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Chapter 1

Symmetry Breaking in Subgraph Pattern
Matching

1.1. Introduction

A symmetry in a Constraint Satisfaction Problem (CSP) is a bijective function that
preserves CSP structure and solutions. Symmetries are important because they induce
symmetric subtrees in the search tree. If the instance has no solution, failure has to
be proved for equivalent subtrees regarding symmetries. If the instance has solutions,
many symmetric solutions will have to be enumerated in symmetric subtrees. The
detection and breaking of symmetries can thus speed up the solving of a CSP. Sym-
metries arise naturally in graphs as automorphisms. However, although a lot of graph
problems have been tackled [BEL 05] [CAM 04] [SEL 03] and a computation domain
for graphs has been defined [DOO 05], and despite the fact that symmetries and graphs
are related, little has been done to investigate the use of symmetry breaking for graph
problems in constraint programming.

This work aims at applying and extending symmetry techniques for subgraph
matching. We show how to detect and handle global variable and value symmetries as
well as local value symmetries.

Related Works Handling symmetries to reduce search space has been a subject
of research in constraint programming for many years. Crawford and al. [CRA 96]
showed that computing the set of predicates breaking the symmetries of an instance
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is NP-hard in general. Different approaches exist for exploiting symmetries. Sym-
metries can be broken during search either by posting additional constraints (SBDS)
[GEN 01b] or by pruning the tree below a state symmetrical to a previous one (SBDD)
[GEN 03]. Symmetries can be broken by taking into account the symmetries into the
heuristic [MES 01]. Symmetries can be broken by adding constraints to the initial
problem at its root node [CRA 96] [GEN 01a]. Symmetries can also be broken by
remodelling the problem [SMI 01].

Dynamic detection of value symmetries (also called local value symmetries or con-
ditional value symmetries) and a general method for detecting them has been proposed
in [BEN 94]. The general case for such a detection is difficult. However in not-equal
binary CSPs, some value symmetries can be detected in linear time [BEN 04] and
dominance detection for value symmetries can be performed in linear time [BEN 06].

Lately research efforts has been triggered towards defining, detecting and break-
ing symmetries. Cohen and al. [COH 06] defined two types of symmetries, solution
symmetries and constraint symmetries and proved that the group of constraint symme-
tries is a subgroup of solution symmetries. Gent and al. [GEN 05b] rediscovered local
symmetries defined in [BEN 94] and evaluated several techniques to break local sym-
metries. However the detection of local symmetries remains a research topic. Sym-
metries were also shown to produce stronger forms of consistency and more efficient
mechanisms for establishing them [GEN 05a]. Finally, Puget [PUG 05b] showed how
to detect symmetries automatically, and showed that all variable symmetries could be
broken with a linear number of constraints for injective problems [PUG 05a].

Graph pattern matching is a central application in many fields [CON 04]. Many
different types of algorithms have been proposed, ranging from general methods to
specific algorithms for particular types of graphs. In constraint programming, sev-
eral authors [LAR 02, RUD 98] have shown that subgraph matching can be formu-
lated as a CSP problem, and argued that constraint programming could be a powerful
tool to handle its combinatorial complexity. Within the CSP framework, a model
for subgraph monomorphism has been proposed by Rudolf [RUD 98] and Valiente et
al. [LAR 02]. Our modeling [ZAM 05] is based on these works. Sorlin and Solnon
[SOR 04] proposed a filtering algorithm based on paths for graph isomorphism and
part of our approach can be seen as a generalization of this filtering. The same authors
recently proposed a new filtering algorithm for graph isomorphism based on iterative
labelling of nodes using local neighborhood structure [SOR 06]. A declarative view
of matching has also been proposed in [MAM 04]. In [ZAM 05], we showed that the
CSP approach is competitive with dedicated algorithms over a graph database repre-
senting graphs with various topologies.

