CP(Graph+Map) for Approximate Graph
Matching

Yves Deville, Gregoire Dooms, Stéphane Zampelli, Pierre Dupont

Department of Computing Science and Engineering
Université catholique de Louvain
B-1348 Louvain-la-Neuve - Belgium
{yde,dooms,sz,pdupont }@info.ucl.ac.be

Abstract. Graph pattern matching is a central application in many
fields. In various areas, the structure of the pattern can only be approx-
imated and exact matching is then too accurate. We focus here on ap-
proximations declared by the user within the pattern, stating which part
could be discarded (optinal nodes and arcs), and also allowing maching
problems between monomorphism and isomorphism through the defini-
tion of forbidden arcs.

In this paper, we show how the integration of two new domains of com-
putation over countable structures, graphs and maps, can be used for
modeling and solving approximate graph matching as well as many other
matching problems. To achieve this, we introduce map variables where
the domain and range can de declared as finite set variables. We de-
scribe how such extended map variables can be realized on top of finite
domain and finite set variables. On top of CP(Graph+Map), we propose
a monomorphims constraint suitable for various matching problems. Fi-
nally, global constraints, enhancing the pruning of the monomorphism
constraint and of the different matching problems are proposed.

1 Introduction

Graph pattern matching is a central application in many fields [1]. Many different
types of algorithms have been proposed, ranging from general methods to specific
algorithms for particular types of graphs. In constraint programming, several
authors [2,3] have shown that graph matching can be formulated as a CSP
problem, and argued that constraint programming could be a powerful tool to
handle its combinatorial complexity.

In many areas, the structure of the pattern can only be approximated and
exact matching is then far too accurate. Approximate matching is a possible
solution, and can be handled in several ways. In a first approach, the matching
algorithm may allow part of the pattern to mismatch the target graph (e.g.
[4-6]). The matching problem can then be stated in a probabilistic framework
(see, e.g. [7]). In a second approach, the approximations are declared by the user
within the pattern, stating which part could be discarded (see, e.g. [8,9]). This
approach is especially useful in fields, such as bicinformatics, where one faces

a mixture of precise and imprecise knowledge of the pattern structures. In this
approach, which will be followed in this paper, the user is able to choose parts
of the pattern open to approximation.

Within the CSP framework, a model for graph monomorphism has been pro-
posed by Rudolf [3] and Valiente et al. [2]. Our modeling is based on these works.
Sorlin [10] proposed a filtering algorithm based on paths for graph isomorphism
and part of our approach can be seen as a generalization of this filtering. A
declarative view of matching has also been proposed in [11].

In constraint programming, two new domains of computation over count-
able structures have been introduced: graphs and maps. In CP(Graph) [12], a
new type of domain variables, graph domain variables, and constraints on these
variables are proposed. CP(Graph) can then be used to express and solve combi-
natorial graph problems modeled as constrained subgraph extraction problems.
In CP(Map) (e.g. [13,14]), map variables are proposed, but the domain and
range are limited to ground sets. Such a high level object is useful for modeling
problems such as warehouse location.

In this paper, we show how approximate graph matching can be modeled
and solved, within the CSP framework, on top of CP(Graph+Map).

Contributions The main contributions of this work are the following:

— Introduction of map variables, where the domain and range of the mapping
are not limited to ground sets, but can be finite set variables;

— Description of how a CP(Map) extension can be realized on top of finite
domain and finite set variables;

— Integration of CP(Graph+Map) for modeling and solving approximate graph
matching;

— Definition of a monomorphism constraint suitable for modeling and solving
different classes of matching problems: monomorphism and isomorphism,
graph and subgraph matching, exact and approximate matching;

— Definition of global constraints for the monomorphism constraint and for the
different matching problems.

The first section introduces the CP(Graph) framework. The introduction of
map variables in CP is described in Section 2. Approximate graph matching is
defined in Section 4, and its modeling within CP(Graph+Map) is handled in
Section 5. Section 6 proposes global constraints for a more effective pruning.

2 CP(Graph) [12]

Constants and Variables A (directed) graph g = (sn, sa) is a set of nodes sn,
and a set of arcs sa C sn X sn. An extension to undirected graphs is presented
in [12).

