
Lock-Free Decentralized Storage for Transactional Upgrade Rollback∗

Boris Mejı́as, Gustavo Gutiérrez, Peter Van Roy
Université catholique de Louvain
firstname.lastname@uclouvain.be

John Thomson, Paulo Trezentos
Caixa Magica Software

firstname.lastname@caixamagica.pt

Abstract

Installing and upgrading software may introduce con-
flicts and errors into a system. Transactional Rollback al-
lows the system to return back to a previous, stable and
known state. However, to perform such a rollback, it is
necessary to store a large amount of information includ-
ing configuration and installation logs, as well as different
versions of software packages. Nevertheless, much of this
information is common to several users using the same soft-
ware and performing the same operations. We can reduce
the total amount of storage by having a decentralized archi-
tecture using a Distributed Hash Table (DHT) to localise
shared resources. We propose a lock-free key/value-set pro-
tocol to add and remove data from the DHT. The lock-free
protocol is not limited to transactional rollback, and it can
be used by other applications that also need value-sets as
part of their stored data.

1. Introduction
Restoring system software to a state at a previous time-

point is something that in computer science can be pursued
at different levels. One can undo an action at an application
level, can restore personal files or can rollback to a previous
version of an application just installed. Our work concerns
the latter: rolling-back between various states at a package
level of granularity. Although our focus is in GNU/Linux
systems, the findings can be extended to other operating
systems like MacOS, BSD or even Windows.

Software distribution in the free and open source soft-
ware community is mainly done by servers and mirrors
hosting a large repository of packages which are constantly
updated. As we will describe in more detail in Section 3,
there is a trend towards using the resources of the com-
munity users to help with software distribution, creating a
peer-to-peer network for decentralized storage. Based on
that idea, we identify the possibility of storing the informa-
tion that is needed to perform upgrade rollbacks, reducing

∗The research leading to these results has received funding from the
European Community’s Seventh Framework Programme (FP7/2007-2013)
under Grant agreement n 214898. The Mancoosi Project.

the amount of redundant information within the community,
and improving the performance of the software managing
system.

To index the decentralized storage we will use a DHT.
To provide consistency and robustness, we will use trans-
actional protocols based on the Paxos-consensus algorithm.
To improve performance, we propose to complement the
traditional key/value pair abstraction for DHT, with key/-
value sets, which are the main abstraction provided by
OpenDHT [9]. The operations to replicate the value-sets
have been designed with lock-free protocols to overcome
the problems indemnic to the dynamic nature of peer-to-
peer systems, as distributed locks are an important source
of problems in distributed programming.

2. Transactional Upgrade Rollback
Concerning software management, several tools exist

that provide rollback features in various guises:

• apt-rpm1: is a port of apt tools to RPM Package Man-
agement (RPM) based systems. Rollback was intro-
duced as a branch to apt-rpm by Caixa Mágica. Roll-
back works by hooking into apt-rpm and logging the
changes to the system into a sqlite database. Config-
uration files are maintained by the suite and as long
as the old package version is preserved with the log,
rollback can be performed.

• Nexenta OS rollback: uses ZFS as the basis for pro-
viding rollback features. Using a modified version of
apt, apt-clone, it combines the snapshot ability of ZFS
with the package installer system allowing the operat-
ing system to create new boot points each time a mod-
ification is performed. The snapshot mechanism cap-
tures the state of files on the system at a given time,
on modification of a package, that is then preserved
and can be recalled by the user or the system at a later
date.

• NixOS: uses a unique mechanism that differs greatly
from other rollback techniques. It relies on a sub-

1http://aptrpm.caixamagica.pt/



stantial shift in how the system performs operations,
by using a purely functional approach for applications.
Configuration changes are not stateful and any modifi-
cations to packages on the system, do not modify any
other parts and as such rollback is performed by using
the previous set of files.

These and other tools use different approaches to im-
plement rollback: pure functional, file system snapshot or
package association. However these approaches have sev-
eral limitations that are blocking the wide-scale uptake and
use of these tools.

