# A Constraint Satisfaction Approach for Enclosing Solutions to Parametric Ordinary Differential Equations

| Micha Janssen         | Pascal Van Hentenryck | Yves Deville          |
|-----------------------|-----------------------|-----------------------|
| UCL                   | Brown University      | UCL                   |
| 2, Place Sainte Barbe | Box 1910              | 2, Place Sainte Barbe |
| 1348 Louvain-La Neuve | Providence, RI 02912  | 1348 Louvain-La Neuve |

#### Abstract

This paper considers initial value problems (IVPs) for ordinary differential equations (ODEs) where some of the data is uncertain and given by intervals as is the case in many areas of science and engineering. Interval methods provide a way to approach these problems, but they raise fundamental challenges in obtaining high accuracy and low computation costs. This work introduces a constraint satisfaction approach to these problems which enhances traditional interval methods with a pruning step based on a global relaxation of the ODE. The relaxation uses Hermite interpolation polynomials and enclosures of their error terms to approximate the ODE. Our work also shows how to find an evaluation time for the relaxation that minimizes its local error. Theoretical and experimental results show that the approach produces significant improvements in accuracy over the best interval methods for the same computation costs. The results also indicate that the new algorithm should be significantly faster when the ODE contains many operations.

### **1** Introduction

Initial value problems (IVPs) for ordinary differential equations (ODEs) arise naturally in many applications in science and engineering, including chemistry, physics, molecular biology, and mechanics to name only a few. An *ordinary differential equation*  $\mathbb{O}$  is a system of the form

$$u_1'(t) = f_1(u_1(t), \dots, u_n(t))$$
  
 $\vdots$   
 $u_n'(t) = f_n(u_1(t), \dots, u_n(t))$ 

often denoted in vector notation by u'(t) = f(u(t)) or u' = f(u).<sup>1</sup> An *initial value problem* is an ODE with an initial condition  $u(t_0) = u_0$ . It is often the case that the parameters and/or the initial values are not known with certainty but are given as intervals. Hence, traditional methods may not be the simplest way to approach the resulting parametric ordinary differential equations since, in essence, they would have to solve infinitely many systems. *Interval methods*, pioneered by Moore [Moo66], provide an approach to tackle parametric ODEs. They return enclosures of exact solutions at different points in time, i.e., for a given IVP, they are guaranteed to return intervals containing the exact solution. In addition, they inherently accommodate uncertainty in the parameters or initial values by using intervals instead of floating-point numbers. In this paper, we talk about ODEs to denote both traditional and parametric ODEs.

<sup>&</sup>lt;sup>1</sup>Only autonomous systems are considered in this paper. It is easy to generalize the results to non-autonomous systems.

Traditional interval methods usually consist of two processes applied at each integration step: (1) a *bounding box* process that proves existence and uniqueness of the solution and computes a rough enclosure (called a *bounding box*) of the solution over a time interval  $[t_0, t_1]$ ; (2) a *forward* process that computes an enclosure of the solution at  $t_1$ . The bounding box process, which is specific to interval methods, is necessary to bound the error terms in the forward process. The forward process is generally realized by applying a one-step Taylor interval method and making extensive use of automatic differentiation [Ral81] to obtain the Taylor coefficients [Eij81, Kru69, Moo66, Moo79]. However, the major problem of such methods is the explosion of the size of the boxes at successive points as they often accumulate errors from point to point and lose accuracy by enclosing the solution by a box (this is called the *wrapping effect*). Lohner's AWA system [Loh87] was an important step in interval methods which features efficient coordinate transformations to tackle the wrapping effect. More recently, Nedialkov and Jackson's IHO method [NJ99] improved on AWA by extending a Hermite-Obreschkoff's approach (which can be viewed as a generalized Taylor method) to intervals. Another recent approach, the Taylor models, was proposed by Berz & Makino [BM98] for reducing the wrapping effect. Their scheme validates existence and uniqueness and also computes tight enclosures of the solution in one process, contrary to the other methods mentioned above.

The research described in this work takes a constraint satisfaction approach to ODEs. Its basic idea [DJVH98, JDVH99, JVHD01] is to view the solving of ODEs as the iteration of three processes: (1) a *bounding box* process, (2) a *predictor* process that computes initial enclosures at given times from enclosures at previous times and bounding boxes, and (3) a *pruning* process that reduces the initial enclosures without removing solutions <sup>2</sup>. The real novelty in our approach is the pruning component. It is based on the construction of a non-trivial constraint from a *relaxation* of the ODE, a key concept in constraint satisfaction [VH98]. This constraint can then be used to prune the solution space at the various integration points.

The main contribution of this work is to show that an effective pruning technique can be derived from a relaxation of the ODE, importing a fundamental principle from constraint satisfaction into the field of validated differential equations. Four main steps are necessary to derive an effective pruning algorithm.

- 1. The first step consists in obtaining a relaxation of the ODE by safely approximating its solution using Hermite interpolation polynomials;
- The second step consists in using the mean-value form of this relaxation for more accuracy and efficiency. Unfortunately, these two steps, which were skeched in [JDVH99], are not sufficient, and the resulting pruning algorithm still suffers from traditional problems of interval methods;
- 3. The third fundamental step [JVHD01] consists in globalizing the pruning by considering several successive relaxations together. This idea of generating a global constraint from a set of more primitive constraints is also at the heart of constraint satisfaction. It makes it possible, in this new context, to address the problem of dependencies (and hence the accumulation of errors) and the wrapping effect simultaneously;<sup>3</sup>
- 4. The fourth and final step consists of finding an evaluation time for the relaxation which minimizes the local error of the relaxation. Indeed, the global constraint generated in the third step, being a relaxation of the ODE, is parametrized by an evaluation time. Interestingly, for global filters based on Hermite interpolation polynomials, the (asymptotically) optimal evaluation time is independent from the ODE and induces negligible overhead on the computational cost of the methods.

Theoretical and experimental results show the benefits of the approach. From a theoretical standpoint, the constraint satisfaction approach provides a quadratic improvement in accuracy (asymptotically) over the best

<sup>&</sup>lt;sup>2</sup>Observe that interval extensions of predictor/corrector methods (e.g., [NJ99]) can also be viewed as the composition of a predictor and a pruning step.

<sup>&</sup>lt;sup>3</sup>Global constraints in ordinary differential equations have also been found useful in [CB99]. The problem and the techniques in [CB99] are however fundamentally different.

interval method we know of for the same computation costs. The theoretical results also show that our approach should be significantly faster for a given precision when the ODE contains many operations. Experimental results, obtained from an object-oriented implementation of our algorithms, confirm the theory. They show that the constraint satisfaction approach often produces significant improvements in accuracy over existing methods for the same computation costs and should produce significant gain in computation times when the ODE contains many operations. Of particular interest is the versatility of the approach which can be tailored to the problem at hand.

The rest of the paper is organized as follows. Section 2 introduces the main definitions and notations. Section 3 gives a high-level overview of the constraint satisfaction approach to parametric ODEs. The next four sections are the core of the paper. Section 4 introduces multistep filters, Section 5 presents multistep Hermite filters as a special case of multistep filters, Section 6 describes how to choose an evaluation time to minimize the local error of a multistep Hermite filter, and Section 7 presents the overall algorithm. Sections 8 and 9 report the theoretical and experimental analyses, and Section 10 concludes the paper.

### **2** Background and Definitions

#### 2.1 **Basic Notational Conventions**

Small letters denote real values, vectors and functions of real values. Capital letters denote matrices, sets, intervals, vectors and functions of intervals. A vector of intervals  $D \in \mathbb{IR}^n$  is called a *box*. If  $A \subseteq \mathbb{R}^n$ , then  $\Box A$  denotes the smallest box  $D \in \mathbb{IR}^n$  such that  $A \subseteq D$ , and g(A) denotes the set  $\{g(x) \mid x \in A\}$ . If M is a regular (point or interval) matrix, then  $M^{-1}$  denotes an *enclosure*<sup>4</sup> of the inverse of M. A relation is a function  $r : \mathbb{R}^n \to Bool$ , where *Bool* denotes the booleans. We also assume that  $t_i$ ,  $t_e$  and t are reals,  $u_i$  is in  $\mathbb{R}^n$ , and  $D_i$  and  $B_i$  are in  $\mathbb{IR}^n$  ( $i \in \mathbb{N}$ ). We use m(D) to denote the midpoint of D and s(D) to denote D - m(D). Observe that m(D) + s(D) = D. We use  $\omega(D)$  to denote the width of a box. More precisely,  $\omega([a, b]) = b - a$  and  $\omega((I_1, \ldots, I_n)) = (\omega(I_1), \ldots, \omega(I_n))$  if  $I_i \in \mathbb{IR}$ . If  $g : \mathbb{R}^m \to \mathbb{R}^n$ ,  $x = (x_1, \ldots, x_m)$  and  $\tilde{x} = (x_{i_1}, \ldots, x_{i_p})$  with  $i_1, \ldots, i_p \in 1..m$ , then  $\mathcal{J}_{\tilde{x}}g(x)$  denotes the Jacobian matrix

$$\begin{bmatrix} \frac{\partial g_1}{\partial x_{i_1}}(x) & \dots & \frac{\partial g_1}{\partial x_{i_p}}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial x_{i_1}}(x) & \dots & \frac{\partial g_n}{\partial x_{i_p}}(x) \end{bmatrix}$$

In particular, we write  $\mathcal{J}g(x) = \mathcal{J}_x g(x)$  (differentiation wrt all variables of g). If not specified, n denotes the dimension of the ODE (i.e., the number of scalar equations), h > 0 denotes the step size of the integration, and k denotes the number of previous values of the solution at times  $t_0, \ldots, t_{k-1}$  used to compute the new value at time  $t_k$  (k-step approach).

**Notation 1 (Bold Face Notations)** Let A be a set and  $a_i \in A$  where  $i \in \mathbb{N}$ . We use the following bold face notations.

$$\mathbf{a} = (a_0, \dots, a_k) \in A^{k+1}, 
 \mathbf{a}_i = (a_{ik}, \dots, a_{(i+1)k-1}) \in A^k, 
 \mathbf{a}_{i..i+j} = (a_i, \dots, a_{i+j}) \in A^{j+1}.$$

Observe that  $\mathbf{a}_0 = (a_0, \dots, a_{k-1})$ ,  $\mathbf{a}_1 = (a_k, \dots, a_{2k-1})$ , and  $\mathbf{a} = (a_0, \dots, a_k)$ . The following asymptotical notations are standard:

<sup>&</sup>lt;sup>4</sup>By *enclosure* of a set A, we mean a set containing A.

**Notation 2 (Asymptotical Notations)** Consider two functions  $f, g : \mathbb{R} \to \mathbb{R}$  and let x > 0. We use the following standard notations.

$$f(x) = \begin{cases} O(g(x)) & if \ \exists c > 0, \exists \varepsilon > 0 : x \ge \varepsilon \Rightarrow |f(x)| \le c|g(x)|, \\ \mathcal{O}(g(x)) & if \ \exists c > 0, \exists \varepsilon > 0 : x \le \varepsilon \Rightarrow |f(x)| \le c|g(x)|, \\ \Omega(g(x)) & if \ \exists c > 0, \exists \varepsilon > 0 : x \le \varepsilon \Rightarrow |f(x)| \ge c|g(x)|, \\ \Theta(g(x)) & if \ f(x) = \mathcal{O}(g(x)) \ and \ f(x) = \Omega(g(x)). \end{cases}$$

The notations extend component-wise for vectors and matrices of functions.

Finally we assume that the underlying interval arithmetic is exact for the theoretical parts of this work (i.e. there are no rounding errors). The implementation of course uses outwardly directed rounding.

#### 2.2 Basic Definitions

As traditional, when we consider an ODE u' = f(u) and an interval of integration T, we assume  $f \in C^r(\Omega)$ , where r is sufficiently large and  $\Omega$  is an open set such that  $T \times \Omega$  contains the trajectories of the solutions on  $T^{5}$ . In addition, we restrict our attention to ODEs that have a unique solution for a given initial value. Techniques to verify this hypothesis numerically are well-known [NJC99, Moo66, Moo79, CR96, Ned99]. In order to make the dependence on the initial condition  $(t_0, u_0)$  explicit, we introduce the following definition of the solution to an ODE.

**Definition 1 (Solution of an ODE)** Let  $\Lambda \subseteq \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}$  be an open set. The solution of an ODE u' = f(u) is the function  $s : \Lambda \to \mathbb{R}^n$  such that

$$\forall (t_0, u_0, t) \in \Lambda : \begin{cases} \frac{\partial s}{\partial t}(t_0, u_0, t) = f(s(t_0, u_0, t)), \\ s(t_0, u_0, t_0) = u_0. \end{cases}$$

Observe that, since we restrict attention to autonomous systems in this work, we can write

$$s(t_0, x, t) = s(0, x, \tau),$$

where  $\tau = t - t_0$ , and thus

$$\frac{\partial^j s}{\partial t^j}(t_0, x, t) = \frac{\partial^j s}{\partial \tau^j}(0, x, \tau).$$

In particular, when  $t = t_0$ , the function

$$\left.\frac{\partial^j s}{\partial t^j}(t_0,x,t)\right|_{(t_0,x,t_0)} = \left.\frac{\partial^j s}{\partial \tau^j}(t_0,x,\tau)\right|_{(0,x,0)}$$

depends only on x. This justifies the following notation, which captures the notions of real and interval Taylor coefficients of the solution of an ODE as well as their Jacobians.

**Notation 3 (Taylor Coefficients and Jacobians)** Let *s* be the solution of an ODE  $\mathbb{O}$ ,  $x \in \mathbb{R}^n$ ,  $D \in \mathbb{IR}^n$ , and let  $t_0$  be any real number. Then,

$$\begin{aligned} I. \ (x)_j &= \left. \frac{1}{j!} \frac{\partial^j s}{\partial t^j} (t_0, x, t) \right|_{(t_0, x, t_0)}; \\ 2. \ \{(x)_j \mid x \in D\} \subseteq (D)_j \in \mathbb{I}\mathbb{R}^n; \end{aligned}$$

<sup>5</sup>The standard mathematical symbol  $C^{r}(\Omega)$  denotes the set of all functions whose r-th derivative exists and is continuous on  $\Omega$ .

- 3.  $\mathcal{J}(x)_j = \left. \mathcal{J}_x \frac{1}{j!} \frac{\partial^j s}{\partial t^j}(t_0, x, t) \right|_{(t_0, x, t_0)};$
- 4.  $\{\mathcal{J}(x)_j \mid x \in D\} \subseteq \mathcal{J}(D)_j \in \mathbb{I}\mathbb{R}^{n \times n};$
- 5.  $(x)_{j,l}, (D)_{j,l}, \mathcal{J}(x)_{j,l}$  and  $\mathcal{J}(D)_{j,l}$  denote respectively the *l*-th component of  $(x)_j, (D)_j, \mathcal{J}(x)_j$  and  $\mathcal{J}(D)_j$ .

In the context of our multistep approach (to be presented in Section 3), it is useful to generalize Definition 1 in order to make the dependence on the last k + 1 redundant conditions  $(t_0, u_0), \ldots, (t_k, u_k)$  explicit.

**Definition 2 (Multistep solution of an ODE)** Let *s* be the solution of an ODE  $\mathbb{O}$ . The multistep solution of  $\mathbb{O}$  is the partial function  $ms : A \subseteq \mathbb{R}^{k+1} \times (\mathbb{R}^n)^{k+1} \times \mathbb{R} \to \mathbb{R}^n$ :

$$ms(\mathbf{t}, \mathbf{u}, t) = \begin{cases} s(t_0, u_0, t) \text{ if } u_i = s(t_0, u_0, t_i), \ 1 \le i \le k, \\ \text{undefined otherwise.} \end{cases}$$

Since we are dealing with interval methods, we need to introduce the notions of interval extensions of a function and a relation. These notions were introduced in [VHMD97]. However, because the techniques proposed in this work use multistep solutions, which are *partial* functions, it is necessary to generalize the notion of interval extension to partial functions and relations.

**Definition 3 (Interval Extension of a Partial Function)** *The interval function*  $G : \mathbb{IR}^n \to \mathbb{IR}^m$  *is an* interval extension of the partial function  $g : E \subseteq \mathbb{R}^n \to \mathbb{R}^m$  *if* 

$$\forall D \in \mathbb{IR}^n : g(E \cap D) \subseteq G(D).$$

**Definition 4 (Interval Extension of a Partial Relation)** *The interval relation*  $R : \mathbb{IR}^n \to Bool$  *is an* interval extension of the partial relation  $r : E \subseteq \mathbb{R}^n \to Bool$  *if* 

$$\forall D \in \mathbb{IR}^n : (\exists x \in E \cap D : r(x)) \Rightarrow R(D).$$

Finally, we generalize the concept of bounding boxes, a fundamental concept in interval methods for ODEs, to multistep methods. Intuitively, a bounding box encloses all solutions of an ODE going through certain boxes at given times over a given time interval. Bounding boxes are needed to enclose error terms in validated methods for ODEs (see Section 5).

**Definition 5 (Bounding Box)** Let  $\mathbb{O}$  be an ODE system, ms be the multistep solution of  $\mathbb{O}$ , and  $\{t_0, \ldots, t_k\} \subseteq T \in \mathbb{IR}$ . A box B is a bounding box of  $\mathbb{O}$  over T wrt  $(\mathbf{t}, \mathbf{D})$  if, for all  $t \in T$ ,  $ms(\mathbf{t}, \mathbf{D}, t) \subseteq B$ .

#### 2.3 The Midpoint Technique

The midpoint technique is a standard tool in interval computation. It consists of decomposing a matrix A as the sum of its midpoint matrix and the remainder matrix composed of symmetric intervals:

$$A = m(A) + s(A).$$

In this paper, the midpoint technique is used in the following two cases:

- 1. enclosing a set of real matrix-matrix-vector products (see Sections 4.4 and 4.5);
- 2. converting an implicit interval linear system into an explicit one by matrix inversion (see Section 4.2).

Assume that we are interested in enclosing the set

$$P = \{ \mathcal{AB}d \mid \mathcal{A} \in A, \ \mathcal{B} \in B, \ d \in D \}$$

where A, B are interval matrices and D is an interval vector. Assume also that  $\omega(A)$  is small and that the wrapping effect in the product CD, where C = AB, is small. A straightforward and cheap way to enclose the set P consists of computing the product A(BD). In general, this product does not yield accurate results because of the wrapping effect which occurs in the product E = BD and in the product AE. Another sraightforward way of enclosing the set P is to compute the product (AB)D. By hypothesis, the wrapping effect is small in this case and the product is an accurate enclosure of P. However, the multiplication of the two interval matrices A and B is a costly process (due to costly sign tests and rounding mode switches in modern RISC architectures - see [Knu94] for more details). In order to avoid this product, we apply the midpoint technique on A. By distribution and rearrangement of the parentheses, we can write

$$P \subseteq Q = (m(A)B)D + s(A)(BD). \tag{1}$$

It is interesting to observe that no multiplication between two interval matrices occurs in Q (note the importance of the parentheses!). From an accuracy standpoint, the wrapping effect in (m(A)B)D is small (by hypothesis) and the remainder term s(A)(BD) is small (because  $\omega(A)$  is small). Hence, Q is an accurate enclosure of the set P which avoids the costly multiplication of two interval matrices.

Now consider the implicit interval linear system

$$\begin{array}{l}
A_0 X_0 + A_1 X_1 = B, \\
X_0 \subseteq D_0, \ X_1 \subseteq D_1,
\end{array}$$
(2)

where  $A_0, A_1$  are interval matrices, and  $B, D_0, D_1$  are interval vectors. We assume that  $A_0$  contains no singular point matrix. The exact solution set to this system is given by

$$S = \{ (x_0, x_1) \in (D_0, D_1) \mid \exists \mathcal{A}_0 \in \mathcal{A}_0, \ \exists \mathcal{A}_1 \in \mathcal{A}_1, \ \exists b \in B : \mathcal{A}_0 x_0 + \mathcal{A}_1 x_1 = b \}$$

We are interested in converting the system (2) into a system

$$X_0 = CX_1 + E,$$

which is explicit in the variable  $X_0$  and such that

$$S \subseteq \{(x_0, x_1) \in (D_0, D_1) \mid \exists \mathcal{C} \in C, \exists e \in E : x_0 = \mathcal{C}x_1 + e\}$$

A straightforward solution consists of computing an enclosure  $A_0^{-1}$  of the inverse of  $A_0$ , multypling both sides of (2) by  $A_0^{-1}$  and rearranging the parentheses:

$$X_0 = -(A_0^{-1}A_1)X_1 + A_0^{-1}B.$$
(3)

However, the system (3) suffers from two drawbacks:

- We have to invert the interval matrix A<sub>0</sub>. Computing an accurate enclosure of the inverse of an interval matrix is a costly process [Ned99]);
- We have to multiply the two interval matrices  $A_0^{-1}$  and  $A_1$ .

To eliminate these operations, we apply the midpoint technique both on  $A_0$  and  $A_1$  in (2). By distributivity, we have

$$m(A_0)X_0 = -m(A_1)X_1 + B - s(A_0)X_0 - s(A_1)X_1.$$
(4)

Since  $X_0 \subseteq D_0$  and  $X_1 \subseteq D_1$ , we can replace  $X_0$  by  $D_0$  in the term involving  $s(A_0)$  and  $X_1$  by  $D_1$  in the term involving  $s(A_1)$ :

$$m(A_0)X_0 = -m(A_1)X_1 + B - s(A_0)D_0 - s(A_1)D_1.$$
(5)

Note that it is important to have precise enclosures  $D_1$  and  $D_2$ . To obtain a system which is explicit in the variable  $X_0$ , we compute an *enclosure*  $m(A_0)^{-1}$  of the inverse of the *point* matrix  $m(A_0)$ , we multiply both sides of (5) by  $m(A_0)^{-1}$ , and we rearrange the parentheses:<sup>6</sup>

$$X_0 = -(m(A_0)^{-1}m(A_1))X_1 + m(A_0)^{-1}(B - s(A_0)D_0 - s(A_1)D_1).$$

Observe that, in this last system, there is no interval matrix inversion and no product of two interval matrices.

# 3 The Constraint Satisfaction Approach

The constraint satisfaction approach followed in this work was first presented in [DJVH98]. It consists of a generic algorithm for ODEs that iterates three processes:

- 1. A *bounding box* process that computes bounding boxes for the current step and proves (numerically) the existence and uniqueness of the solution;
- 2. A *predictor* process that computes initial enclosures at given times from enclosures at previous times and bounding boxes;
- 3. A *pruning* process that reduces the initial enclosures without removing solutions.

The intuition of the successive steps is illustrated in Figure 1. Bounding box and predictor components are standard in interval methods for ODEs. This paper thus focuses on the pruning process, the main novelty of the approach. *Our pruning component is based on relaxations of the ODE, a fundamental concept in the field of constraint satisfaction.* To our knowledge, no other approach uses relaxations of the ODE to derive pruning operators and the only other approaches using a pruning component [NJ99, Rih98] were developed independently. Note also that, in the following, predicted boxes are generally superscripted with the symbol \* (e.g.,  $D_1^-$ ), while pruned boxes are generally superscripted with the symbol \* (e.g.,  $D_1^+$ ).

The pruning component uses *safe approximations* of the ODE to shrink the boxes computed by the predictor process. To understand this idea, it is useful to contrast the constraint satisfaction to nonlinear programming [VHMK97, VHMD97] and to ordinary differential equations. In nonlinear programming, a constraint  $c(x_1, \ldots, x_n)$  can be used almost directly for pruning the search space (i.e., the Cartesian product of the intervals  $I_i$  associated with the variables  $x_i$ ). It suffices to take an interval extension  $C(X_1, \ldots, X_n)$  of the constraint. Now if  $C(I'_1, \ldots, I'_n)$  does not hold, it follows, by definition of interval extensions, that no solution of c lies in  $I'_1 \times \ldots \times I'_n$ . The interval extension can be seen as a filter that can be used for pruning the search space in many ways. For instance, Numerica uses box(k)-consistency on these interval constraints [VHMD97]. Ordinary differential equations raise new challenges. In an ODE  $\forall t : u' = f(u)$ , functions u and u' are, of course, unknown. Hence it is not obvious how to obtain a filter to prune boxes.

<sup>&</sup>lt;sup>6</sup>Note that, even though  $m(A_0)$  is a *point* matrix, the enclosure  $m(A_0)^{-1}$  of its inverse is generally *not* a point matrix, because of rounding errors.



Figure 1: Successive Integration Steps

One of the main contributions of our approach is to show how to derive effective pruning operators for parametric ODEs. The first step consists in rewriting the ODE  $\forall t : u' = f(u)$ , in terms of its multistep solution ms to obtain

$$\forall t: \frac{\partial ms}{\partial t}(\mathbf{t}, \mathbf{u}, t) = f(ms(\mathbf{t}, \mathbf{u}, t)).$$
(6)

Let us denote this relation  $\forall t : fl(\mathbf{t}, \mathbf{u}, t)$ . This rewriting may not appear useful since *ms* is still an unknown function. However it suggests a way to approximate the ODE. Indeed, we show in Section 5 how to obtain interval extensions of *ms* and  $\frac{\partial ms}{\partial t}$  by using Hermite polynomial interpolations together with their error terms. This simply requires a bounding box for the considered time interval and safe approximations of *ms* at successive times, both of which are available from the bounding box and predictor processes. Once these interval extensions are available, it is possible to obtain an interval relation of the form

$$\forall t : FL(\mathbf{t}, \mathbf{D}, t), \tag{7}$$

which approximates the original ODE *safely*, i.e., if  $FL(\mathbf{t}, \mathbf{D}, t)$  does not hold for a time t, it follows that no solution of the ODE can go through boxes  $D_0, \ldots, D_k$  at times  $t_0, \ldots, t_k$ . Relation (7) is still not ready to be used as a filter because t is universally quantified. The solution here is simpler and consists of restricting attention to a finite set T of times (possibly a singleton) to obtain the relation

$$\forall t \in T : FL(\mathbf{t}, \mathbf{D}, t),$$

which produces a computable filter. The relation FL is a *relaxation* of the ODE (6) in a constraint satisfaction sense [VH98], i.e., given a time t, it produces a relation that can be used to prune the domain of the variables. The so-obtained relation is in fact a conservative approximation of the actual ODE at the given time. The following definition and proposition capture these concepts more formally.