Objectives This work aims at developing symmetry breaking techniques for sub-
graph matching modelled as a CSP in order to increase the number of tractable in-
stances of graph matching. Our first goal is to develop specific detection techniques
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for the classical variable symmetries and value symmetries, and to break such symme-
tries when solving subgraph matching. Our second goal is to develop local symmetries
detection and breaking techniques that can be easily handled for subgraph matching.

Results

– We show that all global variable symmetries can be detected by computing the
set of automorphisms of the pattern graph, and how they can be broken.

– We show that all global value symmetries can be detected by computing the set
of automorphisms of the target graph, and how they can be broken.

– Experimental results compare and analyze the enhancement achieved by global
symmetries and show that symmetry breaking is an effective way to increase the num-
ber of tractable instances of the subgraph matching problem.

– We show that local value symmetries can be detected by computing the set of
automorphisms on various subgraphs of the target graph. The GE-Tree method can be
extended to handle these local symmetries.

Outline Sections 2 provides the necessary background in subgraph matching and
in symmetry breaking. Section 3 describes a CSP approach for subgraph match-
ing. Sections 3 and 4 present variable symmetries and value symmetries in subgraph
matching. Section 5 describes experimental results for global symmetries. Local value
symmetries are discussed in Section 6. Finally, Section 7 concludes this work.

1.2. Background and Definitions

Basic definitions for subgraph matching and symmetries are introduced.

A graph G = (N, E) consists of a node set N and an edge set E ⊆ N × N ,
where an edge (u, v) is a pair of nodes. The nodes u and v are the endpoints of the
edge (u, v). We consider directed and undirected graphs. A subgraph of a graph
G = (N, E) is a graph S = (N ′, E′) where N ′ is a subset of N and E ′ is a subset of
E such that for all (u, v) ∈ E ′, u, v ∈ N ′.

A subgraph monomorphism (or subgraph matching) between Gp and Gt is a
total injective function f : Np → Nt respecting the monomorphism constraint :
(u, v) ∈ Ep ⇒ (f(u), f(v)) ∈ Et. Figure 1.1 shows an example of subgraph
monomorphism.

The CSP model of subgraph matching should represent a total function f : Np →
Nt. This total function can be modeled with X = x1, . . . , xn with xi a FD vari-
able corresponding to the ith node of Gp and D(xi) = Nt. The injective con-
dition is modeled with the global constraint ���������	��� (x1, . . . , xn). The monomor-
phism condition is translated into a set of constraints MCl(xi, xj) ≡ (xi, xj) ∈ Et
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Figure 1.1. Example solution for a monomorphism problem instance.

for all (i, j) ∈ Ep. This set of constraints can be turned into a global constraint
���

(x1, . . . , xn) ≡
∧

(i,j)∈Ep
MCl(xi, xj). Implementation, comparison with dedi-

cated algorithms, and extension to subgraph isomorphism and to graph and function
computation domains can be found in [ZAM 05, DEV 05]. A CSP instance is a triple
< X, D, C > where X is the set of variables, D is the universal domain specifying
the possible values for those variables, and C is the set of constraints. In the sequel,
n = |Np|, d = |D|, and D(xi) is the domain of xi. A symmetry over a CSP instance
P is a bijection σ mapping solutions to solutions, and hence non solutions to non so-
lutions [PUG 05b]. Since a symmetry is a bijection where domain and target sets are
the same, a symmetry is a permutation. A variable symmetry is a bijective function
σ : X → X permuting a (non) solution s = ((x1, d1), . . . , (xn, dn)) to a (non) so-
lution σs = ((σ(x1), d1), . . . , (σ(xn), dn)). A value symmetry is a bijective function
σ : D → D permuting a (non) solution s = ((x1, d1), . . . , (xn, dn)) to a (non) solu-
tion σs = ((x1, σ(d1)), . . . , (xn, σ(dn)). A value and variable symmetry is a bijective
function σ : X×D → X×D permuting a (non) solution s = ((x1, d1), . . . , (xn, dn))
to a (non) solution σs = (σ(x1, d1), . . . , σ(xn, dn)). A global symmetry of a CSP is
a symmetry holding on the initial problem. A local symmetry of a CSP P is a sym-
metry holding only in a sub-problem P

′

of P . The conditions of the symmetry are
the constraints necessary to generate P

′

from P [GEN 05b] [BEN 94]. A group is
a finite or infinite set of elements together with a binary operation (called the group
operation) that satisfies the four fundamental properties of closure, associativity, the
identity property, and the inverse property. An automorphism of a graph is a graph
isomorphism with itself. The set of automorphisms Aut(G) defines a finite group of
permutations.