CP(Graph) introduces graph domain variables (gd-variables for short) in
constraint programming. However, CP(Graph) deals with many types of con-
stants and variables related to graphs. They are presented in Table 1. This table

presents the notations for constants and domain variables of each type. It also
shows one particular aspect of graphs: the inherent constraint stating that an
arc can only be present if both end nodes are present.

Type Representation Constraint Constants |Variables
Integer 0,1,2, io,il,... I(),Il,...
Node 071,2, No, N1, ... No,Nl,...
Arc (0, 1),(2,4), aop, a1, ... A(),Al,...
Finite set {0,1,2},{3,5} ... 50, 81y ..t So, S1, .-
Finite set of nodes|{0, 1,2}, {3,5} ... sno, sn1,...|SNo, SNy, ...
Finite set of arcs [{(0,3), (1,2)}, ... sag, sai, ... |SAo, SA1, ...
(SN, SA)
Graph SN a set of nodes SA - SN x SN go, g1, -.- Go, G1,
SA a set of arcs

Table 1. The different variables and constants of CP(Graph) along with their nota-
tions. Note only the graph has an inherent constraint.

There exists a partial ordering among graphs, defined by graph inclusion:
given g1 = (sn1,sa1) and g2 = (sna,saz), g1 C g2 (91 is a subgraph of g, iff
sn1 C sne and sa; C saz. We define graph domains as the lattice of graphs
included between two bounds: the greatest lower bound and the least upper
bound of the lattice.

The domain of each gd-variable is defined according to a least upper bound
graph and a greatest lower bound graph. The least upper bound graph defines
the set of possible nodes and arcs in the graph variable, while the greatest lower
bound defines the set of nodes and arcs which are known to be part of the graph
variable. If G is a gd-variable, we will denote dom(G) = [gr, gu] with g1, = glb(G)
and gy = lub(G). If S is a finite set variable, we denote dom(S) = [sr, sy], with
sr, = glb(S) and sy = lub(9).

CP(Graph) is integrated with the finite domain and finite set computation
domains. Classical constraints from these domains can be combined with graph
constraints to express a CSP in CP(Graph). We suppose it is possible to post a
constraint for each value in a set variable S, that is Vi € S : C(¢). This can be
done in two ways. Either by posting #sy constraints of the form i € S = C(7),
or by waiting until ¢ is known to be in S to post the constraint C'(¢). While the
former filters more, the latter uses less memory.

CP(Graph) is built over the finite set computation domain [15,16,13]. It also
shares its lattice structure. The usage of sets in a language able to express and
solve hard combinatorial problems dates back to 1978 with ALICE in the seminal
work of Lauriére [17]. The usage of graphs as structures of symbolic constraint
objects was proposed in 1993 by Gervet [15]. In that work, a graph domain is
modeled as an endomorphic relation domain. In 2002, Lepape et al. defined path
variables [18] which were used to solve constrained path finding problems in a
network design context.

Kernel Graph Constraints The kernel graph constraints constitute the minimal
set of constraints needed to express the other graph constraints of CP(Graph).
These constraints relating graph variables with arc and node variables provide
the suitable expressiveness of monadic second order logic [19]. The kernel graph
constraints are ArcNode, Nodes and Arcs.

Ares(G,SA) SA is the set of arcs of G.
Nodes(G,SN) SN is the set of nodes of G.

ArcNode(A, Ny, N2) The arc variable A is an arc from node N; to node Na.
This relation does not take a graph variable into account as every arc and node
has a unique identifier in the system. If A is determined, this constraint is a
simple accessor to the tail and head of the arc A and respectively if both nodes
are determined.

Building graph constraints over kernel constraints While the kernel constraints
enable to express the target problems of CP(Graph), defining higher level con-
straints eases the formulation of these problems. Such constraints can be built as
combinations of kernel constraints. Such networks of constraints may not prop-
agate as much as a dedicated global propagator for the constraint but are useful
as a reference implementation or as a quickly implemented prototype. We focus
here on some constraints related to constrained subgraph extraction and the
matching problems.

To alleviate the notation, we use a functional style for some constraints
by removing the last argument of a constraint and considering that the re-
sulting expression denotes the value of that omitted argument (e.g. Nodes(G)
denotes SN in Nodes(G,SN)). We also write (n1,ns) € Arcs(G) instead of
a € Arcs(G) A ArcNode(a,ny,ns).

