

The Challenges and Opportunities of Multiple Processors:
Why Multi-Core Processors are Easy and Internet is Hard

Peter Van Roy

Department of Computing Science and Engineering
Université catholique de Louvain

B-1348 Louvain-la-Neuve, Belgium
peter.vanroy@uclouvain.be

The era of programming with single processors has
ended. Decades of prophesies have at last come true:
programming with multiple processors has now entered
the mainstream. Two forces have caused this transition
to happen now. First, the Internet, which is a network of
many loosely coupled processors. It had been gaining
relevance for many years, but only recently has it
achieved sufficient bandwidth and reliability to permit
real distributed applications. The second force is the
emergence of multi-core processors. Each of these
forces brings a challenge for developers, but the two
challenges are completely different in nature.

1. The challenge of multi-core processors
A multi-core processor combines two or more
processing elements (called cores) in a single package,
on a single die or multiple dies. The cores share the
interconnect to the rest of the system and often share on-
chip cache memory. The challenge of programming
multi-core processors is real, but it is not a technical
challenge. It is a purely sociological challenge.
Technically, we have known since the 1980s how to
program multi-core processors (in the guise of shared-
memory multiprocessors) and how to write programs for
them (in terms of parallel algorithms). There is a
simple, natural, and powerful approach for
programming these machines: dataflow programming.
Many languages and systems implement this approach
(see, e.g., Wikipedia for a long list). They are
descendants of the venerable Id, Id Nouveau, SISAL,
and other early dataflow languages. Google's well-
publicized MapReduce is one of the most popular new
tools that takes advantage of dataflow ideas [1], but
these ideas are not new. In fact, they date from the
1970s [2]. A good exposition is given in chapter 4 of
[3]. The basic insight is that there exists a form of
concurrent programming, deterministic concurrency,
that has no race conditions, is as easy to program as
sequential programs, and can exploit parallel processors
as a bonus. Deterministic concurrency is enjoying a
renaissance thanks to clusters and multi-core processors.

2. The challenge of loosely coupled
systems
A loosely coupled networked system consists of a set of
processors and a network connecting them. It is useful
to generalize this to a set of agents, which includes
humans as well as processors. The challenge is how to
get these independent networked agents (processors and
humans) to collaborate and coordinate with each other
in real time. The first problem is that no one agent has

global knowledge (there is no “God's-eye view” of the
whole system inside the system). The only way to know
what another agent is doing is to ask (send a message
and wait for an answer). In the meantime, the agent
might have changed what it is doing. The second
problem is partial failure: an agent might fail (leave the
system or start behaving strangely). The other agents
should somehow find out about this and compensate, so
that the system still works. Both global knowledge and
partial failure are low-level technical problems. We can
overcome them (to some degree) by using the right
algorithms, such as clock synchronization, distributed
snapshots, and fault tolerance.

There was a real proliferation of work in distributed
algorithms in the 1990s, leading to a deep understanding
of how to solve the problems of lack of global
knowledge and partial failure [4,5]. Here is a sample of
what these algorithms can do. We now understand how
to make an all-or-none broadcast (all receive or none
receive) that works even though there might be
processor failures during the algorithm. We understand
how to make consensus (agreement among many
parties) even though there may be communication
problems or processor failures during the algorithm.
We understand how to find agreement when there are
malicious agents that do their best to sabotage the
algorithm (Byzantine agreement, the best possible
algorithm, can achieve agreement only when strictly less
than 1/3 of agents are malicious). There are dozens of
variations on these algorithms, depending on different
communication models, failure models, and algorithm
requirements. At this point, the reader might ask, with
all these algorithms to choose from, how should I design
my system? In fact, there is a simple answer that is
often right: build it as a decentralized system!

2.1 Decentralized systems

A good way to build a loosely coupled system is as a
decentralized system. That is, each computing node is
by default independent of all the others. Each
computing node contains the whole application and
works even if there is no communication whatsoever
between nodes. The system is then extended so that
each node can use information from other nodes when it
is available. Two important parts of such a design are
the split protocol and the merge protocol. Split defines
what happens when a connected node no longer
communicates with other nodes, and merge defines how
two independent nodes become connected again. The
merge protocol is based on data coherence and may
need input from the highest level of the system (e.g.,
human users) to resolve coherence issues. Based on this

idea, we are building a general application framework
for decentralized systems in the SELFMAN project [6].
The framework consists of a structured peer-to-peer
storage layer with a transaction protocol built on top.
The transaction protocol uses the Paxos algorithm, a
distributed uniform consensus algorithm, to ensure it
works well on the Internet.