1.3. Variable Symmetries

In this section, we show that the set of global variable symmetries of a subgrah
monomorphism CSP is the set of automorphims of the pattern graph. Moreover, we
show how existing techniques can be used to break all global variable symmetries.
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1.3.1. Detection

This subsection shows that, in subgraph matching, global variable symmetries are
the automorphisms of the pattern graph and do not depend on the target graph. It has
been shown that the set of variable symmetries of the CSP is the automorphism group
of a symbolic graph [PUG 05b]. The pattern Gp is transformed into a symbolic graph
S(Gp) where Aut(S(Gp)) is the set of variable symmetries of the CSP.

DEFINITION.– A CSP P modeling a subgraph monomorphism instance (Gp, Gt) can
be transformed into the following symbolic graph S(P ) :

1) Each variable xi is a distinct node labelled i.

2) If there exists a constraint MC(xi, xj), then there exists an arc between i and
j in the symbolic graph.

3) The constraint alldiff is transformed into a node typed with label ’a’; an arc
(a, xi) is added to the symbolic graph for each xi.

Figure 1.2 shows a pattern transformed into its symbolic graph. If we do not con-
sider the extra node and arcs introduced by the alldiff constraint, then the symbolic
graph S(P ) and Gp are isomorphic by construction. Given the labelling of nodes
representing constraints, an automorphism in S(P ) maps the alldiff node to itself and
the nodes corresponding to the variables to another node corresponding to the vari-
ables. Each automorphism in Aut(Gp) will thus be a restriction of an automorphism
in Aut(S(P )), and an element in Aut(S(P )) will be an extension of an element in
Aut(Gp). Hence the two following theorems.

THEOREM.– Suppose we have a subgraph monomorphism instance (Gp, Gt) and its
associated CSP P . Then :

– ∀ σ ∈ Aut(Gp) ∃ σ
′

∈ Aut(S(P )) : ∀ n ∈ Np : σ(n) = σ
′

(n)

– ∀ σ
′

∈ Aut(S(P )) ∃ σ ∈ Aut(Gp) : ∀ n ∈ Np : σ(n) = σ
′

(n)

THEOREM.– Given a subgraph monomorphism instance (Gp, Gt) and its associated
CSP P , the set of variable symmetries of P is the set of bijective functions Aut(S(P ))
restricted to Np, which is equal to Aut(Gp).

The above theorem states that only Aut(Gp) has to be computed in order to get all
variable symmetries.

1.3.2. Breaking

Two existing techniques are relevant to our particular problem. The first technique
is an approximation and consists in breaking only the generators of the symmetry
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Figure 1.2. Example of symbolic graph for a square pattern.

group [CRA 96]. Those generators are obtained by using a tool such as NAUTY. For
each generator σ, an ordering constraint s ≤ σs is posted.

The second technique breaks all variable symmetries of an injective problem by
using a SchreierSims algorithm, provided that the generators of the variable symmetry
group are known [PUG 05b]. Puget showed that the number of constraints to be posted
is linear with the number of variables. The SchreierSims algorithm computes a base
and a strong generating set of a permutation group in O(g2log3|G| + t.g.log|G|),
where G is the group, t the number of generators and g the size of the group of all
permutations containing G.

1.4. Value Symmetries

In this section we show how all global value symmetries can be detected and how
existing techniques can be extended to break them.

1.4.1. Detection

In subgraph matching, global value symmetries are automorphisms of the target
graph and do not depend on the pattern graph.

