonine biosynth.threonine biosynth.

asdasd aspartate semialdehyde deshydrogenaseaspartate semialdehyde deshydrogenase

codes for catalyzescatalysis

metAmetA homoserine-O-succinyltransferase
codes for catalyzescatalysis

homoserine-O-succinyltransferase

catalyzes

cystathionine-gamma-synthasecystathionine-gamma-synthase
codes for catalysis

metCmetC cystathionine-beta-lyasecystathionine-beta-lyase

codes for catalyzescatalysis

metEmetE
Cobalamin-independent homocysteine transmethylaseCobalamin-independent homocysteine transmethylase

codes for catalyzescatalysis

codes for catalyzescatalysis

Cobalamin-dependent homocysteine transmethylaseCobalamin-dependent homocysteine transmethylasemetHmetH

metRmetR

codes for

metR activatormetR activator

up-regulatesup-regulatesup-regulates

repressesrepression

repressesrepression

repressesrepression

aspartate kinase II/homoserine dehydrogenase IIaspartate kinase II/homoserine dehydrogenase II

codes for catalyzescatalysis

catalyzescatalysis

repressesrepression

repressesrepression

ATPATP

ADPADP

NADPH; H+NADPH; H+

NADP+; PiNADP+; Pi

NADPH;H+NADPH;H+

NADP+NADP+

Succinyl SCoASuccinyl SCoA

HSCoAHSCoA

L-CysteineL-Cysteine

SuccinateSuccinate

H2OH2O

Pyruvate; NH4+Pyruvate; NH4+

5-Methyl THF5-Methyl THF

THFTHF

2.7.2.4

1.2.1.11

1.1.1.3

2.3.1.46

4.2.99.9

4.4.1.8

2.1.1.14 2.1.1.13activation

ATPATP

Pi; PPiPi; PPi
2.5.1.6

expression

expression

expression

expression

expression

expression

expression

expression

expression

metB

metL

metBL operonmetBL operon

metB

metL

repression

Holorepressor

[aMAZE, van Helden 2003]

10

19INGI

The BioMaze Project
! Analysis & Visualisation of biochemical

networks
! Closely related to the aMAZE project

! Interdisciplinary and interuniversity project
! Y. Deville, CS, UCL, Louvain-la-Neuve
! S. Wodak, Bio, ULB, Brussels
! J.L. Hainaut, CS, FUNDP, Namur
! E. Zimany, CS, ULB. Brussels

! Funded by the Walloon Region

20INGI

The BioMaze-UCL Project

! Analysis of biochemical networks
! Application of CP and AI techniques

! People
! Y. Deville

! P. Dupont

! G. Dooms

! S. Zampelli

11

21INGI

Why analysing networks ?
Examples of biological questions
! Give all pathways traversing a set of specified compounds

or reactions (e.g. given a set of co-regulated genes, find a
pathway that could be formed with the catalyzed reactions).

! Find all genes whose expression is directly or indirectly
affected by a given compound.

! Show which paths or pathways may be affected when one
or more gene/proteins are turned off or missing.

! Compare biochemical pathways from different organisms
and tissues, or at different stages of annotation; highlight
common features and differences; predict missing elements.

22INGI

Examples of analysis
! Structure of the network

! Path finding

! Distance between paths

! Pathway synthesis

! Pathway prediction

! Patterns discovery

! Functionally related enzyme clusters

! …

12

23INGI

Existing Approaches

! Most analysis use a simplistic model of
biochemical networks
! E.g. compound graphs where nodes are

bioentities and arcs are the reactions

! Many useful analysis are meaningless in such
models

! Most analysis use specialized graph
algorithms

! Analysis cannot easily be combined

24INGI

Overview

! Bioinformatics

! Biological networks

! CLP(BioNet)