**Definition 6 (Multistep Filter)** Let  $\mathbb{O}$  be an ODE and s its solution. A multistep filter for  $\mathbb{O}$  is an interval relation  $FL : \mathbb{R}^{k+1} \times (\mathbb{IR}^n)^{k+1} \times \mathbb{R} \to Bool$  satisfying

$$\left.\begin{array}{c} u_i \in D_i \\ s(t_0, u_0, t_i) = u_i \ (0 \le i \le k) \end{array}\right\} \Rightarrow \quad \forall t: \ FL(\mathbf{t}, \mathbf{D}, t)$$

*The variable t is called the* evaluation time *of the multistep filter.* 

**Proposition 1 (Soundness of Multistep Filters)** Let  $\mathbb{O}$  be an ODE and let FL be a multistep filter for  $\mathbb{O}$ . If  $FL(\mathbf{t}, \mathbf{D}, t)$  does not hold for some t, then there exists no solution of  $\mathbb{O}$  going through  $\mathbf{D}$  at times  $\mathbf{t}$ .



Figure 2: Geometric Intuition of the Multistep Filter.

How can we use this filter to obtain tighter enclosures of the solution? A simple technique consists of pruning the last box computed by the predictor process. Assume that  $D_i^*$  is a box enclosing the solution at time  $t_i$   $(0 \le i < k)$  and that we are interested in pruning the last predicted box  $D_k^-$ . A subbox  $D \subseteq D_k^-$  can be pruned away if the condition

$$FL(\mathbf{t}, (D_0^*, \ldots, D_{k-1}^*, D), t_e)$$

does not hold for some evaluation point  $t_e$ . Let us explain briefly the geometric intuition behind this relation by considering what we call *natural filters*. Given interval extensions *MS*, *DMS* and *F* respectively of *ms*,  $\frac{\partial ms}{\partial t}$  and *f*, it is possible to approximate the ODE u' = f(u) by the relation

$$DMS(\mathbf{t}, \mathbf{D}, t) = F(MS(\mathbf{t}, \mathbf{D}, t))$$

In this relation, the left-hand side of the equation represents the approximation of the slope of u while the right-hand represents the slope of the approximation of u. Since the approximations are conservative, these two sides must intersect on boxes containing a solution. Hence an empty intersection means that the boxes used in the relation do not contain the solution to the ODE system. Figure 2 illustrates the intuition. It is generated from an actual ordinary differential equation, considers only points instead of intervals, uses an interpolation polynomial as an approximation of u, and ignores error terms for simplicity. It illustrates how this technique can prune away a value as a potential solution at a given time. In the figure, we consider the solution to the equation that evaluates to  $u_0$  and  $u_1$  at  $t_0$  and  $t_1$ , respectively. Two possible points  $u_2$ , and  $u'_2$  are then considered as possible values at  $t_2$ . The curve marked KO describes an interpolation polynomial going through  $u_0, u_1, u'_2$  at times  $t_0, t_1, t_2$ . To determine if  $u'_2$  is the value of the solution at time  $t_2$ , the idea is to test if the equation is satisfied at time  $t_e$ . (We will say more about how to choose  $t_e$  later in this paper). As can be seen easily, the slope of the interpolation polynomial is different from the slope specified by f at

time  $t_e$  and hence  $u'_2$  cannot be the value of the solution at  $t_2$  since we assume that the values  $u_0$  and  $u_1$  were correct at  $t_0$  and  $t_1$ . The curve marked OK describes an interpolation polynomial going through  $u_0, u_1, u_2$  at times  $t_0, t_1, t_2$ . In this case, the equation is satisfied at time  $t_e$ , which means that  $u_2$  cannot be pruned away.

The filter proposed earlier generalizes this intuition to boxes. Both the left- and the right-hand sides represent sets of slopes, and the filter fails when their intersection is empty. Traditional consistency techniques and algorithms based on this filter can now be applied. For instance, one may be interested in updating the last box computed by the predictor process using the operator

$$D_k^* = \Box \{ r \in D_k^- \mid FL(\mathbf{t}, (D_0^*, \dots, D_{k-1}^*, r), t_e) \}.$$

which is defined in terms of an evaluation time  $t_e$ . One of the main results of this paper consists in showing that  $t_e$  can be chosen optimally (in an asymptotic sense) to maximize pruning. The following definition is a novel notion of consistency for ODEs to capture pruning of the last r boxes.<sup>7</sup>

**Definition 7 (Backward Consistency of Multistep Filters)** A multistep filter FL is backward-consistent in (t, D) for time e if

$$D_k = \Box \{ u_k \in D_k \mid \exists \mathbf{u}_0 \in \mathbf{D}_0 : FL(\mathbf{t}, \mathbf{u}, e) \}.$$

A system of r successive multistep filters  $\{FL_i\}_{0 \le i < r}$  is backward(r)-consistent in  $(\mathbf{t}_{0..k+r-1}, \mathbf{D}_{0..k+r-1})$  for time vector  $(e_0, \ldots, e_{r-1})$  if

$$\mathbf{D}_{k..k+r-1} = \Box \{ \mathbf{u}_{k..k+r-1} \in \mathbf{D}_{k..k+r-1} \mid \exists \mathbf{u}_0 \in \mathbf{D}_0 : \\ \forall 0 \le i < r : FL_i(\mathbf{t}_{i..k+i}, \mathbf{u}_{i..k+i}, e_i) \}.$$
(8)

Informally speaking, the parameter r in the definition determines the strength of the consistency, i.e., the number of backward variables each variable depends on. The following proposition is an immediate consequence of Definition 7. It states that the strength of the consistency increases with parameter r.

**Proposition 2 (Property of Backward Consistency)** If a system of r + 1 (r > 0) successive multistep filters  $\{FL_i\}_{0 \le i \le r}$  is backward(r + 1)-consistent in  $(\mathbf{t}_{0..k+r}, \mathbf{D}_{0..k+r})$  for time vector  $(e_0, \ldots, e_r)$ , then the system

- 1.  $\{FL_i\}_{0 \le i < r}$  is backward(r)-consistent in  $(\mathbf{t}_{0..k+r-1}, \mathbf{D}_{0..k+r-1})$  for time vector  $(e_0, \ldots, e_{r-1})$ ;
- 2.  $\{FL_i\}_{1 \le i \le r}$  is backward(r)-consistent in  $(\mathbf{t}_{1..k+r}, \mathbf{D}_{1..k+r})$  for time vector  $(e_1, \ldots, e_r)$ .

In the next section, we introduce coordinate transformations in multistep filters to represent the sets of solutions compactly, i.e., to handle the wrapping effect (see Section 4.5). It is thus useful to generalize the above definition by introducing affine transformations.

**Definition 8 (Generalized Backward Consistency)** Let  $Y_i \in \mathbb{IR}^n$   $(i \in \mathbb{N})$ . A multistep filter FL is backward-consistent in  $(\mathbf{t}, \mathbf{Y})$  for time e if there exists an invertible affine transformation  $\mathbf{a} : \mathbb{R}^{n(k+1)} \to \mathbb{R}^{n(k+1)}$  such that

$$Y_k = \Box \{ y_k \in Y_k \mid \exists \mathbf{y}_0 \in \mathbf{Y}_0 : FL(\mathbf{t}, \mathbf{a}(\mathbf{y}), e) \}.$$

A system of r successive multistep filters  $\{FL_i\}_{0 \le i < r}$  is backward(r)-consistent in  $(\mathbf{t}_{0..k+r-1}, \mathbf{Y}_{0..k+r-1})$  for time vector  $(e_0, \ldots, e_{r-1})$  if there exists an invertible affine transformation  $\mathbf{a}_{0..k+r-1} : \mathbb{R}^{n(k+r)} \to \mathbb{R}^{n(k+r)}$ such that

$$\mathbf{Y}_{k..k+r-1} = \Box \{ \mathbf{y}_{k..k+r-1} \in \mathbf{Y}_{k..k+r-1} \mid \exists \mathbf{y}_0 \in \mathbf{Y}_0 : \\
\forall 0 \le i < r : FL_i(\mathbf{t}_{i..k+i}, \mathbf{a}_{i..k+i}(\mathbf{y}_{0..k+r-1}), e_i) \}.$$
(9)

Note that Proposition 2 also holds for generalized backward consistency. In the rest of this paper, we use "backward consistency" instead of "generalized backward consistency" for simplicity. The algorithm used in our computational results enforces backward(k)-consistency of a system of k filters we now describe.

<sup>&</sup>lt;sup>7</sup>We will give an explicit form for  $D_k^*$  later in the paper.

### 4 Multistep Filters

Filters rely on interval extensions of the multistep solution and of its derivative wrt t. These extensions are, in general, based on decomposing the (unknown) multistep solution into the sum of a computable approximation p and an (unknown) error term e, i.e.,

$$ms(\mathbf{t}, \mathbf{u}, t) = p(\mathbf{t}, \mathbf{u}, t) + e(\mathbf{t}, \mathbf{u}, t).$$
(10)

There exist standard techniques to build p and  $\frac{\partial p}{\partial t}$  and to bound e and  $\frac{\partial e}{\partial t}$ . Section 5 reviews how they can be derived from Hermite interpolation polynomials. Here we simply assume that they are available, and we show how to use them to build filters.

#### 4.1 Natural Filters

Section 3 explained how natural multistep filters can be obtained by simply replacing the multistep solution *ms*, its derivative  $\frac{\partial ms}{\partial t}$  and the function *f* by their interval extensions *MS*, *DMS* and *F* to obtain

$$DMS(\mathbf{t}, \mathbf{D}, t) = F(MS(\mathbf{t}, \mathbf{D}, t)).$$

It is not easy however to enforce backward consistency on a natural filter since the variables may occur in complex nonlinear expressions. This problem is addressed by mean-value filters that we now study.

#### 4.2 Mean-Value Filters

**Mean-Value Forms** Mean-value forms (MVFs) play a fundamental role in interval computations and are derived from the Mean-Value theorem. They correspond to problem linearizations around a point and result in filters that are systems of linear equations with interval coefficients and whose solutions can be enclosed reasonably efficiently. Mean-value forms are effective when the sizes of the boxes are sufficiently small, which is the case in ODEs. In addition, being linear equations, they allow for an easier treatment of the so-called *wrapping effect*, a crucial problem in interval methods for ODEs to be discussed in Sections 4.3 and 4.5. As a consequence, mean-value forms are especially appropriate in our context and will produce filters which are efficiently amenable to backward consistency. The rest of this section describes how to obtain mean-value filters.

Implicit Mean-Value Filters Consider the function

$$\delta(\mathbf{t}, \mathbf{u}, e, de, t) = \frac{\partial p}{\partial t}(\mathbf{t}, \mathbf{u}, t) + de - f(p(\mathbf{t}, \mathbf{u}, t) + e).$$

If the multistep solution *ms* is defined at  $(\mathbf{t}, \mathbf{u})$ , i.e. the ODE has a solution going through  $u_0, \ldots, u_k$  at  $t_0, \ldots, t_k$ , then, by (10), we have the relation

$$\delta(\mathbf{t}, \mathbf{u}, e(\mathbf{t}, \mathbf{u}, t), \frac{\partial e}{\partial t}(\mathbf{t}, \mathbf{u}, t), t) = 0.$$

Let  $\mathbf{u}^*, \mathbf{u} \in \mathbf{D}^0 \in \mathbb{I}\mathbb{R}^{n(k+1)}, e^*, e \in E \in \mathbb{I}\mathbb{R}^n$  and  $de^*, de \in DE \in \mathbb{I}\mathbb{R}^n$ . By the Mean-Value theorem, we can write  $(1 \le i \le n)$ 

$$\begin{split} \delta_i(\mathbf{t}, \mathbf{u}, e, de, t) &= \delta_i(\mathbf{t}, \mathbf{u}^*, e^*, de^*, t) \\ &+ \mathcal{J}_{(\mathbf{u}, e, de)} \delta_i(\mathbf{t}, \mu_i, \xi_i, \zeta_i, t) \; (\mathbf{u} - \mathbf{u}^*, e - e^*, de - de^*) \\ &= \delta_i(\mathbf{t}, \mathbf{u}^*, e^*, de^*, t) + \phi_i(\mathbf{t}, \mu_i, \xi_i, t) (\mathbf{u} - \mathbf{u}^*) \\ &+ \psi_i(\mathbf{t}, \mu_i, \xi_i, t) (e^* - e) + de_i - de_i^*, \end{split}$$

where

$$\begin{split} \phi_i(\mathbf{t},\mu_i,\xi_i,t) &= \mathcal{J}_{\mathbf{u}}\frac{\partial p_i}{\partial t}(\mathbf{t},\mu_i,t) - \mathcal{J}f_i(p(\mathbf{t},\mu_i,t)+\xi_i)\mathcal{J}_{\mathbf{u}}p(\mathbf{t},\mu_i,t) \\ \psi_i(\mathbf{t},\mu_i,\xi_i,t) &= \mathcal{J}f_i(p(\mathbf{t},\mu_i,t)+\xi_i) \end{split}$$

for some  $\mu_i \in \mathbf{D}^0$ ,  $\xi_i \in E$ , and  $\zeta_i \in DE$ . This allows us to define a new multistep filter, which we will call an *implicit mean-value filter*. Such a filter is parametrized by the initial domain  $\mathbf{D}^0$  of the variable  $\mathbf{u}$ .

**Definition 9 (Implicit Mean-Value Filter)** An implicit mean-value filter for ODE u' = f(u) in  $\mathbf{D}^0 \in \mathbb{I}\mathbb{R}^{n(k+1)}$  is an interval relation

$$FL(\mathbf{t}, \mathbf{D}, t) \Leftrightarrow$$
  
$$\delta(\mathbf{t}, \mathbf{m}^0, m_e, m_{de}, t) + \Delta(\mathbf{t}, \mathbf{D}^0, E(\mathbf{t}, \mathbf{D}^0, t), DE(\mathbf{t}, \mathbf{D}^0, t), t) \ (\mathbf{X}, E_m, DE_m) = 0,$$
(11)

where

$$\Delta \text{ is an interval extension of the function } \mathcal{J}_{(\mathbf{u},e,de)}\delta,$$
  

$$E \text{ and } DE \text{ are interval extensions resp. of } e \text{ and } \frac{\partial e}{\partial t},$$
  

$$\mathbf{D} \subseteq \mathbf{D}^{0},$$
  

$$\mathbf{X} = \mathbf{D} - \mathbf{m}^{0}, E_{m} = E(\mathbf{t}, \mathbf{D}^{0}, t) - m_{e}, DE_{m} = DE(\mathbf{t}, \mathbf{D}^{0}, t) - m_{de},$$
  

$$\mathbf{m}^{0} = m(\mathbf{D}^{0}), m_{e} = m(E(\mathbf{t}, \mathbf{D}^{0}, t)), m_{de} = m(DE(\mathbf{t}, \mathbf{D}^{0}, t)).$$
(12)

Formula 11 is called implicit beacuse D appears implicitly. The Jacobians in (12) can be computed by means of automatic differentiation tools (see e.g. [Ral81]). The following proposition states that an implicit mean-value filter does not eliminate any solution of the ODE. It is a direct consequence of the Mean-Value theorem.

**Proposition 3** An implicit mean-value filter for ODE  $\mathcal{O}$  is a multistep filter for  $\mathcal{O}$ .

**Explicit Mean-Value Filters** In general, for initial value problems, we will be interested in pruning the last predicted box  $D_k^-$ . Hence it is convenient to derive a mean-value filter which is explicit in  $D_k$ . Let  $\mathbf{D}^- \in \mathbb{I}\mathbb{R}^{n(k+1)}$  be the predicted box of variable **u** and define **X** as  $\mathbf{D} - m(\mathbf{D}^-)$ . An implicit mean-value filter is an interval constraint of the form

$$\Phi(t)\mathbf{X} = \Gamma(t),$$

where  $\Phi(t) \in \mathbb{IR}^{n \times n(k+1)}$  and  $\Gamma(t) \in \mathbb{IR}^n$ . Let us apply the midpoint technique (see Point 2 of Section 2.3) on the matrix  $\Phi(t)$ . We can write  $\Phi(t) = m(\Phi(t)) + s(\Phi(t))$ , and

$$m(\Phi(t))\mathbf{X} = \Gamma(t) - s(\Phi(t))\mathbf{X}.$$
(13)

The term  $s(\Phi(t))\mathbf{X}$  is normally small (of size  $\mathcal{O}(\|\omega(\mathbf{D}^-)\|^2)$ ), and we can substitute  $\mathbf{X}$  on the right side of (13) for  $s(\mathbf{D}^-)$ , since  $\mathbf{X} = \mathbf{D} - m(\mathbf{D}^-)$  and we are looking for a pruned box  $\mathbf{D}^* \subseteq \mathbf{D}^-$ . We obtain the system

$$m(\Phi(t))\mathbf{X} = \Gamma(t) - s(\Phi(t))s(\mathbf{D}^{-}).$$
(14)

Equation (14) can be rewritten as

$$\sum_{i=0}^{k} A_i(t) X_i = K(t),$$

where  $A_i(t) \in \mathbb{R}^{n \times n}$ , i = 0, ..., k and  $K(t) \in \mathbb{IR}^n$ . Let us isolate the term involving  $X_k$ :

$$A_k(t)X_k = K(t) - \sum_{i=0}^{k-1} A_i(t)X_i.$$
(15)

Multiplying both sides of (15) by  $A_k(t)^{-1}$  (recall that  $A_k(t)^{-1}$  denotes an enclosure of the inverse of  $A_k(t)$ ) gives

$$X_{k} = A_{k}(t)^{-1}K(t) - \sum_{i=0}^{k-1} \left( A_{k}(t)^{-1}A_{i}(t) \right) X_{i}.$$

We are now in position to define explicit mean-value filters which play a fundamental role in our approach.

**Definition 10 (Explicit Mean-Value Filter)** An explicit mean-value filter for ODE  $\mathcal{O}$  in  $\mathbf{D}^0 \in \mathbb{IR}^{n(k+1)}$  is an interval relation

$$FL(\mathbf{t}, \mathbf{D}, t) \Leftrightarrow X_k = A_k(t)^{-1} K(t) - \sum_{i=0}^{k-1} \left( A_k(t)^{-1} A_i(t) \right) X_i,$$

where

$$\begin{split} \mathbf{X} &= \mathbf{D} - m(\mathbf{D}^{0}), \\ \mathbf{D} \subseteq \mathbf{D}^{0}, \\ (A_{0}(t) \cdots A_{k}(t)) &= m(\Phi(t)) \in \mathbb{R}^{n \times n(k+1)}, \\ K(t) &= \Gamma(t) - s(\Phi(t))s(\mathbf{D}^{0}) \in \mathbb{I}\mathbb{R}^{n}, \\ \text{the relation } \Phi(t)\mathbf{X} &= \Gamma(t) \text{ is an implicit mean-value filter for } \mathcal{O} \text{ in } \mathbf{D}^{0}. \end{split}$$

**Proposition 4** An explicit mean-value filter for ODE  $\mathcal{O}$  is a multistep filter for  $\mathcal{O}$ .

It is easy to use an explicit mean-value filter to prune the predicted box  $D_k^-$  at time  $t_k$  given the boxes  $D_0^*, \ldots, D_{k-1}^*$  from the previous integration steps, since  $X_k$  (and thus  $D_k$ ) has been isolated. The filter simply becomes

$$D_{k} = m(D_{k}^{-}) + A_{k}(t)^{-1}K(t) - \sum_{i=0}^{k-1} \left( A_{k}(t)^{-1}A_{i}(t) \right) \left( D_{i}^{*} - m(D_{i}^{*}) \right),$$
(16)

and the pruned box  $D_k^*$  at time  $t_k$  is given by

$$D_k^* = D_k \cap D_k^-.$$

It follows directly that the explicit mean-value filter is backward-consistent in  $\mathbf{D}^*$ .

#### 4.3 **Problems in Mean-Value Filters**

Mean-value filters often produce significant pruning of the boxes computed by the predictor process. However, they suffer from two limitations: the *wrapping effect* which is inherent in interval analysis and a *variable dependency* problem induced by the use of a multistep method. We review both of these before describing how to address them.

**Wrapping Effect** The wrapping effect is the name given to the overestimation that arises from enclosing a set by a box. In the context of ODEs, the set of solutions at each integration step is over-approximated by a box. These over-approximations accumulate step after step and may result in an explosion in the sizes of the computed boxes. The standard solution used in interval methods for ODEs to obtain tighter solution bounds is to choose, at each step, an appropriate local coordinate system to represent the solutions compactly (see [Loh87], [NJ99]). How does the wrapping effect occur in our context? Let us rewrite an explicit mean-value filter from Equation (16) as

$$X_k = K(t) + \sum_{i=0}^{k-1} A_i(t) X_i,$$



Figure 3: (a) A zonotope in  $\mathbb{R}^2$  and the smallest enclosing box; (b) Coordinate transformation where the enclosing box better fits the zonotope.

and let us assume that  $A_0(t), \ldots, A_{k-1}(t)$  are point matrices and that K(t) is a point vector. Given the boxes  $X_0, \ldots, X_{k-1}$  computed at the previous steps, the exact solution set to be enclosed by  $X_k$  is

$$Z = \left\{ K(t) + \sum_{i=0}^{k-1} A_i(t) x_i \mid (x_0, \dots, x_{k-1}) \in (X_0, \dots, X_{k-1}) \right\}.$$

The set Z is called a *zonotope*<sup>8</sup> (i.e., a generalization of a parallelepiped). Figure 3 (a) illustrates a zonotope in  $\mathbb{R}^2$  (for k = 3) and its smallest enclosing box. As can be seen, the box significantly overestimates the zonotope. Figure 3 (b) shows that the zonotope can be enclosed much more tightly by using a coordinate transformation. It should be mentioned however that finding a good coordinate system is not necessarily a trivial task (e.g., one idea is to find approximations of the main directions of the zonotope) and may not be sufficient because of the variable dependency problem that we now discuss.

**Variable Dependencies in Explicit Filters** Consider the application of an explicit mean-value filter at two successive time steps with respective evaluation times  $e_0$  and  $e_1$ . We obtain equations of the form:

$$X_{k} = K_{0}(e_{0}) + A_{0,0}(e_{0})X_{0} + \ldots + A_{0,k-1}(e_{0})X_{k-1},$$
  

$$X_{k+1} = K_{1}(e_{1}) + A_{1,0}(e_{1})X_{1} + \ldots + A_{1,k-1}(e_{1})X_{k}.$$

The second equation computes the box  $X_{k+1}$  assuming that  $X_1, \ldots, X_k$  are independent, which is not the case because of the first equation. Hence, the dependencies between  $X_1, \ldots, X_k$  are lost when moving from the first to the second time step. The variable dependency problem arises because successive explicit mean-value filters overlap, i.e., each computed box  $X_i$  is used in k successive filters. One-step methods do not encounter this problem because each computed box  $X_i$  is used only at one time step to compute the following box  $X_{i+1}$ . Global filters, which are presented in the next section, avoid this variable dependency problem and make it possible to apply standard techniques for the wrapping effect.

<sup>&</sup>lt;sup>8</sup>Note that W. Kühn uses zonotopes in another context, i.e., as compact enclosures of solutions [Kuh98, Kuh98a, Kuh99].



Figure 4: Intuition of the Globalization Process (k = 3): Predicted boxes  $D_3^-$ ,  $D_4^-$ , and  $D_5^-$  for times  $t_3$ ,  $t_4$ , and  $t_5$  are pruned globally using boxes  $D_0^*$ ,  $D_1^*$ , and  $D_2^*$  computed for times  $t_0$ ,  $t_1$ , and  $t_2$ .

#### 4.4 Global Filters

The main idea underlying global filters is to cluster several mean-value filters together so that they do not overlap. The intuition is illustrated in Figure 4 for k = 3. It can be seen that the global filter prunes the 3 predicted boxes  $D_3^-$ ,  $D_4^-$ , and  $D_5^-$  for times  $t_3$ ,  $t_4$ , and  $t_5$  using the boxes  $D_0^*$ ,  $D_1^*$ , and  $D_2^*$  computed for times  $t_0$ ,  $t_1$ , and  $t_2$ . Observe also that global filters do not overlap, i.e., the boxes  $D_0^*$ ,  $D_1^*$ , and  $D_2^*$  are not used in subsequent filters. More precisely, a global filter is a system of k successive explicit mean-value filters.

**Definition 11 (Global Filter)** A global filter for ODE  $\mathcal{O}$  in  $\mathbf{D}_{0..2k-1}^{0}$  is a system  $\{FL_i(\mathbf{t}_{i..k+i}, \mathbf{D}_{i..k+i}, e_i)\}_{0 \le i < k}$  of k successive explicit mean-value filters for  $\mathcal{O}$  respectively in  $\mathbf{D}_{0..k}^{0}, \ldots, \mathbf{D}_{k-1..2k-1}^{0}$  given as

$$\begin{cases} X_{k} = K_{0}(e_{0}) + A_{0,0}(e_{0})X_{0} + \dots + A_{0,k-1}(e_{0})X_{k-1} \\ X_{k+1} = K_{1}(e_{1}) + A_{1,0}(e_{1})X_{1} + \dots + A_{1,k-1}(e_{1})X_{k} \\ \vdots \\ X_{2k-1} = K_{k-1}(e_{k-1}) + A_{k-1,0}(e_{k-1})X_{k-1} + \dots + A_{k-1,k-1}(e_{k-1})X_{2k-2}, \end{cases}$$

$$(17)$$

where  $\mathbf{X}_{0..2k-1} = \mathbf{D}_{0..2k-1} - m(\mathbf{D}_{0..2k-1}^0)$ .

The key idea to remove the variable dependency problem is to solve (17) globally by transforming the global filter into an explicit form

$$\begin{bmatrix} X_k \\ \vdots \\ X_{2k-1} \end{bmatrix} = C(\mathbf{e}_0) \begin{bmatrix} X_0 \\ \vdots \\ X_{k-1} \end{bmatrix} + R(\mathbf{e}_0)$$

or, more concisely,

$$\mathbf{X}_1 = C(\mathbf{e}_0)\mathbf{X}_0 + R(\mathbf{e}_0),\tag{18}$$

where  $C(\mathbf{e}_0) \in \mathbb{IR}^{nk \times nk}$  and  $R(\mathbf{e}_0) \in \mathbb{IR}^{nk}$ .