The Subgraph(G1,G2) constraint can be translated to

Subgraph(G1,G2) = Nodes(G1) C Nodes(G2) A Arcs(G1) C Arcs(Ga)
which gives bound consistent pruning as C is also bound consistent.

InNeighbors(G,N,SN) holds if SN is the set of all nodes of G from which an
inward arc incident to IV is present in G. If N is not in G then SN is empty. It
can be expressed as the following network of constraints.

InNeighbors(G,N,SN) = SN C Nodes(G)
AVY(ni,n2) € Arcs(G) :ma =N & ny € SN

Similar expressions exist for inward arcs and the ”out” versions of these con-
straints. QutDegree and InDegree are the cardinality of these sets.

InducedSubGraph(G1,G3) holds if Gy is an induced subgraph of G.

InducedSubGraph(G1,G2) = SubGraph(G1,G2)ASN = Nodes(G2)\Nodes(G1)A
V(nl,n2) € Arcs(G1) : (n1 € SN Vny € SN) XOR (nl,n2) € Arcs(G2)

The graph constraints can be combined to model numerous NP(Hard) prob-
lems as illustrated in [12]. This article also presents consistency and propagation
rules of the kernel constraints, as well as some global constraints and a propotype
implementation of CP(Graph).

3 CP(Map)

Map variables were first introduced in CP in [13] where Gervet defined relation
variables. However, the domain and the range of the relations were limited to
ground finite sets. Map variables were also introduced as high level type con-
structors, simplifying the modeling of combinatorial optimization problems. This
was first defined in [14] as a relation or map variable M from set v into a set
w, where supersets of v and w must be known. Such map variables are then
compiled into OPL. This idea is developed in [20], but the domain and range
of a map variable are limited to ground sets. Relation and map variables are
also described in [21] as a useful abstraction in constraint modeling. Rules are
proposed for refining constraints on these complex variables into constraints on
finite domain and finite set variables. Map variables were also introduced in
modeling languages such as ALICE [17], REFINE [22] and NP-SPEC [23]. As
far as we know, map variables are not yet introduced directly in a CP language.
One challenge is then to extend current CP languages to allow map variables as
well as constraints on these variables.

We here sketch how a CP(Map) extension can be realized on top of finite
domain and finite set variables. For ease of presentation, we do not consider
relation variables and focus on map variables.

3.1 Map variables and kernel constraints

A map variable is declared as MapVar(M,S,T), where M is the map variable
and S, T are finite set variables. The domain of M is all the total surjective
functions from s to ¢, where s, ¢t are in the domain of S, T'. We call S the source
setof M, and T the target set of M. When M is instantiated (when its domain is
a singleton), the source set and the target set of M are ground sets corresponding
to the domain and the range of the mapping. An order relation on maps can
be defined as follows. Given MapVar(My,S1,T1) and MapVar(Ma, S,), we
have My C M> iff S; C So ATy C TaAVs € Sy : My(s) = Ma(s). We then obtain
a meet semi lattice, that is a semi lattice in which there exists a glb between
any two elements.

Ezample Let M be a map variable declared in MapVar(M,S,T), with
dom(S) = [{8},{4,6,8}] and dom(T) = [{},{1,2,4}]. A possible instance of
M is {4 — 1,8 — 4}. On this instance, S = {4,8}, and T = {1,4}. Another
instance is M = {4 - 1,8 = 1}, S = {4,8}, and T' = {1}.

The kernel constraint on a map variable M is the constraint Map(M, Vy, V1),
where Vp and V7 are finite domain variables. The constraint holds when Vj €

SAVL € TAM(Vy) = Vi, where S and T are the source and target sets of the
mapping M.
Map variables can be used for defining various kinds of mappings, such as :
— Total function from S to T: T' C T A MapVar(M,S,T")
— Partial function from S to T: T' CT AS' C S A MapVar(M,S',T")
— Bijective function from S to T: MapVar(M,S,T)A|S| =|T|AVi,j €S :
M (i) # M(j). The last conjunct is redundant but achieves better pruning.

Other forms of mapping can be derived by combining the above mappings.

3.2 Implementing CP(Map)

Map variables can be implemented by using a structure to model the relation.
The relation can be modeled in a way similar to [13] as an array of domain
variables. In that work, the source set is a ground set and an array of finite set
variables is used to represent the relation. These variables model the set of values
of the target set which are in relation with each of the values in the source set.
There are as much values in the source set as variables in the array.