! Constraints for bio.net analysis

! Constraints for bio.net matching

! Perspectives

13

25INGI

Why CP ?
Why using CP for the analysis of biochemical

networks ?
! Existence of efficient ad hoc graph algorithm for

specific analysis
! Difficult to combine such algorithms
! Difficult to extend these algorithms to extended

analysis
! New analysis usually need lot of programming

effort
! Richness of the underlying model can be exploited

through constraints

26INGI

Objectives of CLP(BioNet)

! Introduction of graph domain variable
! Values are biochemical networks

! Domains are sets of biochemical networks

! Exploiting the nature of graph

! Definition of constraints
! Dealing with graph domain variables

! Useful for the analysis of biochemical networks

! Extendable framework

14

27INGI

Related Work in CP

! Set constraints (e.g. [Gervet, 1997])
! Implementation techniques

! Propagation techniques

! Global constraints (e.g. [Beldiceanu, 2000])
! Graph algorithms

! Implementation techniques

28INGI

Graph
! A bio.net is represented by a graph
! A graph g=(N,A) is defined by

! N : set of nodes
! A : set of arcs (A ⊆ N x N)

For simplicity of presentation, no types for the nodes

15

29INGI

Graph domain variable
! A graph domain variable is declared with an initial domain,

called the reference graph of G
! The (initial) domain a gd-variable G is the set of all subsets

of the reference graph

! We assume here that the gd-variables have the same
reference graph
! Analysis of a single biological network

30INGI

Representation of a gd-variable

! A graph domain variable G is represented by
! its reference graph g = (Nref,Aref)
! a finite set domain variable N over Nref
! a finite set domain variable A over Aref
! The constraint A ⊆ N x N

! We denote
! N = node(G)
! A = arc(G)

16

31INGI

Implementation

Choice of a constraint programming
environemnt

! Choice of Oz
! Facility to develop new propagators
! Local expertise at UCL

! Peter Van Roy and his research team

32INGI

Implementation of gd-variable

! We do not explicitly use existing finite set variables; not
suitable for implementation of specific graph propagators

! Reference graph g=(Nref,Aref)

! Nref : nodes labeled from 0 to n -1

! Aref : represented as an adjacency matrix
(n2 Boolean value)

A more elaborated representation could be used

0

1

3

2

4
011004

101013

110012

000011

011100

43210

Aref

17

33INGI

Implementation of gd-variable

! node(G) : fs-domain variable over Nref
! Vector of n Boolean domain variables

! State the presence/absence of the node in G

! Denoted nodeBV(G)

0

1

3

2

4

110 -100 -1

43210

nodeBV(G)

34INGI

Implementation of gd-variable

! arc(G) : fs-domain variable over Aref
! Adjacency matrix of n2 Boolean domain variables
! State the presence/absence of the arcs in G
! Denoted arcBV(G)
! arcBV(G)ij = 0 when Arefij = 0

0

1

3

2

4
04

103

0-10-102

00001

00-10-1000

43210

arcBV(G)

18

35INGI

Implementation of gd-variable

Internal constraint : arc(G) ⊆ node(G) x node(G)

! Represented by n2 propagators
arcBV(G)ij ⇒ nodeBV(G)i ∧ nodeBV(G)j

04

103

0-10-102

00001

00-10-1000

43210

arcBV(G)

110 -100 -1

43210

nodeBV(G)
0

1

3

2

4

36INGI

Constraints on gd-variables

! NodeInGraph(n,G)
! ArcInGraph(a,G)
! SubGraph(S,G)
! Path(P,ns,ne,max)
! EveryArc(G)
! ExistPath(ns,ne,max,G)
! Connex(G)

19

37INGI

NodeInGraph(n,G)
! G : gd-variable
! Constraint : n ∈ node(G)
Implementation
! nodeBV(G)n

Basic constraints that can be negated

11100 -1

43210NodeInGraph(2)

0

1

3

2

4

nodeBV(G)

38INGI

ArcInGraph(a,G)
! G : gd-variable
! Constraint : a ∈ arc(G)
Implementation
! arcBV(G)ij with a = (i,j)

Basic constraints that can be negated

04

103

0-1102

00001

00-10-1000

43210

ArcInGraph((2,3))