An interesting property of global filters is that each pruned box at times  $t_3$ ,  $t_4$ , or  $t_5$  can be computed only in terms of the predicted boxes and the boxes at times  $t_0$ ,  $t_1$ , and  $t_2$  by using Gaussian elimination. Hence, it removes the dependencies introduced in  $D_3^-$  and  $D_4^-$ . Consider a system with k = 3:

$$\begin{cases} X_3 = A_{00}X_0 + A_{01}X_1 + A_{02}X_2 + K_0 \\ X_4 = A_{10}X_1 + A_{11}X_2 + A_{12}X_3 + K_1 \\ X_5 = A_{20}X_2 + A_{21}X_3 + A_{22}X_4 + K_2 \end{cases}$$

Variable  $X_4$  can be eliminated from the last equation to obtain

$$X_5 = A_{20}X_2 + A_{21}X_3 + A_{22}(A_{10}X_1 + A_{11}X_2 + A_{12}X_3 + K_1) + K_2.$$

```
function EXPLICITGLOBALFILTER (\mathbb{O}, \mathbf{t}_0, \mathbf{D}_0^0, \mathbf{B}_{1..k-1}, \mathbf{t}_1, \mathbf{D}_1^0, \mathbf{B}_1, \mathbf{e}_0)
      begin
            for i := 0 to k - 1 do
1
2
                  \langle K_i, A_{i,0}, \ldots, A_{i,k-1} \rangle := \text{EMVFL}(\mathbb{O}, \mathbf{t}_{i\ldots i+k}, \mathbf{D}^0_{i\ldots i+k}, \mathbf{B}_{i+1\ldots i+k}, e_i);
3
            endfor
            for i := k - 1 downto 0 do
4
                  R_i := K_i;
5
                  for l := i downto 1 do
6
7
                        A^* := m(A_{i,k-1});
                       R_i := R_i + A^* K_{l-1} + s(A_{i,k-1})s(D^0_{k+l-1});
for j := k - 1 downto 1 do
8
9
                              A_{i,j} := A_{i,j-1} + A^* A_{l-1,j}
10
11
                        endfor
12
                        A_{i,0} := A^* A_{l-1,0}
13
                  endfor
 14
           endfor
           return \langle (A_{i,j})_{0 \leq i \leq k-1 \atop 0 \leq i \leq k-1}, (R_i)_{0 \leq i \leq k-1} \rangle
15
      end
```

Figure 5: An Algorithm for Computing an Explicit Global Filter.

To avoid multiplying interval matrices (e.g.,  $A_{22}A_{10}$ ), we can apply the midpoint technique (see Point 1 of Section 2.3) to obtain

$$X_5 = A_{20}X_2 + A_{21}X_3 + m(A_{22})(A_{10}X_1 + A_{11}X_2 + A_{12}X_3 + K_1) + K_2 + s(A_{22})s(D_4^-).$$
(19)

By distribution and rearrangement of the parentheses, we can rewrite (19) as

$$X_5 = (m(A_{22})A_{10})X_1 + (A_{20} + m(A_{22})A_{11})X_2 + (A_{21} + m(A_{22})A_{12})X_3 + m(A_{22})K_1 + K_2 + s(A_{22})s(D_4^-).$$

Variable  $X_3$  can be eliminated from this equation in a similar fashion to obtain a filter involving only  $X_5$ ,  $X_0$ ,  $X_1$ , and  $X_2$ . Similarly, variable  $X_3$  can be eliminated from the second equation to obtain a filter only involving  $X_4$ ,  $X_0$ ,  $X_1$ , and  $X_2$ .<sup>9</sup>

A generic algorithm for computing an explicit global filter is given in Figure 5. It receives as input the ODE system  $\mathbb{O}$ , the previous integration times  $\mathbf{t}_0$ , the pruned boxes  $\mathbf{D}_0^0$ , and the bounding boxes  $\mathbf{B}_{1..k-1}$ , the new integration points  $\mathbf{t}_1$ , the predicted boxes  $\mathbf{D}_1^0$  for these integration points, the bounding boxes  $\mathbf{B}_1$  for the new integration points, and the evaluation times for the filters. It generates the matrix and vectors of the explicit global filter which can be used to compute the pruned boxes. The resulting filter is backward(k)-consistent with respect to the resulting boxes. Its precise specification is as follows.

**Specification 1** (EXPLICITGLOBALFILTER) Let  $B_i$  be a bounding box of ODE  $\mathbb{O}$  over  $[t_{i-1}, t_i]$  wrt  $(t_0, D_0)$ , for  $1 \le i \le 2k - 1$ . Let

 $\langle C(\mathbf{e}_0), R(\mathbf{e}_0) \rangle = \text{EXPLICITGLOBALFILTER}(\mathbb{O}, \mathbf{t}_0, \mathbf{D}_0^0, \mathbf{B}_{1..k-1}, \mathbf{t}_1, \mathbf{D}_1^0, \mathbf{B}_1, \mathbf{e}_0),$ 

<sup>&</sup>lt;sup>9</sup>As observed by one of the reviewers, there are still some dependencies, but these are very small.

 $\mathbf{X}_0 = \mathbf{D}_0 - m(\mathbf{D}_0^0)$ , and  $\mathbf{X}_1 = \mathbf{D}_1 - m(\mathbf{D}_1^0)$ . Then, the system  $S : \mathbf{X}_1 = C(\mathbf{e}_0)\mathbf{X}_0 + R(\mathbf{e}_0)$  is a global filter for  $\mathbb{O}$  in  $(\mathbf{D}_0^0, \mathbf{D}_1^0)$ .

The algorithm is generic in the sense that it uses the function EMVFL to generate an explicit mean-value filter. How to generate such a filter is discussed in Section 5, but its specification is given as follows.

**Specification 2** (EMVFL) Let  $B_i$  be a bounding box of ODE  $\mathbb{O}$  over  $[t_{i-1}, t_i]$  wrt  $(t_0, D_0)$ , for  $1 \le i \le k$ . Let  $\langle K(t), A_0(t), \ldots, A_{k-1}(t) \rangle = \text{EMVFL}(\mathbb{O}, \mathbf{t}, \mathbf{D}^0, (B_1, \ldots, B_k), t)$ . Then, the interval relation

$$FL(\mathbf{t}, \mathbf{D}, t) \Leftrightarrow X_k = K(t) + \sum_{i=0}^{k-1} A_i(t) X_i,$$

where  $\mathbf{X} = \mathbf{D} - m(\mathbf{D}^0)$  and  $\mathbf{D} \subseteq \mathbf{D}^0$  is an explicit mean-value filter for  $\mathbb{O}$  in  $\mathbf{D}^0$ .

Finally, observe that global filters not only remove the variable dependency problem by globalizing the pruning process. They also have the advantage of producing square systems which makes it possible to apply standard techniques to address the wrapping effect. The next section discusses the wrapping effect in detail.

#### 4.5 The Wrapping Effect in Global Filters

The wrapping effect in global filters arises when multiplying a  $nk \times nk$  matrix and a box of nk elements. Fortunately, since the matrices in global filters are square, the wrapping effect can be handled as in one-step methods by using local coordinate transformations and QR factorizations [Loh87]. We now explain this process in detail. Initially, starting from the previous boxes  $\mathbf{D}_0^*$  and predicted boxes  $\mathbf{D}_1^-$ , we need to solve the system

$$\mathbf{D}_1 - m(\mathbf{D}_1^-) = C_1(\mathbf{e}_0)(\mathbf{D}_0^* - m(\mathbf{D}_0^*)) + R_1(\mathbf{e}_0)$$

or, equivalently, the system

$$\mathbf{X}_1 = C_1(\mathbf{e}_0)\mathbf{X}_0 + R_1(\mathbf{e}_0),$$

where  $\mathbf{X}_1 = \mathbf{D}_1 - m(\mathbf{D}_1^-)$  and  $\mathbf{X}_0 = \mathbf{D}_0^* - m(\mathbf{D}_0^*)$ . The pruned boxes are then obtained by

$$\mathbf{D}_{1}^{*} = \mathbf{D}_{1}^{-} \cap (\mathbf{X}_{1} + m(\mathbf{D}_{1}^{-})).$$

The key idea in tackling the wrapping effect is to find a good coordinate system to represent the solution  $X_1$  compactly so that errors will not accumulate drastically in subsequent integration steps. For this purpose, we introduce a coordinate transformation

$$M_1\mathbf{y}_1 = \mathbf{u}_1 - m(\mathbf{D}_1^*)$$

which can be reexpressed in terms of the x variables as

$$M_1 \mathbf{y}_1 = \mathbf{x}_1 + m(\mathbf{D}_1^-) - m(\mathbf{D}_1^*).$$

We then solve the system

$$M_1 \mathbf{Y}_1 = C_1(\mathbf{e}_0) \mathbf{X}_0 + R_1(\mathbf{e}_0) + m(\mathbf{D}_1^-) - m(\mathbf{D}_1^*)$$

by inverting the matrix  $M_1$ :

$$\mathbf{Y}_1 = (M_1^{-1}C_1(\mathbf{e}_0))\mathbf{X}_0 + M_1^{-1}(R_1(\mathbf{e}_0) + m(\mathbf{D}_1^-) - m(\mathbf{D}_1^*)).$$

The matrix  $M_1$  and the boxes  $\mathbf{Y}_1$  and  $\mathbf{D}_1^*$  are then sent to the next integration step. Observe that  $\mathbf{Y}_1$  is a compact representation of  $\mathbf{D}_1^*$  in the local coordinate system.

In the next integration step, the boxes  $D_1^*$  are used (together with other data) to compute new predicted boxes  $D_2^-$  as well as the new global filter

$$\mathbf{D}_2 - m(\mathbf{D}_2^-) = C_2(\mathbf{e}_1)(\mathbf{D}_1^* - m(\mathbf{D}_1^*)) + R_2(\mathbf{e}_1))$$

Since  $M_1 \mathbf{y}_1 = \mathbf{u}_1 - m(\mathbf{D}_1^*)$  by the coordinate transformation, the above filter can be rewritten into

$$\mathbf{X}_2 = (C_2(\mathbf{e}_1)M_1)\mathbf{Y}_1 + R_2(\mathbf{e}_1)$$

where  $\mathbf{X}_2 = \mathbf{D}_2 - m(\mathbf{D}_2^-)$ . Observe the associativity of the multiplication which is critical in reducing the wrapping effect. The new boxes are computed as

$$\mathbf{D}_{2}^{*} = \mathbf{D}_{2}^{-} \cap (\mathbf{X}_{2} + m(\mathbf{D}_{2}^{-})).$$

Once again, we would like to represent the set of solutions  $X_2$  compactly and we use a local coordinate transformation

$$M_2\mathbf{y}_2 = \mathbf{u}_2 - m(\mathbf{D}_2^*)$$

to obtain the system

$$M_2 \mathbf{Y}_2 = (C_2(\mathbf{e}_1)M_1)\mathbf{Y}_1 + R_2(\mathbf{e}_1) + m(\mathbf{D}_2^-) - m(\mathbf{D}_2^*)$$

This equation system can be solved by inverting  $M_2$ :

$$\mathbf{Y}_2 = (M_2^{-1}(C_2(\mathbf{e}_1)M_1))\mathbf{Y}_1 + M_2^{-1}(R_2(\mathbf{e}_1) + m(\mathbf{D}_2^-) - m(\mathbf{D}_2^*)).$$

Once again, observe the associativity in the multiplication to tackle the wrapping effect. The hope is that the matrix  $M_2^{-1}(C_2(\mathbf{e}_1)M_1)$  be diagonally dominant or triangular. Also,  $M_2$ ,  $\mathbf{Y}_2$ , and  $\mathbf{D}_2^*$  will be sent to the next integration step. As a consequence, at integration step *i*, we solve

$$\mathbf{X}_i = (C_i(\mathbf{e}_{i-1})M_{i-1})\mathbf{Y}_{i-1} + R_i(\mathbf{e}_{i-1})$$

where  $\mathbf{X}_i = \mathbf{D}_i - m(\mathbf{D}_i^-)$ , and the new boxes are obtained by

$$\mathbf{D}_i^* = \mathbf{D}_i^- \cap (\mathbf{X}_i + m(\mathbf{D}_i^-)).$$

The local coordinate transformation

$$M_i \mathbf{y}_i = \mathbf{u}_i - m(\mathbf{D}_i^*)$$

is used to compute the new  $\mathbf{Y}_i$  which is given by

$$\mathbf{Y}_{i} = (M_{i}^{-1}(C_{i}(\mathbf{e}_{i-1})M_{i-1}))\mathbf{Y}_{i-1} + M_{i}^{-1}(R_{i}(\mathbf{e}_{i-1}) + m(\mathbf{D}_{i}^{-}) - m(\mathbf{D}_{i}^{*})).$$

In addition, in order to avoid the costly (see [Knu94]) product of the two interval matrices  $M_i^{-1}$  and  $C_i(\mathbf{e}_{i-1})M_{i-1}$ , we use the standard midpoint technique (see Point 1 of Section 2.3) to obtain

$$\mathbf{Y}_{i} = (m(M_{i}^{-1})(C_{i}(\mathbf{e}_{i-1})M_{i-1}))\mathbf{Y}_{i-1} + m(M_{i}^{-1})(R_{i}(\mathbf{e}_{i-1}) + \mathbf{d}_{i}) + s(M_{i}^{-1})((C_{i}(\mathbf{e}_{i-1})M_{i-1})\mathbf{Y}_{i-1} + R_{i}(\mathbf{e}_{i-1}) + \mathbf{d}_{i}),$$

where  $\mathbf{d}_i = m(\mathbf{D}_i^-) - m(\mathbf{D}_i^*)$ . This last system can be rewritten into

$$\mathbf{Y}_{i} = (m(M_{i}^{-1})(C_{i}(\mathbf{e}_{i-1})M_{i-1}))\mathbf{Y}_{i-1} + m(M_{i}^{-1})(R_{i}(\mathbf{e}_{i-1}) + \mathbf{d}_{i}) + s(M_{i}^{-1})(\mathbf{X}_{i} + \mathbf{d}_{i})$$

by definition of  $X_i$ . In this process, the choice of an appropriate matrix  $M_i$  is, of course, crucial. Lohner's QR factorization technique [Loh87] is a very successful scheme to obtain such a matrix.

function PRUNE( $\mathbb{O}, \mathbf{t}_0, \mathbf{D}_0^*, \mathbf{B}_{1..k-1}, \mathbf{Y}_0, M_0, \mathbf{t}_1, \mathbf{D}_1^-, \mathbf{B}_1$ ) begin  $\langle C_1, R_1 \rangle := \text{EXPLICITGLOBALFILTER}(\mathbb{O}, \mathbf{t}_0, \mathbf{D}_0^*, \mathbf{B}_{1..k-1}, \mathbf{t}_1, \mathbf{D}_1^-, \mathbf{B}_1, \mathbf{e}_0);$ 1 2  $C_1^* = C_1 M_0;$ 3  $\mathbf{X}_{1} := C_{1}^{*} \mathbf{Y}_{0} + R_{1};$  $\mathbf{D}_{1}^{*} := (\mathbf{X}_{1} + m(\mathbf{D}_{0}^{-})) \cap (\mathbf{D}_{0}^{-});$ 4 5  $M_1 := \text{COORDTRANSFO}(C_1^*, \mathbf{Y}_0);$  $\mathbf{d}_1 := m(\mathbf{D}_1^-) - m(\mathbf{D}_1^*);$ 6  $\mathbf{Y}_{1}^{-} := (m(M_{1}^{-1})C_{1}^{*})\mathbf{Y}_{0}^{*} + m(M_{1}^{-1})(R_{1} + \mathbf{d}_{1}) + s(M_{1}^{-1})(\mathbf{X}_{1} + \mathbf{d}_{1});$ 7 8 return  $\langle \mathbf{D}_1^*, \mathbf{Y}_1, M_1 \rangle$ end

Figure 6: The Pruning Algorithm on Global Filters.

### 4.6 A Pruning Algorithm based on Global Filters

We are now in position to present a pruning algorithm based on global filters. The pruning algorithm enforces backward(k)-consistency on a global filter composed of k mean-value filters. The algorithm is shown in Figure 6, and its specification is as follows.

**Specification 3** (PRUNE) Let ms be the multistep solution of ODE  $\mathbb{O}$  and  $B_i$  a bounding box of  $\mathbb{O}$  over  $[t_{i-1}, t_i]$  wrt  $(t_0, D_0)$  for  $1 \le i \le 2k - 1$ . Let

 $\langle \mathbf{D}_1^*, \mathbf{Y}_1, M_1 \rangle = \text{PRUNE}(\mathbb{O}, \mathbf{t}_0, \mathbf{D}_0^*, \mathbf{B}_{1..k-1}, \mathbf{Y}_0, M_0, \mathbf{t}_1, \mathbf{D}_1^-, \mathbf{B}_1),$ 

 $\mathcal{A}_0 = \{M_0 \mathbf{y}_0 + m(\mathbf{D}_0^*) \mid \mathbf{y}_0 \in \mathbf{Y}_0\} \cap \mathbf{D}_0^* \text{ and } \mathcal{A}_1 = \{M_1 \mathbf{y}_1 + m(\mathbf{D}_1^*) \mid \mathbf{y}_1 \in \mathbf{Y}_1\} \cap \mathbf{D}_1^*.$  Then,

1. 
$$ms((\mathbf{t}_0, \mathbf{t}_1), (\mathcal{A}_0, \mathbf{D}_1^-), t_i) \subseteq ms((\mathbf{t}_0, \mathbf{t}_1), (\mathcal{A}_0, \mathcal{A}_1), t_i), \text{ for } k \leq i \leq 2k - 1;$$

- 2.  $\mathbf{D}_{1}^{*} \subseteq \mathbf{D}_{1}^{-};$
- 3. there exists a global filter which is backward(k)-consistent in  $((\mathbf{t}_0, \mathbf{t}_1), (\mathbf{Y}_0, \mathbf{D}_1^*))$  and in  $((\mathbf{t}_0, \mathbf{t}_1), (\mathbf{Y}_0, \mathbf{Y}_1))$  for a given time vector.

The algorithm receives as input the ODE  $\mathcal{O}$ , the previous integration times  $\mathbf{t}_0$ , the pruned boxes  $\mathbf{D}_0^*$  computed at times  $\mathbf{t}_0$ , the bounding boxes  $\mathbf{B}_{1..k-1}$  for all previous integration steps, the boxes  $\mathbf{Y}_0$  and matrix  $M_0$  from the previous integration step as well as the new integration times  $\mathbf{t}_1$ , the predicted boxes  $\mathbf{D}_1^-$  and the bounding boxes  $\mathbf{B}_1$  for these integration times. It returns the pruned boxes  $\mathbf{D}_1^*$  for integration steps  $\mathbf{t}_1$  as well as the new boxes  $\mathbf{Y}_1$  and the new matrix  $M_1$  to be used in the next integration step. The algorithm itself follows the same steps as outlined in the preceding section. It computes the explicit form of the global filter (line 1), the new boxes  $\mathbf{X}_1$  (line 2), and the pruned boxes  $\mathbf{D}_1^*$  (line 3). It then computes the new matrix  $M_1$  (line 4) and the new boxes  $\mathbf{Y}_1$  (line 6).

### **5** Hermite Filters

In the previous section, we assumed the existence of interval extensions of p and  $\partial p/\partial t$ , and we assumed that we could bound the error terms e and  $\partial e/\partial t$ . We now show how to use Hermite interpolation polynomials for this purpose. Informally speaking, a Hermite interpolation polynomial approximates a function  $g \in C^r$ 

(for sufficiently large r) which is known implicitly by its values and the values of its successive derivatives at various points. A Hermite interpolation polynomial is specified by imposing that its values and the values of its successive derivatives at some given points be equal to the values of g and of its derivatives at the same points. Note that the number of conditions (i.e., the number of successive derivatives that are considered) may vary at the different points [SB80, Atk88].

**Definition 12 (Hermite**( $\sigma$ ) **Interpolation Polynomial**) Consider the ODE u' = f(u) and let  $\sigma = (\sigma_0, \ldots, \sigma_k) \in \mathbb{N}^{k+1}$ ,  $\sigma_i \neq 0$  ( $0 \leq i \leq k$ ) and  $\sigma_s = \sum_{i=0}^k \sigma_i$ . The Hermite( $\sigma$ ) interpolation polynomial wrt f and  $(\mathbf{t}, \mathbf{u})$  is the unique polynomial q of degree  $\leq \sigma_s - 1$  satisfying

$$q^{(j)}(t_i) = j!(u_i)_j \quad (0 \le j \le \sigma_i - 1, \ 0 \le i \le k).$$
<sup>(20)</sup>

**Proposition 5 (Hermite**( $\sigma$ ) **Interpolation Polynomial**) *The polynomial q satisfying the conditions (20) is given by* 

$$q(t) = \sum_{i=0}^{k} \sum_{j=0}^{\sigma_i - 1} j! (u_i)_j \varphi_{ij}(t)$$
(21)

where

$$\begin{aligned}
\varphi_{i,\sigma_{i}-1}(t) &= l_{i,\sigma_{i}-1}(t), \quad i = 0, \dots, k, \\
\varphi_{ij}(t) &= l_{ij}(t) - \sum_{\nu=j+1}^{\sigma_{i}-1} l_{ij}^{(\nu)}(t_{i})\varphi_{i\nu}(t), \quad i = 0, \dots, k, \quad j = 0, \dots, \sigma_{i} - 2, \\
l_{ij}(t) &= \frac{(t-t_{i})^{j}}{j!} \prod_{\substack{\nu=0\\\nu\neq i}}^{k} \left(\frac{t-t_{\nu}}{t_{i}-t_{\nu}}\right)^{\sigma_{\nu}}, \quad i = 0, \dots, k, \quad j = 0, \dots, \sigma_{i} - 1.
\end{aligned}$$
(22)

It is easy to take interval extensions of a Hermite interpolation polynomial and of its derivative. The Taylor coefficients  $(D_i)_j$  of the solution specifying the derivative conditions at the various interpolation points, as well as their Jacobians  $\mathcal{J}(D_i)_j$  needed in the mean-value Hermite filters, can be computed by automatic differentiation techniques (see e.g. [Moo66, Moo79, Ral81]). The only remaining issue is to bound the error terms. The following standard theorem (e.g., [SB80, Atk88]) provides the necessary theoretical basis.

**Theorem 1 (Hermite Error Term)** Let  $p(\mathbf{t}, \mathbf{u}, t)$  be the Hermite $(\sigma)$  interpolation polynomial in t wrt f and  $(\mathbf{t}, \mathbf{u})$ . Let  $u(t) = ms(\mathbf{t}, \mathbf{u}, t)$ ,  $ms(\mathbf{t}, \mathbf{u}, t) = p(\mathbf{t}, \mathbf{u}, t) + e(\mathbf{t}, \mathbf{u}, t)$ ,  $T = \Box\{t_0, \ldots, t_k, t\}$ ,  $\sigma_s = \sum_{i=0}^k \sigma_i$  and  $w(t) = \prod_{i=0}^k (t - t_i)^{\sigma_i}$ . We have  $(1 \le i \le n)$ 

1. 
$$\exists \xi_i \in T : e_i(\mathbf{t}, \mathbf{u}, t) = \frac{1}{\sigma_s!} u_i^{(\sigma_s)}(\xi_i) w(t);$$

2. 
$$\exists \xi_{1,i}, \xi_{2,i} \in T : \frac{\partial e_i}{\partial t}(\mathbf{t}, \mathbf{u}, t) = \frac{1}{\sigma_s!} u_i^{(\sigma_s)}(\xi_{1,i}) w'(t) + \frac{1}{(\sigma_s+1)!} u_i^{(\sigma_s+1)}(\xi_{2,i}) w(t).$$

How to use this theorem to bound the error terms? If B is a bounding box (produced by the bounding box process) for the ODE over  $T = \Box\{t_0, \ldots, t_k, t\}$  wrt  $(\mathbf{t}_0, \mathbf{u}_0)$ , it suffices to compute two boxes  $(B)_{\sigma_s}$  and  $(B)_{\sigma_s+1}$  by automatic differentiation. We then obtain

$$e(\mathbf{t}, \mathbf{u}, t) \in (B)_{\sigma_s} w(t);$$
  
$$\frac{\partial e}{\partial t}(\mathbf{t}, \mathbf{u}, t) \in (B)_{\sigma_s} w'(t) + (B)_{\sigma_s + 1} w(t).$$

As a consequence, we can compute an effective relaxation of the ODE by specializing global filters with a Hermite interpolation polynomial and its error bound. In the following, filters based on Hermite( $\sigma$ ) interpolation are called *Hermite*( $\sigma$ ) *filters*, and a global Hermite( $\sigma$ ) filter is denoted by GHF( $\sigma$ ). Reference [Jan01] discusses how to evaluate Hermite polynomials accurately.

# **6** Optimal Hermite Filters

Let us summarize what we have achieved so far. The basic idea of our approach is to approximate the ODE  $\forall t : u' = f(u)$  by a filter

$$\forall t : FL(\mathbf{t}, \mathbf{D}, t).$$

We have shown that a global filter which prunes the last k boxes by using k successive mean-value filters addresses the wrapping effect and the variable dependency problem. We have also shown that a global filter can be obtained by using Hermite interpolation polynomials together with their error bounds. As a consequence, we obtain a filter

$$\forall \mathbf{e}_0 : GHF(\sigma)(\mathbf{t}, \mathbf{D}, \mathbf{e}_0)$$

which can be used to prune the last k predicted boxes. The main remaining issue is to find an *evaluation time* vector  $\mathbf{e}_0$  which miminizes the sizes of the solution boxes in

$$GHF(\sigma)(\mathbf{t},\mathbf{D},\mathbf{e}_0).$$

The purpose of this section is to show that there exists an optimal evaluation time vector (in a precise sense that we will define) and that it can be approximated or computed efficiently.