Another example of a good decentralized system design
is the Mercurial version control system [7]. Mercurial is
a tool for software development by a team. Each team
member has a local copy of the whole source code
repository and can work in isolation. Different nodes
can be merged at any time, which combines the work of
different team members. New nodes can be created at
any time by cloning and given to new team members.
In this way, Mercurial supports software development
by a team whose membership can change rapidly and
whose Internet connectivity is highly irregular.

2.2 Conflicting goals

Loosely coupled systems have problems at a higher
level than the simple technical problems of global
knowledge and partial failure. These are the high-level
problems of conflicting goals and emergent behavior.
The first appears in peer-to-peer file sharing: in that
setting it is sometimes called the “freeloader problem”.
To solve it, you need to build the system so that each
agent's goals overlap with the overall system's goals.
Designing a system in this way is not easy and almost
always requires some adjustment during the system's
deployment. The BitTorrent family of protocols and
tools is a good example from computing. BitTorrent
allows people to download and share large files,
increasing performance and reliability by using
collaboration [8]. The incentive scheme in BitTorrent is
tuned so that freeloaders are discouraged.

2.3 Emergent behavior

The second high-level problem, emergent behavior, is
not really a problem. It is an opportunity. Emergent
behavior is what happens when the system as a whole
shows novel behavior that is not shared by any of its
parts. All complex systems show emergent behavior.
For example, a single note from a Beethoven symphony
impacts the listener as a nondescript sound, but brought
together in the way Beethoven intended, the notes can
impact the listener at a higher level (emotional and
intellectual). Google (again) gives us a good example
from computing: a Web page, when taken by itself, is
hard to evaluate regarding its usefulness, correctness,
and popularity. But taken together, all Web pages do
give useful information, which can be extracted with the
PageRank algorithm [9]. The apparent intelligence of
Google Search is an emergent property.

3. Conclusions
Computing with multiple processors has finally emerged
into the mainstream. In this position paper, I give a
brief overview of the main challenges. There are two

forms of multiple processor computing: shared-memory
(e.g., multi-core) processors and loosely coupled
processors (e.g., Internet), each with its own challenges.
For multi-core processors, the main challenges are
sociological. The technical problems were all solved
long ago with the invention of dataflow programming.
What remains is to educate programmers and to bring
dataflow ideas into mainstream languages. For loosely
coupled processors, the challenges are those of
distributed systems: lack of global knowledge, partial
failure, conflicting goals, and emergent behavior. These
challenges pose technical problems, but they are also
opportunities. I recommend that a loosely coupled
system should always be designed to be decentralized
by default, with collaboration between nodes added
afterwards.

Acknowledgements
The author thanks Raphaël Collet for suggesting to use
Mercurial as an example of a decentralized system.
This work is funded by the European Union in the
SELFMAN project (6FP contract 34084).

References
[1] Dean, Jeffrey, and Sanjay Ghemawat. “MapReduce:
Simplified Data Processing on Large Clusters.” In
OSDI '04: 6th Symposium on Operating Systems Design
and Implementation, pages 137–150, Dec. 2004.

[2] Kahn, Gilles. “The Semantics of a Simple Language
for Parallel Programming.” In IFIP Congress, pages
471–475, Aug. 1974.

[3] Van Roy, Peter, and Seif Haridi. Concepts,
Techniques, and Models of Computer Programming.
MIT Press, Cambridge, MA, 2004.

[4] Lynch, Nancy. Distributed Algorithms. Morgan
Kaufmann, San Francisco, CA, 1996.

[5] Guerraoui, Rachid, and Luís Rodrigues.
Introduction to Reliable Distributed Programming.
Springer-Verlag, 2006.

[6] Van Roy, Peter, Seif Haridi, Alexander Reinefeld,
Jean-Bernard Stefani, Roland Yap, and Thierry
Coupaye. “Self Management for Large-Scale
Distributed Systems: An Overview of the SELFMAN
Project.” Submitted for publication, Oct. 2007. At:
www.ist-selfman.org.

[7] Mercurial distributed version control system. At:
www.selenic.com/mercurial/wiki/.

[8] Cohen, Bram. “Incentives Build Robustness in
BitTorrent.” In Workshop on Economics of Peer-to-
Peer Systems, June 2003.

[9] Brin, Sergey, and Larry Page. “The Anatomy of a
Large-Scale Hypertextual Web Search Engine.”
Computer Networks and ISDN Systems, 30 (1-7), pages
107–117, April 1998.