In the case of a pure functional approach as developed
for NixOS the main problem is that it is disruptive and
the approach breaks compliance with Linux Standard Base
(LSB) and the system differs from most other standard
GNU/Linux based operating systems. A large issue pertains
to maintainer scripts and most of the time actions performed
by them have an impact outside of the installed package do-
main and affect the system or other packages. As part of the
work into Deliverable 3.2 for the MANCOOSI project 2 we
investigated the popularity of these scripts and it was clear
that hand-written scripts used in packages are a minority.

Using a Domain Specific Language (DSL) to express the
actions performed within the maintainer scripts provide us
with a powerful tool to:

• Detect if the rollback operation is possible or not. This
can be done in an explicit or implicit way.

• Serialize the steps performed during the installation,
avoiding evaluating environment variables where con-
ditions might change later.

• Provide the reverse functions of each statement or
group of statements named as template. In this way
if an installation fails part way through, these opera-
tions can be rolled back, by performing the associated
reverse functions.

• Log the serialized instructions to later provide a roll-
back path.

The log mechanism works in combination with modified
maintainer script files. RPM at certain stages executes sets
of commands in a particular order around the installation of
files and provide a way for the maintainers to get the infor-
mation that cannot be known a-priori and to integrate with
the end user’s system. RPM runs these scripts by passing
them to the shell but only receives the error/success code.
RPM thus does not know where in a maintainer script it has
failed and for what reason. It therefore has no ability to roll-
back the changes performed by the maintainer scripts. By
adding serialised DSL elements that interact with the log

2http://www.mancoosi.org/reports/d3.2.pdf

we are able to see where the maintainer script has failed
and if there are associated roll-back commands, then they
can be performed in reverse order either at the time, or at
a later point. As long as the logs are kept consistent, they
can be used to perform the rollback. The new logs con-
tain pointers to the rollback mechanism produced by Caixa
Mágica for apt-rpm and add additional information such as
the DSL and rollback commands. The DSL commands pro-
vide a functional ‘why’ for maintainer scripts that detail the
‘how’.

For assuring the correct rollback, using this mechanism,
from T to T − 1, one must assure the presence of the fol-
lowing elements at the instance of rollback:

1. The target version of the package T − 1

2. Package T maintainer scripts with reverse statements

3. The log of the transaction

The above elements can be stored in a peer-to-peer net-
work. In fact, both package version T − 1 and maintainer
scripts are common between users and can benefit from a
peer-to-peer strategy.

The transaction logs are not shared between users but
benefit in being in the network for fault-tolerance reasons.
Since the size of the logs are quite small we believe the end
users might be interested in storing other users’ transaction
logs, in a secure way, to benefit from the same service.

If the system is completely lost for some reason, a user
can rebuild the whole package system based on the informa-
tion stored on the network. User files not related to pack-
ages would not be stored on the network. The only user
centric data stored is that of the log and if this is stored in
an encrypted way and the correct policies are applied within
the peer-to-peer network then there should be no problems
with this approach. A user-selectable option for sensitive
data such as the log could determine whether or not it is
uploaded. This is a disruptive approach but it is feasible to
implement using the DSL implementation and the proposed
lock-free protocol.

3. Peer-to-peer Software-Package Distribution
Motivated by the success of peer-to-peer file-sharing ap-

plications, several approaches have targeted the goal of
making the distribution of software packages use a peer-to-
peer system, so as to reduce the load on servers and mirrors,
and increase download speed for the clients. In this section
we discuss some of them, and we describe our proposal to
include support for upgrade-rollback.

The EDOS Project [1] uses a peer-to-peer approach for
package distribution and uses metadata information for con-
tent searching. Basically they provide an infrastructure for
solving several problems: resource handling from the dis-
tribution side (e.g. resource sharing, load balancing), an



Figure 1. apt-p2p’s architecture

information system based on the metadata extracted and a
subscription/notification based update system. Three gran-
ularities are used in the system: package, utility and col-
lection (e.g. to represent a full Linux distribution). For a
common scenario like a software update, the system gener-
ates the metadata according to the granularity and indexes
it in the distributed system. With this information, all the
peers (according to their role) can start serving the update.

The system consists of three different types of peers:
publishers, mirrors and clients. A publisher peer is able to
add new content into the system and to manage client sub-
scriptions for the upgrade system. A mirror peer is able to
download and is mostly targeted at data replication but addi-
tionally it is ‘trusted’ for use for indexing purposes. Finally,
the clients are only allowed to download and subscribe, and
are considered ‘not trusted’ for indexing purposes.