### 6.1 Preview of the Approach

Our goal is to find an evaluation time vector  $\mathbf{e}_0$  which miminizes the sizes of the solution boxes in a global Hermite filter. However, this is a difficult problem in general. We will thus solve a simpler problem, which consists in choosing an evaluation time that minimizes the *local error* of an individual filter, i.e., the size of the enclosure of  $ms(\mathbf{t}_0, \mathbf{u}_0, t_k)$  produced by the filter, assuming that the *point* values  $u_0, \ldots, u_{k-1}$  are given (and, of course, that  $ms(\mathbf{t}_0, \mathbf{u}_0, t_k)$  is defined).<sup>10</sup>

**Definition 13 (Local Error of a Filter)** Let *FL* be a filter for ODE u' = f(u). The local error of *FL* wrt  $(\mathbf{t}_0, \mathbf{u}_0, t)$ , denoted by  $e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t)$ , is defined as

$$e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t) = \omega \left( \Box \{ u_k \in \mathbb{R}^n \mid FL(\mathbf{t}, \mathbf{u}, t) \} \right).$$

Since in a global filter we compute k boxes in one step, the step size is defined as  $h = t_k - t_0$ . Our analysis is based on the assumption that the step size h is sufficiently small. When we talk about an optimal evaluation time, the term *optimal* is thus to be understood in an *asymptotic* sense.

In the following, we restrict our attention to Hermite filters which satisfy a certain hypothesis (Section 6.2). To find an optimal evaluation time, we first derive the local error (Section 6.3). From the local error, we can then characterize the optimal evaluation time (Section 6.4). Two of the main results of this section are as follows:

- 1. For a sufficiently small step size h, the relative distance  $(t_e t_k)/h$  between the optimal evaluation time  $t_e$  and the point  $t_k$  in a Hermite( $\sigma$ ) filter depends only on the relative distances  $(t_{i+1} t_i)/h$  ( $i = 0, \ldots, k 1$ ) between the interpolation points  $t_0, \ldots, t_k$  and on  $\sigma$ .<sup>11</sup> In particular, it does not depend on the ODE itself;
- 2. From a practical standpoint, the computation of the optimal evaluation time induces a negligible overhead of the method. In particular, if we assume  $t_{i+1} t_i = h/k$  ( $i \in \mathbb{N}$ ), the relative distance between the optimal evaluation time and  $t_k$  can be precomputed once for all for given k and  $\sigma$ .

 $<sup>^{10}</sup>$ As observed by one of the reviewers, the local error may be called more appropriately excess-width, since the enclosure contains the exact solution. We kept the term "local error" because of the analogy with traditional methods.

<sup>&</sup>lt;sup>11</sup>Note that  $h = t_k - t_0$  (and not  $h = t_k - t_{k-1}$ ) because of the globalization process.

The third main result is concerned with the order of a Hermite( $(\sigma_0, \ldots, \sigma_k)$ ) filter which is shown to be  $\mathcal{O}(h^{\sigma_s+1})$ , where  $\sigma_s = \sum_{i=0}^k \sigma_i$  when the evaluation point is chosen carefully.

#### 6.2 Assumptions and Notations

The following assumptions are used in this section. We assume that the integration times are increasing, i.e.  $t_0 < \ldots < t_k$ , and that  $t - t_k = \mathcal{O}(h)$ . We also assume that the function f satisfies a Lipschitz condition on  $\Omega \subset \mathbb{R}^n$ :

$$\exists c \in \mathbb{R}, \forall u, v \in \Omega : \|f(u) - f(v)\| \le c \|u - v\|.$$

$$(23)$$

Note that (23) holds if we assume  $f \in C^1(\Omega)$ . We further assume that the interval extension F of function f satisfies  $(D \subseteq \Omega)$ 

$$\omega(F(D)) = \mathcal{O}(\omega(D)). \tag{24}$$

For instance, (24) holds if F is the natural interval extension of f and (23) holds. We also assume that B is a bounding box of u' = f(u) over  $T = \Box \{t_0, \ldots, t_k, t\}$  wrt  $(\mathbf{t}_0, \mathbf{u}_0)$  and that (see [Ned99])

$$\omega\left((B)_{j}\right) = \Theta(\omega(B)) = \Theta(h), \ j \in \mathbb{N}.$$
(25)

From (23), the condition (25) holds if  $(B)_j$  is a sufficiently tight enclosure of the set  $\{(x)_j \mid x \in B\}$ . In addition, we assume that the multistep solution ms is defined at  $(\mathbf{t}_0, \mathbf{u}_0)$  or, in other words, that the ODE has a solution going through  $u_0, \ldots, u_{k-1}$  at times  $t_0, \ldots, t_{k-1}$ . We also use the notations  $\sigma = (\sigma_0, \ldots, \sigma_k), \sigma_s = \sum_{i=0}^k \sigma_i$ , and  $w(t) = \prod_{i=0}^k (t - t_i)^{\sigma_i}$ . Since we are interested in computing an enclosure of  $ms(\mathbf{t}_0, \mathbf{u}_0, t_k)$  from the *point* values  $u_0, \ldots, u_{k-1}$ , we will consider a Hermite filter *FL* satisfying

$$FL(\mathbf{t}, (\mathbf{u}_0, v), t) \Rightarrow \frac{\partial p}{\partial t}(\mathbf{t}, (\mathbf{u}_0, v), t) + DE(t) - F(p(\mathbf{t}, (\mathbf{u}_0, v), t) + E(t)) = 0$$
(26)

where

- *F* is an interval extension of *f*;
- $E(t) = (B)_{\sigma_s} w(t);$
- $DE(t) = (B)_{\sigma_s} w'(t) + (B)_{\sigma_s+1} w(t);$
- $p(\mathbf{t}, (\mathbf{u}_0, v), t)$  is the Hermite( $\sigma$ ) interpolation polynomial in t wrt f and  $(\mathbf{t}, (\mathbf{u}_0, v))$ .

Let us introduce the function

$$\delta(\mathbf{t}, (\mathbf{u}_0, v), t) = \frac{\partial p}{\partial t}(\mathbf{t}, (\mathbf{u}_0, v), t) - f(p(\mathbf{t}, (\mathbf{u}_0, v), t) + m_e(t))$$

where  $m_e(t) = m(E(t))$ . From the hypothesis (24), the condition (26) can be rewritten as

$$FL(\mathbf{t}, (\mathbf{u}_0, v), t) \Rightarrow \delta(\mathbf{t}, (\mathbf{u}_0, v), t) = -DE(t) + \mathcal{O}(\omega(E(t))).$$
(27)

In the case (24), the condition (27) is satisfied for natural Hermite filters (see Section 4.1), provided that the interval extensions *MS* and *DMS* of *ms* and  $\frac{\partial ms}{\partial t}$  yield point values when evaluated at point arguments (recall that we assume exact interval arithmetic for the theoretical parts of this paper). If we assume that the interval extension of the Jacobian of *f* satisfies the same condition as *F*, i.e.,  $\omega(\mathcal{J}(D)_0) = \mathcal{O}(\omega(D))$ , then (27) is satisfied for *implicit mean-value* Hermite filters. It is also a good approximation for *explicit mean-value* 

Hermite filters if the matrix inversion is accurate (see Section 4.2). We will also denote the Jacobian of  $\delta$  wrt variable v by

$$\begin{split} \Phi(t,v) &= \mathcal{J}_v \delta(\mathbf{t},(\mathbf{u}_0,v),t) \\ &= \mathcal{J}_v \frac{\partial p}{\partial t}(\mathbf{t},(\mathbf{u}_0,v),t) - \mathcal{J}f(p(\mathbf{t},(\mathbf{u}_0,v),t) + m_e(t))\mathcal{J}_v p(\mathbf{t},(\mathbf{u}_0,v),t). \end{split}$$

Finally, we introduce the following functions:

$$\begin{aligned} \lambda(t) &= \left( \left( \sum_{j=0}^{\sigma_k - 2} \beta_{j+1} \frac{(t-t_k)^j}{j!} \right) + \left( \sum_{j=0}^{\sigma_k - 1} \beta_j \frac{(t-t_k)^j}{j!} \right) \sum_{\nu=0}^{k-1} \frac{\sigma_\nu}{t-t_\nu} \right) \pi(t); \\ \beta_0 &= 1, \beta_j = -\pi^{(j)}(t_k), \ j = 1, \dots, \sigma_k - 1; \\ \pi(t) &= \prod_{\nu=0}^{k-1} \left( \frac{t-t_\nu}{t_k - t_\nu} \right)^{\sigma_\nu}; \\ \gamma(t) &= \sum_{i=0}^k \frac{\sigma_i}{t-t_i}. \end{aligned}$$

### 6.3 Local Error of a Natural Hermite Filter

To characterize the local error of a Hermite filter, we first need a technical lemma which characterizes the behavior of the derivatives of the filter.

#### Lemma 1 We have

1.  $\Phi(t,v) = I\lambda(t) + \mathcal{O}(1);$ 

2. 
$$\lambda(t) = \mathcal{O}(h^{-1});$$

3.  $\lambda(t) = \Theta(h^{-1})$  for  $t_{k-1} < t < t_k$ .

This lemma shows that  $\Phi(t, v)$  is a  $\Theta(h^{-1})$  asymptotically diagonal matrix for  $t_{k-1} < t < t_k$ . Its proof is given in [Jan01]. We are now in position to characterize the local error of a Hermite filter.

**Theorem 2 (Local Error of a Hermite Filter)** Let FL be a Hermite( $\sigma$ ) filter for u' = f(u) satisfying (27). We have

- 1.  $e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t) = |(I\lambda(t) + \mathcal{O}(1))^{-1}|\Theta(\omega(B))(|w'(t)| + |w(t)|);$
- 2.  $e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t) = \Omega(h^2) (|w'(t)| + |w(t)|);$
- 3. If  $t_{k-1} < t < t_k$ , then  $e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t) = \Theta(h^2) (|w'(t)| + |w(t)|)$ .

**Proof** Consider two arbitrary vectors  $v_1, v_2 \in \mathbb{R}^n$  such that

$$FL(\mathbf{t}, (\mathbf{u}_0, v_1), t) \& FL(\mathbf{t}, (\mathbf{u}_0, v_2), t).$$

By the Mean-Value theorem, we can write

$$\delta(\mathbf{t}, (\mathbf{u}_0, v_2), t) - \delta(\mathbf{t}, (\mathbf{u}_0, v_1), t) = \Phi(t, \nu)(v_2 - v_1),$$

where  $\nu$  is on the straight line between  $v_1$  and  $v_2$ . When the matrix  $\Phi(t, \nu)$  is regular, we can write by Lemma 1 and (27)

$$\begin{aligned} v_2 - v_1 &= \Phi^{-1}(t,\nu) \left( \delta(\mathbf{t}, (\mathbf{u}_0, v_2), t) - \delta(\mathbf{t}, (\mathbf{u}_0, v_1), t) \right) \\ &= \left( I\lambda(t) + \mathcal{O}(1) \right)^{-1} \left( DE(t) - DE(t) + \mathcal{O}(\omega(E(t))) \right). \end{aligned}$$

Since the two vectors  $v_1$  and  $v_2$  are chosen arbitrarily, it follows from (25) that

$$\begin{array}{lll} e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t) &=& |(I\lambda(t) + \mathcal{O}(1))^{-1}| \left( \omega(DE(t)) + \mathcal{O}(\omega(E(t))) \right) \\ &=& |(I\lambda(t) + \mathcal{O}(1))^{-1}| \Theta(\omega(B)) \left( |w'(t)| + |w(t)| \right), \end{array}$$

which proves Point 1. Points 2 and 3 are now direct consequences of Lemma 1 and (25).

We are now ready to show how to find an optimal evaluation time for Hermite filters.

#### 6.4 Optimal Evaluation Time for a Natural Hermite Filter

Our first result characterizes the order of a Hermite filter. It also hints on how to obtain an optimal evaluation time. Recall that the order of a method (or of a filter) is the order of the local error minus 1.

**Theorem 3 (Order of a Hermite Filter)** Let FL be a Hermite( $\sigma$ ) filter for u' = f(u) satisfying (27). Then,

- 1. There exists t such that  $t_{k-1} < t < t_k$ , and w'(t) = 0;
- 2. If  $t_{k-1} < t < t_k$  and w'(t) = 0, then  $e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t) = \mathcal{O}(h^{\sigma_s+2})$ ;
- 3. If  $w'(t) \neq 0$ , then  $e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t) = \Omega(h^{\sigma_s + 1})$ .

**Proof** Consider an evaluation time t such that  $t - t_k = \mathcal{O}(h)$ . We have  $w(t) = \mathcal{O}(h^{\sigma_s})$  and  $w'(t) = \mathcal{O}(h^{\sigma_s-1})$ . First assume that  $t_{k-1} < t < t_k$  and w'(t) = 0. By Rolle's theorem, since  $w(t_{k-1}) = w(t_k) = 0$ , there exists such an evaluation time t. By Theorem 2,  $e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t) = \mathcal{O}(h^{\sigma_s+2})$ . Now assume that  $w'(t) \neq 0$ . By Theorem 2,  $e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t) = \mathcal{O}(h^{\sigma_s+2})$ . Now assume that  $w'(t) \neq 0$ . By Theorem 2,  $e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t) = \Omega(h^{\sigma_s+1})$ .

Theorem 3 indicates that a better order for Hermite filters is obtained when we choose an evaluation time t that is a root of the polynomial w'. This is the basis of our next result which describes a necessary condition for optimality.

**Theorem 4 (Necessary Condition for Optimal Hermite Filters)** Let FL be a Hermite( $\sigma$ ) filter for u' = f(u) satisfying (27) and let  $t_e \in \mathbb{R}$  be such that

$$e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t_e) = \min_{t-t_k = \mathcal{O}(h)} \{e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t)\}$$

for h sufficiently small. Then,  $t_e$  is a zero of the function  $\gamma$ .

**Proof** Assume that  $t - t_k = \mathcal{O}(h)$  and that h is sufficiently small. By Theorem 3,  $w'(t_e)$  must be zero to minimize the local error. Note that  $FL(\mathbf{t}, (\mathbf{u}_0, v), t_i)$  holds for any  $v \in \mathbb{R}^n$  if  $w'(t_i) = 0$  ( $0 \le i \le k$ ). Thus  $t_e \notin \{t_0, \ldots, t_k\}$  and  $w(t_e) \ne 0$ . Since  $w'(t) = w(t)\gamma(t)$ , we conclude that  $\gamma(t_e) = 0$ .

Our next result specifies the number of zeros of the function  $\gamma$  as well as their locations.

**Proposition 6** The function  $\gamma$  in Theorem 4 has exactly k zeros  $s_0, \ldots, s_{k-1}$  such that  $t_i < s_i < t_{i+1}$  $(0 \le i < k)$ .

**Proof** We have  $w'(t) = w(t)\gamma(t)$ . By Rolle's theorem, as  $w(t_i) = w(t_{i+1}) = 0$ , w' has a root  $s_i$  with  $t_i < s_i < t_{i+1}$  and  $w(s_i) \neq 0$  ( $0 \le i < k$ ). Furthermore, the roots of w' are in  $\{s_0, \ldots, s_{k-1}, t_0, \ldots, t_k\}$  because  $t_i$  is a root of multiplicity  $\sigma_i - 1$  ( $0 \le i \le k$ ) and w' is of degree  $\sigma_s - 1$ , i.e.,  $k + \sum_{i=0}^k (\sigma_i - 1) = \sigma_s - 1$ . Since  $\gamma$  is not defined at  $t_0, \ldots, t_k$ , its zeros are in  $\{s_0, \ldots, s_{k-1}\}$ .

We are now ready to characterize precisely the optimal evaluation time for a Hermite filter.

**Theorem 5 (Optimal Evaluation Time)** Let FL be a Hermite( $\sigma$ ) filter for u' = f(u) satisfying (27), let  $s_0 < \ldots < s_{k-1}$  be the zeros of  $\gamma$ , and let  $t_e \in \mathbb{R}$  such that

$$e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t_e) = \min_{t-t_k = \mathcal{O}(h)} \{ e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, t) \}.$$

Then, for h sufficiently small,

$$|(w/\lambda)(t_e)| = \min_{t \in \{s_0, \dots, s_{k-1}\}} \{|(w/\lambda)(s)|\}.$$

**Proof** Let us assume that h is sufficiently small. From Theorem 4, we know that  $t_e \in \{s_0, \ldots, s_{k-1}\}$ . By definition, for  $i = 0, \ldots, k-1, w'(s_i) = w(s_i)\gamma(s_i) = 0$  and, from Theorem 2,

$$e_{loc}(FL, \mathbf{t}_0, \mathbf{u}_0, s_i) = |(I\lambda(s_i) + \mathcal{O}(1))^{-1}|\Theta(\omega(B))|w(s_i)|.$$

From Proposition 6, if  $t = s_i$  (i = 0, ..., k - 1), B is a bounding box over  $T = \Box \{t_0, ..., t_k, s_i\} = [t_0, t_k]$ wrt  $(\mathbf{t}_0, \mathbf{u}_0)$  and the factor  $\Theta(\omega(B))$  does not depend on  $t = s_i$ . We have thus to minimize the function

$$\rho(t) = |(I\lambda(t) + \mathcal{O}(1))^{-1}||w(t)|$$

for  $t \in \{s_0, \ldots, s_{k-1}\}$ . By Lemma 1,  $\lambda(s_{k-1}) = \Theta(h^{-1})$ . Therefore, we must have  $\lambda(t_e) = \Theta(h^{-1})$  and  $\rho(t_e) \approx |(w/\lambda)(t_e)|$ . Let us now assume that there exists  $i \in 0..k - 1$  such that  $|(w/\lambda)(s_i)| < |(w/\lambda)(t_e)|$ . We can write

$$\begin{split} |(w/\lambda)(s_i)| < |(w/\lambda)(t_e)| &\Rightarrow \lambda(s_i) = \Theta(h^{-1}) \\ &\Rightarrow \rho(s_i) \approx |(w/\lambda)(s_i)| \\ &\Rightarrow \rho(s_i) < \rho(t_e) \end{split}$$

which is a contradiction.

#### 6.5 Discussion

It is important to discuss the consequences of Theorem 4 in some detail. First observe that the relative distance  $(t_e - t_k)/h$  between the optimal evaluation time  $t_e$  and the point  $t_k$  depends only on the relative distances  $(t_{i+1} - t_i)/h$  (i = 0, ..., k - 1) between the interpolation points  $t_0, ..., t_k$  and on the vector  $\sigma$ . In particular, it is independent from the ODE itself. For instance, for k = 1, we have  $\gamma(t) = \frac{\sigma_0}{t-t_0} + \frac{\sigma_1}{t-t_1}$ , and  $\gamma$  has a single zero given by  $t_e = \frac{\sigma_1 t_0 + \sigma_0 t_1}{\sigma_0 + \sigma_1}$ . In addition, if  $\sigma_0 = ... = \sigma_k$ , then the zeros of  $\gamma$  are independent from  $\sigma$ . In particular, for k = 1, we have  $t_e = (t_0 + t_1)/2$ . From a practical standpoint, the computation of the optimal evaluation time induces a negligible overhead of the method. In particular, if we assume  $t_{i+1} - t_i = h/k$   $(i \in \mathbb{N})$ , then the relative distance between  $t_k$  and the optimal evaluation time can be precomputed and stored for a variety of values of k and  $\sigma$ . Finally, it is worth stressing that any zero of function  $\gamma$  gives an  $\mathcal{O}(h^{\sigma_s+1})$  order for the Hermite filter provided that  $\lambda(t) = \Theta(h^{-1})$  at that zero. Hence any such zero is in fact a potential candidate for the optimal evaluation time. In our experiments (see the next section), the right-most zero was always the optimal evaluation time when  $\sigma_0 = \ldots = \sigma_k$ , although we have not been able to prove this result.

#### 6.6 Illustration

We now illustrate the theoretical results presented in this section. Table 1 gives approximative values of the relative distance  $(t_e - t_k)/h$  between the rightmost zero  $t_e$  of the function  $\gamma$  and the point  $t_k$   $(1 \le k \le 6)$ ,

|  | L |  |
|--|---|--|
|  | н |  |
|  |   |  |

| k               | 1       | 2       | 3       | 4       | 5       | 6       |
|-----------------|---------|---------|---------|---------|---------|---------|
| $(t_e - t_k)/h$ | -0.5000 | -0.2113 | -0.1273 | -0.0889 | -0.0673 | -0.0537 |

Table 1: Relative Distance between the Rightmost Zero  $t_e$  of  $\gamma$  and  $t_k$  when  $\sigma_0 = \ldots = \sigma_k$ .



Figure 7: The functions  $\gamma, w, w', \lambda$  and  $w/\lambda$  for the case  $k = 4, \sigma = (2, 2, 2, 2, 2)$ .

for  $\sigma_0 = \ldots = \sigma_k$  and  $t_{i+1} - t_i = h/k$   $(i = 0, \ldots, k-1)$ . For two interpolation points,  $t_e$  is in the middle of  $t_0$  and  $t_1$ . It then moves closer and closer to  $t_k$  for larger values of k.

Figure 7 illustrates the functions  $\gamma$ , w, w',  $\lambda$  and  $w/\lambda$ , for k = 4 and  $\sigma = (2, 2, 2, 2, 2, 2)$ . The top-left figure shows the function w' and  $\gamma$ , as well as the zeros of  $\gamma$ . The top-right figure shows the function w with the zeros of  $\gamma$  in superposition. The bottom-left figure shows function  $\lambda$  with the zeros of  $\gamma$  in superposition. The bottom-left figure shows the function  $w/\lambda$  and the zeros of  $\gamma$ . It can be seen that the right-most zero minimizes the local error in this example.

#### 6.7 Validity of the Asymptotic Assumption

Our analysis is based on the assumption that the step size h is sufficiently small. But *how small is sufficiently small?* According to our experiments, the actual step sizes are generally small enough so that the *asymptotically* optimal evaluation times produced by the above theory are good approximations of the *real* optima. There are two reasons for these small actual step sizes:

- 1. the need to bound the local error, which limits the stability of validated methods and makes stiff problems more challenging;
- 2. the existing bounding box process, which often impose the strongest restriction on the step size, especially for stiff problems.



Figure 8: Local Error of Global Hermite Filters as a Function of the Evaluation Time for the Lorentz System.

Figure 8 illustrates our theoretical results experimentally on a specific ODE. It plots the local error of several global Hermite filters (GHF) as a function of the evaluation time for the Lorenz system (e.g., [HNW87]). It is assumed that  $t_{i+1} - t_i$  is constant ( $0 \le i \le 2k - 2$ ). In addition, we assume that, in each mean-value filter composing the GHF, the distance between the evaluation time and the rightmost interpolation point is constant. In the graphs,  $[t_0, t_k] = [0, 0.01]$  and  $h = t_k - t_0 = 0.01$ . The figure also shows the rightmost zero of the function  $\gamma$  as obtained from Table 1. As we can see, the rightmost zero of  $\gamma$  is a very good approximation of the optimal evaluation time of the filter for all the cases displayed.

# 7 The Algorithm

We are now in position to present our algorithm for enclosing solutions of initial value problems for parametric ordinary differential equations. The algorithm is presented in Figure 9, and Figure 10 gives the specification of the functions not covered so far. The first two lines initialize the integration process and compute the initial bounding boxes, pruned domains, and the boxes and matrices needed for the wrapping effect. The main step of the integration are the lines 4-6. Line 4 computes the new bounding boxes, line 5 uses them to compute the new predicted boxes, and line 6 applies the pruning step to compute the new pruned boxes.

### 8 Theoretical Analysis

This section presents theoretical results on the efficiency of our method and compares it to the best interval methods we are aware of.

```
function SOLVE(\mathbb{O}, D_0, \mathbf{t}_{0..mk-1})
       begin
               \mathbf{B}_0 := \text{BOUNDINGBOX}(\mathbb{O}, t_0, D_0, \mathbf{t}_0);
 1
 2
               \langle \mathbf{D}_0^*, \mathbf{Y}_0, M_0 \rangle := \text{INITIALIZEMULTISTEP}(\mathbb{O}, \mathbf{t}_0, D_0, \mathbf{B}_{1..k-1});
 3
              for i := 1 to m - 1 do
                      \mathbf{B}_i := \text{BOUNDINGBOX}(\mathbb{O}, t_{ik-1}, D^*_{ik-1}, \mathbf{t}_i);
 4
                     \mathbf{D}_{i}^{-} := \operatorname{PREDICTOR}(\mathbb{O}, t_{ik-1}, D_{ik-1}^{*}, \mathbf{t}_{i}, \mathbf{B}_{i});
 5
                      \langle \mathbf{D}_i^*, \mathbf{Y}_i, M_i \rangle := \operatorname{PRUNE}(\mathbb{O}, \mathbf{t}_{i-1}, \mathbf{D}_{i-1}^*, \mathbf{B}_{(i-1)k+1..ik-1}, \mathbf{Y}_{i-1}, M_{i-1}, M_{i-1})
 6
                                                                         \mathbf{t}_i, \mathbf{D}_i^-, \mathbf{B}_i);
 7
              endfor
 8
              return \mathbf{D}_{1..mk-1}^*;
       end
```

Figure 9: The Constraint Satisfaction Algorithm for Initial Value Problems for Parametric ODEs.

### 8.1 Overview of the Methods

We analyze the cost of our SOLVE algorithm based on the global Hermite filter method GHF and compare it to Nedialkov's IHO method [NJ99], the best interval method we know of. Indeed, the IHO method outperforms interval Taylor series methods such as Lohner's method [Loh87]. Here are the various methods used in the theoretical and experimental comparisons.