0

1

3

2

4

arcBV(G)

20

39INGI

SubGraph(S,G)
! S, G : gd-variables
! Constraint : S is a subgraph of G

node(S) ⊆ node(G) and arc(S) ⊆ arc(G)
Implementation

! n2 + n propagators

arcBV(S)ij ⇒ arcBV(G)ij

nodeBV(G)i ⇒ nodeBV(G)j

40INGI

Path(P,ns,ne,max)
! P : gd-variable

! ns, ne ∈ Nref

! max : integer

! Constraint : P is a path from ns to ne, length ≤ max

ns=n0 ∧ ne=nk ∧ node(P) = {n0,…, nk} ∧ k ≤ max

∧ arc(P) = { (ni, ni+1) | 0 ≤ i < j }

Path(P,0,4,3)

0

1

3 7

2

5

4
6

21

41INGI

Path implementation

! ns and ne must be in the path P
NodeInGraph(ns,P) ∧ NodeInGraph(ne,P)

! Degree of the nodes in P (i.e. number of neighbors)

! degree(ne)=degree(ns)=1
! Other nodes : degree(n)=2

! Implemented by n propagators
nodeBV(P)i ⇔ Σ arcBV(P)ij = 2 (ne ≠ i ≠ ns)
Σ arcBV(P)ns j = 1
Σ arcBV(P)ne j = 1

0
3 7

2

5

6
41

42INGI

Path implementation

! nodes in P must be constrained
to be a single connected component

! Implemented by a stateful propagator

! Data structure ConGraph
! lub of the possible graphs in the current domain of P

(i.e. drop the nodes and arcs not in G)

0

1

3 7

2

5

4
6

0

1

3 7

2

5

4
6

0
3 7

2

5

641

22

43INGI

ConGraph

! If the nodes of P with nodeBV(P)i =1 (e.g. ns, ne)
are not in the same connected component of ConGraph
Then failure
Else prune the nodes and arc in the other components

! Propagator reawaken when arc(P) is reduced

0

1

3 7

2

5

4
6

44INGI

Connected components

! Search of connected components
! Standard breadth-first, depth-limited (max) search,

starting from ns
! Limited to the main connected component

(i.e. containing ns)

! Exploiting the connected component
! Check whether the connected component is a tree

(no cycle)
! In that case, assign the unique path to P

23

45INGI

Complexity of Path constraint

! Sum constraints
! At most |Nref | constraints

! Amortized complexity of one constraints O(|Aref|)

! Hence complexity O(|Nref |.|Aref|)

! Connected components
! Construction of ConGraph : O(|Aref|)

! Search of the connected components : O(|Aref|)

! Constraint executed when an arc is removed from P : O(|Aref|)

! Hence complexity O(|Aref|2)

! Hence a global complexity of O(|Aref|2) for the constraint

46INGI

Enhancement (complexity)

! Dynamic graph connectivity algorithms
[Holn & al., 1998]
! O(|Aref| .log((|Nref|)2)

! Find also the edge-connectivity of the graph

! Complex implementation

24

47INGI

Enhancement (pruning)

! In the main connected component
(containing ne + ns) of ConGraph determine
! 2-edge-connected components (an arc can be

removed without loosing the connected property)

! Bridges between these components

0
3 7

2

5

4
6

10

8

9

48INGI

Enhancement (pruning)

! From ConGraph and its main connected
component (containing ne + ns),
construct a tree
! 2-edge-connected components are the nodes

! Bridges are the arcs

0
3 7

2

5

4
6

10

8

9

0
2,3,4 5,6,7

8,9,10

25

49INGI

Enhancement pruning

! Determine the (unique) path from the node
containing ns to the node containing ne

