
Modular Fault Handling in a Network-Transparent Programming Language

Géry Debongnie, Raphaël Collet, Sébastien Doeraene, Peter Van Roy
Université Catholique de Louvain

Louvain-la-Neuve, Belgium

Abstract—A programming language is network-transparent
if the same program code executes with the same results,
whether it is run in a centralized or distributed setting,
provided there is no partial failure. The Erlang programming
language is network-transparent and handle failures by mes-
sage passing. We propose in this paper a generalization of the
Erlang failure handling model which can be used for more
expressive network-transparent languages.

The new design introduces two concepts: entity fault states
and fault streams. The failure of an entity is modeled in the
system as a language entity, and is visible to the programmer
via its corresponding fault stream. We also describe an imple-
mentation in Mozart 1.4.0. Evaluation shows that this model
incurs a slight overhead in performance, but yields much more
modular program code.

Keywords-network transparency; failure handling; fault
stream

I. INTRODUCTION

Distributed programming is often done by means of
libraries at various levels of abstraction. For example, Java
provides RMI and libraries that use RMI to provide higher
levels of abstraction, such as JavaSpaces. In this paradigm,
distribution is explicit, and issues regarding concurrency
(such as failures) must be tightly coupled to functional code.

Other languages provide a different perspective: network
transparency. A language is said to be network transparent
if the same code can be used whether distribution is used or
not, and if this code has the same semantics in both cases
(at least, if no partial failures occur during the execution of
the program, i.e., nodes and network links are assumed not
to crash).

For example, the Erlang programming language, designed
for distributed application, is network transparent. In the
Erlang model, every concurrent computation is run in a
process. Process are independent, and can communicate only
by message-passing. The Erlang model addresses the issues
regarding fault-tolerance with process linking. By default,
when processes A and B are linked, if A dies, then B dies
too. A process A can be set up as a system process. In this
case, if B dies, then A receives a special message reporting
the failure. Hence, the Erlang model uses only asynchronous
failure handling. This proved to be practical, easy to use and
robust.

In Erlang, partial failures are handled in a simple way:
whenever a process crashes, messages are sent and the error
is handled at some point, for example by restarting the

process. It works because asynchronous failure notifications
behave well with asynchronous remote invocations.

Contributions: In this paper, we explain how the Er-
lang failure handling model can be generalized for more
expressive network-transparent languages. The new design
introduces two concepts: entity fault states and fault streams
(see section II). The failure of an entity is modeled in the
system as a language entity, and is visible to the programmer
via its corresponding fault stream.

As a proof of concept, these ideas have been implemented
in the Oz programming language (a brief presentation of Oz
can be found in section III), and a complete implementation
of Erlang-like processes in Oz is shown in section IV.

II. FAILURE HANDLING MODEL

We use the word site to denote a computer used in a
distributed system. An entity is any value that can appear
in a programming language (for example, number, string,
array, function, object, . . . ). A distributed entity is an entity
used in the context of a distributed system. Some or all of
the sites may have a reference on it.

Two simple ideas lie at the core of our failure handling
model: fault states and fault streams. Each site monitors
every distributed entity that it knows of, and whenever the
fault state changes, it updates a (local) fault stream with the
newest state. That fault stream is a language entity that can
be accessed by the programmer to handle failure in the most
appropriate way.

A. Entity Fault States

Every site that has a reference on an entity uses failure
detectors to monitor it. From the point of view of a site, any
language entity can be in one of the following state:

• ok means that the entity is not suspected by any of the
basic detectors,

• tempFail means that the site is temporarily unable to
perform an operation on the entity,

• localFail means that the entity has permanently
failed on this site, but it might still be available on
other sites,

• permFail means that the entity has permanently
crashed on all sites.

The local fault state for the entity is a local view of the
global fault state. Every possible fault state transitions is
depicted in Figure 1. The state changes when the failure



ok

tempFail

localFail permFail

Figure 1. Local fault state of an entity

detectors suspect a problem, or receive a heartbeat. When
the state changes, the detector sends a notification with the
new fault state to the program.

This simple model provides the programmer with neces-
sary information to reason about failures and handle them
adequately. Network communications can be unreliable, so
it is quite natural to make a distinction between tempFail

and permFail.

B. Fault Stream

As explained previously, both temporary and permanent
failures are modeled with fault states. This fault state is
reified in the language as a fault stream, i.e., a growing
list of state transitions. This fault stream can be read by a
separate thread, which thus monitors the entity.

Besides, any operation on a failed distributed entity blocks
until the entity is ok again, or forever if it has permanently
failed. This prevents distribution errors to inject distribution-
related behavior in the program (e.g., exceptions), which in
turn prevents failures to break modularity. Note that it allows
a clean separation of distribution-related concerns from the
functional program.

In our Oz implementation, we can fetch the fault
stream of an entity x with the primitive GetFaultStream:
S = {GetFaultStream x}. S becomes a stream of the
successive fault states of x. The stream is closed when the
entity disappears from the memory.