The difference between our Map variables and the relations presented in
that work are the following. As maps are functions and not general relations,
the domain variables stored in this indexed array are not finite sets but finite
domain variables. The source set and target set are modeled by two set variables
S, and S;. These variables are constrained to be coherent with the values of the
image variables.

When a Map variable M is declared by MapVar(M,S,T) with lub(S) =
{v1,...,0n}, an array of n FD variables Image;,0 < i < n is allocated. We also
allocate a dictionary data structure indez used to store the index in the array
of each value of lub(S;) (i.e. index(v;) = j).

The initial domain of each variable in the I'mage array is lub(T) U{e;} where
e; is a special value used to denote the absence of image for this index. Obviously,
e(#) is chosen such that it is different from all values in lub(T'), and different from
the e; values of the other indexes. We just need an O(1) operation testing if a
value is a special value denoting the absence of image. Such a representation
allows a simple and efficient implementation of an injective/bijective condition
on M through a global alldiff constraint on the I'mage; variables. An example
is provided in Figure 1.

A global constraint implementing the following constraints is also posted:

— V0 < i < [lub(S)| : Image; # e; & index—1(i) € S & Image; € T
— Vj € lub(T) : Occurs(Image,j) =0=j ¢ T

where Occurs(Image, j) denotes the number of occurences of j in the set union
of Image;’s.

The constraint M ap(M, Vi, V1) is translated to Element(index(Vy), Image, V1)
where index(Vp) is a finite domain obtained by taking the index of each value
of the domain of V; using the index dictionary.

The Map variable is instantiated (its domain is a singleton) once all variables
in Image are instantiated.

dom(T)=[{},{1,2,4}]
Image | {1,2,e} {e} {14}
dom(S)=[{8},{4,8}]
1 2 3
index 4 4 4
4 6 8

Fig.1. Implementation of MapVar(M,S,T) (with initial domain dom(S) =
[{8},{4,6,8}] and dom(T) = [{},{1,2,4}]), assuming (other) constraints already
achieved some pruning.

4 Approximate graph matching [9]

In this section, we define the problem of subgraph matching and describe how
graph matching can be approximated through the definition of optional nodes
and forbidden arcs. The following definitions apply for directed as well as undi-
rected graphs.

A subgraph isomorphism between a pattern graph G, = (IV,, E,) and a
target graph Gy = (IVy, Ey) is a total injective function f : N, — N; respecting
(u,v) € Ep & (f(u), f(v)) € E;. The graph G, is isomorphic to G through
function f.

A subgraph monomorphism between G, and G, is a total injective func-
tion f : N, — Ny respecting (u,v) € E, = (f(u), f(v)) € E;. The graph G, is
monomorphic to Gy through function f.

Graph isomorphism and monomorphism can also be defined as variant of
the above definitions where the function f is bijective. Alternatively, subgraph
isomorphism and monomorphism can also be defined as graph isomorphism and
monomorphism with a subgraph of the target graph.

A subgraph matching is either a subgraph isomorphism or a subgraph
monomorphism. Subgraph isomorphism and monomorphism are known to be
NP-complete.

A useful extension of subgraph matching is approximate subgraph matching,
where the pattern graph and the found subgraph in the target graph may differ
with respect to their structure. The following definitions are from [9].

Optional nodes In our framework, the approximation is declared upon the
pattern graph. Some nodes are declared optional, i.e. nodes that may not be in
the matching. Specifying optional arcs in a monomorphism problem is useless as
it is equivalent to omitting the arc in the pattern. The status of the arcs depends
on the optional state of their endpoints. An arc having an optional node as one
of its endpoints is optional. An optional arc is not considered in the matching
if one of its endpoints is not part of the matching. Otherwise, the arc must also
belong to the matching.

Forbidden arcs Arcs may also be declared as forbidden between their two
endpoints (u,v), meaning that if u and v are in the domain of f, then (f(u), f(v))

must not exist in the target graph. A pattern graph with all its complementary
arcs declared as forbidden induces a subgraph isomorphism instead of a subgraph
monomorphism.

A pattern graph with optional nodes and forbidden arcs forms an approzimate
pattern graph.