! All the arcs in this path must be in arc(P)
! All the arcs and nodes not in this path can be

pruned from G

0 2,3,4 5,6,7

8,9,10

0
3 7

2

5

4 6

10

8

9

0
3 7

2

5

4 6

10
8

9

50INGI

Experimental results

Objectives
! Preliminary results showing the feasibility of

the approach

Overview
! The experimental data
! Path finding
! Combined constraints

26

51INGI

The experimental data

! Graph extracted from aMAZE database
! Biochemical networks mostly Escherichia

coli
! 9.773 Edges, 21.755 arcs
! Average arity : 4.45

Analysis is done on a part of such a graph

52INGI

Experiment 1
! Graph with 100 nodes in a single connected

component, average degree 3.1

! Search of a path for each pair of nodes
4.950 paths
! Path length Average: 7.3 Std dev.: 2.3
! Num of vars : 15 148.
! Num of propag Average: 20 519 Std dev.: 325
! Num of invoked propag

Average: 75 273 Std dev.: 7 402
! Run time Average: 324ms Std dev.: 73.7

27

53INGI

Experiment 1

54INGI

Experiment 1

28

55INGI

Experiment 2
! Graph with 200 nodes in two single connected

components, average degree 3.1

! Search of a path for each pair of nodes
from the two components (5 000 failures)
! Path length Average: 0
! Num of vars : 60 298
! Num of propag : 80 400
! Num of invoked prop

Average: 257 628 Std dev.: 8 158
! Run time Average: 240ms Std dev.: 38

56INGI

Experiment 2

29

57INGI

Experiment 3
! Graph with 100 nodes in a single connected

component, average degree 3.1
! Search of a path between two specific nodes, with

two constrained intermediate nodes (100 pairs of
intermediate nodes)
! Path length Average: 5.88 Std dev.: 7.9
! Num of vars Average: 60193 Std dev.: 73
! Num of propag Average: 80 924 Std dev.: 3139
! Num of invoked prop

Average: 378297 Std dev.: 555663
! Run time Average: 2261 ms

58INGI

30

59INGI

Overview

! Bioinformatics

! Biological networks

! CLP(BioNet)

! Constraints for bio.net analysis

! Constraints for bio.net matching

! Perspectives

60INGI

Subgraph isomorphism
! Gp=(Np,Ap) : pattern graph
! G=(N,A) with |Np| ≤ |N|

! Find a function f : Np → N such that
! f is injective
! ∀ n1, n2 : (n1,n2) ∈ Ap ⇒ (f(n1),f(n2)) ∈ A

! Subgraph isomorphism is NP-complete

0

1

3

2

4

0 1

2

Pattern graph Gp G

31

61INGI

Family of problems

! Graph vs subgraph isomorphism
! Exact vs inexact matching

! Nodes with attributes, matching between two
node is a distance

! Some arcs from the pattern graph are not
considered. Distance from the initial pattern and
the chosen subpattern

62INGI

Analysis
of Biochemical Networks

! Subgraph isomorphism is a basic operation for
graph pattern matching

Applications
! Compare biochemical networks

! from different organisms and tissues
! at different stages of annotation;
! highlight common features and differences;
! predict missing elements ('reconstruction')

! Compile repertoires of recurrent network motifs
(topological patterns) at different resolution levels

32

63INGI

Existing algorithms
Many existing algorithms for standard subgraph isomorphism

based on various techniques
! Cliques
! Fuzzy set theory
! Elastic graph matching
! Multiple graph matching
! Error correction
! Genetic algorithms
! Decision tree
! Neural networks
! Clustering
! Connected components
! Constraint programming [Rudolf, 1998] [Valiente, 2000]
! …

64INGI

SI as a CSP

! Gp=(Np,Ap) : pattern graph
! G=(N,A) with n = |Np| ≤ |N| = d

! We use Np=(X1,…,Xn)

! Domain variables Xi ∈ N
! Di : domain of Xi

0

1

3

2

4

0 1

2

Pattern graph
(Np,Ap)

N={0,1,2,3,4}
X0=0

X1=3

X2=2

G=(N,A)

33

65INGI

Subgraph Isomorphism
as a CSP

! Let i and j be distinct nodes from pattern graph
! C1 : Xi ≠ Xj for all i ≠ j

! C2 : (Xi,Xj) ∈ A for all (i,j) ∈ Ap

! [Rudolf, 1998], [Valiente, 2000]
! How to achieve pruning ?