THEOREM.– Given a subgraph monomorphism instance (Gp, Gt) and its associated
CSP P , each σ ∈ Aut(Gt) is a value symmetry of P .
Proof Suppose that f is a subgraph monomorphism between Gp and Gt, and f(i) =
vi for i ∈ Np. Consider the subgraph G = (N, E) of Gt, where N = {v1, . . . , vn}
and E = {(i, j) ∈ Et | (f−1(i), f−1(j)) ∈ Ep}. This means that there exists a
monomorphic function f

′

matching Gp to σG. Hence ((x1, σ(v1)), . . . , (xn, σ(vn)))
is a solution. �

1.4.2. Breaking

Breaking global value symmetries can be performed by using the GE-Tree tech-
nique [RON 04]. The idea is to modify the distribution by avoiding symmetrical
value assignments. Suppose a state S is reached, where x1, . . . , xk are assigned to
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v1, . . . , vk respectively, and xk+1, . . . , xn are not assigned yet. The variable xk+1

should not be assigned to two symmetrical values, since two symmetric subtrees
would be searched. For each value vi ∈ D(xk+1) that is symmetric to a value vj ∈
D(xk+1), only one state S1 should be generated with the new constraint xk+1 = vi.

A convenient way to compute those symmetrical values uses the SchreierSims
algorithm. Algorithm SchreierSims outputs the sets Ui = {k | ∃ σ ∈ Aut(Gt) :
σ(i) = k ∧ σ(j) = j ∀ j < i}. A set Ui gives the images of i by the automorphisms
of G mapping 0, . . . , i−1 to themselves. If values are assigned in an increasing order,
assigning symmetrical values can be avoided by using those sets Ui [PUG 05b].

1.5. Experimental results

This section presents experiments for global variable and value symmetries.

The CSP model for subgraph monomorphism has been implemented in Gecode
(http://www.gecode.org), using CP(Graph) and CP(Map) [DOO 05] [DEV 05] . The
CP(Graph) framework provides graph domain variables and CP(Map) provides func-
tion domain variables. All the software is implemented in C++. The standard imple-
mentation of NAUTY [MCK 81] algorithm is used. We also implemented Schreier-
Sims algorithm. The computation of the constraints for breaking injective problems is
implemented, and GE-Tree method is also incorporated.

We have evaluated global variable symmetry detection and breaking, global value
symmetry detection and breaking, and global variable and value symmetry breaking.

The data graphs used to generate instances are from the GraphBase database con-
taining different topologies and has been used in [LAR 02]. There is a directed and
an undirected set of graphs. Experiments are performed on undirected and directed
graphs, because automorphism groups are expected to be larger in undirected graphs
than in directed graphs. We took the first 30 directed graphs and the first 50 undirected
graphs from GraphBase. The directed set contains graphs ranging from 10 nodes to
462 nodes. The undirected set contains graphs ranging from 10 nodes to 138 nodes.
Using those graphs, there are 405 instances for directed graphs and 1225 instances
for undirected graphs. All runs were performed on a dual Intel(R) Xeon(TM) CPU
2.66GHz.

A main concern is how much time it takes to compute the symmetries of the
graphs. NAUTY processed each undirected graph in less than 0.02 second. For di-
rected graphs, each graph is processed in less than 0.01 second except one of them
which terminate in 0.8 second and 4 of them which did not terminate in five min-
utes. Note that we did not tune NAUTY. The SchreierSims algorithm computes the U
structure for each directed graph in less than one second except for 3 of them which
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Table 1.1. Variable symmetries
Undirected graphs

solved total time mean time
CSP 58% 70 min. 5.95 sec.
Gen. 60,5% 172 min. 13.95 sec.
FVS 61.8% 101 min. 8 sec.

Directed graphs
solved total time mean time

CSP 67% 21 min. 4.31 sec.
Gen. 74% 47 min. 8.87 sec.
FVS 74% 40 min. 7.64 sec.