Definition 1 An approxzimate pattern graph is o tuple (N,, O,, E,, F,) where
(Np, Ep) is a graph, Op C N, is the set of optional nodes and F, C N, x N, is
the set of forbidden arcs, with E, N F, = (.

The corresponding matching is called an approzimate subgraph matching.

Definition 2 An approximate subgraph matching between an approximate
pattern graph Gp = (Np, Op, Ep, F,) and a target graph Gy = (Ny, Ey) is a partial
function f : N, = Ny such that:
1. N\ O, C dom(f)
2. Vi, j € dom(f) i # j = f(i) # [(j)
3. Vi,j € dom(f) : (i,j) € Ep = (f(i), f(§)) € Ex
4. Virj € dom(f): (i) € By = (F@), F()) ¢ Br

The notation dom(f) represents the domain of f. Elements of dom(f) are
called the selected nodes of the matching. This means that dom(f) can be rep-
resented by a finite set variable. Its greatest lower bound consists of all selected
nodes, and its least upper bound consists of selected nodes and nodes that could
be selected.

Condition 1 requires mandatory nodes to be in the matching. Condition 2 is
the injective condition, also present in the exact case. Condition 3 enforces that
an arc between two selected endpoints must always be present in the target. Con-
dition 4 forbids the presence of an arc in the matching between node (f(u), f(v))
if the arc (u,v) was declared forbidden and u,v are in the matching. According
to this definition, if F,, = () the matching is a subgraph monomorphism, and if
F, = N, x N, \ E,, the matching is an isomorphism.

Condition 3 has an important impact on the set of possible matchings, as
shown in Figure 2. In this figure, mandatory nodes are represented as filled
nodes, and optional nodes are represented as empty nodes. Mandatory arcs are
represented with plain line, and optional arcs are represented with dashed lines.
Forbidden arcs are represented with a plain line crossed. Intuitively, one could
think that arc (5,6) in the pattern could be discarded, while node 6 could be
selected together with arc (4, 6). In fact, because of condition 3, matching of node
6 would require the arc (5,6) to be present in the target. Only two subgraphs
match this pattern as shown on the right side of Figure 2. The nodes and arcs
not selected in the target graph are grey.

5 Modeling approximate graph matching

In this section, we show how CP(Graph+Map) can be used for modeling and
solving approximate graph matching as well as many other matching problems.
This section is thus central to this paper and contitutes our main contribution.

Ny
\
e

Pattern Target Matching instances of the pattern graph

1R a
/ N\
/ N\
3 b c
D
5 d e
f

Fig. 2. Example of approximate matching.

The problem of graph matching can be stated along three different dimen-
sions:

— monomorphism versus isomorphism;
— graph versus subgraph matching;
— exact versus approximate matching

This leads to 8 different classes of problems. All these problems can be modeled
and solved through a single monomorphism constraint on graph domain variables
and a map variable.

5.1 The monomorphism constraint

The constraint Mono(P,G, M) holds if P is monomorphic to G through M,
where P, are graph domain variables and M is a map variable with source set
Nodes(P) and target set Nodes(G). A Mono(P,G, M) constraint thus implies
an implicit MapVar(M, Nodes(P), Nodes(G)) with the additional constraint
that M is bijective.

The Mono(P,G, M) constraint can be defined as follows :

Mono(P,G,M) = MapVar(M, Nodes(P), Nodes(G))
A |Nodes(P)| = |[Nodes(G)|
AVi,j € Nodes(P) : M (i) # M(j)
A (i,j) € Arcs(P) = (M (i), M(j)) € Ares(G)
The first three conjuncts (bijective mapping) can be implemented efficiently

as described in Section 3.2. We now show how this constraint can be used to
solve the different classes of problems.

5.2 Graph and subgraph monomorphism

Let p be a pattern graph and g be a target graph. The graphs p and g are thus
ground objects in CP(Graph). Graph monomorphism can easily be modeled as

Mono(p, g, M)

In a subgraph monomorphism problem, there should exist a monomorphism
between p and a subgraph of g. Hence the constraints:

Subgraph(G, g) AN Mono(p, G, M)

The graph G will thus be the matched subgraph of g. The range of M will
be the nodes of the matched subgraph of g. Notice that for subgraph matching,
it is essential to allow map variables with a finite set variable as target set.