0

1

3

2

4

0 1

2

N={0,1,2,3,4}
X0=0

X1=3

X2=2

Pattern graph
(Np,Ap) G=(N,A)

66INGI

C1 : Pruning

C1 : Xi ≠≠≠≠ Xj for all i ≠≠≠≠ j

! allDiff(X1,..,Xn) constraint
! More pruning than arc consistency on binary

constraints
! O(n2d2) with n = |Np| and d = |N|

! [Regin, 1994]

34

67INGI

C2 : Pruning
C2 : (Xi,Xj) ∈∈∈∈ A for (i,j) ∈∈∈∈ Ap
! When can we prune value a ∈ Di ?
! If there is no value b ∈ Dj s.t. (a,b) ∈ A
! Classical arc consistency
Implementation
! Constraint can be reexpressed as

C2 : Dj ∩∩∩∩ neigh(G,a) = ∅∅∅∅
! Independent from i; same pruning criteria for all neighbors of j in Ap
! S(j,a) = | Dj ∩ neigh(G,a) |
! S(j,a) : # neigbhors of a in Dj
! When S(j,a)=0, prune a from all neighbors of j in pattern graph
! Space complexity : O(nd)
! Time complexity : O(nd2) (instead of O(n2d2) for classical AC algorithm)

ai

j
Dj

Pattern graph
(Np,Ap)

G=(N,A)

68INGI

C3 : Redundant constraint
! Candidate values for Xj if Xi=a ((i,j) ∈ Gp)

(Dj ∩ neigh(G,a))

! Let D = ∪ j ∈ neigh(Gp,i) Dj
! Candidate values for all the neighbors of i

D ∩ neigh(G,a)
! There must be more candidates than neighbors :

C3 : | D ∩∩∩∩ neigh(G,a) | ≥≥≥≥ | neigh(Gp,i) |
! We can prune value a ∈∈∈∈ Di if there are more neighbors

than candidate values for these neighbors
! [Valiente, 2000]

i

j

a
Pattern graph
Gp=(Np,Ap)

G=(N,A)

D Neigh(G,a)

35

69INGI

C3 : Redundant constraint
! Can be implemented with the following data

structure

! R(i,b) = | { j ∈ neigh(Gp,i) s.t. b ∈ Dj } |

! R(i,b) = # of b in the domain of the neighbors of i (D)

! CT(i,a) = | { b ∈ neigh(G,a) s.t. R(i,b)>0 } |

Prune a from Di when |neigh(Gp,i)| > CT(i,a)

! Space complexity O(nd)

! Time complexity O(nd2)

70INGI

Redundant constraint
! C2 only considers one neighbor of node i

! C3 considers globally all the neighbors node i

! Possible to consider a subset of the neighbors

! More pruning if the neighbors have similar domains

i

j1

Pattern graph
Gp=(Np,Ap)

D = {b} Neigh(G,a)={b,c,d}
{b}

{b}

{c,d}

j2
a

b

c

d

36

71INGI

A new constraint

Simple case
! Neighbors j1 and j2 of node i have similar

domain (e.g. they have the same type)

C4 : | (Dj1 ∪∪∪∪ Dj2) ∩∩∩∩ neigh(G,a) | ≥≥≥≥ 2

i

j1

Pattern graph
Gp=(Np,Ap)

D = {b} Neigh(G,a)={b,c,d}
{b}

{b}

{c,d}

j2
a

b

c

d

72INGI

C4 : Implementation

! Using D = Dj1 ∪ Dj2, we get
C4 : | D ∩∩∩∩ neigh(G,a) | ≥≥≥≥ 2

! Can be implemented as C3

37

73INGI

C4 : general case

! Neighbors j1, …, jk of node i have similar
domain (e.g. they are of the same type)

! With D = Dj1 ∪ … ∪ Djk
C4 : | D ∩∩∩∩ neigh(G,a) | ≥≥≥≥ k

! For k=|neigh(G,i)|, C4 ≡ C3
! For k=1, C4 ≡ C2

74INGI

C4 : complexity

! Same complexity than C2, but more
constraints
! Let p = # additional constraints per node

! Space complexity O(npd)

! Time complexity O(npd2)

! Problem is the potential huge number of
such constraints !