In Debian-based Linux distributions3, we find
apt-p2p [3], which transparently integrates with
the official packaging tool: apt. Figure 1 describes
apt-p2p’s architecture. The approach uses a proxy
to communicate directly with the servers and mirrors
hosting the software-packages. The proxy also connects
to a distributed hash table (DHT) to find other peers
hosting the same packages the client is interested in. If the
packages can be found on other peers, the proxy does not
request them from the mirrors, saving them some upload
bandwidth, spreading that cost within the community.

Peers participating in the DHT and that are hosting pack-
ages are also running an instance of apt-p2p. They can
also download packages from other peers. Some peers may
participate only as DHT nodes, or only as package storage.
This can depend on their uptime and whether they are be-
hind a NAT or not. We find this architecture very simple
and effective. By using a DHT, it overcomes the problems
of using torrents for package distribution.

3Debian, Ubuntu, Knoppix and others.

Torrents do not work very well for package distribution
because of the way software evolves in the free and open
source community. Distributions are too large to put in one
torrent and means that users would have to download a lot
of software they would not use. Another reason is that pe-
riodically there are new versions for packages, resulting in
a high rate of recreation of torrents, dividing the seeders
even when they share several packages in common. On the
other hand, if every package is put in its own torrent, around
80% of them would have a size which is less than the mini-
mal download chunk (512KB), making the use torrent sub-
optimal. DebTorrent 4 a predecessor of apt-p2p, tries to
overcome these problems, and it implies changes in the way
software is currently distributed.

The use of the DHT not only overcomes torrent’s prob-
lem for distributing software but it also offers many pos-
sibilities to store more data which we will use to enhance
our rollback mechanism. Currently, apt-p2p stores in the
DHT a list of peers hosting each package. When a user
downloads the package, it updates the list putting itself as
one of the hosting peers. In our approach, when the user
performs the installation upgrade, it establishes the rollback
transaction using the DSL, as described in Section 2. The
user logs the transaction on their own machine, and stores
meta-data about it in the DHT, so it becomes available to
other peers, creating a decentralized database of rollback-
transactions.

3.1. Difference between packages
Another part of the installation will compare both ver-

sions of a software package, and it will establish the differ-
ence between them. To establish the difference, we can use
dedicated software for this task, namely Bsdiff 5 http://
www.daemonology.net/bsdiff/ and Courgette 6.
Both tools are concerned with finding the differences be-
tween two binary files and make a patch between them. An
important aspect on which both tools rely on is that even
minor changes in the source code will produce completely
different binaries but the part with the most changes is at
the creation of pointers. To avoid producing a big patch a
common approach is to create an external file and to index
the changed addresses and replace them by labels. By do-
ing this the difference is taken on real changes and not con-
cerned with changes introduced by the compiler when gen-
erating the binary file from similar (i.e. with minor changes)
source code. According to Courgette, the part of a binary
file that remains unchanged is about 80%.

The main difference between both tools is that Courgette
uses a disassembler as part of a preprocessing step. By do-
ing that, it is able to store some guess that improves the pro-

4http://debtorrent.alioth.debian.org
5http://www.daemonology.net/bsdiff/
6http://www.chromium.org/developers/

design-documents/software-updates-courgette



cess of creating a patch. Courgette is currently used to dis-
tribute updates for the Google Chrome web browser where
Bsdiff was used before. In the worst case, when changes are
huge, the performance of Courgette will be similar to Bsd-
iff. Both tools work at the file level, this is, they are not con-
cerned with directories or packages. An important aspect to
be discussed is how to get a better abstraction level for the
scenarios described here. For example, software packages
contain binary and text files. For both types there exists a
solution but integrating them in a transparent way will lead
to an abstraction at the package level. Metadata about diffs
is stored in the DHT, so that patches and software packages
can be retrieved from other peers.