Table 1.2. Value Symmetries
Undirected graphs
solved total time mean time

CSP 53,7% 31 min. 20.1 sec.
GE-Tree 55,3% 6 min. 3.21 sec.

Directed graphs
solved total time mean time

CSP 67% 21 min. 4.31 sec.
GE-Tree 68% 21 min. 4.39 sec.

terminate in 0.5 second, 1 of them in 1.5 seconds, and 1 of them in 3.1 seconds. All
undirected graphs were processed by SchreierSims in less than one second, except
two of them, with 4 seconds and 8 seconds.

In our tests, we look for all solutions. A run is solved if it finishes in less than
5 minutes, unsolved otherwise. We applied the basic CSP model, the model where
constraints that break variable symmetries with generators (Gen.) are posted, and fi-
nally the full variable symmetry technique (FVS) that breaks all variable symmetries.
Results are shown in Table 1.1. In those runs, the preprocessing time has not been con-
sidered. The total time column shows the total time needed for the solved instances.
The mean time column shows the mean time for the solved instances.

Thanks to variable symmetry breaking constraints more instances are solved, for
the directed graphs as well as for the undirected graphs. Moreover, the time for solved
instances is increased because of the variable symmetry breaking constraints. Re-
garding the mean time, the full variable symmetry breaking constraint has a clear
advantage.

Value symmetry breaking is evaluated on the set of directed graphs and undirected
graphs. Table 1.2 shows that around one percent is gained. However the mean time for
undirected graphs is decreased, even thought this is not the case for directed graphs.
This may be due to the fact that there are less symmetries in directed graph than in
undirected graphs. For variable and value symmetries, a total of 233 undirected ran-
dom instances were treated. We evaluated variable and values symmetries separately
and then together in Table 1.3. This table shows that, as expected, value symmetries
and variable symmetries each increases the number of solved instances. Notice here
that value symmetry breaking with GE-Tree leads to new solved instances and better
performance, reducing mean time on solved instances. The full variable symmetry
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Table 1.3. Variable and value symmetries.
Undirected graphs

solved total time mean time
CSP 53,7% 31 min. 20.1 sec.

GE-Tree 55,3% 6 min. 3.21 sec.
FVS 54,9 % 31 min. 19 sec.

GE-Tree and FVS 55,3 % 26 min. 8.68 sec.

technique makes new instances solved, but does not significantly reduce mean time
on solved instances. Moreover, the combination of value symmetry breaking and vari-
able symmetry breaking does not combine the power of the two techniques. In fact the
GE-Tree upper bound of the number of the solved solutions is not increased by using
full variable symmetry technique, and its mean time is even increased.

From these experiments, we conclude that global variable and value symmetry
techniques give better performances and solve new instances. However they are not
sufficient to solve a significant higher percentage of instances. The next section
presents how to detect and handle local value symmetries.

1.6. Local Value Symmetries

In subgraph monomorphism, the relations between values are explicitly repre-
sented in the target graph. This allows the detection of local values symmetries. Con-
sider Figure 1.3. Only global value symmetries of P are in Aut(Gt). There exists
at least two local value symmetric solutions : {(x1, 1), (x2, 2), (x3, 3), (x4, 4)} and
{(x1, 2), (x2, 1), (x3, 4), (x4, 3)} although Aut(Gt) = ∅.

Figure 1.3. Example of matching whithout value symmetries but with local value symmetries.

Two techniques are presented in this section. The first one uses the target subgraph
defined by the union of the current domains, called the dynamic target graph, and the
second uses the graphs local to the current subproblem, called the partial dynamic
graphs.
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Figure 1.4. Example of dynamic target subgraph.

1.6.1. Dynamic target graph

This first technique to detect local value symmetries considers the subgraph of the
union of the current variable domains.

1.6.1.1. Detection

During the search, the target graph looses a node a whenever a /∈ ∪i∈Np
D(xi).

This is interesting because the relation between the values are known dynamically.