! p must be small : only for discriminant
properties of nodes such as types

38

75INGI

C4 : Example

! Vary useful in biochemical networks

76INGI

Example

Pattern graph

39

77INGI

Extensions
! Introducing properties in nodes and in arcs (e.g.

types, attributes)
! Including properties in patterns (e.g. type hierarchy,

string patterns)
! Inexact pattern matching (distance between nodes

and between arcs)
! Constraints on the pattern

! This reaction node should have between two and four
substrates

! Other pattern matching features
! Generic arc in pattern representing a path
! Generic node in pattern representing a (sub)graph

78INGI

Integration

Constraints and pattern matching
! Constraints on the pattern

! Constraints on the nodes
! This reaction node should have between two and four

substrates

! Other pattern matching features
! Generic arc in pattern representing a path
! Pattern as a constraint pattern variable

40

79INGI

Overview

! Bioinformatics

! Biological networks

! CLP(BioNet)

! Constraints for bio.net analysis

! Constraints for bio.net matching

! Perspectives

80INGI

Subgraph isomorphism
! Gp=(Np,Ap) : pattern graph
! G=(N,A) with |Np| ≤ |N|

! Find a function f : Np → N such that
! f is injective
! ∀ n1, n2 : (n1,n2) ∈ Ap ⇒ (f(n1),f(n2)) ∈ A

! Subgraph isomorphism is NP-complete

0

1

3

2

4

0 1

2

Pattern graph Gp G

41

81INGI

Family of problems

! Graph vs subgraph isomorphism
! Exact vs inexact matching

! Nodes with attributes, matching between two
node is a distance

! Some arcs from the pattern graph are not
considered. Distance from the initial pattern and
the chosen subpattern

82INGI

Analysis
of Biochemical Networks

! Subgraph isomorphism is a basic operation for
graph pattern matching

Applications
! Compare biochemical networks

! from different organisms and tissues
! at different stages of annotation;
! highlight common features and differences;
! predict missing elements ('reconstruction')

! Compile repertoires of recurrent network motifs
(topological patterns) at different resolution levels

42

83INGI

Existing algorithms
Many existing algorithms for standard subgraph isomorphism

based on various techniques
! Cliques
! Fuzzy set theory
! Elastic graph matching
! Multiple graph matching
! Error correction
! Genetic algorithms
! Decision tree
! Neural networks
! Clustering
! Connected components
! Constraint programming [Rudolf, 1998] [Valiente, 2000]
! …

84INGI

SI as a CSP

! Gp=(Np,Ap) : pattern graph
! G=(N,A) with n = |Np| ≤ |N| = d

! We use Np=(X1,…,Xn)

! Domain variables Xi ∈ N
! Di : domain of Xi

0

1

3

2

4

0 1

2

Pattern graph
(Np,Ap)

N={0,1,2,3,4}
X0=0

X1=3

X2=2

G=(N,A)

43

85INGI

Subgraph Isomorphism
as a CSP

! Let i and j be distinct nodes from pattern graph
! C1 : Xi ≠ Xj for all i ≠ j

! C2 : (Xi,Xj) ∈ A for all (i,j) ∈ Ap

! [Rudolf, 1998], [Valiente, 2000]
! How to achieve pruning ?