5.3 Graph and subgraph isomorphism

Graph isomorphism can be modeled by two monomorphisms: one between the
graphs, and a second between the complementary graphs.

We first introduce a complementary graph constraint CompGraph(G,Gc)
which holds if Nodes(G) = Nodes(Ge) = N and Ares(Ge) = (N x N)\ Ares(G).

From the definition of graph isomorphism, an isomorphism is a monomor-
phism with the additional constraint that if an arc does not exist between two
pattern nodes, then an arc should not exist through the mapping. This additional
constraint states that the mapping should also be a monomorphism between the
complementary graphs. Hence the following constraint:

Mono(p,g, M)
A CompGraph(p, Pc) A CompGraph(g,Gc) A Mono(Pc,Ge, M)

Notice that the second line of the constraint could be replaced by |Arcs(p)| =
|Arcs(g)|, leading to a simpler constraint, but achieving less pruning. This also
holds for the next constraint.

Subgraph isomorphism can then be derived easily, following the same idea
than for monomorphism.

Subgraph(G, g) A Mono(p,G, M)
A CompGraph(p, Pc) A CompGraph(G,Gc) A Mono(Pe,Ge, M)

5.4 Introducing optional nodes

Let us first introduce optional nodes in the pattern graph. Let p be the pat-
tern graph with optional nodes, and p;,,., be the subgraph of p induced by
the mandatory nodes of p. Approximate graph monomorphism then amounts

10

to find a graph ps, between p,,q, and p which is monomorphic to the target
graph. However, between p,,q, and p, only the subgraphs induced by p should
be considered. When two optional nodes are selected in the matching, if there is
an arc between these nodes in pattern graph p, this arc must be considered in
the matching, according to our definition of optional nodes. We then obtain the
following constraint:

P € [pman, p] A InducedSubGraph(P,p) A Mono(P, g, M)

Notice that for optional nodes, it is essential to allow map variables with a
finite set variable as source set. This easily extends to subgraph monomorphism
with optional nodes:

Subgraph(G, g) A P € [pman, p] A InducedSubGraph(P, p) A Mono(P,G, M)

The domain of the mapping M will define the selected nodes in the pattern and
the range of M will define the selected nodes in the target graph g.

Although not described here, optional nodes can also be handled in (sub)graph
isomorphism.

5.5 Approximate matching

We now consider the general problem of approximate subgraph matching as de-
fined in the previous section. Given an approximate pattern graph (N, Op, Ep, F)p)
where (N, E,) is a graph, O, C N, is the set of optional nodes, and F, C N, x N,
is the set of forbidden arcs, and a target graph (IVy, E;), we define the following
CP(graph) constants :

— p: the pattern graph (N, E,),

— Pman: the subgraph of p induced by the mandatory nodes N, \ O, of p,
— g: the target graph (Ny, E),

— DPforp : the graph (N, Fp) of the forbidden arcs.

The modeling of approximate matching is a combination of subgraph monomor-
phism with optional nodes, and subgraph isomorphism. But here the comple-
mentary matching should hold between the complementary target subgraph and
the subgraph pjo.;, composed of the selected nodes in the pattern and all the
forbidden arcs between these nodes.

Subgraph(G, g) A P € [pman,P] A InducedSubGraph(P,p) A Mono(P,G, M)
A Nodes(Pc) = Nodes(P) A InducedSubGraph(Pc,pfors)
A CompGraph(G,Ge) A Mono(Pc,Ge, M)

11

6 Global constraints

The implementation of the Mono(P,G, M) constraint described in the previ-
ous section is not very efficient. More particularly, a classical arc-consistency
algorithm on the constraint

(i,7) € Arcs(P) = (M (4), M(j)) € Arcs(G) (1)

would cost O(ED?) amortized time [2], where N = |Nodes(P)|, E = |Arcs(P)|,
D = |Nodes(G)| and d is the average degree of the target graph G. It is therefore
important to design a more efficient global constraint for this constraint. Global
constraint should also be developed for the different matching problems.

The proposed global constraint for (1) is based on [2,9], but generalized in
the context of CP(Graph+Map). It is defined as follows for undirected graphs :

Vi € Nodes(glb(P)) Ya € Nodes(lub(G))
|Dom(M (7)) N Neighb(lub(G),a)] =0
= a ¢ Dom(M(j)) Vj € Neighb(glb(P),1)

where Dom/(X) denotes the domain of the variable, and Neighb(g,a) denotes
the neighbours of nodes a in graph g.