3.2. Combining upgrade and rollback
We propose to use the existing architecture of apt-p2p

to combine information about upgrade and rollback. Ide-
ally, we would need to store only meta-data about the dif-
ference between versions of software packages, and the
patches will be determined dynamically as they are needed.
Working at the granularity of files, we assume the follow-
ing situation. Peers p and q have package foo-2.0, which is
composed of files f1, f2 and f3. Peer p upgrades to foo-
2.1. In the process of upgrading, peer p determines which
files differ between the two versions, and it stores the cor-
responding meta-data in the DHT. Let us say that only f3
is different between the two versions. That information will
be stored in the DHT. Along with the diff, peer p register
itself as host of foo-2.1, and it also stores in the DHT the
meta-data concerning the DSL rollback-transactions.

If p needs to rollback to foo-2.0, at a certain point it will
need to download that software. Instead of downloading the
whole package, which is unnecessary considering that files
f1 and f2 are unmodified, it will find out that it only needs
file f3, and that it can be retrieved from peer q. Similarly,
when peer q wants to upgrade to foo-2.1, it will just need
to download file f3 from peer p, or any other peer hosting
it. In this manner, both upgrade and rollback benefit from
the combined approach. To store the list of peers in every
data item of the DHT, we will use a data structure name
key/value-set, which can be modified without the need of
distributed locks. The protocol is described in the following
section.

4. Decentralized Storage
Structured overlay networks represent the third genera-

tion of peer-to-peer systems. Inspired mainly by Chord [11]
and Kademlia [5] among others, the DHT became one of the
main abstractions for decentralized storage. Different repli-
cation strategies were designed to provide fault tolerance. In
Kademlia, which is the DHT used by apt-p2p, every item
is replicated six times using the direct neighbours of each
responsible peer. If a given peer p is responsible for key

k, the key/value pair (k, v) is stored in p, it is also stored in
the three preceeding peers of the circular address space, and
then in three succeeding peers. This strategy has the disad-
vantage that the system always needs to go first through the
peer responsible for a key to find the replicas, creating con-
gestion.

We prefer the symmetric replication [4] strategy imple-
mented in systems such as Scalaris [10] and Beernet [6]. To
determine the f replicas of a key/value pair (k, v), the cir-
cular address space is divided into f partitions, where the
responsible peer is chosen by the formula:

(k + i ∗ bN/fc) mod N
whereN is the size of the address space, f is the replication
factor, and i is a natural number going from 1 to f .

4.1. Transactional Replicated DHT

Replicating each key/value pair independently is not
enough. Systems often need to modify several key/value
pairs, also called items, with the property that all changes
are committed to the replicas, and if one of the updates fails,
all of them get aborted too. In other words, transactional
access to the DHT is required. Note that in this section,
we mean “transaction” as an atomic modification of several
items on the decentralized store, and not the same kind of
transaction we described in Section 2.

The basic idea of a transaction is that one peer behaves as
the transaction manager (TM). Every peer holding a replica
of each item involved in the transaction is a transaction par-
ticipant (TP). The most basic protocol to run the distributed
transaction is a Two-Phase Commit. It is used by several re-
lational databases, using a hierarchical organization of the
nodes. The protocol is defined as follows: the TM request to
all TPs to lock the items in order to perform the update. The
participant will vote abort or commit according to whether
the lock is free to be taken or not. When the TM collects all
votes, it can decide if the update is committed to all replicas
or not. Two-phase commit strongly relies on the TM, mak-
ing it infeasible for peer-to-peer systems, where peers join
and leave the network very often. If the TM leaves the net-
work before the transaction is committed, the items remain
locked forever.

Atomic transactional commit has been achieved success-
fully on peer-to-peer networks by adapting a Paxos Consen-
sus algorithm [7]. The Paxos-based protocol improves two-
phase commit in two main ways: it only needs to reach an
agreement with the majority of the TPs to commit a transac-
tion, and it uses replicated transaction managers (rTMs) to
guarantee the resilience of the TM. The algorithm works as
follows: when the TM is ready to request the locks from the
TPs, it first registers the rTMs setting them up to collect the
votes. The TPs will send their votes not only to the TM, but
also to all rTMs. The rTMs will acknowledge each other
upon receipt of votes. When a majority of votes is reached,



the TM is ready to take a decision. Since votes are sent to
all rTMs, if the TM fails at this moment, any rTM is ready
to take over because it has also collected the votes.