0

1

3

2

4

0 1

2

N={0,1,2,3,4}
X0=0

X1=3

X2=2

Pattern graph
(Np,Ap) G=(N,A)

86INGI

C1 : Pruning

C1 : Xi ≠≠≠≠ Xj for all i ≠≠≠≠ j

! allDiff(X1,..,Xn) constraint
! More pruning than arc consistency on binary

constraints
! O(n2d2) with n = |Np| and d = |N|

! [Regin, 1994]

44

87INGI

C2 : Pruning
C2 : (Xi,Xj) ∈∈∈∈ A for (i,j) ∈∈∈∈ Ap
! When can we prune value a ∈ Di ?
! If there is no value b ∈ Dj s.t. (a,b) ∈ A
! Classical arc consistency
Implementation
! Constraint can be reexpressed as

C2 : Dj ∩∩∩∩ neigh(G,a) = ∅∅∅∅
! Independent from i; same pruning criteria for all neighbors of j in Ap
! S(j,a) = | Dj ∩ neigh(G,a) |
! S(j,a) : # neigbhors of a in Dj
! When S(j,a)=0, prune a from all neighbors of j in pattern graph
! Space complexity : O(nd)
! Time complexity : O(nd2) (instead of O(n2d2) for classical AC algorithm)

ai

j
Dj

Pattern graph
(Np,Ap)

G=(N,A)

88INGI

C3 : Redundant constraint
! Candidate values for Xj if Xi=a ((i,j) ∈ Gp)

(Dj ∩ neigh(G,a))

! Let D = ∪ j ∈ neigh(Gp,i) Dj
! Candidate values for all the neighbors of i

D ∩ neigh(G,a)
! There must be more candidates than neighbors :

C3 : | D ∩∩∩∩ neigh(G,a) | ≥≥≥≥ | neigh(Gp,i) |
! We can prune value a ∈∈∈∈ Di if there are more neighbors

than candidate values for these neighbors
! [Valiente, 2000]

i

j

a
Pattern graph
Gp=(Np,Ap)

G=(N,A)

D Neigh(G,a)

45

89INGI

C3 : Redundant constraint
! Can be implemented with the following data

structure

! R(i,b) = | { j ∈ neigh(Gp,i) s.t. b ∈ Dj } |

! R(i,b) = # of b in the domain of the neighbors of i (D)

! CT(i,a) = | { b ∈ neigh(G,a) s.t. R(i,b)>0 } |

Prune a from Di when |neigh(Gp,i)| > CT(i,a)

! Space complexity O(nd)

! Time complexity O(nd2)

90INGI

Redundant constraint
! C2 only considers one neighbor of node i

! C3 considers globally all the neighbors node i

! Possible to consider a subset of the neighbors

! More pruning if the neighbors have similar domains

i

j1

Pattern graph
Gp=(Np,Ap)

D = {b} Neigh(G,a)={b,c,d}
{b}

{b}

{c,d}

j2
a

b

c

d

46

91INGI

A new constraint

Simple case
! Neighbors j1 and j2 of node i have similar

domain (e.g. they have the same type)

C4 : | (Dj1 ∪∪∪∪ Dj2) ∩∩∩∩ neigh(G,a) | ≥≥≥≥ 2

i

j1

Pattern graph
Gp=(Np,Ap)

D = {b} Neigh(G,a)={b,c,d}
{b}

{b}

{c,d}

j2
a

b

c

d

92INGI

C4 : Implementation

! Using D = Dj1 ∪ Dj2, we get
C4 : | D ∩∩∩∩ neigh(G,a) | ≥≥≥≥ 2

! Can be implemented as C3

47

93INGI

C4 : general case

! Neighbors j1, …, jk of node i have similar
domain (e.g. they are of the same type)

! With D = Dj1 ∪ … ∪ Djk
C4 : | D ∩∩∩∩ neigh(G,a) | ≥≥≥≥ k

! For k=|neigh(G,i)|, C4 ≡ C3
! For k=1, C4 ≡ C2

94INGI

C4 : complexity

! Same complexity than C2, but more
constraints
! Let p = # additional constraints per node

! Space complexity O(npd)

! Time complexity O(npd2)

! Problem is the potential huge number of
such constraints !