**The GHF Method** In the GHF method, each iteration in the loop of function SOLVE is called a *step* of the integration. The (constant) step size in GHF is given by  $h = t_k - t_0$ . Assuming that  $\sigma_m = \max(\sigma)$  and  $\sigma_s = \sigma_0 + \ldots + \sigma_k$ , the remaining components of GHF are specified as follows:

- 1. The BOUNDINGBOX function in GHF uses a Taylor series method [Moo66, CR96, NJC99] of order p+q+1 to compute  $\mathbf{B}_i$ . Moreover, we assume that  $B_{ik} = \ldots = B_{(i+1)k-1}$ , i.e., the function computes a single bounding box over  $[t_{ik-1}, t_{(i+1)k-1}]$   $(i \ge 1)$ ;
- 2. The PREDICTOR function uses Moore's Taylor method [Moo66] of order q + 1 to compute the boxes  $\mathbf{D}_i^-$ . Note that we compute the Taylor coefficients of f only once at  $(t_{ik-1}, D_{ik-1}^*)$ ;
- 3. The evaluation point in Hermite filters (i.e., in function EMVFL) is the rightmost zero of function  $\gamma$  (see Section 6 and Table 1). GHF( $\sigma$ ) is thus a method of order  $\sigma_s + 1$ ;
- 4. Function EXPLICITGLOBALFILTER needs  $\sigma_m 1$  Jacobians (i.e.,  $\mathcal{J}(D_j)_1, \ldots, \mathcal{J}(D_j)_{\sigma_m-1}$ ) at each interpolation point  $t_j$  for  $(i-1)k \leq j \leq (i+1)k 1$  to compute the k explicit mean-value Hermite filters in EMVFL. GHF only computes Jacobians at predicted boxes and not at pruned boxes. More precisely, it only computes  $k(\sigma_m 1)$  Jacobians at  $(\mathbf{t}_i, \mathbf{D}_i^-)$  and reuses the  $k(\sigma_m 1)$  Jacobians at  $(\mathbf{t}_{i-1}, \mathbf{D}_{i-1}^-)$  which were computed during the previous step i 1;
- 5. The function COORDTRANSFO uses Lohner's QR-factorization technique (see [Loh87]);
- 6. The function INITIALIZEMULTISTEP uses a one-step mean-value Taylor method.

**The IHO Method** The IHO method is implemented exactly as described in [NJ99]. Its step size is h as in the GHF method. Besides the pruning, there are some interesting differences between GHF and IHO. First, the predictor function in IHO uses a mean-value Taylor method of order q + 1. Second, the Jacobians in IHO

**Specification 4** (SOLVE) Let *s* be the solution of ODE  $\mathbb{O}$  and  $\mathbf{D}_{1..mk-1} = \text{SOLVE}(\mathbb{O}, D_0, \mathbf{t}_{0...mk-1})$ . Then, for  $1 \le i \le mk - 1$ ,  $s(t_0, D_0, t_i) \subseteq D_i$ .

**Specification 5** (BOUNDINGBOX) Let  $\mathbf{B}_{1..k}$  =BOUNDINGBOX( $\mathbb{O}, t_0, D_0, \mathbf{t}_{1..k}$ ). Then, for  $1 \le i \le k$ ,  $B_i$  is a bounding box of  $\mathbb{O}$  over  $[t_{i-1}, t_i]$  wrt  $(t_0, D_0)$ .

**Specification 6** (INITIALIZEMULTISTEP) Let ms be the multistep solution of ODE  $\mathbb{O}$  and  $B_i$  be a bounding box of  $\mathbb{O}$  over  $[t_{i-1}, t_i]$  wrt  $(t_0, D_0)$  for  $1 \le i \le k - 1$ . Let

 $\langle \mathbf{D}_0, \mathbf{Y}_0, M \rangle = \text{INITIALIZEMULTISTEP}(\mathbb{O}, \mathbf{t}_0, D_0, \mathbf{B}_{1..k-1})$ 

and  $\mathcal{A} = \{M\mathbf{y}_0 + m(\mathbf{D}_0) \mid \mathbf{y}_0 \in \mathbf{Y}_0\} \cap \mathbf{D}_0$ . Then, for  $0 \le i \le k - 1$ ,  $ms(t_0, D_0, t_i) \subseteq ms(\mathbf{t}_0, \mathcal{A}, t_i)$ .

**Specification 7** (PREDICTOR) Let s be the solution of ODE  $\mathbb{O}$  and  $B_i$  a bounding box of  $\mathbb{O}$  over  $[t_{i-1}, t_i]$  wrt  $(t_0, D_0)$ , for  $1 \le i \le k$ . Let

$$\mathbf{D}_{1..k} = \mathsf{PREDICTOR}(\mathbb{O}, t_0, D_0, \mathbf{t}_{1..k}, \mathbf{B}_{1..k}).$$

Then, for  $1 \leq i \leq k$ ,  $s(t_0, D_0, t_i) \subseteq D_i$ .

Figure 10: The Specification of the Main Functions.

are recomputed at pruned boxes. IHO uses a Taylor series method of order p + q + 1 to compute a bounding box as in GHF.

**The IHO\* Method** To obtain experimental results as informative as possible, we introduce IHO\*, a variant of IHO that is closer to GHF. In particular, the predictor in IHO\* uses Moore's Taylor method of order q + 1 instead of the mean-value Taylor method of the same order. Also, IHO\* does not recompute the Jacobians at pruned boxes; it reuses the Jacobians at predicted boxes instead as in GHF. IHO\* and GHF only differ in the pruning step. Interestingly, IHO\* is extremely close in precision to IHO on almost all benchmarks for a given step size. There are a few benchmarks where the loss of precision is significant or where a smaller step size must be used. Of course, IHO\* is faster than IHO for a given step size.

#### 8.2 Comparison Hypotheses

We make the following assumptions and conventions for simplicity. Consider the ODE u' = f(u). We assume that (the natural encoding of) function f contains only arithmetic operations. We denote by  $N_1$  the number of \*, / operations in f, by  $N_2$  the number of  $\pm$  operations, and by N the sum  $N_1 + N_2$ . We also assume that the cost of evaluating  $\mathcal{J}(D_i)_j$  is n times the cost of evaluating  $(D_i)_j$ . We report only the *main* operations of the methods, i.e., (1) products of a real and an interval matrix which arise in the pruning step and (2) the generation of Jacobians <sup>12</sup>. These are the main operations for problems of sufficiently high dimension where f contains sufficiently many operations. Note that products of a real and an interval matrix can be optimized to substantially reduce the number of sign tests and rounding mode switches, which are costly tasks (see [Knu94]). As a consequence, the cost *per* interval arithmetic operation in a real-interval matrix product is less than the cost of an operation on two intervals in a Jacobian computation. We thus report separately the number of interval arithmetic operations involved in products of a real and an interval matrix

<sup>&</sup>lt;sup>12</sup>Matrix inversions and the QR-factorization in COORDTRANSFO are not counted here.

|       | Cost-1                                          | Cost-2                                                                              |
|-------|-------------------------------------------------|-------------------------------------------------------------------------------------|
| IHO   | _                                               | $2\lceil \frac{\sigma_s}{2} \rceil^2 nN_1 + O(\sigma_s nN_2)$                       |
| IHO*  | _                                               | $\left\lceil \frac{\sigma_s}{2} \right\rceil^2 n N_1 + O(\sigma_s n N_2)$           |
| GHF   | $7k^3n^3$                                       | $((\sigma_m-1)^2+1)knN_1+\sigma_mknN_2$                                             |
| GHF-1 |                                                 | $\left(\lfloor \frac{\sigma_s - 1}{2} \rfloor^2 + 1\right) nN_1 + O(\sigma_s nN_2)$ |
| GHF-2 | $(rac{7}{8}\sigma_s-rac{21}{4})\sigma_s^2n^3$ | $(\sigma_s-2)nN$                                                                    |

Table 2: Cost Analysis : Methods of the Same Order.

|       | Cost-2                                                                              |
|-------|-------------------------------------------------------------------------------------|
| IHO   | $2\lfloor \frac{\sigma_s - 1}{2} \rfloor^2 n N_1 + O(\sigma_s n N_2)$               |
| IHO*  | $\lfloor \frac{\sigma_s - 1}{2} \rfloor^2 n N_1 + O(\sigma_s n N_2)$                |
| GHF-1 | $\left(\lfloor \frac{\sigma_s - 1}{2} \rfloor^2 + 1\right) nN_1 + O(\sigma_s nN_2)$ |

Table 3: Cost Analysis : Methods of Different Orders but of Similar Cost.

in the pruning step (Cost-1) and the generation of Jacobians (Cost-2). Note that Cost-1 is a fixed cost in the sense that it is independent from the ODE. Cost-2 is a variable cost which increases as the expression of f contains more operations.

#### 8.3 Methods of the Same Order

We first compare the costs of  $\text{GHF}(\sigma)$  and  $\text{IHO}^{(*)}(p,q)$  for  $p + q = \sigma_s$  and  $q \in \{p, p + 1\}$ . The methods are thus of order  $\sigma_s + 1$ . Table 2 reports the main cost of a step in IHO, IHO<sup>\*</sup>, and GHF. It also shows the complexity of two particular cases of GHF: GHF-1 is an implementation with only two interpolation points (k = 1) and  $|\sigma_1 - \sigma_0| \leq 1$ , while GHF-2 is an implementation with two conditions on every interpolation points  $(\sigma_0 = \ldots = \sigma_k = 2)$ .

The first main result is that GHF-1 is always cheaper than IHO<sup>(\*)</sup>. Hence a GHF method with only two interpolation points is guaranteed to run faster than IHO<sup>(\*)</sup>. The next section shows that an improvement in accuracy is also obtained in this case. Observe that Cost-2 in IHO<sup>\*</sup> is approximately half as much as in IHO because the Jacobians are not computed at pruned boxes in IHO<sup>\*</sup>. Note also that Cost-2 is smaller in GHF-1 than in IHO<sup>\*</sup> because IHO<sup>\*</sup> evaluates one more Jacobian, i.e.,  $\mathcal{J}(D_i)_q$ .

GHF-2 is more expensive than GHF-1 and IHO<sup>(\*)</sup> when f contains few operations because the Jacobians are cheap to compute in this case and the fixed cost Cost-1 becomes large wrt Cost-2. However, when f contains many \*, / operations (which is the case in many practical applications), GHF-2 becomes substantially faster because Cost-1 in GHF-2 is independent of f and Cost-2 is substantially smaller in GHF-2 than in GHF-1 and IHO<sup>(\*)</sup>. This result shows the versatility of the approach that can be taylored to the application at hand.

#### 8.4 One-Step Methods of Different Orders but of Similar Cost

We now show that GHF methods can be tailored to be asymptotically more precise than IHO methods for a similar cost. Consider the costs of the IHO<sup>(\*)</sup>(p, q) and GHF-1 methods when we assume that  $p + q = \sigma_s - 2$  and  $q \in \{p, p + 1\}$ . Under these conditions, IHO<sup>(\*)</sup> is a method of order  $\sigma_s - 1$ , while GHF-1 is a method of order  $\sigma_s + 1$ . Table 3 reports the main cost of a step in IHO, IHO<sup>\*</sup>, and GHF-1. Cost-2 is similar in GHF-1 and IHO<sup>\*</sup> (and about twice as much in IHO). The GHF-1 method is thus asymptotically more precise (by two orders of magnitude) than IHO<sup>\*</sup> for a similar cost.

# 9 Experimental Analysis

We now report experimental results of a C++ implementation <sup>13</sup> of our SOLVE algorithm based on the global Hermite filter method GHF( $\sigma$ ). We performed our tests on a Sun Ultra 10 workstation with a 333 MHz UltraSparc CPU. The underlying interval arithmetic and automatic differentiation packages are PROFIL/BIAS [Knu94] and FADBAD/TADIFF [BS96, BS97].

**The Benchmarks** Many of the benchmarks are standard. They come from various domains, including chemistry, biology, mechanics, physics and electricity. The equation, initial conditions, and interval of integration for each initial value problem are given in [Jan01]. Note that the comparisons only uses point initial conditions; they could easily be generalized to interval conditions. The "full Brusselator" (BRUS), the "Oregonator" (OREG), and HIRES all model famous chemical reactions. Both OREG and HIRES are stiff problems. The Lorenz system (LOR) examplifies the so-called "strange attractors". The Two-Body problem (2BP) comes from mechanics, and the van der Pol (VDP) equation describes an electrical circuit. All these problems are described in detail in [HNW87, HW91]. We also consider a problem from molecular biology (BIO) and the Stiff DETEST problem D1 [Enr75]. Finally, we consider four dynamical systems (LIEN, P1, P2, P3), where the function f contains more operations. LIEN, P2 and P3 are taken from [Per00].

**Overview of the Experiments** The experimental results obey the same assumptions as the theoretical analysis. They include three types of comparisons :

- 1. One-step methods of the same order;
- 2. One-step methods of different orders, but of similar cost;
- 3. Multistep versus one-step methods of the same order.

The tables report, for a given step size, the global error, the error ratio (an error ratio higher than 1 means that GHF is more precise), the execution time of both methods (in seconds), and the time ratio (a time ratio higher than 1 means that GHF is faster). They also report the execution time of IHO\* between parentheses. As mentioned, we observed small precision loss in IHO\* over IHO and only for the larger step sizes. Since this was not very significant, we assume that the error values in IHO\* are nearly the same as in IHO. A "-" symbol in the tables means that the method failed to integrate the ODE for the corresponding step size. Finally, note that the global error at point  $t_i$  is given by the infinity norm of the width of the enclosure  $D_i$  at  $t_i$ , i.e., the quantity  $\|\omega(D_i)\|_{\infty}$  at the end of the interval of integration.

### 9.1 One-Step Methods

**Same Order** Table 4 reports the experimental results for the  $IHO^{(*)}(p, p)$  and GHF(p, p) methods of order 2p + 1 on several benchmarks, orders, and step sizes. In general, for a given step size, GHF and IHO<sup>\*</sup> have a similar accuracy and execution time. GHF is usually slightly faster as predicted by the theoretical results. The difference should be larger for higher dimensional problems where f contains many operations. IHO is slower than GHF and IHO<sup>\*</sup>. For a given problem and given order, the error ratio is generally constant wrt the step size, confirming that GHF and IHO<sup>(\*)</sup> are methods of the same order.

<sup>&</sup>lt;sup>13</sup>The code is available at http://www.info.ucl.ac.be.

| IVP   | IHO<br>n a | GHF    | h                 | IHO                | Error<br>GHF      | Ratio | IHO        | Time<br>GHF | Ratio |
|-------|------------|--------|-------------------|--------------------|-------------------|-------|------------|-------------|-------|
| BRUS  | 33         | (3.3)  | 1F-1              | 2.3E-3             | 1.2E-3            | 19    |            |             |       |
| DICOS | 5,5        | (3,3)  | 7.5E-2            | 4.5E-5             | 2.4E-5            | 1.9   |            |             |       |
|       |            |        | 5E-2              | 9.7E-7             | 4.9E-7            | 2.0   |            |             |       |
|       |            |        | 2.5E-2            | 5.2E-9             | 2.7E-9            | 1.9   |            |             |       |
|       |            |        | 1.25E-2<br>1E-2   | 5.2E-11<br>6.5E-12 | 3.5E-12           | 1.9   | 5.1 (4.0)  | 3.9         | 1.3   |
|       | 4,4        | (4,4)  | 1E-1              | 1.7E-4             | 9.9E-5            | 1.7   | ()         |             |       |
|       |            |        | 7.5E-2            | 2.0E-6             | 1.1E-6            | 1.8   |            |             |       |
|       |            |        | 5E-2<br>2.5E-2    | 1.0E-8<br>7.4E-12  | 5.0E-9<br>3.2E-12 | 2.0   | 28(21)     | 2.0         | 1.4   |
|       | 5,5        | (5,5)  | 1E-1              | 2.4E-5             | 1.6E-5            | 1.5   | 2.0 (2.1)  | 2.0         | 1.4   |
|       | -          |        | 7.5E-2            | 1.2E-7             | 7.6E-8            | 1.6   |            |             |       |
|       |            | (7.7)  | 5E-2              | 1.6E-10            | 9.4E-11           | 1.7   | 1.9 (1.4)  | 1.3         | 1.5   |
|       | 7,7        | (7,7)  | 1E-1<br>7.5E-2    | 7.6E-7<br>6.6E-10  | 5.2E-7<br>4.7E-10 | 1.5   | 19(14)     | 13          | 15    |
|       | 8,8        | (8,8)  | 1E-1              | 1.5E-7             | 1.1E-7            | 1.4   | 1.9 (1.1)  | 1.0         | 1.0   |
|       |            |        | 7.5E-2            | 5.4E-11            | 4.0E-11           | 1.4   | 2.2 (1.6)  | 1.5         | 1.5   |
| LOR   | 3,3        | (3,3)  | 1.25E-2           | 4.8E-1             | 3.2E-1            | 1.5   |            |             |       |
|       |            |        | 1E-2<br>7.5E-3    | 6./E-2<br>7.7E-3   | 4.5E-2<br>4.9E-3  | 1.5   |            |             |       |
|       |            |        | 5E-3              | 4.3E-4             | 2.6E-4            | 1.7   |            |             |       |
|       |            |        | 2.5E-3            | 3.1E-6             | 2.0E-6            | 1.6   | 11 (8)     | 8           | 1.4   |
|       | 4,4        | (4,4)  | 2E-2              | 1.5E-1             | 1.0E-1            | 1.5   |            |             |       |
| 1     |            |        | 1.75E-2<br>1.5E-2 | 5.0E-3             | 3.0E-2            | 1.5   | 1          |             |       |
| 1     |            |        | 1.25E-2           | 8.0E-4             | 4.6E-4            | 1.7   | 1          |             |       |
| 1     |            |        | 1E-2              | 9.0E-5             | 5.0E-5            | 1.8   |            |             |       |
| 1     | 77         | (7.7)  | 7.5E-3<br>3E 2    | 6.0E-6             | 3.1E-6            | 1.9   | 4.7 (3.6)  | 3.6         | 1.3   |
| 1     | 7,7        | (7,7)  | 2.75E-2           | 4.5E-4             | 2.4E-3<br>3.6E-4  | 1.2   | 1          |             |       |
|       |            |        | 2.5E-2            | 6.6E-5             | 5.3E-5            | 1.2   |            |             |       |
|       |            |        | 2.25E-2           | 7.7E-6             | 6.2E-6            | 1.2   | 3.0 (2.3)  | 2.2         | 1.4   |
| 2BP   | 3,3        | (3,3)  | 1E-1              | 4.5E-3             | 7.6E-4            | 6.0   |            |             |       |
|       |            |        | 7.5E-2<br>5E-2    | 3.3E-6             | 5.7E-5<br>1.2E-6  | 2.7   |            |             |       |
|       |            |        | 2.5E-2            | 1.5E-8             | 4.5E-9            | 3.3   | 3.6 (2.9)  | 2.6         | 1.4   |
|       | 4,4        | (4,4)  | 1.25E-1           | 2.9E-4             | 7.4E-5            | 3.9   |            |             |       |
|       |            |        | 1E-1<br>7.5E.2    | 1.2E-5             | 3.0E-6            | 4.0   |            |             |       |
|       |            |        | 7.3E-2<br>5E-2    | 3.4E-7<br>3.4E-9   | 9.2E-10           | 3.7   | 2.5 (1.9)  | 1.7         | 1.5   |
|       | 7,7        | (7,7)  | 1.5E-1            | 1.1E-6             | 5.6E-7            | 2.0   |            |             |       |
|       |            |        | 1.25E-1           | 2.3E-9             | 9.7E-10           | 2.4   | 2.0 (1.5)  | 1.3         | 1.5   |
| VDP   | 3,3        | (3,3)  | 4E-2<br>3E-2      | 1.5E-2<br>5.0E-5   | 5.8E-3            | 2.6   |            |             |       |
|       |            |        | 2E-2              | 1.7E-6             | 9.6E-7            | 1.8   |            |             |       |
|       |            |        | 1E-2              | 1.0E-8             | 5.3E-9            | 1.9   |            |             |       |
|       |            |        | 5E-3              | 7.4E-11            | 3.8E-11           | 1.9   |            |             |       |
|       | 4.4        | (4.4)  | 2.5E-3<br>4E-2    | 4.7E-13            | 2.6E-13<br>4.0E-5 | 1.8   | 14 (11.2)  | 11.6        | 1.2   |
|       | 4,4        | (4,4)  | 3E-2              | 8.4E-7             | 5.1E-7            | 1.6   |            |             |       |
|       |            |        | 2E-2              | 9.0E-9             | 4.5E-9            | 2.0   |            |             |       |
|       |            | (5.5)  | 1E-2              | 1.1E-11            | 4.7E-12           | 2.3   | 4.5 (3.7)  | 3.8         | 1.2   |
|       | 5,5        | (5,5)  | 4E-2<br>3E-2      | 2.6E-6<br>2.3E-8   | 2.1E-0<br>1.6E-8  | 1.2   |            |             |       |
|       |            |        | 2E-2              | 6.7E-11            | 3.9E-11           | 1.7   | 2.9 (2.3)  | 2.4         | 1.3   |
| BIO   | 3,3        | (3,3)  | 7.5E-3            | 4.6E-6             | 2.0E-6            | 2.3   |            |             |       |
|       |            |        | 5E-3              | 8.2E-9             | 3.4E-9            | 2.4   | 70(54)     | 5.1         | 1.4   |
| 1     | 4.4        | (4.4)  | 2.5E-5<br>7.5E-3  | 1.3E-6             | 7.6E-7            | 2.4   | 1.0 (3.4)  | 5.1         | 1.4   |
| 1     | ,.         |        | 5E-3              | 2.9E-10            | 1.3E-10           | 2.2   |            |             |       |
| OPEC  |            | (2.2)  | 2.5E-3            | 9.7E-14            | 3.3E-14           | 2.9   | 10 (7.5)   | 7.0         | 1.4   |
| OREG  | 3,3        | (3,3)  | 1.5E-2<br>1E-2    | 1.5E-4<br>8.0E-6   | 2.2E-4<br>1.1E-5  | 0.7   | 1          |             |       |
| 1     |            |        | 7.5E-3            | 1.0E-6             | 1.4E-6            | 0.7   | 1          |             |       |
|       |            |        | 5E-3              | 6.0E-8             | 7.9E-8            | 0.8   | 9.6 (7.7)  | 7.5         | 1.3   |
| 1     | 4,4        | (4,4)  | 2.5E-2            | 2.4E-4             | 3.4E-4            | 0.7   |            |             |       |
| 1     |            |        | 2E-2<br>1.5E-2    | 1.2E-5<br>6.1E-7   | 1.0E-5<br>7.6E-7  | 0.7   | 1          |             |       |
| 1     |            |        | 1E-2              | 1.5E-8             | 1.9E-8            | 0.8   |            |             |       |
| 1     |            |        | 7.5E-3            | 1.1E-9             | 1.4E-9            | 0.8   | 8.2 (6.5)  | 6.4         | 1.3   |
| D1    | 8,8        | (8,8)  | 1.1E-1            | 1.1E-6             | 1.3E-6            | 0.8   |            |             | I T   |
| 1     |            |        | 1E-1<br>9E-2      | 1.5E-7<br>1.5E-8   | 1.4E-/<br>1.7E-8  | 0.9   | 1          |             |       |
| 1     |            |        | 8E-2              | 1.5E-9             | 1.7E-9            | 0.9   | 1          |             |       |
| 1     |            |        | 7E-2              | 1.3E-10            | 1.4E-10           | 0.9   | 1          |             |       |
|       |            |        | 6E-2              | 7.3E-12            | 8.3E-12           | 0.9   | 24/18      | 1.0         | 1.2   |
| HIRES | 4.4        | (4.4)  | 2.5E-1            | 2.0E-13<br>3.2E-7  | 5.1E-15<br>6.1E-7 | 0.9   | 2.4 (1.8)  | 1.9         | 1.5   |
|       | .,.        | (.,,,) | 2E-1              | 2.4E-8             | 4.3E-8            | 0.6   | 1          |             |       |
| 1     |            |        | 1.5E-1            | 1.1E-9             | 2.6E-9            | 0.4   | 1          |             |       |
| 1     |            |        | 1E-1              | 2.8E-11            | 5.0E-11           | 0.6   | 22 (17)    | 14          | 1.4   |
| 1     | 8.8        | (8.8)  | 4E-1              | 4.0E-14<br>2.9E-6  | 0.9E-14<br>1.2E-5 | 0.7   | 23(17)     | 10          | 1.4   |
| 1     | -,0        | (0,0)  | 3.5E-1            | 4.9E-8             | 3.9E-8            | 1.3   |            |             |       |
| 1     |            |        | 3E-1              | 8.0E-10            | 6.2E-10           | 1.3   | 1          |             |       |
| 1     |            |        | 2.5E-1            | 7.7E-12            | 6.0E-12           | 1.3   | 10.0 (7.4) | 7.2         | 1.5   |
|       |            | I      | ∠ <b>E</b> -1     | 3.4E-14            | 2.0E-14           | 1.2   | 10.9 (7.4) | 1.2         | 1.5   |

Table 4: One-Step Methods of the Same Order.

**Different Orders** The theoretical results indicated that, given a step size, the GHF method can always be tailored to be asymptotically more precise than IHO<sup>\*</sup> for a similar computation cost. We now validate this claim experimentally. Table 5 compares IHO(p, p) (order 2p + 1) and GHF(p + 1, p + 1) (order 2p + 3). On the benchmarks, GHF is always faster than IHO, and it produces significant improvements in accuracy. As expected, the gain in precision increases when the step size decreases confirming that GHF is a method of higher order than IHO. GHF is slightly slower than IHO<sup>\*</sup> but, of course, it produces significant improvement in accuracy. GHF and IHO<sup>\*</sup> should have a similar execution time for higher dimensional problems where f contains many operations, as predicted by the theoretical analysis.

**Error wrt Time** It is interesting to compare the various methods by plotting the error as a function of the execution time. Figure 11 plots  $\text{IHO}^{(*)}(p, p)$ , GHF(p, p), and GHF(p + 1, p + 1) using the results in Tables 4 and 5. We take p = 8 for D1 and HIRES and p = 3 for the other problems. The curve of IHO<sup>\*</sup> is always slightly above the curve of GHF(p, p) (except for D1). GHF(p + 1, p + 1) is almost always below the other curves, and IHO is always above the other curves. These results confirm the theoretical results and indicate that GHF(p + 1, p + 1) is superior to the other methods.