The Paxos-based protocol has been successfully imple-
mented in Scalaris [10] to build a fully decentralized ver-
sion of wikipedia [8]. The protocol works very well for
asynchronous collaborative applications. In Beernet [6], the
protocol has been extended to support eager locking, mak-
ing it feasible to build synchronous collaborative applica-
tions. In both cases, locks are the only way to guarantee
atomicity, concurrency control and strong consistency. Un-
fortunately, locks are not the best abstraction for distributed
systems and it is highly desirable to avoid them whenever
possible. The importance of lock-free protocols for cloud
computing has also been identified by the research commu-
nity [2]. We propose a lock-free key/value-set abstraction
that allows us to develop an important part of the package
management system with decentralized storage.

5. Lock-Free Key/Value-Set
We want to use the transactional DHT to store the set

of peers hosting software packages, rollback transactional
logs, and to store meta-data about the difference between
packages’ versions. In the particular case of storing a set of
peers, it is unnecessary to have strong consistency, because
we are only interested in being able to contact some peers
to retrieve a package. We just need for the set to be eventu-
ally consistent, to prevent contacting peers that are already
removed from the set, and to be able to eventually contact
peers added to the set.

Let us assume we want to store the set of peers hosting
package foo-2.1 using a key/value pair. The key would be
foo-2.1, and the value would be the whole set. When two
users want to add themselves as new hosts simultaneously,
only one of them would succeed acquiring the lock for the
entire set. However, It is unnecessary to lock the whole set
if two different values will be added to it. Therefore, we
propose an add(k, v) operation that will add the value to the
majority of the TPs without taking any lock. Every TP will
eventually obtain all the values added to the set. By read-
ing from the majority with the operation readSet(k), strong
consistency can be guaranteed. Values can be removed with
remove(k, v).

Table 1 shows several examples of adding, reading and
removing values from a set under key k. Peers p, q and r are
the TPs containing replicas of the set. Column t shows time
evolution, and the column TPs indicates which peers were
successfully contacted to perform each given operation.

We can observe that at time t2, even when the readSet(k)
operation can only contact peers q and r, and that none of
them has the entire set. It is possible to naively construct it
by just adding all the found elements. However, this only
works when add operations were performed. Observing

Table 1. Deducing the value set
t Operation TPs p q r

t0 add(k, a) {p, q} {a} {a} φ
t1 add(k, b) {p, r} {a, b} {a} {b}
t2 readSet(k) {q, r} → {a, b}
t3 add(k, c) {p, q, r} {a, b, c} {a, c} {b, c}
t4 remove(k, c) {p, q} {a, b} {a} {b, c}
t5 readSet(k) {q, r} → {a, b} or {a, b, c}?

Table 2. Identifying and storing operations
t Operation TPs p q r

t0 i: add(k, a) {p, q} (i) (i) φ
t1 j: add(k, c) {p, q, r} (i, j) (i, j) (j)
t2 j′: remove(k, c) {p, q} (i, j, j′) (i, j, j′) (j)

t3 readSet(k) {q, r} → {a}

times t3 and t4, we can see that peer r missed the removal
of value c, therefore it is impossible to determine at time t5
what the real set is even if all the peers would have been
contacted. The problem is basically that peers p and q do
not keep track of the removal of value c, until all TPs have
acknowledged it.

Instead of only storing the values, the TM assigns an
identifier to each operation, and every TP stores the op-
eration together with its id. When readSet(k) contacts the
majority, the set can be reconstructed from the operations.
Table 2 shows how ids are assigned to operations and how
it is possible to reconstruct the whole set by contacting only
the majority of TPs at time t3.

Figure 2 describes the lock-free protocol for key/value-
sets. Similar to the Paxos-consensus algorithm, the client
sends one or more operations within a transaction to a TM.
The TM creates an id for each operation, and registers the
rTMs to start collecting votes from the TPs. Each TP is
asked to vote on the operation for which is involved. The
only reason to reject an addition is that a concurrent trans-
action is trying to add the same value. Because operations
are identified, it is necessary to only accept one. The only
reason to reject a removal, is that the value is not yet stored.
There is a partial order between addition and removals for
each value. This is to guarantee the reconstruction at the
time of reading. Once TPs get the decision from the TM,
they acknowledge with each other the new operation. This
is to guarantee that if a TP misses the transaction, it will
eventually receive the operation from the other TPs.