The set of values ∪i∈Np
D(xi) denotes the nodes of subgraph of Gt in which a

solution is searched. For a given state S, such a subgraph can be computed efficiently.
We first define this subgraph of Gt.

DEFINITION.– Let S be a state in the search where x1, . . . , xk are assigned, and
xk+1, . . . , xn are not assigned. The dynamic target graph G∗

t = (N∗

t , E∗

t ) is a sub-
graph of Gt such that :

– N∗

t = ∪i∈[1,...,n]D(xi)

– E∗

t = {(a, b) ∈ Et | a ∈ N∗

t ∧ b ∈ N∗

t }

Figure 1.4 shows an example of a dynamic target graph. In this figure, the circled
nodes are mapped in the current assignement. The blank nodes are the nodes excluded
from the union of the current domains, and the black nodes are the nodes included in
this union. The plain edges are the selected edges for the dynamic target subgraph.
The following theorem shows that each automorphism of G∗

t is a local value symmetry
for the state S.

THEOREM.– Suppose we have a subgraph monomorphism instance (Gp, Gt), its as-
sociated CSP P , and a state S in the search, each σ ∈ Aut(G∗

t ) is a local value
symmetry of P . Moreover, the conditions of σ are x1 = v1, . . . , xk = vk .
Proof Suppose Sol = (v1, . . . , vk) is a partial solution. Consider the dynamic target
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subgraph G∗

t . The state S can be considered as a new CSP P
′

of an instance (Gp, G
∗

t )
with additional constraints x1 = v1, . . . , xk = vk. By Theorem from Section 1.4.1,
the thesis follows. �

The size of G∗

t is an important issue, as we will dynamically compute symmetry
information with it. The following theorem shows that, because of the MC constraints,
the longest path in Gp has the same length as the longest path in Gt whenever at least
a variable is assigned.

DEFINITION.– Let G = (N, E) be a graph. Then maxd(G) denotes the size of the
longest simple path between two nodes a, b ∈ N .

THEOREM.– Suppose we have a subgraph monomorphism instance (Gp, Gt), its as-
sociated CSP P , a state S in the search, and suppose the MCl constraints are arc-
consistent. Then if ∃ i ∈ Np such that |D(xi)| = 1, then maxd(Gp) = maxd(G∗

t ).

This is a nice result for complexity issues, when maxd(Gp) is small. In Figure
1.4, maxd(Gp)=2 and only nodes at shortest distance 2 from the image of the node 1
in the target graph are included in G∗

t .

The dynamic target graph G can be computed dynamically. In [DEV 05], we
showed how subgraph matching can be modelled and implemented in CP(Graph),
an extension of CP with graph domain variables [DOO 05]. The domain of a graph
variable is modelled by a lower bound and an upper bound graph, and represents all
the graphs between the lower and upperbound. In this setting, a graph domain variable
T represents the matched target subgraph. The initial lower bound of T is the empty
graph, and the initial upper bound if Gt. When a solution is found, T is instantiated to
the matched subgraph of Gt. Hence, during the search, the dynamic target graph G∗

t

will be the upper bound of variable T and can be obtained in O(1).

1.6.1.2. Breaking

In this subsection, we show how to modify the GE-Tree method to handle local
value symmetries. Before distribution, the following actions are triggered :

1) Get G∗

t .

2) The NAUTY and SchreierSims algorithms are called. This returns the new U
′

i

sets.

3) The main problem is how to adapt the variable and value selection such that
local value symmetries are broken.

a) a new state S1 with a constraint xk = vk

b) a new state S2 with constraints : xk 6= vk and xk 6= vj ∀ j ∈ Uk−1 ∪U
′

k−1.

The only difference with the original GE-Tree method is the addition of the U ′

k−1

during the creation of the second branch corresponding to the state S2.
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An issue is how to handle the global and local structures U . In the Gecode system
(http://www.gecode.org), in which the actual implementation is made, the states are
copied and trailing is not needed. Thus the global structure U must not be updated
because of backtracking. A single global copy is kept during the whole search process.
In a state S where local values symmetries are discovered, structure U is copied into
a new structure U

′′

and merged with U
′

. This structure U
′′

shall be used for all states
S

′

having S in its predecessors.