#### 9.2 Multistep Versus One-Step Methods

We now compare multistep GHF methods versus  $IHO^{(*)}$  and the one-step GHF method of the same order. We restrict attention to problems where the function f contains more operations. Tables 6, 7, 8, and 9 report the results respectively for the four tested examples and for several orders and step sizes <sup>14</sup>. For a given step size, multistep GHF methods usually produce much more precise results than one-step methods (especially for large step sizes); they also allow for larger step sizes. Multistep GHF methods are generally as fast as the one-step GHF method and IHO<sup>\*</sup>; they are faster when f has many operations, as is the case in LIEN (which contains many multiplications). The tables also show that, for a given step size, the one-step GHF method is slightly more precise and faster than IHO<sup>\*</sup>, and that IHO is slower.

Figures 12, 14, 13 and 15 plot the error as a function of the execution time. The main result is that multistep GHF methods perform better than one-step methods on these problems. In general, multistep methods produce several orders of magnitude improvements in precision for a fixed execution time. The one-step GHF method performs slightly better than IHO<sup>\*</sup>. Note that, for the LIEN problem, GHF methods with many interpolation points are more efficient and allow for smaller execution times.

#### 9.3 Discussion

Before concluding this section, it is important to make a number of remarks.

In GHF, the enhancement in precision obtained by recomputing the Jacobians at pruned boxes is insignificant in all problems we tested. Instead, this recomputation increases the computational cost. Our experimental results showed that this also holds for the IHO method in general.

As pointed out by Nedialkov [Ned99], the stability of interval methods depends not only on the stability of the underlying approximation formula (as in standard numerical methods) but also on the corresponding formula for the truncation error. Hence, interval extensions of standard numerical methods designed for stiff problems may need smaller step sizes. Another restriction on the step size in interval methods comes from the bounding box process, whose current implementations require very small step sizes to be able to compute bounding boxes in the case of stiff problems. This explains why the differences in efficiency between interval methods are not as sharp as for traditional methods.

<sup>&</sup>lt;sup>14</sup>Note that in the LIEN problem, we used a bounding box computation method of order 13 for  $\sigma_s \ge 12$ .

| IVP                        | IHO                                                  | GHF                                                         | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |                                                                                       | Time                                          |                                                                 |
|----------------------------|------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|
|                            | p, q                                                 | σ                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ratio                                                                                                                                                                                                                                                                                  | IHO                                                                                   | GHF                                           | Ratio                                                           |
| BRUS                       | 3,3                                                  | (4,4)                                                       | 1E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.3E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.3                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 7.5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.5E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.5                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.7E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.1                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 2.5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.2E-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.5E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55                                                                                                                                                                                                                                                                                     | 10(20)                                                                                | 26                                            |                                                                 |
|                            | 4.4                                                  | (5.5)                                                       | 1.25E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.2E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160                                                                                                                                                                                                                                                                                    | 4.0 (3.2)                                                                             | 3.0                                           | 1.1                                                             |
|                            | 4,4                                                  | (3,3)                                                       | 7.5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.9E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0E-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.2E-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.1                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 2.5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.4E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.4E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                     | 2.8 (2.1)                                                                             | 2.4                                           | 1.2                                                             |
| LOR                        | 3,3                                                  | (4,4)                                                       | 1.25E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.8E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.3E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 1E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.7E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56                                                                                                                                                                                                                                                                                     |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 7.5E-3<br>5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.7E-5<br>4.2E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.7E-5<br>0.7E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 135                                                                                                                                                                                                                                                                                    | 54(40)                                                                                | 4.0                                           | 1.1                                                             |
|                            | 4.4                                                  | (5.5)                                                       | 2E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.2E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4                                                                                                                                                                                                                                                                                    | 5.4 (4.0)                                                                             | 4.7                                           | 1.1                                                             |
|                            | .,.                                                  | (=,=)                                                       | 1.75E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.7E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.0                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 1.5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 1.25E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.0E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.7                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 1E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.0E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.2E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                     | 1500                                                                                  |                                               |                                                                 |
| 200                        | 2.2                                                  | (4.4)                                                       | 7.5E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0E-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.6E-/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23                                                                                                                                                                                                                                                                                     | 4.7 (5.6)                                                                             | 4.1                                           | 1.1                                                             |
| 28P                        | 3,3                                                  | (4,4)                                                       | 1E-1<br>7.5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5E-5<br>1.1E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5E-5<br>7.6E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 145                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      | 1                                                           | 5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.9E-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 371                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 2.5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5E-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.1E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 366                                                                                                                                                                                                                                                                                    | 3.6 (2.9)                                                                             | 3.0                                           | 1.2                                                             |
|                            | 4,4                                                  | (5,5)                                                       | 1.25E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.1E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26                                                                                                                                                                                                                                                                                     |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 1E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.6E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33                                                                                                                                                                                                                                                                                     |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 7.5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.4E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.6E-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61                                                                                                                                                                                                                                                                                     | 2.5.(1.0)                                                                             |                                               |                                                                 |
| VDD                        | 2.2                                                  | (4.4)                                                       | 5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.4E-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.5E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62                                                                                                                                                                                                                                                                                     | 2.5 (1.9)                                                                             | 2.0                                           | 1.3                                                             |
| VDP                        | 3,5                                                  | (4,4)                                                       | 4E-2<br>3E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5E-2<br>5.9E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5E-5<br>9.7E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.0                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 2E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.8E-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                                                                                                                                                                                                                                                                                     |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 1E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0E-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.2E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 161                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      |                                                             | 5E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.4E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0E-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 822                                                                                                                                                                                                                                                                                    | 7.4 (5.6)                                                                             | 7.2                                           | 1.0                                                             |
|                            | 4.4                                                  | (5.5)                                                       | 4E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.7E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.6E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.3                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            |                                                      | ()                                                          | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.45.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 (E 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.2                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            | ,                                                    | ()                                                          | 3E-2<br>2E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.4E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.6E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.3                                                                                                                                                                                                                                                                                    |                                                                                       |                                               |                                                                 |
|                            | ,                                                    |                                                             | 3E-2<br>2E-2<br>1E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.4E-7<br>9.0E-9<br>1.1E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.6E-7<br>1.6E-9<br>2.8E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.3<br>5.6<br>39                                                                                                                                                                                                                                                                       | 4.5 (3.7)                                                                             | 4.2                                           | 1.1                                                             |
| BIO                        | 3,3                                                  | (4,4)                                                       | 3E-2<br>2E-2<br>1E-2<br>7.5E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3<br>5.6<br>39<br>2.7                                                                                                                                                                                                                                                                | 4.5 (3.7)                                                                             | 4.2                                           | 1.1                                                             |
| BIO                        | 3,3                                                  | (4,4)                                                       | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.3<br>5.6<br>39<br>2.7<br>6.8                                                                                                                                                                                                                                                         | 4.5 (3.7)                                                                             | 4.2                                           | 1.1                                                             |
| BIO                        | 3,3                                                  | (4,4)                                                       | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>4.8E-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46                                                                                                                                                                                                                                                   | 4.5 (3.7)<br>7.0 (5.4)                                                                | 4.2<br>6.2                                    | 1.1                                                             |
| BIO                        | 3,3                                                  | (4,4)                                                       | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>7.5E-3<br>5E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11<br>1.3E-6<br>2.9E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>4.8E-13<br>7.7E-7<br>9 3E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1                                                                                                                                                                                                                                     | 4.5 (3.7)<br>7.0 (5.4)                                                                | 4.2<br>6.2                                    | 1.1                                                             |
| BIO                        | 3,3                                                  | (4,4)                                                       | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>7.5E-3<br>5E-3<br>2.5E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11<br>1.3E-6<br>2.9E-10<br>9.7E-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>4.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7                                                                                                                                                                                                                              | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)                                                    | 4.2<br>6.2<br>8.4                             | 1.1                                                             |
| BIO<br>OREG                | 3,3                                                  | (4,4)                                                       | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11<br>1.3E-6<br>2.9E-10<br>9.7E-14<br>2.6E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>4.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>7.0E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>37                                                                                                                                                                                                                        | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)                                                    | 4.2<br>6.2<br>8.4                             | 1.1<br>1.1<br>1.2                                               |
| BIO                        | 3,3<br>4,4<br>3,3                                    | (4,4)<br>(5,5)<br>(4,4)                                     | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11<br>1.3E-6<br>2.9E-10<br>9.7E-14<br>2.6E-3<br>1.5E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>4.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>7.0E-5<br>1.1E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>37<br>136                                                                                                                                                                                                                 | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)                                                    | 4.2<br>6.2<br>8.4                             | 1.1<br>1.1<br>1.2                                               |
| BIO<br>OREG                | 3,3<br>4,4<br>3,3                                    | (4,4)<br>(5,5)<br>(4,4)                                     | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2E-2<br>1.5E-2<br>1E-2<br>1E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11<br>1.3E-6<br>2.9E-10<br>9.7E-14<br>2.6E-3<br>1.5E-4<br>8.0E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>4.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>7.0E-5<br>1.1E-6<br>2.2E-8<br>2.2E-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>37<br>136<br>364                                                                                                                                                                                                          | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)                                                    | 4.2<br>6.2<br>8.4                             | 1.1<br>1.1<br>1.2                                               |
| BIO<br>OREG                | 3,3                                                  | (4,4)<br>(5,5)<br>(4,4)                                     | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>1.5E-2<br>1E-2<br>1E-2<br>7.5E-3<br>5E 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11<br>1.3E-6<br>2.9E-10<br>9.7E-14<br>2.6E-3<br>1.5E-4<br>8.0E-6<br>1.0E-6<br>6.0E 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>4.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>7.0E-5<br>1.1E-6<br>2.2E-8<br>1.5E-9<br>4.6E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>37<br>136<br>364<br>667<br>1304                                                                                                                                                                                           | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)                                                    | 4.2<br>6.2<br>8.4                             | 1.1<br>1.1<br>1.2                                               |
| BIO                        | 3,3<br>4,4<br>3,3                                    | (4,4)<br>(5,5)<br>(4,4)                                     | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2E-2<br>1.5E-2<br>1E-2<br>7.5E-3<br>5E-3<br>5E-3<br>25E-3<br>25E-3<br>25E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11<br>9.7E-14<br>2.6E-3<br>1.5E-4<br>8.0E-6<br>1.0E-6<br>6.0E-8<br>2.4E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>4.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>7.0E-5<br>1.1E-6<br>2.2E-8<br>1.5E-9<br>4.6E-11<br>14E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>37<br>136<br>364<br>667<br>1304                                                                                                                                                                                           | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)                                       | 4.2<br>6.2<br>8.4<br>8.6                      | 1.1<br>1.2<br>1.1                                               |
| BIO<br>OREG                | 3,3<br>4,4<br>3,3<br>4,4                             | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)                            | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2E-2<br>1.5E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-2<br>2E-2<br>2E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11<br>9.7E-14<br>2.6E-3<br>1.5E-4<br>8.0E-6<br>1.0E-6<br>6.0E-8<br>2.4E-4<br>1.2E-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>4.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>7.0E-5<br>1.1E-6<br>2.2E-8<br>1.5E-9<br>4.6E-11<br>1.4E-4<br>3.9E-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>37<br>136<br>364<br>667<br>1304<br>1.7<br>3.1                                                                                                                                                                             | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)                                       | 4.2<br>6.2<br>8.4<br>8.6                      | 1.1<br>1.2<br>1.1                                               |
| BIO                        | 3,3<br>4,4<br>3,3<br>4,4                             | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)                            | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>7.5E-3<br>5E-3<br>2E-2<br>1.5E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-2<br>2E-2<br>1.5E-2<br>2E-2<br>1.5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11<br>1.3E-6<br>2.9E-10<br>9.7E-14<br>2.6E-3<br>1.5E-4<br>8.0E-6<br>1.0E-6<br>6.0E-8<br>2.4E-4<br>1.2E-5<br>6.1E-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 3.6\text{E-7} \\ 1.6\text{E-9} \\ 2.8\text{E-13} \\ 1.7\text{E-6} \\ 1.2\text{E-9} \\ 4.8\text{E-13} \\ 7.7\text{E-7} \\ 9.3\text{E-11} \\ 1.0\text{E-14} \\ 7.0\text{E-5} \\ 1.1\text{E-6} \\ 2.2\text{E-8} \\ 1.5\text{E-9} \\ 4.6\text{E-11} \\ 1.4\text{E-4} \\ 3.9\text{E-6} \\ 1.6\text{E-8} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>37<br>136<br>364<br>667<br>1304<br>1.7<br>3.1<br>38                                                                                                                                                                       | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)                                       | 4.2<br>6.2<br>8.4<br>8.6                      | 1.1<br>1.2<br>1.1                                               |
| BIO<br>OREG                | 3,3<br>4,4<br>3,3<br>4,4                             | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)                            | 3E-2<br>2E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>1.5E-2<br>1.5E-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11<br>1.3E-6<br>2.9E-10<br>9.7E-14<br>2.6E-3<br>1.5E-4<br>8.0E-6<br>1.0E-6<br>6.0E-8<br>2.4E-4<br>1.2E-5<br>6.1E-7<br>1.5E-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.6E-7<br>1.6E-9<br>2.8E-13<br>7.7E-6<br>1.2E-9<br>4.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>7.0E-5<br>2.2E-8<br>1.5E-9<br>4.6E-11<br>1.4E-6<br>2.2E-8<br>1.5E-9<br>4.6E-11<br>1.4E-4<br>3.9E-6<br>1.6E-8<br>6.3E-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>37<br>136<br>364<br>667<br>1304<br>1.7<br>3.1<br>38<br>238                                                                                                                                                                | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)                          | 4.2<br>6.2<br>8.4<br>8.6<br>5.3               | 1.1<br>1.1<br>1.2<br>1.1                                        |
| DI DI                      | 3,3<br>4,4<br>3,3<br>4,4<br>8,8                      | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)                   | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2.    | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11<br>1.3E-6<br>2.9E-10<br>9.7E-14<br>2.6E-3<br>1.5E-4<br>8.0E-6<br>0.0E-6<br>0.0E-6<br>0.0E-6<br>0.0E-6<br>1.0E-6<br>1.2E-7<br>1.5E-8<br>1.1E-7<br>1.5E-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>3.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>7.0E-5<br>1.1E-6<br>1.2E-9<br>4.6E-11<br>1.4E-4<br>3.9E-6<br>1.6E-8<br>3.9E-6<br>3.3E-11<br>3.9E-8<br>3.6E-7<br>3.9E-8<br>3.6E-7<br>3.9E-8<br>3.6E-7<br>3.9E-8<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6E-7<br>3.6                                                                                                                                                                                                                                                                                              | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>136<br>364<br>667<br>1304<br>1.7<br>3.1<br>38<br>238<br>28                                                                                                                                                                | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)                          | 4.2<br>6.2<br>8.4<br>8.6<br>5.3               | 1.1<br>1.1<br>1.2<br>1.1                                        |
| BIO<br>OREG<br>D1          | 3,3<br>4,4<br>3,3<br>4,4<br>8,8                      | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)                   | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>2.5E-3<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>3.5E-2<br>2.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5    | 8.4E-7<br>9.0E-9<br>1.1E-11<br>4.6E-6<br>8.2E-9<br>2.2E-11<br>2.2E-11<br>2.9E-10<br>9.7E-14<br>2.6E-3<br>1.5E-4<br>8.0E-6<br>1.0E-6<br>4.0E-6<br>4.0E-6<br>4.0E-6<br>4.0E-6<br>4.0E-6<br>4.0E-6<br>4.0E-6<br>4.0E-6<br>4.0E-7<br>1.5E-8<br>1.1E-6<br>1.3E-7<br>1.5E-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>3.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>7.0E-5<br>1.1E-6<br>2.2E-8<br>1.5E-9<br>3.9E-1<br>1.4E-4<br>3.9E-6<br>1.6E-8<br>6.3E-11<br>3.9E-8<br>3.6E-9<br>3.5E-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>136<br>364<br>667<br>1304<br>1.7<br>3.1<br>38<br>238<br>28<br>36<br>43                                                                                                                                                    | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)                          | 4.2<br>6.2<br>8.4<br>8.6<br>5.3               | 1.1<br>1.1<br>1.2<br>1.1                                        |
| BIO<br>OREG<br>D1          | 3,3<br>4,4<br>3,3<br>4,4<br>8,8                      | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)                   | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5E-3<br>1.5    | 8 4E-7<br>9 0E-9<br>9 0E-9<br>1.1E-11<br>4 6E-6<br>8.2E-9<br>2.2E-11<br>1.3E-6<br>2.9E-10<br>9.7E-14<br>2.9E-10<br>9.7E-14<br>3.6E-4<br>8.0E-6<br>6.0E-8<br>1.0E-6<br>6.0E-8<br>1.2E-5<br>6.1E-7<br>1.5E-8<br>1.3E-7<br>1.5E-8<br>1.3E-7<br>1.5E-8<br>1.5E-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>3.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>1.0E-14<br>1.0E-14<br>1.0E-6<br>2.2E-8<br>1.5E-9<br>1.4E-6<br>2.2E-8<br>4.6E-11<br>1.4E-4<br>3.9E-6<br>1.6E-8<br>6.3E-11<br>3.9E-6<br>1.6E-8<br>3.6E-9<br>3.5E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>136<br>667<br>1304<br>1.7<br>37<br>1364<br>667<br>1304<br>1.7<br>3.1<br>38<br>238<br>238<br>28<br>36<br>43<br>35                                                                                                          | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)                          | 4.2<br>6.2<br>8.4<br>8.6<br>5.3               | 1.1<br>1.1<br>1.2<br>1.2                                        |
| BIO<br>OREG<br>D1          | 3,3<br>4,4<br>3,3<br>4,4<br>8,8                      | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)                   | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>2.5E-3<br>2.5E-2<br>2.5E-3<br>2.5E-2<br>2.5E-3<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5    | $\begin{array}{c} 8.4E-7\\ 9.0E-9\\ 1.1E-11\\ 4.6E-6\\ 8.2E-9\\ 2.2E-11\\ 1.3E-6\\ 2.9E-10\\ 9.7E-14\\ 2.6E-3\\ 1.5E-4\\ 8.0E-6\\ 1.0E-6\\ 1.0E-6\\ 1.0E-6\\ 1.0E-6\\ 1.0E-6\\ 1.0E-6\\ 1.2E-5\\ 6.1E-7\\ 1.5E-8\\ 1.1E-6\\ 1.3E-7\\ 1.5E-8\\ 1.5E-8\\ 1.5E-8\\ 1.5E-8\\ 1.5E-9\\ 1.3E-10\\ 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 3.6E{\text{-}7} \\ 1.6E{\text{-}9} \\ 2.8E{\text{-}13} \\ \hline 1.7E{\text{-}6} \\ 1.2E{\text{-}9} \\ 4.8E{\text{-}13} \\ \hline 7.7E{\text{-}7} \\ 9.3E{\text{-}11} \\ 1.0E{\text{-}14} \\ \hline 7.0E{\text{-}4} \\ 7.0E{\text{-}5} \\ 4.6E{\text{-}11} \\ 1.1E{\text{-}6} \\ 2.2E{\text{-}9} \\ 4.6E{\text{-}11} \\ 1.4E{\text{-}4} \\ 3.9E{\text{-}6} \\ 3.9E{\text{-}6} \\ 3.9E{\text{-}6} \\ 3.9E{\text{-}8} \\ 3.9E{\text{-}8} \\ 3.9E{\text{-}8} \\ 3.9E{\text{-}8} \\ 3.6E{\text{-}9} \\ 3.5E{\text{-}10} \\ 2.9E{\text{-}11} \\ 1.8E{\text{-}12} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 2.3\\ 5.6\\ 39\\ 2.7\\ 6.8\\ 46\\ 1.7\\ 3.1\\ 9.7\\ 37\\ 136\\ 364\\ 667\\ 1304\\ 667\\ 1304\\ 1.7\\ 3.1\\ 38\\ 238\\ 28\\ 36\\ 43\\ 53\\ 72\\ \end{array}$                                                                                                          | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)                          | 4.2<br>6.2<br>8.4<br>8.6<br>5.3               | 1.1<br>1.1<br>1.2<br>1.1                                        |
| DI                         | 3,3<br>4,4<br>3,3<br>4,4<br>8,8                      | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)                   | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>2.5E-3<br>3.5E-3<br>3.5E-3<br>3.5E-3<br>2.5E-3<br>3.5E-3<br>2.5E-3<br>3.5E-3<br>3.5E-3<br>2.5E-3<br>3.5E-3<br>2.5E-3<br>3.5E-3<br>3.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-2<br>1.5E-2<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-    | $\begin{array}{c} 8.4E.7\\ 9.0E.9\\ 9.0E.9\\ 9.0E.9\\ 2.2E.11\\ 1.3E.6\\ 2.9E.10\\ 9.7E.14\\ 1.3E.6\\ 1.5E.4\\ 8.0E-6\\ 1.0E-6\\ 1.0E-6\\ 6.0E-8\\ 2.4E.4\\ 1.2E.5\\ 6.1E.7\\ 1.5E-8\\ 1.1E-6\\ 1.3E.7\\ 1.5E-8\\ 1.5E.9\\ 1.3E.10\\ 7.3E.12\\ 1.5E.9\\ 1.3E.10\\ 1.3E.10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 3.6E-7\\ 1.6E-9\\ 2.8E-13\\ 1.7E-6\\ 1.2E-9\\ 4.8E-13\\ 7.7E-7\\ 9.3E-11\\ 1.0E-14\\ 7.7E-7\\ 1.1E-6\\ 2.2E-8\\ 1.5E-9\\ 4.6E-11\\ 1.4E-4\\ 3.9E-6\\ 1.6E-8\\ 3.6E-9\\ 3.5E-10\\ 3.9E-8\\ 3.6E-9\\ 3.5E-10\\ 3.9E-11\\ 1.8E-12\\ 7.8E-14\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>37<br>136<br>4667<br>1304<br>667<br>1304<br>667<br>1304<br>8<br>364<br>43<br>353<br>28<br>36<br>43<br>53<br>72<br>94                                                                                                      | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)<br>2.0 (1.5)             | 4.2<br>6.2<br>8.4<br>8.6<br>5.3               | 1.1<br>1.1<br>1.2<br>1.1<br>1.2                                 |
| BIO<br>OREG<br>D1<br>HIRES | 3,3<br>4,4<br>3,3<br>4,4<br>8,8<br>4,4               | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)<br>(5,5)          | 3E-2<br>2E-2<br>7.5E-3<br>5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>1.E-2<br>1.E-1<br>1.E-1<br>9E-2<br>7E-2<br>7E-2<br>7E-2<br>7E-2<br>7E-2<br>7E-2<br>7E-2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84E-7<br>90E-9<br>90E-9<br>2.2E-11<br>1.3E-11<br>1.3E-6<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-14<br>2.9E-14<br>8.0E-6<br>1.0E-6<br>8.0E-6<br>1.0E-6<br>6.0E-8<br>2.4E-4<br>1.2E-5<br>6.1E-7<br>1.5E-8<br>1.3E-7<br>1.5E-8<br>1.3E-7<br>1.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7.3E-10<br>7                                                                                                    | $\begin{array}{c} 3.6E.7\\ 1.6E.9\\ 2.8E.13\\ 1.7E.6\\ 1.2E.9\\ 4.8E.13\\ 7.7E.7\\ 9.3E.11\\ 1.0E.14\\ 1.0E.14\\ 1.0E.14\\ 1.5E.9\\ 4.6E.8\\ 1.5E.9\\ 4.6E.11\\ 1.4E.4\\ 3.9E.6\\ 1.6E.8\\ 6.3E.11\\ 3.9E.8\\ 3.6E.9\\ 3.5E.10\\ 2.9E.11\\ 1.8E.12\\ 7.9E.12\\ 8.6.29\\ 1.9E.6\\ 1.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 2.3 \\ 5.6 \\ 39 \\ \hline 2.7 \\ 6.8 \\ 46 \\ \hline 1.7 \\ 3.1 \\ 9.7 \\ \hline 37 \\ 136 \\ 364 \\ 667 \\ 1304 \\ \hline 1.7 \\ 3.1 \\ 38 \\ 238 \\ 238 \\ 36 \\ 43 \\ 53 \\ 72 \\ 94 \\ \hline 6.8 \\ \end{array}$                                               | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)<br>2.0 (1.5)             | 4.2<br>6.2<br>8.4<br>8.6<br>5.3               | 1.1<br>1.1<br>1.2<br>1.1                                        |
| BIO<br>OREG<br>D1<br>HIRES | 3,3<br>4,4<br>3,3<br>4,4<br>8,8<br>4,4               | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)<br>(5,5)          | 3E-2<br>2E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1    | $\begin{array}{c} 8.4E-7\\ 9.0E-9\\ 1.1E-11\\ 1.4.6E-6\\ 8.2E-9\\ 2.2E-11\\ 1.3E-6\\ 2.9E-10\\ 9.7E-14\\ 2.6E-3\\ 1.5E-4\\ 8.0E-6\\ 1.0E-6\\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 3.6E-7\\ 1.6E-9\\ 2.8E-13\\ \hline 7.7E-6\\ 1.2E-9\\ 4.8E-13\\ \hline 7.7E-7\\ 9.3E-11\\ 1.0E-14\\ \hline 7.0E-14\\ \hline 7.0E-14\\ \hline 7.0E-14\\ \hline 7.0E-14\\ \hline 1.1E-6\\ 2.2E-8\\ 4.6E-11\\ \hline 1.1E-6\\ 2.5E-9\\ 4.6E-11\\ \hline 1.1E-6\\ 3.9E-6\\ 1.6E-8\\ \hline 3.9E-8\\ 3.9E-8\\ 3.9E-8\\ 3.9E-10\\ 2.9E-11\\ 1.8E-12\\ \hline 7.8E-14\\ \hline 1.9E-6\\ 6.0E-8\\ \hline 6.0E-8\\ \hline 0.0E-8\\ \hline 0$ | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>37<br>136<br>364<br>667<br>1304<br>1.7<br>3.1<br>38<br>238<br>28<br>36<br>43<br>53<br>55<br>3<br>648<br>55.3                                                                                                              | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)<br>2.0 (1.5)             | 4.2<br>6.2<br>8.4<br>8.6<br>5.3               | 1.1<br>1.1<br>1.2<br>1.1<br>1.2                                 |
| DI HIRES                   | 3,3<br>4,4<br>3,3<br>4,4<br>8,8<br>4,4               | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)<br>(5,5)          | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5E-2<br>3.5    | $\begin{array}{c} 8.4E.7\\ 9.0E.9\\ 9.0E.9\\ 2.9E.11\\ 4.6E.6\\ 8.2E.9\\ 2.2E.11\\ 1.3E.6\\ 2.9E.10\\ 9.7E.14\\ 1.3E.6\\ 1.6E.6\\ 1.0E.6\\ 1.0E.6\\ 1.0E.6\\ 1.0E.6\\ 1.0E.6\\ 1.1E.6\\ 1.1E.6\\ 1.1E.6\\ 1.1E.6\\ 1.3E.7\\ 1.5E.8\\ 1.5E.9\\ 1.3E.10\\ 1.3E.5\\ 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.6E-7<br>1.6E-9<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>4.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>7.7E-7<br>1.1E-6<br>2.2E-8<br>1.5E-9<br>4.6E-9<br>3.6E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-9<br>3.5E-10<br>3.9E-8<br>3.6E-12<br>3.9E-12<br>3.9E-8<br>3.6E-12<br>3.9E-12<br>3.9E-12<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.5E-10<br>3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>1.3<br>1.36<br>364<br>667<br>1.304<br>1.7<br>3.1<br>38<br>238<br>28<br>36<br>43<br>53<br>72<br>94<br>6.8<br>43<br>53<br>72<br>94                                                                                                        | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)<br>2.0 (1.5)             | 4.2<br>6.2<br>8.4<br>8.6<br>5.3               | 1.1<br>1.1<br>1.2<br>1.1<br>1.2                                 |
| DI HIRES                   | 3,3<br>4,4<br>3,3<br>4,4<br>8,8<br>4,4               | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)<br>(5,5)          | 3E-2<br>2E-2<br>7.5E-3<br>5E-3<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-3<br>2.5E-2<br>2.5E-2<br>1.E-2<br>1.E-1<br>1.E-1<br>1.E-1<br>1.5E-1<br>1.E-1<br>1.E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84E-7<br>90E-9<br>90E-9<br>2.2E-11<br>1.3E-11<br>1.3E-6<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-10<br>2.9E-                                                                                                          | $\begin{array}{c} 3.6E.7\\ 1.6E.9\\ 2.8E.13\\ 1.7E.6\\ 1.2E.9\\ 4.8E.13\\ 7.7E.6\\ 1.2E.9\\ 4.8E.13\\ 7.7E.5\\ 1.1E.6\\ 2.2E.8\\ 1.5E.9\\ 4.6E.11\\ 1.4E.4\\ 3.9E.6\\ 1.5E.9\\ 4.6E.8\\ 6.3E.11\\ 1.8E.12\\ 7.8E.10\\ 2.9E.11\\ 1.8E.12\\ 7.8E.12\\ 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>136<br>4667<br>1304<br>467<br>1304<br>467<br>1304<br>467<br>1304<br>467<br>1304<br>43<br>53<br>72<br>94<br>46<br>88                                                                                                       | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)<br>2.0 (1.5)<br>12 (8.5) | 4.2<br>6.2<br>8.4<br>8.6<br>5.3<br>1.8        | 1.1<br>1.2<br>1.1<br>1.2                                        |
| DI HIRES                   | 3,3<br>4,4<br>3,3<br>4,4<br>4,4<br>4,4<br>4,4<br>8,8 | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)<br>(5,5)          | 3E-2<br>2E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-3<br>2.5E-2<br>2.5E-2<br>1.5E-2<br>1.E-1<br>1.E-1<br>1.E-1<br>1.E-1<br>1.E-1<br>1.E-1<br>1.5E-2<br>3.E-3<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>1.5E-2<br>3.E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2. | 8 4E-7<br>9 0E-9<br>9 0E-9<br>9 1.1E-11<br>1.3E-6<br>2.9E-10<br>9.7E-14<br>2.6E-3<br>2.9E-10<br>9.7E-14<br>2.6E-3<br>1.5E-4<br>8.0E-6<br>6.0E-8<br>2.4E-4<br>8.0E-6<br>6.0E-8<br>2.4E-4<br>1.0E-6<br>6.0E-8<br>2.4E-4<br>1.2E-5<br>6.1E-7<br>1.5E-8<br>1.1E-6<br>1.3E-7<br>1.3E-7<br>1.3E-7<br>3.2E-7<br>2.4E-8<br>1.3E-10<br>7.3E-12<br>1.3E-5<br>3.2E-7<br>2.4E-8<br>1.1E-9<br>2.8E-11<br>2.9E-6<br>2.9E-11<br>2.9E-6<br>2.9E-11<br>2.9E-6<br>3.2E-7<br>2.4E-8<br>3.2E-7<br>2.4E-8<br>3.2E-7<br>2.4E-8<br>3.2E-7<br>2.4E-8<br>3.2E-7<br>2.4E-8<br>3.2E-7<br>2.4E-8<br>3.2E-7<br>3.2E-7<br>2.4E-8<br>3.2E-7<br>2.4E-8<br>3.2E-7<br>3.2E-7<br>2.4E-8<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E-7<br>3.2E    | 3.6E-7<br>1.6E-9<br>2.8E-13<br>2.8E-13<br>1.7E-6<br>1.2E-9<br>4.8E-13<br>7.7E-7<br>9.3E-11<br>1.0E-14<br>7.7E-5<br>1.1E-6<br>2.2E-8<br>1.6E-6<br>2.2E-8<br>4.6E-11<br>3.9E-6<br>1.6E-8<br>2.9E-12<br>3.6E-9<br>3.5E-10<br>2.9E-11<br>1.8E-12<br>3.6E-9<br>3.5E-10<br>2.9E-11<br>1.8E-12<br>3.6E-9<br>3.5E-10<br>2.9E-11<br>1.8E-12<br>3.6E-9<br>3.5E-10<br>2.9E-11<br>1.8E-12<br>3.5E-10<br>2.9E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-13<br>2.5E-5<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-15<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5E-14<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3<br>5.6<br>39<br>2.7<br>6.8<br>46<br>1.7<br>3.1<br>9.7<br>37<br>136<br>667<br>1304<br>667<br>1304<br>667<br>1304<br>667<br>1304<br>667<br>3.1<br>38<br>238<br>238<br>238<br>238<br>24<br>8<br>5.3<br>10<br>24<br>8<br>80.1                                                          | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)<br>2.0 (1.5)<br>12 (8.5) | 4.2<br>6.2<br>8.4<br>5.3<br>1.8<br>9.3        | 1.1       1.1       1.2       1.1       1.2       1.1       1.2 |
| DI<br>HIRES                | 3,3<br>4,4<br>3,3<br>4,4<br>4,4<br>8,8<br>4,4<br>8,8 | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)<br>(5,5)          | 3E-2<br>2E-2<br>1E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>2.5E-2<br>1.1E-1<br>1.1E-1<br>2.5E-1<br>1.5E-1<br>1.5E-1<br>1.5E-1<br>2.5E-1<br>1.5E-1<br>1.5E-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 8.4E.7\\ 9.0E.9\\ 9.0E.9\\ 9.0E.9\\ 2.2E.11\\ 1.3E.6\\ 2.9E.10\\ 9.7E.14\\ 2.9E.10\\ 9.7E.14\\ 3.15E.4\\ 8.0E-6\\ 1.0E-6\\ 1.0E-6\\ 1.0E-6\\ 1.0E-6\\ 1.1E-6\\ 1.1E-6\\ 1.3E.7\\ 1.5E.8\\ 1.1E-6\\ 1.3E.7\\ 1.5E.8\\ 1.5E.9\\ 1.3E-10\\ 1.3E-5\\ 3.2E.7\\ 2.4E.8\\ 1.1E-5\\ 3.2E.7\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 3.6E.7\\ 1.6E.9\\ 2.8E.13\\ 1.7E.6\\ 1.2E.9\\ 4.8E.13\\ 7.7E.7\\ 9.3E.11\\ 1.0E.14\\ 1.0E.14\\ 1.0E.14\\ 1.0E.14\\ 1.0E.4\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} 2.3\\ 3.9\\ 2.7\\ 6.8\\ 46\\ 1.7\\ 3.1\\ 9.7\\ 136\\ 4667\\ 1304\\ 1.7\\ 3.7\\ 136\\ 4667\\ 1304\\ 1.7\\ 3.1\\ 38\\ 238\\ 36\\ 43\\ 53\\ 72\\ 94\\ 6.8\\ 5.3\\ 10\\ 24\\ 88\\ 0.1\\ 1.2\\ \end{array}$                                                               | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)<br>2.0 (1.5)<br>12 (8.5) | 4.2<br>6.2<br>8.4<br>8.6<br>5.3<br>1.8<br>9.3 | 1.1<br>1.2<br>1.2<br>1.1<br>1.2                                 |
| DI HIRES                   | 3,3<br>4,4<br>3,3<br>4,4<br>8,8<br>4,4<br>4,4<br>8,8 | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)<br>(5,5)          | 3E-2<br>2E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.E-2<br>1.E-1<br>1.E-1<br>9E-2<br>7E-2<br>7E-2<br>7E-2<br>7E-2<br>7E-2<br>7E-2<br>7E-2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 8.4E.7\\ 9.0E.9\\ 9.0E.9\\ 9.0E.9\\ 2.0E.1\\ 1.1E-11\\ 1.3E.6\\ 2.2E.11\\ 1.3E.6\\ 2.9E.10\\ 2.9E.10\\ 2.9E.10\\ 2.9E.10\\ 2.9E.10\\ 3.9E.1\\ 1.3E.5\\ 1.0E.6\\ 0.0E-8\\ 0.0E-8\\ 0.0E-8\\ 0.0E-8\\ 0.0E-8\\ 0.0E-8\\ 1.0E-6\\ 0.0E-8\\ 1.0E-8\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 3.6E.7\\ 1.6E.9\\ 2.8E.13\\ 2.8E.13\\ 1.7E.6\\ 1.2E.9\\ 4.8E.13\\ 7.7E.7\\ 1.93E.11\\ 1.0E.14\\ 1.0E.14\\ 1.0E.14\\ 1.0E.14\\ 1.5E.9\\ 4.6E.11\\ 1.4E.4\\ 3.9E.6\\ 1.5E.9\\ 4.6E.11\\ 1.4E.4\\ 3.9E.6\\ 1.6E.8\\ 6.3E.111\\ 1.8E.12\\ 2.9E.11\\ 1.8E.12\\ 2.9E.11\\ 1.8E.12\\ 2.9E.11\\ 1.9E.6\\ 6.0E.8\\ 2.4E.9\\ 4.6E.8\\ 1.9E.6\\ 6.0E.8\\ 2.4E.9\\ 4.6E.11\\ 3.2E.13\\ 2.5E.5\\ 4.1E.8\\ 3.2E.13\\ 2.5E.5\\ 4.1E.8\\ 3.2E.13\\ 3.2E.5\\ 4.5E.10\\ 3.2E.5\\ 5.25\\ 3.2E.5\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\ 5.25\\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 2.3\\ 5.6\\ 39\\ 2.7\\ 46\\ 1.7\\ 3.1\\ 9.7\\ 136\\ 4667\\ 1.30\\ 364\\ 4667\\ 1.30\\ 364\\ 4667\\ 1.30\\ 37\\ 1304\\ 88\\ 238\\ 28\\ 36\\ 43\\ 35\\ 72\\ 94\\ 43\\ 53\\ 72\\ 94\\ 43\\ 88\\ 88\\ 88\\ 53\\ 72\\ 94\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2$ | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)<br>2.0 (1.5)<br>12 (8.5) | 4.2<br>6.2<br>8.4<br>8.6<br>5.3<br>1.8<br>9.3 | 1.1<br>1.2<br>1.1<br>1.2<br>1.1                                 |
| D1 HIRES                   | 3,3<br>4,4<br>3,3<br>4,4<br>4,4<br>4,4<br>4,4<br>8,8 | (4,4)<br>(5,5)<br>(4,4)<br>(5,5)<br>(9,9)<br>(5,5)<br>(9,9) | 3E-2<br>2E-2<br>2E-2<br>7.5E-3<br>5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-3<br>2.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>1.5E-2<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5E-1<br>2.5    | 8 4E-7<br>9 0E-9<br>9 0E-9<br>9 1.1E-11<br>1.3E-6<br>2.9E-10<br>9.7E-14<br>2.6E-3<br>2.9E-10<br>9.7E-14<br>2.6E-3<br>1.5E-4<br>8.0E-6<br>6.0E-8<br>2.4E-4<br>8.0E-6<br>6.0E-8<br>2.4E-4<br>1.2E-5<br>6.1E-7<br>1.5E-8<br>1.1E-6<br>1.3E-7<br>1.5E-8<br>1.3E-7<br>1.3E-7<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>1.3E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-7<br>2.4E-8<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2.4E-7<br>2. | $\begin{array}{c} 3.6E-7\\ 1.6E-9\\ 2.8E-13\\ \hline 2.8E-13\\ \hline 1.7E-6\\ 1.2E-9\\ 4.8E-13\\ \hline 7.7E-7\\ 9.3E-11\\ \hline 1.0E-14\\ \hline 7.0E-5\\ \hline 1.1E-6\\ 2.2E-8\\ 1.5E-9\\ 4.6E-11\\ \hline 1.4E-4\\ \hline 3.9E-6\\ 1.6E-8\\ 2.4E-12\\ \hline 3.9E-8\\ 3.6E-9\\ \hline 3.5E-10\\ 2.9E-12\\ \hline 1.8E-12\\ \hline 1.8E-12\\ \hline 1.8E-12\\ \hline 1.8E-12\\ \hline 1.8E-12\\ \hline 1.8E-14\\ \hline 1.9E-6\\ \hline 6.0E-8\\ 2.2E-5\\ \hline 4.1E-8\\ 6.5E-13\\ \hline 2.5E-5\\ \hline 4.1E-8\\ 6.5E-12\\ \hline 2.5E-5\\ \hline 4.1E-8\\ 6.5E-12\\ \hline 1.8E-12\\ \hline 1.8$                                                                                       | $\begin{array}{c} 2.3\\ 5.6\\ 39\\ 2.7\\ 8\\ 46\\ 1.7\\ 3.1\\ 9.7\\ 37\\ 136\\ 667\\ 1304\\ 667\\ 1304\\ 667\\ 1304\\ 87\\ 238\\ 28\\ 36\\ 43\\ 53\\ 72\\ 94\\ 88\\ 5.3\\ 10\\ 24\\ 88\\ 80.1\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1$                                           | 4.5 (3.7)<br>7.0 (5.4)<br>10 (7.5)<br>9.6 (7.7)<br>6.2 (4.9)<br>2.0 (1.5)<br>12 (8.5) | 4.2<br>6.2<br>8.4<br>5.3<br>1.8<br>9.3        | 1.1       1.1       1.2       1.1       1.2       1.1       1.2 |