! p must be small : only for discriminant
properties of nodes such as types

48

95INGI

C4 : Example

! Vary useful in biochemical networks

96INGI

Example

Pattern graph

49

97INGI

Extensions
! Introducing properties in nodes and in arcs (e.g.

types, attributes)
! Including properties in patterns (e.g. type hierarchy,

string patterns)
! Inexact pattern matching (distance between nodes

and between arcs)
! Constraints on the pattern

! This reaction node should have between two and four
substrates

! Other pattern matching features
! Generic arc in pattern representing a path
! Generic node in pattern representing a (sub)graph

98INGI

Integration

Constraints and pattern matching
! Constraints on the pattern

! Constraints on the nodes
! This reaction node should have between two and four

substrates

! Other pattern matching features
! Generic arc in pattern representing a path
! Pattern as a constraint pattern variable

50

99INGI

Overview

! Bioinformatics

! Biochemical networks

! CLP(BioNet)

! Constraints for bio.net analysis

! Constraints for bio.net matching

! Perspectives

100INGI

CLP(BioNet)
! Analysis of biochemical networks can be performed

on a rich typed graphs representation of the
networks

! CLP(BioNet)
! Introduction of graph domain variable
! Definition of constraints
! Analysis of biochemical networks expressed as a

combination of constraints
! Collaboration with biologists
! Simplicity and versatility of the analysis
! Extendable framework
! Preliminary results show the potential of this CP

approach

51

101INGI

Future work

! Many things remains to be done…
! Definition of other constraints

! Integration of constraints and pattern matching

! Efficient implementation

! Experimentation in collaboration with biologists

! Using CLP(BioNet) on other domains
! With complex network representation

! Analysis of the networks

! E.g. networking, …

102INGI

References
! An Overview of Data Models for the Analysis of Biochemical Pathways

Yves Deville, Jacques van Helden, Soshana Wodak David Gilbert
Briefings in Bioinformatics, August 2003

! An Object-Oriented Data Model for Signal Transduction Yves Deville,
David Gilbert, Christian Lemer, Jacques van Helden, Shoshana J.
Wodak. ECCB2003.

! The aMAZE LightBench: a Web interface to a relational database of
cellular processes
Christian Lemer, Erick Antezana, Fabian Couche, Frédéric Fays, Xavier
Santolaria, Rekins’s Janky, Yves Deville, Jean Richelle, Shoshana J.
Wodak. Nucl. Acid Research, 2004

! CLP(BioNet). Yves Deville, Pierre Dupont, Grégoire Dooms, Stéphane
Zampelli. Research Report UCL/INGI (to be completed)

www.info.ucl.ac.be/people/YDE.html

52

Acknowledgments
aMAZE team
ULB - Belgium
" Erick Antezana
" Fabian Couche
" Fred Fays
" Olivier Sand
" Christian Lemer
" Jean Richelle
" Jacques van Helden
" Soshana Wodak
(*)Yves Deville (on sabbatical) Collaborators

Institut Pasteur - France
" Georges Cohen

Birkbeck College - UK
" Lorenz Wernisch

University of Glasgow - UK
" David Gilbert
Univ. Köln - Germany
" Dietmar Schomburg

EBI-EMBL
" Sandra Orchard

External data sources
" Swissprot
" Genbank
" KEGG/LIGAND
" BRENDA
" PUBMED

Sponsors
" Astra-Zeneca
" Aventis, Organon
" Roche, (Monsanto)
" EC
" Brussels Gov.
" Walloon Region

BioMaze Project
UCL - Belgium
" Yves Deville
" Pierre Dupont
" Stéphane Zampelli
" Grégoire Dooms
FUNDP - Namur
" Jean-Luc Hainaut
" Jean-Marc Hick

ULB - Belgium
" Esteban Zimani
" Sabri

Prof. Yves Deville

Computing & Engineering Department

Université catholique de Louvain

CLP(BioNet) : Towards a CLP
framework for the analysis of
Biochemical Networks

Yves Deville

SweConsNet 2004

Linköping 15 January 2004