Figure 2 illustrates a failure handler that displays the
successive fault states of an entity on the standard output.
It is simply a thread waiting for state transitions in the fault
stream of E. Each state transition is then displayed until the
fault stream is closed.

III. DISTRIBUTED PROGRAMMING IN MOZART/OZ

Mozart is an implementation of the multi-paradigm pro-
gramming language Oz. This section explains the most
relevant features of its distributed subsystem (Mozart/DSS).

Entities: Mozart has three kind of entities: stateless
entities (numbers, records, atoms, procedures, . . . ), single
assignment entities (unbound variable) and stateful entities
(cells and ports).

thread
f o r State in {GetFaultStream E} do
T = case State

of ok then "entity is fine"
[] tempFail then "temporary fail"
[] localFail then "failed locally"
[] permFail then "failed globally"
end

in
{Show T}

end
{Show "entity disappeared"}

end

Figure 2. A thread that prints messages when entity E’s fault state changes

Dataflow behaviour: When the value of an unbound
variable is needed, the virtual machine stops and wait until it
is bound1 (for example, in a different thread, or in a different
site). It is a nice behaviour when dealing with asynchronous
calls.

Network transparency: Any entity in Mozart-Oz can be
distributed, one needs only to get a reference and the virtual
machine will transparently convert any operations into the
appropriate network protocol operations, in such a way that
the distinction is not visible at the language level. By default,
Mozart/DSS uses the following distribution protocols:

• stateless entities: the value is sent together with the
reference (so it is replicated on every site which has a
reference to it).

• single assignment entities: the binding is done on the
first site that receives the reference.

• stateful entities: the state of the entity migrates from
one site to another, and operations are executed locally.
Network awareness: The default distribution protocol

might not be optimal for a given situation. So, there is a
need for the programmer to be able to control somehow the
distribution behaviour (network awareness). This is done by
using annotations. Annotations, which are simple statements
such as {Annotate x p}, do not change the semantic of
the program (if there are no failures). They only change the
network protocol used to distribute an entity.

IV. ERLANG MODEL

It is possible to implement Erlang-like processes using
the model presented in this paper. Message-passing is im-
plemented using ports, and monitoring links are made up of
asynchronous failure handlers.

A. Erlang-Like Process without Failure Handling

First, let us ignore failures. In that simple case, Figure 3
shows how to spawn a simple Erlang-like process in Oz.

1Using this mechanism with stateless entities is actually a simple
multithreaded programming model.



%% spawn a process with procedure Process
fun {Spawn Process}

Xs Ys
Self={NewPort Xs}
fun {Loop Xs}

case Xs of user(M)|Xt then
M|{Loop Xt}

end
end

in
thread Ys={Loop Xs} end
thread {Process Ys} end
Self

end

%% send message M to process A
proc {SendMsg A M}

{Send A user(M)}
end

Figure 3. Erlang-like processes without failures

The function Spawn takes an unary procedure as input
and return a port: Self (last line of the definition). Any
message M sent to the port Self by the procedure SendMsg

is wrapped in a record user(M). One sent, it is put into
the stream Xs, then unwrapped by the function Loop. This
makes a new stream Ys which is finally given as input to the
procedure Spawn. The statements thread ... end creating
threads are required, because otherwise the function Spawn

would wait forever.
In Erlang, the statement receive is very specific, and

non declarative by nature. In this model, we can choose to
handle the stream in a declarative way, if this is suitable.

This definition, however, does not allow processes to be
linked, nor does it handle failures.

B. Erlang-Like Process with Failure Handling

A complete implementation of Erlang-like process can
be found in Figure 4. In this implementation, the Loop

procedure maintains the administration of the process. The
variables Linkset and Sys encode respectively the set of
linked processes and a flag telling if the process is a sys-
tem process. The pattern matching statement forwards user
messages to the user process. It takes care of administrative
messages.
process and link messages offer a way to control the

administrative variables Linkset and Sys. exit messages
are sent by the Notify procedure, or by Monitor for
processes that would not be able to notify properly (e.g.,
because of a crash). Note that Monitor is an asynchronous
failure handler reading the fault stream of the linked process.
It is started when the process gets linked to another process.

Note also that abnormal termination of a linked process
kills a non-system process. For a system process, the process
is notified by a normal message.