The proposed propagator keeps track of relations between all the target
nodes and the domain Dom(M(i)) in a structure S(i,a) = |[Dom(M(i)) N
Neighb(lub(G@), a)| representing the number of relations between a target node
a and the domain of M (). Whenever the neighbors of a target node a have
no relation with Dom(M (¢)), that is when S(i,a) = 0, node a is pruned from
all neighbors of M (7). However, in the above constraint, lub(G) may vary dur-
ing the computation, preventing a simple update of the S(i,a) data structure.
One could however show that the lub(G) term can be replaced by a constant
g = lub(Gy), that is the lub of G when the propagator is activated. Algorithm
1 shows an implementation of this global morphism constraint for undirected
graph. It has a O(NDd) amortized time complexity, and the structure S(i,a)
has O(ND) spatial complexity [2]. The preprocessing to compute S(i,a) costs
O(NDd). The global M C constraint is thus algorithmically global as it achieves
the same consistency than the original conjunction of constraints, but more ef-
ficiently [24]. For directed graphs, the global constraint should be split in two
constraints, one for the incoming arcs, and one for the outgoing arcs, leading to
two data structures for S(i,a), and two loops in Algorithm 1.

Redundant constraint, such as proposed in [2,9] could also be developed to
enhance the pruning.

Specialized global constraint can also be designed for the different match-
ing famillies. For instance, in the approximate matching with optinal nodes, the
InducedSubGraph(P,p) can be integrated in the Propagate MC propagator by
simply replacing Neighb(glb(P),i) by Neighb(p,i). For the approximate match-
ing with optional nodes and forbidden arcs, a single propagator could also be
designed following the ideas developed in [9].

12

Algorithm 1: Morphism Constraint

Propagate-MC(i,a)
// Element a exits from Dom(M (7))
for b€ Neighb(g,a) do

S(%,b) « S(i,b) — 1

if S(i,b) =0 then

foreach j € Neighb(glb(P),7) do
L | Dom(M(j)) < Dom(M(3)) \ {b}

7 Conclusion

In this paper, we showed how the integration of two new domains of computation
over countable structures, graphs and maps, can be used for modeling and solving
approximate graph matching as well as many other matching problems. We
already described CP(Graph) in [12]. Maps were already introduced in within
CP in [13], as well as in some modeling languages, but were limited to ground sets
for the domain and the range of the map variables. We extended CP(Map) with
domain and range of the map variable being finite set variables; we also described
how such extended map variables can be realized on top of finite domain and
finite set variables.

Appromimation matching is based on our work in [9] where approximations
are declared by the user within the pattern, stating which part could be dis-
carded (optinal nodes and arcs), and also allowing maching problems between
monomorphism and isomorphism through the definition of forbidden arcs.

A monomorphism constraint, defined on graph and map variables has been
designed and was shown to be suitable for modeling and solving different classes
of matching problems: monomorphism and isomorphism, graph and subgraph
matching, exact and approximate matching. Finally, we defined global con-
straints enhancing the pruning of the monomorphism constraint and for the
different matching problems.

CP(Graph+Map) is thus a suitable framework for approximate graph match-
ing. It allows the introduction of additional constraints on the pattern and on the
target graph, leading to constrained graph matching. Graph matching can also
easily be integrated within various graph analysis problem, such as constrained
path finding [12].

An implementation of CP(Graph) without map and without matching is re-
ported in [12]. A CSP implementation of our approach to approximate graph
matching, but without explicit graph and map variables is reported in [9]. It is
shown that the general framework is competitive with a specialized C++ Ull-
man (exact) matching algorithm, while also offering approximate matching. The
introduction of graph and map variables should not influence the performance.

An implementation of CP(Graph+Map) is now under development. Future
work includes a better integration of the graph analysis problems and the match-

13

ing problems, as well as extending graph matching to other graph comparison
problems such as subgraph bisimulation [25].

Acknowledgment This research is supported by the Walloon Region, project
BioMaze (WIST 315432). Many thanks to the anonymous reviewers for their
helpful comments.

References

10.

11.

12.

13.

14.

15.

16.

. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in

pattern recognition. IJPRAI 18 (2004) 265—298

Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern
matching. Mathematical. Structures in Comp. Sci. 12 (2002) 403-422

Rudolf, M.: Utilizing constraint satisfaction techniques for efficient graph pattern
matching. In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: TAGT.
Volume 1764 of Lecture Notes in Computer Science., Springer (1998) 238-251
Wang, J.T.L., Zhang, K., Chirn, G.W.: Algorithms for approximate graph match-
ing. Inf. Sci. Inf. Comput. Sci. 82 (1995) 45-74

Messmer, B.T., Bunke, H.: A new algorithm for error-tolerant subgraph isomor-
phism detection. IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 493-504
DePiero, F., Krout, D.: An algorithm using length-r paths to approximate subgraph
isomorphism. Pattern Recogn. Lett. 24 (2003) 33-46

Robles-Kelly, A., Hancock, E.: Graph edit distance from spectral seriation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27-3 (2005) 365-378
Giugno, R., Shasha, D.: Graphgrep: A fast and universal method for querying
graphs. In: ICPR (2). (2002) 112-115

Zampelli, S., Deville, Y., Dupont, P.: Approximate constrained subgraph match-
ing. In: International Conference on Principles and Practice of Constraint Pro-
gramming. (2005)

Sorlin, S., Solnon, C.: A global constraint for graph isomorphism problems. In
Régin, J.C., Rueher, M., eds.: CPAIOR. Volume 3011 of Lecture Notes in Computer
Science., Springer (2004) 287-302

Mamoulis, N., Stergiou, K.: Constraint satisfaction in semi-structured data graphs.
In Wallace, M., ed.: CP. Volume 3258 of Lecture Notes in Computer Science.,
Springer (2004) 393-407

Dooms, G., Deville, Y., Dupont, P.: Cp(graph): Introducing a graph computation
domain in constraint programming. In: International Conference on Principles and
Practice of Constraint Programming. (2005)

Gervet, C.: Interval propagation to reason about sets: Definition and implementa-
tion of a practical language. Constraints 1 (1997) 191-244

Flener, P., Hnich, B., Kiziltan, Z.: Compiling high-level type constructors in con-
straint programming. In: PADL ’01: Proceedings of the Third International Sympo-
sium on Practical Aspects of Declarative Languages, London, UK, Springer-Verlag
(2001) 229-244

Gervet, C.: New structures of symbolic constraint objects: sets and graphs. In:
Third Workshop on Constraint Logic Programming (WCLP’93), Marseille (1993)
Dovier, A., Rossi, G.: Embedding extensional finite sets in CLP. In: International
Logic Programming Symposium. (1993) 540-556

14

17.

18.

19.

20.

21.

22.

23.

24.

25.

Lauriere, J.L.: A language and a program for stating and solving combinatorial
problems. Artificial Intelligence 10 (1978) 29-128

Lepape, C., Perron, L., Regin, J.C., Shaw, P.: A robust and parallel solving of a
network design problem. In: Proceedings of the 8th International Conference on
Principles and Practice of Constraint Programming. Volume LNCS 2470. (2002)
633648

Courcelle, B.: On the expression of graph properties in some fragments of monadic
second-order logic. In: Descriptive complexity and finite models, Providence, AMS
(1997) 3862

Hnich, B.: Function variables for Constraint Programming. PhD thesis, Uppsala
University, Department of Information Science (2003)

Frisch, A.M., Jefferson, C., Hernandez, B.M., Miguel, I.: The rules of constraint
modelling. In: Proceedings of IJCAI 2005. (2005)

Smith, D.: Structure and design of global search algorithms. Technical Report
Tech. Report KES.U.87.12, Kestrel Institute, Palo Alto, Calif. (1987)

Cadoli, M., Palopoli, L., Schaerf, A., Vasile, D.: NP-SPEC: An executable specifi-
cation language for solving all problems in NP. Lecture Notes in Computer Science
1551 (1999) 16-30

Bessiere, C., Van Hentenryck, P.: To be or not to be ... a global constraint.
In: Proceedings of the 9th International Conference on Principles and Practise of
Constraint Programming (CP). Volume LNCS 2833., Springer-Verlag (2003) 789—
794

Dovier, A., Piazza, C.: The subgraph bisimulation problem. ITEEE Transaction
on Knowledge and Data Engineering 15 (2003) 1055-1056

15