Table 5: One-Step Methods of Different Orders.



Figure 11: Comparison of the Methods  $IHO^{(*)}(p, p)$ , GHF(p, p) and GHF(p + 1, p + 1) for the Problems BRUS, LOR, 2BP, VDP, BIO, OREG, D1 and HIRES.

| IVP  | p, q | $_{\sigma}^{\text{GHF}}$                | h              | IHO                | Error<br>GHF       | Ratio     | IHO       | Time<br>GHF | Ratio |
|------|------|-----------------------------------------|----------------|--------------------|--------------------|-----------|-----------|-------------|-------|
| LIEN | 3,3  | (3,3)                                   | 5E-1           | 8.8E-7             | 7.2E-7             | 1.2       |           |             |       |
|      |      |                                         | 4E-1           | 1.4E-8             | 1.1E-8             | 1.3       |           |             |       |
|      |      |                                         | 2E-1           | 8.4E-10<br>2.3E-11 | 4./E-9<br>5.4E-11  | 0.2       |           |             |       |
|      |      |                                         | 1E-1           | 1.3E-13            | 1.3E-13            | 1.0       |           |             |       |
|      |      | (2.2.2)                                 | 5E-2           | 8.7E-16            | 8.8E-16            | 1.0       | 8.3 (6.7) | 6.1         | 1.4   |
|      | 3,3  | (2,2,2)                                 | 5.5E-1<br>5E-1 | -<br>8.8E-7        | 2.1E-6<br>2.5E-7   | 3.5       |           |             |       |
|      |      |                                         | 4E-1           | 1.4E-8             | 3.0E-9             | 4.7       |           |             |       |
|      |      |                                         | 3E-1           | 8.4E-10            | 1.9E-10            | 4.4       |           |             |       |
|      |      |                                         | 2E-1<br>1E-1   | 2.3E-11<br>1.3E-13 | 6.9E-12<br>3.7E-14 | 3.3       |           |             |       |
|      |      |                                         | 5E-2           | 8.7E-16            | 2.6E-16            | 3.3       | 8.3 (6.7) | 6.3         | 1.3   |
|      | 4,4  | (4,4)                                   | 5E-1           | 2.5E-7             | 2.0E-7             | 1.3       |           |             |       |
|      |      |                                         | 4E-1           | 1.0E-9             | 7.6E-10            | 1.3       |           |             |       |
|      |      |                                         | 2E-1           | 1.9E-11            | 8.3E-14            | 1.4       |           |             |       |
|      |      |                                         | 1E-1           | 8.3E-17            | 6.5E-17            | 3.5       | 6.1 (4.8) | 4.4         | 1.4   |
|      | 4,4  | (2,2,2,2)                               | 5.8E-1         | -                  | 6.7E-8             | -         |           |             |       |
|      |      |                                         | 5.5E-1<br>5E-1 | -<br>2.5E-7        | 8.5E-9<br>7.2E-0   | - 35      |           |             |       |
|      |      |                                         | 4E-1           | 1.0E-9             | 5.0E-11            | 20        |           |             |       |
|      |      |                                         | 3E-1           | 1.9E-11            | 1.1E-12            | 17        |           |             |       |
|      |      |                                         | 2E-1<br>1E-1   | 1.1E-13<br>8.3E-17 | 9.9E-15<br>3.8E-17 | 2.2       | 61(48)    | 4.6         | 13    |
| H    | 5,5  | (5,5)                                   | 5E-1           | 1.2E-7             | 9.4E-8             | 1.3       | 0.1 (1.0) |             |       |
|      |      |                                         | 4E-1           | 1.2E-10            | 9.1E-11            | 1.3       |           |             |       |
|      |      |                                         | 3E-1           | 7.4E-13            | 5.7E-13            | 1.3       | 4 2 (2 2) | 2.0         | 1.4   |
|      | 5.5  | (2.2.2.2.2)                             | 5.8E-1         | 9.9E-10            | 6.3E-9             | - 1.4     | 4.2 (3.3) | 5.0         | 1.4   |
|      |      |                                         | 5.5E-1         | -                  | 8.2E-10            | -         |           |             |       |
|      |      |                                         | 5E-1           | 1.2E-7             | 9.3E-11            | 1290      |           |             |       |
|      |      |                                         | 4E-1<br>3E-1   | 7.4E-13            | 2.0E-12<br>2.4E-14 | 31        |           |             |       |
|      |      |                                         | 2E-1           | 9.9E-16            | 1.0E-16            | 10        | 4.2 (3.3) | 3.1         | 1.3   |
|      | 6,6  | (6,6)                                   | 5E-1           | 7.2E-8             | 6.0E-8             | 1.2       |           |             |       |
|      |      |                                         | 4.5E-1<br>4E-1 | 3.5E-10<br>1.7E-11 | 2.9E-10<br>1.4E-11 | 1.2       |           |             |       |
|      |      |                                         | 3.5E-1         | 9.1E-13            | 7.4E-13            | 1.2       |           |             |       |
|      |      |                                         | 3E-1           | 4.0E-14            | 3.3E-14            | 1.2       | 3.7 (2.9) | 2.7         | 1.4   |
|      | 6,6  | (4,4,4)                                 | 5.5E-1<br>5E-1 | 7.2E-8             | 1.2E-7<br>2.0E-10  | - 360     |           |             |       |
|      |      |                                         | 4.5E-1         | 3.5E-10            | 1.8E-11            | 19        |           |             |       |
|      |      |                                         | 4E-1           | 1.7E-11            | 1.3E-12            | 13        |           |             |       |
|      |      |                                         | 3.5E-1<br>3E-1 | 9.1E-13<br>4.0E-14 | 9.0E-14<br>3.9E-15 | 10        | 3.7 (2.9) | 2.7         | 1.4   |
|      | 6,6  | (3,3,3,3)                               | 5.8E-1         | -                  | 3.8E-8             | -         |           |             |       |
|      |      |                                         | 5.5E-1         | -                  | 8.6E-10            | -         |           |             |       |
|      |      |                                         | 4.5E-1         | 3.5E-10            | 3.9E-10<br>3.0E-11 | 185       |           |             |       |
|      |      |                                         | 4E-1           | 1.7E-11            | 6.0E-13            | 28        |           |             |       |
|      |      |                                         | 3.5E-1         | 9.1E-13            | 4.8E-14            | 19        | 2.5 (2.0) |             |       |
|      | 6.6  | (222222)                                | 3E-1<br>6E-1   | 4.0E-14            | 2.3E-15<br>1.5E-8  | 17        | 3.7 (2.9) | 2.6         | 1.4   |
|      | -,-  | (====================================== | 5.5E-1         | -                  | 1.7E-10            | -         |           |             |       |
|      |      |                                         | 5E-1           | 7.2E-8             | 1.4E-11            | 5143      |           |             |       |
|      |      |                                         | 4.5E-1<br>4E-1 | 3.5E-10<br>1.7E-11 | 1.6E-12<br>1.4E-13 | 1219      |           |             |       |
|      |      |                                         | 3.5E-1         | 9.1E-13            | 1.3E-14            | 70        |           |             |       |
| μ    | 0.0  | (8.9)                                   | 3E-1           | 4.0E-14            | 9.0E-16            | 44        | 3.7 (2.9) | 2.8         | 1.3   |
|      | 8,8  | (8,8)                                   | 5E-1<br>4.5E-1 | 2.5E-8<br>2.5E-11  | 2.1E-8<br>2.1E-11  | 1.2       |           |             |       |
|      |      |                                         | 4E-1           | 5.1E-13            | 4.3E-13            | 1.2       |           |             |       |
|      |      |                                         | 3.5E-1         | 1.1E-14            | 9.7E-15            | 1.2       | £ 1 (2 T) | 2.4         | 1.5   |
|      | 8.8  | (4.4.4.4)                               | 5.8E-1         | 2.0E-16            | 1./E-16<br>1.2E-8  | - 1.2     | 5.1 (3.7) | 5.4         | 1.5   |
|      |      |                                         | 5.5E-1         | -                  | 8.9E-11            | -         |           |             |       |
|      |      |                                         | 5E-1           | 2.5E-8             | 1.7E-11            | 1471      |           |             |       |
|      |      |                                         | 4.5E-1<br>4E-1 | 5.1E-13            | 6.8E-15            | 75        |           |             |       |
|      |      |                                         | 3.5E-1         | 1.1E-14            | 4.1E-16            | 27        | 4.4 (3.2) | 2.8         | 1.6   |
|      | 9,9  | (9,9)                                   | 5E-1           | 1.5E-8             | 1.3E-8             | 1.2       |           |             |       |
|      |      |                                         | 4E-1           | 9.7E-14            | 8.3E-12            | 1.2       |           |             |       |
|      |      |                                         | 3.5E-1         | 1.4E-15            | 1.2E-15            | 1.2       | 5.1 (3.7) | 3.4         | 1.5   |
|      | 9,9  | (6,6,6)                                 | 5.5E-1<br>5E-1 | 1.5E-8             | 1.9E-8<br>5.3E-12  | - 2830    |           |             |       |
|      |      |                                         | 4.5E-1         | 7.2E-12            | 1.6E-13            | 45        |           |             |       |
|      |      |                                         | 4E-1           | 9.7E-14            | 4.0E-15            | 24        | 61/27     |             | 1.    |
|      | 9.9  | (3,3,3,3,3,3)                           | 3.5E-1<br>6E-1 | 1.4E-15            | 1.3E-16<br>3.5E-7  | - 11      | 5.1 (3.7) | 5.2         | 1.6   |
|      | - 10 | (-,-,-,0,0,0)                           | 5.5E-1         | -                  | 2.5E-11            | -         |           |             |       |
|      |      |                                         | 5E-1           | 1.5E-8             | 7.5E-13            | 20000     |           |             |       |
|      |      |                                         | 4.5E-1<br>4E-1 | 7.2E-12<br>9.7E-14 | 2.2E-13<br>2.0E-14 | 33<br>4.8 |           |             |       |
|      |      |                                         | 3.5E-1         | 1.4E-15            | 2.5E-14            | 0.06      | 5.1 (3.7) | 3.1         | 1.6   |

Table 6: Multistep Versus One-Step Methods : the LIEN Problem.