%% link process Self to process A
proc {Link Self A}

{Send Self link(A)} {Send A link(Self)}
end

%% change the 'system process' flag
proc {SetSystem Self B}

X in {Send Self system(B X)} {Wait X}
end

%% spawn a process with procedure Process
fun {Spawn Process}

Xs Ys Self={NewPort Xs} T
fun {Loop Xs Linkset Sys}

case Xs of X|Xt then
case X
of user(M) then

M|{Loop Xt Linkset Sys}
[] system(B X) then

X=u n i t {Loop Xt Linkset B}
[] link(A) then

{Monitor A}
{Loop Xt A|Linkset Sys}

[] exit(E) then
{Notify E Linkset} nil

[] exit(A E) andthen Sys then
X|{Loop Xt Linkset Sys}

[] exit(A normal) then
{Loop Xt Linkset Sys}

[] exit(A E) then
{Kill T} {Notify E Linkset} nil

end
end

end
proc {Monitor A}

thread
i f {Member permFail

{GetFaultStream A}} then
{Send Self exit(A crashed)}

end
end

end
proc {Notify E Linkset}

f o r A in Linkset do
{Send A exit(Self E)}

end
end

in
thread Ys={Loop Xs nil f a l s e} end
thread

T={Thread.this}
t r y

{Process Ys}
{Send Self exit(normal)}

ca tch E then
{Send Self exit(E)}

end
end
Self

end

Figure 4. Erlang-like processes with failure handling



V. IMPLEMENTATION

The model presented in this paper has been successfully
implemented in the Mozart Oz programming system, and
is known as Mozart/DSS. This implementation is the result
of work from several developers, including Erik Klintskog,
Zacharias El Banna, Boris Mejı́as and Raphaël Collet [8],
[9].

One might be concerned about the performance aspect
of such a model. The mechanisms required for monitoring
each entity are not free. To answer that question, several
experiments have been performed on Mozart/DSS (see [2]).
They show that Mozart/DSS is 12% slower than Mozart
for the same program. The measure- ment is done on CPU
time only, i.e., network delays are ignored. This overhead is
incurred by the new distribution subsystem, because of the
fault stream man- agement.

VI. CONCLUSION

We present in this paper a model for fault-tolerant
network-transparent distribution. In this model, failure han-
dling is done exclusively asynchronously. An asynchronous
failure handler executes in its own thread, and listens to fail
state changes for an entity. Meanwhile, a statement requiring
that an entity be correct will wait instead of throwing an
exception. This model has many advantages compared do a
traditional approach:

• It is more flexible: instead of having two states for
an entity (dead or alive), our model is more granular.
The different states of an entity (ok, localFail,
tempFail, permFail) allow the programmer to take
the appropriate decision at the correct level of abstrac-
tion. This is much more flexible than timeouts.

• It is asynchronous: distributed programs have to take
into account network latency. Also, a remote request
might take some time to complete. It is therefore better
to handle failure asynchronously. It means that message
are sent whenever needed and processes can continue
to accomplish their task as soon as possible, instead of
waiting.

• It is modular: clearly, this is the most important aspect.
It allows for the code managing the failure of an entity
to stay close to the place where the entity is created. It
is a key point in separating functionality from failure
handling.

These ideas have been implemented in Distributed Oz.
The resulting system is network transparent, network aware,
and handle failures modularly. Performance is sufficient to
program large scale distributed systems, as done in [3],
where a transactional peer-to-peer storage system, Beernet
is implemented in Distributed Oz.

As a proof of the expressiveness of the model, Section IV
shows a full implementation of the Erlang model. Our model
thus generalizes the Erlang model, which can be encoded
as a particular strategy, but is not limited to it. Other fault
handling strategies can be programmed if needed.

REFERENCES

[1] C. CACHIN, R. GUERRAOUI, L. RODRIGUES, Introduction
to Reliable and Secure Distributed Programming, (2. ed.).
Springer 2011.

[2] R. COLLET, The Limits of Network Transparency in a Dis-
tributed Programming Language, Phd Thesis UCL, 2007.

[3] B. MEJÍAS, Beernet: A Relaxed Approach to the Design of
Scalable Systems with Self-Managing Behaviour and Transac-
tional Robust Storage, Phd Thesis UCL, 2010.

[4] P. VAN ROY, S. HARIDI, Concepts, Techniques, and Models of
Computer Programming, MIT Press, 2004.

[5] P. VAN ROY, S. HARIDI, P. BRAND, G. SMOLKA, M.
MEHL, R. SCHEIDHAUER, Mobile Objects in Distributed Oz,
ACM Transactions on Programming Languages and Systems
(TOPLAS), Sep. 1997, pp. 804-851.

[6] S. HARIDI, P. VAN ROY, P. BRAND, M. MEHL, R. SCHEI-
DHAUER, AND G. SMOLKA, Efficient Logic Variables for
Distributed Computing, ACM Transactions on Programming
Languages and Systems (TOPLAS), May 1999, pp. 569-626.

[7] J. ARMSTRONG, Making reliable distributed systems in the
presence of software errors, Phd Thesis, Royal Institute of
Technology, 2003.

[8] E. KLINTSKOG, Z. EL BANNA, P. BRAND, S. HARIDI, The
design and evaluation of a middleware library for distribution
of language entities, in Vijay A. Saraswat, editor, ASIAN,
volume 2896 of Lecture Notes in Computer Science, pp. 243–
259. Springer, 2003.

[9] E. KLINTSKOG, Generic Distribution Support for Program-
ming Systems, Phd Thesis SICS, 2005.