1.6.2. Partial dynamic graphs

The second techhnique to detect local value symmetries considers the subgraphs
associated with the current state.

1.6.2.1. Detection

We first introduce partial dynamic graphs. Those graphs are associated to a state
in the search and correspond to the unsolved part of the problem. This can be viewed
as a new local problem to the current state.

DEFINITION.– Let S be a state in the search whose variables x1, . . . , xk are assigned
to v1, . . . , vk respectively, and xk+1, . . . , xn are not assigned yet.
The partial dynamic pattern graph G−

p = (N−

p , E−

p ) is a subgraph of Gp such that :

– N−

p = {i ∈ [k + 1, n]}

– E−

p = {(i, j) ∈ Ep | i ∈ N−

p ∧ j ∈ N−

p }

The partial dynamic target graph G−

t = (N−

t , E−

t ) is a subgraph of Gt such that :

– N−

t = ∪i∈[k+1,n]D(xi)

– E−

t = {(a, b) ∈ Et | a ∈ N−

t ∧ b ∈ N−

t }

The following theorem states that value symmetries of the local CSP P ′ can be
obtained by computing Aut(G−

t ) and that these symmetries can be exploited without
losing or adding solutions to the initial matching problem.

THEOREM.– Let (Gp, Gt) be a subgraph monomorphism instance, P its associated
CSP, and S a state of P during the search, where the assigned variables are x1, . . . , xk

with values v1, . . . , vk. Let P ′ be a new CSP of a subgraph monomorphism instance
(G−

p , G−

t ) with additional constraints x
′

k+1 = D(xk+1), . . . , x
′

n = D(xn). Then:

1) Each σ ∈ Aut(G−

t ) is a value symmetry of P
′

.

2) Assuming we have the Forward Checking (FC) property, we have
((x1, v1), . . . , (xn, vn)) ∈ Sol(S) iff ((xk+1, vk+1), . . . , (xn, vn)) ∈ Sol(P

′

).
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Proof sketch When forward checking (FC) is used during the search, in any state
in the search tree, every constraint involving one uninstantiated variable is arc consis-
tent. In other words, every value in the domain of an uninstantiated variable is consis-
tent with the partial solution. This FC property on a binary CSP ensures that one can
focus on the uninstantiated variables and their associated constraints without losing or
creating solutions to the initial problem. Such a property also holds when the search
achieves stronger consistency in the search tree (Partial Look Ahead, Maintaining Arc
Consistency, . . . ). �

The computation of G−

t can be easily performed thanks to graph variables. If T is
the graph variable representing the matched target subgraph (with initially lub(T ) = ∅
and glb(T ) = Gt), then during the computation G−

t is lub(T ) \ glb(T ).

1.6.2.2. Breaking

Breaking local value symmetries is equivalent to breaking value symmetries on the
subproblem P ′. Puget’s method and the dynamic GE-Tree method can thus be applied
to the local CSP P ′.

1.7. Conclusion

In this work, we present techniques for symmetry breaking in subgraph matching.
Specific detection techniques are developed for the variable symmetries and value
symmetries. We show that global variable symmetries and value symmetries can be
detected by computing the set of automorphisms on the pattern graph and on the tar-
get graph and how they can be broken. We also show that local value symmetries
can be detected by computing the set of automorphisms on various subgraphs of the
target graph. The GE-Tree method is extended to break these local symmetries. Ex-
perimental results analyzes the enhancement achieved by global variable and value
symmetries. It shows that symmetry breaking is an effective way to increase the num-
ber of tractable instances of the graph matching problem.

Ongoing work studies more specifically local variable as well as local value sym-
metries. Specific techniques are developed for this case [ZAM 07]. Another inter-
esting research direction is the automatic detection of symmetries in graph domain
variable.
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