| IVP | IHO  | GHF       | h              | IHO              | Error              | Ratio | IHO       | Time | Ratio |
|-----|------|-----------|----------------|------------------|--------------------|-------|-----------|------|-------|
| D1  | P, 4 | (2.2)     | 6E 0           | 0.15.6           | COL C              | 1.6   | mo        | 0111 | Rutto |
| P1  | 5,5  | (5,5)     | JE-2<br>4E-2   | 6.1E-5<br>4.0E-6 | 2.2E=5             | 1.0   |           |      |       |
|     |      |           | 3E-2           | 2.0E=7           | 1.1E=7             | 1.7   |           |      |       |
|     |      |           | 2E-2           | 6.1E-9           | 2.9E-9             | 2.1   |           |      |       |
|     |      |           | 1E-2           | 3.3E-11          | 1.4E-11            | 2.4   |           |      |       |
|     |      |           | 5E-3           | 2.4E-13          | 9.7E-14            | 2.5   | 27 (22)   | 21   | 1.3   |
|     | 3,3  | (2,2,2)   | 6.5E-2         | -                | 1.7E-4             | -     |           |      |       |
|     |      |           | 6E-2           | -                | 3.2E-5             | -     |           |      |       |
|     |      |           | 5E-2           | 8.1E-5           | 2.9E-6             | 28    |           |      |       |
|     |      |           | 4E-2           | 4.0E-6           | 2.8E-7             | 14    |           |      |       |
|     |      |           | 3E-2           | 2.0E-7           | 2.1E-8<br>7.0E-10  | 9.5   |           |      |       |
|     |      |           | 1E-2           | 3.3E-11          | 7.9E-10<br>4.0E-12 | 7.0   |           |      |       |
|     |      |           | 5E-3           | 2.4E=13          | 3.3E-14            | 73    | 27 (22)   | 23   | 1.2   |
|     | 6.6  | (6.6)     | 5E-2           | 6.3E-7           | 4.8E-7             | 1.3   | =: (==)   |      |       |
|     | .,.  | (         | 4E-2           | 4.8E-9           | 3.7E-9             | 1.3   |           |      |       |
|     |      |           | 3E-2           | 1.7E-11          | 1.3E-11            | 1.3   |           |      |       |
|     |      |           | 2E-2           | 1.2E-14          | 9.3E-15            | 1.3   | 19 (13.4) | 12.8 | 1.5   |
|     | 6,6  | (4,4,4)   | 7E-2           | -                | 3.6E-5             | -     |           |      |       |
|     |      |           | 6E-2           | -                | 3.2E-7             | -     |           |      |       |
|     |      |           | 5E-2           | 6.3E-7           | 8.5E-9             | 74    |           |      |       |
|     |      |           | 4E-2<br>2E-2   | 4.8E-9           | 1.4E-10<br>0.7E-12 | 54    |           |      |       |
|     |      |           | 3E-2<br>2E-2   | 1.7E-11          | 9./E-15            | 18    | 10 (12 4) | 12.0 | 1.4   |
|     | 6.6  | (3 3 3 3) | 7.5E-2         | 1.2E-14          | 5.9E=5             | 1.7   | 19 (13.4) | 13.9 | 1.4   |
|     | 0,0  | (0,0,0,0) | 7E-2           | -                | 3.1E-6             |       |           |      |       |
|     |      |           | 6E-2           | -                | 9.7E-8             | -     |           |      |       |
|     |      |           | 5E-2           | 6.3E-7           | 3.2E-9             | 197   |           |      |       |
|     |      |           | 4E-2           | 4.8E-9           | 6.2E-11            | 78    |           |      |       |
|     |      |           | 3E-2           | 1.7E-11          | 4.9E-13            | 35    |           |      |       |
|     |      |           | 2E-2           | 1.2E-14          | 2.9E-14            | 0.4   | 19 (13.4) | 15.4 | 1.2   |
|     | 8,8  | (8,8)     | 6E-2           | 1.2E-4           | 9.9E-5             | 1.2   |           |      |       |
|     |      |           | 5E-2           | 3.5E-8           | 2.8E-8             | 1.3   |           |      |       |
|     |      |           | 4 5E=2         | 1.9E-9           | 1.5E-9             | 1.3   |           |      |       |
|     |      |           | 4E-2           | 8.1E-11          | 6.4E-11            | 1.3   |           |      |       |
|     |      |           | 3.5E-2         | 2.7E-12          | 2.2E-12            | 1.2   |           |      |       |
|     |      |           | 3E-2           | 6.6E-14          | 5.4E-14            | 1.2   | 19 (13.5) | 12.8 | 1.5   |
|     | 8,8  | (4,4,4,4) | 7.5E-2         | -                | 3.7E-6             | -     |           |      |       |
|     |      |           | 7E-2           | -                | 1.8E-7             | -     |           |      |       |
|     |      |           | 6.5E-2         | -                | 2.3E-8             | -     |           |      |       |
|     |      |           | 6E-2           | 1.2E-4           | 3.2E-9             | 37500 |           |      |       |
|     |      |           | 5.5E-2<br>5E-2 | 0.8E-/<br>2.5E.9 | 4.1E-10<br>4.9E-11 | 1059  |           |      |       |
|     |      |           | JE-2<br>4 5E-2 | 3.3E-8<br>1.0E-0 | 4.6E-11            | /29   |           |      |       |
|     |      |           | 4E-2           | 8.1E-11          | 3.7E-13            | 219   |           |      |       |
|     |      |           | 3.5E-2         | 2.7E-12          | 5.4E-14            | 50    |           |      |       |
|     |      |           | 3E-2           | 6.6E-14          | 3.5E-14            | 1.9   | 19 (13.5) | 14   | 1.4   |
|     | 9,9  | (9,9)     | 6E-2           | 4.5E-5           | 3.7E-5             | 1.2   |           |      |       |
|     |      |           | 5.5E-2         | 2.1E-7           | 1.7E-7             | 1.2   |           |      |       |
|     |      |           | 5E-2           | 8.6E-9           | 6.9E-9             | 1.2   |           |      |       |
|     |      |           | 4.5E-2         | 3.4E-10          | 2.7E-10            | 1.3   |           |      |       |
|     |      |           | 4E-2           | 1.1E-11          | 8.6E-12            | 1.3   | 10 (12 0) | 12.4 | 1.4   |
|     | 9.9  | (666)     | 5.5E-2<br>7E-2 | 2.0E-13          | 2.1E-13<br>1.3E-6  | 1.2   | 19 (13.9) | 13.4 | 1.4   |
|     | ,,,  | (0,0,0)   | 6.5E-2         |                  | 6.0E-8             |       |           |      |       |
|     |      |           | 6E-2           | 4.5E-5           | 5.6E-9             | 8393  |           |      |       |
|     |      |           | 5.5E-2         | 2.1E-7           | 5.1E-10            | 412   |           |      |       |
|     |      |           | 5E-2           | 8.6E-9           | 4.1E-11            | 210   |           |      |       |
|     |      |           | 4.5E-2         | 3.4E-10          | 2.6E-12            | 131   |           |      |       |
|     |      |           | 4E-2           | 1.1E-11          | 1.5E-13            | 73    |           |      |       |
|     |      |           | 3.5E-2         | 2.6E-13          | 1.3E-14            | 20    | 19 (13.9) | 13.6 | 1.4   |

Table 7: Multistep Versus One-Step Methods : the P1 Problem.

| IVP | IHO  | GHF       | h      |         | Error   |       |           | Time |       |
|-----|------|-----------|--------|---------|---------|-------|-----------|------|-------|
|     | p, q | σ         |        | IHO     | GHF     | Ratio | IHO       | GHF  | Ratio |
| P2  | 8,8  | (8,8)     | 1E-1   | 1.9E-5  | 1.6E-5  | 1.2   |           |      |       |
|     |      |           | 9E-2   | 4.4E-7  | 3.6E-7  | 1.2   |           |      |       |
|     |      |           | 8E-2   | 1.7E-8  | 1.4E-8  | 1.2   |           |      |       |
|     |      |           | 7E-2   | 5.7E-10 | 4.6E-10 | 1.2   |           |      |       |
|     |      |           | 6E-2   | 1.5E-11 | 1.2E-11 | 1.2   | 5.6 (4.1) | 3.9  | 1.4   |
|     | 8,8  | (4,4,4,4) | 1.4E-1 | -       | 3.0E-6  | -     |           |      |       |
|     |      |           | 1.3E-1 | -       | 3.7E-7  | -     |           |      |       |
|     |      |           | 1.2E-1 | -       | 5.5E-8  | -     |           |      |       |
|     |      |           | 1.1E-1 | -       | 8.0E-9  | -     |           |      |       |
|     |      |           | 1E-1   | 1.9E-5  | 1.1E-9  | 17273 |           |      |       |
|     |      |           | 9E-2   | 4.4E-7  | 1.3E-10 | 3385  |           |      |       |
|     |      |           | 8E-2   | 1.7E-8  | 1.7E-11 | 1000  |           |      |       |
|     |      |           | 7E-2   | 5.7E-10 | 5.5E-12 | 104   |           |      |       |
|     |      |           | 6E-2   | 1.5E-11 | 4.0E-12 | 3.7   | 5.6 (4.1) | 4.9  | 1.1   |
|     | 9,9  | (9,9)     | 1E-1   | 8.5E-6  | 7.0E-6  | 1.2   |           |      |       |
|     |      |           | 9E-2   | 1.4E-7  | 1.1E-7  | 1.3   |           |      |       |
|     |      |           | 8E-2   | 3.7E-9  | 3.1E-9  | 1.2   |           |      |       |
|     |      |           | 7E-2   | 8.9E-11 | 7.3E-11 | 1.2   |           |      |       |
|     |      |           | 6E-2   | 1.6E-12 | 1.4E-12 | 1.1   | 7.0 (5.1) | 4.8  | 1.5   |
|     | 9,9  | (6,6,6)   | 1.3E-1 | -       | 3.7E-6  | -     |           |      |       |
|     |      |           | 1.2E-1 | -       | 2.0E-7  | -     |           |      |       |
|     |      |           | 1.1E-1 | -       | 1.9E-8  | -     |           |      |       |
|     |      |           | 1E-1   | 8.5E-6  | 1.8E-9  | 4722  |           |      |       |
|     |      |           | 9E-2   | 1.4E-7  | 1.5E-10 | 933   |           |      |       |
|     |      |           | 8E-2   | 3.7E-9  | 1.1E-11 | 336   |           |      |       |
|     |      |           | 7E-2   | 8.9E-11 | 1.5E-12 | 59    |           |      |       |
|     |      |           | 6E-2   | 1.6E-12 | 1.0E-12 | 1.6   | 7.0 (5.1) | 5.2  | 1.3   |

Table 8: Multistep Versus One-Step Methods : the P2 Problem.

| IVP | IHO  | GHF       | h      |         | Error   |       |           | Time |       |
|-----|------|-----------|--------|---------|---------|-------|-----------|------|-------|
|     | p, q | σ         |        | IHO     | GHF     | Ratio | IHO       | GHF  | Ratio |
| P3  | 4,4  | (4,4)     | 5E-1   | 1.9E-3  | 1.4E-3  | 1.4   |           |      |       |
|     |      |           | 4E-1   | 4.0E-6  | 2.7E-6  | 1.5   |           |      |       |
|     |      |           | 3E-1   | 6.2E-8  | 3.9E-8  | 1.6   |           |      |       |
|     |      |           | 2E-1   | 3.4E-10 | 2.0E-10 | 1.7   |           |      |       |
|     |      |           | 1E-1   | 2.7E-13 | 9.4E-14 | 2.9   | 3.5 (2.7) | 2.5  | 1.4   |
|     | 4,4  | (2,2,2,2) | 6.5E-1 | -       | 9.1E-5  | -     |           |      |       |
|     |      |           | 6E-1   | -       | 1.1E-5  | -     |           |      |       |
|     |      |           | 5E-1   | 1.9E-3  | 7.0E-7  | 2714  |           |      |       |
|     |      |           | 4E-1   | 4.0E-6  | 4.3E-8  | 93    |           |      |       |
|     |      |           | 3E-1   | 6.2E-8  | 1.5E-9  | 43    |           |      |       |
|     |      |           | 2E-1   | 3.4E-10 | 1.5E-11 | 23    |           |      |       |
|     |      |           | 1E-1   | 2.7E-13 | 1.6E-14 | 17    | 3.5 (2.7) | 3.3  | 1.1   |
|     | 8,8  | (8,8)     | 5E-1   | 2.6E-5  | 2.1E-5  | 1.2   |           |      |       |
|     |      |           | 4.5E-1 | 1.5E-7  | 1.2E-7  | 1.2   |           |      |       |
|     |      |           | 4E-1   | 5.4E-9  | 4.4E-9  | 1.2   |           |      |       |
|     |      |           | 3.5E-1 | 1.7E-10 | 1.4E-10 | 1.2   |           |      |       |
|     |      |           | 3E-1   | 3.7E-12 | 3.0E-12 | 1.2   | 3.3 (2.4) | 2.2  | 1.5   |
|     | 8,8  | (4,4,4,4) | 6.8E-1 | -       | 8.9E-5  | -     |           |      |       |
|     |      |           | 6.5E-1 | -       | 8.3E-7  | -     |           |      |       |
|     |      |           | 6E-1   | -       | 4.8E-8  | -     |           |      |       |
|     |      |           | 5.5E-1 | -       | 6.4E-9  | -     |           |      |       |
|     |      |           | 5E-1   | 2.6E-5  | 7.6E-10 | 34211 |           |      |       |
|     |      |           | 4.5E-1 | 1.5E-7  | 8.8E-11 | 1705  |           |      |       |
|     |      |           | 4E-1   | 5.4E-9  | 7.9E-12 | 684   |           |      |       |
|     |      |           | 3.5E-1 | 1.7E-10 | 5.4E-13 | 315   |           |      |       |
|     |      |           | 3E-1   | 3.7E-12 | 5.1E-14 | 73    | 3.3 (2.4) | 2.5  | 1.3   |
|     | 9,9  | (9,9)     | 5E-1   | 1.0E-5  | 8.2E-6  | 1.2   |           |      |       |
|     |      |           | 4.5E-1 | 4.3E-8  | 3.5E-8  | 1.2   |           |      |       |
|     |      |           | 4E-1   | 1.1E-9  | 9.2E-10 | 1.2   |           |      |       |
|     |      |           | 3.5E-1 | 2.4E-11 | 2.0E-11 | 1.2   |           |      |       |
|     |      |           | 3E-1   | 3.5E-13 | 2.9E-13 | 1.2   | 3.9 (2.9) | 2.7  | 1.4   |
| 11  | 9,9  | (6,6,6)   | 6E-1   | -       | 6.8E-7  | -     |           |      |       |
|     |      |           | 5.5E-1 | -       | 2.0E-8  | -     |           |      |       |
|     |      |           | 5E-1   | 1.0E-5  | 1.6E-9  | 6250  |           |      |       |
|     |      |           | 4.5E-1 | 4.3E-8  | 1.2E-10 | 358   |           |      |       |
|     |      |           | 4E-1   | 1.1E-9  | 7.1E-12 | 155   |           |      |       |
|     |      |           | 3.5E-1 | 2.4E-11 | 3.0E-13 | 80    |           |      |       |
| 11  |      |           | 3E-1   | 3.5E-13 | 1.4E-14 | 25    | 3.9 (2.9) | 2.9  | 1.3   |

Table 9: Multistep Versus One-Step Methods : the P3 Problem.



Figure 12: Multistep Versus One-Step Methods : the LIEN Problem.



Figure 13: Multistep Versus One-Step Methods : the P1 Problem.



Figure 14: Multistep Versus One-Step Methods : the P2 Problem.



Figure 15: Multistep Versus One-Step Methods : the P3 Problem.

In our experiments, we always chose  $\sigma_0 = \ldots = \sigma_k$ . Indeed, the main cost of the method is determined by  $\max_{0 \le i \le k} \{\sigma_i\}$  and the order of the method is maximized when  $\sigma_0 = \ldots = \sigma_k$ . Since the actual step sizes are sufficiently small, this choice is thus always better. If we could use larger step sizes (e.g. by improving the bounding box process), then stability requirements might make other choices preferable.

The results close to machine precision are not very significant since rounding errors, not the actual method, are determining the accuracy. This explains why the curves in the figures tend to join for high precisions in some cases (e.g. in LIEN, P1, P2).

#### 9.4 Summary

We now summarize our experimental results. The main conclusions are:

- 1. The one-step GHF method is almost always better than existing (one-step) interval methods;
- 2. When f contains few operations, the one-step GHF method outperforms multistep GHF methods (and other existing methods);
- 3. When *f* contains many operations, multistep GHF methods outperform the one-step GHF method (and other existing methods);
- 4. GHF methods are very versatile and can be tailored to the application at hand;
- 5. The experimental results confirm the theoretical analysis.

In particular, the one-step GHF method performs generally better than the IHO<sup>\*</sup> method, a variant of Nedialkov's IHO method we proposed and which performed better than the original method on almost all our benchmarks. For low dimensional problems or when f contains few operations, the one-step GHF method is only slightly better than IHO<sup>\*</sup>. For higher dimensional problems where f contains many operations, the onestep GHF method is asymptotically more precise (by two orders of magnitude) than IHO<sup>\*</sup> for the same cost. When f contains few operations, the one-step GHF method is more effective than multistep GHF methods which have a relatively high fixed cost. When f contains many operations, multistep GHF methods perform better than one-step methods. They may produce orders of magnitude improvements in accuracy for a given execution time. Alternatively, they may reduce computation times substantially for a given precision since they avoid expensive Jacobian computations. Finally note that, although our implementation used a constant order and step size, it can be easily enhanced to incorporate standard order and step size control strategies, e.g., Eijgenraam's [Eij81] or Nedialkov's [Ned99] techniques.

# 10 Conclusion

This paper described a constraint satisfaction approach to initial value problems for parametric ordinary differential equations (i.e., ordinary differential equations where some data or initial conditions are uncertain and given by intervals). *The main novelty of the constraint satisfaction approach is to introduce, inside traditional interval methods, a pruning component which reduces the size of the predicted boxes by using relaxations of the ODE (also called filters).* The presented an effective pruning algorithm which uses (1) relaxations of the ODE based Hermite interpolation polynomials and enclosures of their error terms; (2) a globalization process to reduce variable dependency problems, and evaluation points that minimize the local error of the relaxations. The pruning component was integrated in an integration algorithm which also uses traditional techniques to handle the wrapping effect.

The novel integration algorithm was analyzed both theoretically and experimentally. The theoretical results indicate that, for the same computation costs, our algorithm provides quadratic (asymptotic) improvement in accurary over the best interval method we know of. They also show that our algorithm is significantly faster when the ODE contains many operations. Experimental results on a variety of standard and new benchmarks validated the theoretical results. The algorithm shows significant gains in accuracy, while not degrading computational performance. The experimental results also illustrate that the approach could produce significant gain in computation time when the ODE contains many operations.

It is also important to stress the versatility of our algorithm and of our approach. On the one hand, global Hermite filters can be tailored to the problem at hand by choosing the number of interpolation points as well as the number of derivative conditions imposed at each interpolation point. On the other hand, the pruning algorithm itself is generic and new pruning techniques may easily be incorporated.

There are a wealth of topics for further research:

- 1. The current algorithm can be enhanced in many ways to include, for instance, order and step size control strategies, and the automatic selection of the number of interpolation points and the number of derivative conditions imposed at each interpolation point.
- 2. The constraint satisfaction approach is clearly in its infancy and new relaxations (e.g., using splines, trigonometric interpolation, Legendre, Chebyshev, and Laguerre polynomials) should be investigated.
- 3. Compared to standard numerical methods, validated methods generally use smaller step sizes and stiff problems are particularly challenging. The main factors that limit the step size are the need to enclose error terms and the bounding box process. Finding efficient bounding box techniques is probably the main bottleneck at this point and it would be interesting to study how pruning techniques could help in this respect. Once we will be able to increase the step size, it will be important to analyze the stability of our approach and to compare it to the stability of other validated methods. The choice of many of the parameters mentioned in Point (1) will be guided by stability requirements in the case of stiff problems. Furthermore, our asymptotic theory for choosing an optimal evaluation time may not be valid anymore and we may have to find new techniques for choosing a good evaluation time.
- 4. A possible alternative to validated methods consists of dropping the enclosures of the error terms and the bounding box process in the interval method. We can thus keep the parametric aspect of the ODEs, but we lose the validated aspect of the method. However, the advantage is that larger step sizes can be used in this case. From our experimental results, we can expect a higher gain in performance of our GHF method over the IHO<sup>(\*)</sup> method for those larger step sizes. In addition, if we consider an ODE for which it is not possible to compute the Taylor coefficients  $(u)_2, (u)_3, \ldots$  of the solution, a multistep GHF( $\sigma$ ) method with  $\sigma_i \leq 2$ ,  $i = 0, \ldots, k$ , is the *only* interval method (we know of) which is able to integrate the ODE, since it does not need any Taylor coefficient.
- 5. A very promising direction of further research is the application of our approach to standard numerical methods for ODEs. Indeed, to our knowledge, the idea of evaluating a Hermite filter at a point which is different from the point at which the current value is computed is completely new. We can apply our asymptotic theory for the choice of an optimal evaluation time in the case of nonstiff problems. For stiff problems, the choice of a good evaluation time will be guided by stability requirements. Note that when  $\sigma = (1, ..., 1)$ , i.e., the Hermite interpolation polynomial reduces to a Lagrange interpolation polynomial, we can apply the classical linear stability theory to our approach.
- 6. Finally, it would be interesting to apply the constraint satisfaction approach to boundary value problems, where pruning arises naturally.

In summary, the constraint satisfaction approach should be a valuable addition to existing methods for the reliable solutions of differential equations and there are considerable room for further research in this area.

# Acknowledgments

This research is partially supported by the *actions de recherche concertée* ARC/95/00-187 and an NSF NYI award. Special thanks to Philippe Delsarte for interesting discussions and for his detailed comments. We also would like to express our gratitude to one of the reviewers for his detailed reading of the paper.

## References

- [Atk88] K. E. Atkinson. An introduction to Numerical Analysis. John Wiley & Sons, New York, 1988.
- [BM98] M. Berz and K. Makino. Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models. *Reliable Computing*, 4:361-369, 1998.
- [BS96] C. Bendsten and O. Stauning. FADBAD, a Flexible C++ Package for Automatic Differentiation Using the Forward and Backward Methods. Technical Report 1996-x5-94, Technical University of Denmark, 1996.
- [BS97] C. Bendsten and O. Stauning. TADIFF, a Flexible C++ Package for Automatic Differentiation Using Taylor Series. Technical Report 1997-x5-94, Technical University of Denmark, April 1997.
- [CB99] J. Cruz and P. Barahona. An Interval Constraint Approach to Handle Parametric Ordinary Differential Equations for Decision Support. *Proceedings of EKBD-99*, 93-108, 1999.
- [CR96] G. F. Corliss and R. Rihm. Validating an a Priori Enclosure Using High-Order Taylor Series. In Scientific Computing, Computer Arithmetic, and Validated Numerics, pages 228-238, 1996.
- [DJVH98] Y. Deville, M. Janssen, and P. Van Hentenryck. Consistency Techniques in Ordinary Differential Equations. In *CP*'98, Pisa, Italy, October 1998.
- [Eij81] P. Eijgenraam. *The Solution of Initial Value Problems Using Interval Arithmetic*. Mathematical Centre Tracts No. 144. Stichting Mathematisch Centrum, Amsterdam, 1981.
- [Enr75] W. H. Enright, T. E. Hull, and B. Lindberg. Comparing Numerical Methods for Stiff Systems of ODEs. BIT, 15:10-48, 1975.
- [HNW87] E. Hairer, S.P. Nørsett, G. Wanner. Solving Ordinary Differential Equations I. Springer-Verlag, Berlin, 1987.
- [HW91] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, 1991.
- [Jan01] M. Janssen. A Constraint Satisfaction Approach for Enclosing Solutions to Parametric Ordinary Differential Equations PhD Thesis, Department of Computer Science, UCL, Louvain, 2001. Available at http://www.info.ucl.ac.be.
- [JDVH99] M. Janssen, Y. Deville, and P. Van Hentenryck. Multistep Filtering Operators for Ordinary Differential Equations. In CP'99, Alexandria, VA, October 1999.
- [JVHD01] M. Janssen, P. Van Hentenryck, and Y. Deville A Constraint Satisfaction Approach to Parametric Differential Equations In *Joint International Conference on Artificial Intelligence (IJCAI-2001)*, Seattle, WA, August 2001.
- [Knu94] O. Knüppel. PROFIL/BIAS A Fast Interval Library. Computing, 53(3-4), pp. 277-287, 1994.

- [Kru69] F. Krueckeberg. Ordinary Differential Equations. In E. Hansen, editor, *Topics in Interval Analysis*, page 91-97. Clarendon Press, Oxford, 1969.
- [Kuh98] W. Kühn. Rigorously Computed Orbits of Dynamical Systems Without the Wrapping Effect. Computing, 61, No.1, 47-67, 1998.
- [Kuh98a] W. Kühn. Zonotope Dynamics in Numerical Quality Control. In Hege, H-Ch. (ed.) et al., Mathematical Visualization. Algorithms, Applications, and Numerics. International Workshop Visualization and Mathematics, Berlin, Germany, September 16-19, 1997. Springer, Berlin, 125-134, 1998.
- [Kuh99] W. Kühn. Towards an Optimal Control of the Wrapping Effect. In Csendes, Tibor (ed.), *Developments in Reliable Computing*. SCAN-98 Conference, 8th International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics. Budapest, Hungary, September 22-25, 1998. Kluwer Academic Publishers, Dordrecht, 43-51, 1999.
- [Loh87] R. J. Lohner. Enclosing the Solutions of Ordinary Initial and Boundary Value Problems. In Computer Arithmetic: Scientific Computation and Programming Languages, Wiley, 1987.
- [Moo66] R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.
- [Moo79] R.E. Moore. Methods and Applications of Interval Analysis. SIAM Publ., 1979.
- [Ned99] N. S. Nedialkov. Computing Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation, Ph.D. Thesis, Computer Science Dept, Univ. of Toronto, 1999.
- [NJ99] N.S. Nedialkov and K.R. Jackson. An Interval Hermite-Obreschkoff Method for Computing Rigorous Bounds on the Solution of an Initial Value Problem for an ODE, *Developments in Reliable Computing*, Kluwer, 1999.
- [NJC99] N. S. Nedialkov, K. R. Jackson and G. F. Corliss. Validated Solutions of Initial Value Problems for Ordinary Differential Equations. *Applied Mathematics and Computation*, 105, pp. 21-68, 1999.
- [Per00] L. Perko. Differential Equations and Dynamical Systems. Springer-Verlag, New York, 2000.
- [Ral81] L. B. Rall. Automatic Differentiation: Techniques and Applications, volume 120 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1981.
- [Rih98] R. Rihm. Implicit Methods for Enclosing Solutions of ODEs. J. of Universal Computer Science, 4(2), 1998.
- [SB80] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag, New York, 1980.
- [VHMK97] P. Van Hentenryck, D. McAllester, and D. Kapur. Solving Polynomial Systems Using a Branch and Prune Approach. *SIAM Journal on Numerical Analysis*, 34(2), April 1997.
- [VHMD97] P. Van Hentenryck, L. Michel, and Y. Deville. *Numerica: a Modeling Language for Global Optimization*. The MIT Press, Cambridge, Mass., 1997.
- [VH98] P. Van Hentenryck. A Gentle Introduction to Numerica. Artificial Intelligence, 103(1-2): 209-235, 1998.