When two or more transactions try to concurrently add
the same value to the same set, at least one of the TMs will
not obtain a majority of successful votes. Instead of abort-



Figure 2. Lock-free key/value-sets protocol

ing the transaction as in Paxos, the TMs will wait a random
time to generate a new id and retry the operation. If the
value has been finally added by another transaction, the TM
will receive votes duplicated from the TPs. The means that
the decision can be discarded, and the client is notified that
the addition was successful.

5.1. Using Key/Value-Sets
The following pseudo code shows how DHT’s

key/value-sets get integrated with the process of in-
stalling a package. First, it is necessary to find out the
dependencies of the package. Then, for each package that
needs to be installed, we obtain the list of peers hosting
the package by reading the set associated to it with the
call dht.readSet(p). Once packages are downloaded,
the peer registers itself as host for each package with
dht.add(p,self). Then, packages can be installed
according to what we have described in Section 2. When
downloaded packages are removed from the cache, which
is not shown here, the operation dht.remove(p,sef)
is used to unregister the peer from the set of hosting peers.

procedure prepare_installation(pkg)
deps = get_dependencies(pkg);
deps += pkg;
for p in deps do

peers = dht.readSet(p); // read set
download(p, peers);

end
for p in deps do

dht.add(p, self); // add to set
end
install(deps);

end

6. Conclusions
We have described the challenges of providing transac-

tional upgrade rollback in software management, specifi-
caly in the free and open source community. We have iden-

tified the possibilities of using decentralized storage to take
advantage of the duplicated information installed on end-
users’ machines. We use a DHT to index the data which
can be used for rollback and upgrading. This system results
in the users getting the data faster, and reducing the conges-
tion on distribution mirrors.

To provide an efficient and consistent DHT, we propose
using transactional commits based on the Paxos-consensus
algorithm, on top of symmetric replication. Aware of the
problems of distributed locks, we present a lock-free pro-
tocol for key/value-sets that allows us to develop an impor-
tant part of the package managing system with decentral-
ized storage. The protocol is not limited to the system we
have described in this paper, and it can be used by other
systems that work with value-sets.

References

[1] S. Abiteboul, I. Dar, R. Pop, G. Vasile, and D. Vodislav.
Edos distribution system: a p2p architecture for open-source
content dissemination. In J. Feller, B. Fitzgerald, W. Scac-
chi, and A. Sillitti, editors, OSS, volume 234 of IFIP, pages
209–215. Springer, 2007.

[2] K. Birman, G. Chockler, and R. van Renesse. Toward a
cloud computing research agenda. SIGACT News, 40(2):68–
80, 2009.

[3] C. Dale and J. Liu. apt-p2p: A peer-to-peer distribution sys-
tem for software package releases and updates. In IEEE IN-
FOCOM, Rio de Janeiro, Brazil, April 2009.

[4] A. Ghodsi. Distributed k-ary System: Algorithms for Dis-
tributed Hash Tables. PhD thesis, KTH –- Royal Institute of
Technology, Stockholm, Sweden, dec 2006.

[5] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric, 2002.

[6] B. Mejı́as and P. Van Roy. Beernet: Building self-managing
decentralized systems with replicated transactional storage.
IJARAS: International Journal of Adaptive, Resilient, and
Autonomic Systems, 2010. To appear.

[7] M. Moser and S. Haridi. Atomic commitment in transac-
tional dhts. In Proceedings of the CoreGRID Symposium.
Springer, 2007.

[8] S. Plantikow, A. Reinefeld, and F. Schintke. Transactions for
distributed wikis on structured overlays. In Managing Virtu-
alization of Networks and Services, pages 256–267. 2007.

[9] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz, S. Ratnasamy,
S. Shenker, I. Stoica, and H. Yu. Opendht: A public dht
service and its uses, 2005.

[10] T. Schütt, F. Schintke, and A. Reinefeld. Scalaris: reliable
transactional p2p key/value store. In ERLANG ’08: Pro-
ceedings of the 7th ACM SIGPLAN workshop on ERLANG,
pages 41–48, New York, NY, USA, 2008. ACM.

[11] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, pages 149–160, 2001.


