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Abstract. When practicing secure programming, it is important to un-
derstand the restrictive influence programmed entities have on the pro-
pagation of authority in a program. To precisely model authority pro-
pagation in patterns of interacting entities, we have generalized an ear-
lier formalism [SV05b] into “Knowledge behaviour Models” (KBM). To
describe such patterns, we present a new domain specific declarative
language SCOLL (Safe Collaboration Language), which operational se-
mantics are expressed by means of KBMs.

To interpret SCOLL patterns we have built SCOLLAR: a model checker
and generator based on constraint logic programming. SCOLLAR not
only indicates whether the safety requirements are guaranteed by the
restricted behaviour of partially trusted subjects, but also lists the dif-
ferent ways in which the behaviour of a trusted entity can be restricted
to guarantee the safety properties without restricting its required func-
tionality and (re-)usability. The tool helps programmers to build correct
trusted components that can safely interact with partially trusted and
untrusted components.

1 Introduction

Since 1976 we know [HRU76] that the calculation of safety properties in general
is not computable and we have to look for safe approzimations of safety instead.
But even when using relatively simple models with tractable safety properties,
safe approximation of safety is not trivial. In a paper on Take-Grant systems
[BS79], Bishop and Snyder showed that there can be “de-facto” propagation
of authority between subjects, even when no actual propagation of “de-jure”
permissions takes place.

Suppose we design a distributed (or concurrent) program that will integrate
two non-trusted components X and Y at runtime. X needs access to a screen
for its purposes, and Y needs access to the internet. We want to keep X from
getting access to the internet and Y from getting access to the screen, to prevent
either of them to mount a phishing attack: tricking the user into thinking she is
surfing on her bank site, when she is actually connected to the phising site.

Simply preventing X from having direct access to the internet (and Y from
directly accessing the screen) is not enough. When X and Y can collaborate,



there is no way to prevent such an attack: X can provide the screen services
for Y, or Y can provide the internet services for X. Some trusted components
in our system might need access to both X and Y, and we want to make sure
by design, that these trusted components do not introduce X and Y to each
other. As X and Y can run in different threads (or even in different processes or
on different networked machines) we cannot use a protection mechanism that is
based on controlling a single call-stack (stack-walking) [WBDF97] to detect what
component is trying to invoke (directly or indirectly) what other component.
In this paper we present an approach for analyzing maximal authority pro-
pagation in a configuration of collaborating entities, and a tool, based on that
approach, to calculate safe alternatives for the behaviour of trusted entities in
that configuration. We define authority as the power of a subject (a model for a
programmed entity like a procedure, object, or component) to use the system’s
resources, regardless of how this power is exerted (what series of permissions are
used or delegated). We define collaboration as interaction between two subjects
whereby both subjects have the power to restrict and prevent the interaction.
We concentrate on the role the subjects themselves play, and on the addi-
tional restrictions their behaviour can impose to the propagation of authority in
the presence of an arbitrary protection mechanism. The tool uses only the pro-
tection mechanism the user describes. We believe that such analysis of authority
propagation can substantially contribute to the overall protection in a system.
In systems where subjects have no permissions by default (permissions are
only provided through interaction), behaviour restriction of trusted subjects can
be an effective and efficient safety mechanism. Systems for mobile agents often
provide this option and depend on it to confine untrusted agents. Many memory-
safe programming languages can restrict the default permissions that are pro-
vided when code is loaded, and some are designed to avoid all ambient authority
(authority that is available without collaboration) by default [MSC*01,SV05al.
In section 2 we give an extensive and motivated but informal account of
the basic concepts of our approach. Section 3 gives a brief formal account of
our model for collaboration and safe approximation of authority propagation.
Section 4 describes the syntax and operational semantics of the SCOLL language
we use to specify patterns of collaborating subjects with restricted behaviour.
The SCOLLAR tool for analyzing the safety properties in such patterns, and for
generating safe alternatives for the behaviour of trusted subjects, is presented
in Section 5. We discuss related research and future work in section 6.

2 Basic Concepts and Assumptions

Our tool has to serve a practical purpose: help designers and developers to
understand the required behaviour restrictions for (sets of) programmed entities,
given a global safety goal and a pattern (context) in which these entities will
play a well-defined role.

‘We model collaboration and propagation in a form that matches how objects
communicate via messages, and how first class procedures (closures) communi-



cate by invocation : exchanging input and output arguments that can themselves
be objects or procedures. Defining new closures and instantiating new objects,
is modeled by subject creation.

Many systems can effectively restrict collaboration. In memory safe program-
ming languages, references (subjects) cannot be forged and collaboration is only
possible if such a reference is available. Systems protected by permission control
(reference monitoring) can impose further (or other) restrictions. While such re-
strictions are necessary to make our tool useful, we do not model them implicitly.
Instead, the user can define rules for them, as will be explained in Section 2.4.

2.1 Subject behaviour

We first distinguish two major roles in a collaboration between subjects : the
invoker (invoking procedure or sending object) who initiates the collaboration,
and the responder (invoked procedure or receiving object). The invoker decides
what subject to invoke.

Orthogonal to these roles, a subject can be an emitter or/and a collector in
a collaboration. The emitter models either an invoking procedure that provides
an input argument for the invocation, or an invoked procedure that provides an
output argument (return value). The other party in the collaboration can then
collect this emitted subject. The emitter decides what subject to emit.

We allow both invoker and responder to decide for themselves which of these
roles (or none, or both) they want to play in a collaboration. Whether a collabo-
ration succeeds or not, will depend on the modeled system restrictions (Section
2.4). To model real collaboration, these restrictions are expected to at least en-
force complementary roles for the invoker and the responder : one collects when
the other emits.

To model creation of new closures (or objects) we distinguish the parent and
child roles. In many systems a parent can pass on subjects to its children without
the need for the child to collaborate. Consider for instance a lexically scoped
language, in which newly created (inner) closures can directly be given access
to (part of) the creating (outer) scope. We call this endowment of the child by
its parent, and it is the only form of subject propagation without collaboration
that is specified by subject’s behaviour.

In most systems, the parent will also automatically get a reference to its
created child, without the need for any propagation at all: this will be referred
to as parenthood. The system rules (Section 2.4) should model the effects of
creation and endowment according to the corresponding effects in the modeled
system.

Subject behaviour is expressed with the predicates listed in Table 1. The first
argument is restricted to the subject who’s behaviour is expressed. The prefix
i indicates the invoker role and r indicates the responder role. The prefix p
indicates the parent role when new subjects are created, and the prefix ¢ (not
present in table 1) will indicate the child role.

It is important to keep in mind that we model only a safe approzimation of
the actual behaviour of the subjects. For instance, i Emit(Sy, So, X ) means: what



Table 1. Predicates for subject behaviour

predicate comments

tEmit(S1, S2, X) |S1 tries to invoke subject Sz and emit X to it
iCollect(S1) S1 tries to invoke subject S2 and collect from it
rEmit(S1,Y) Sy tries to emit Y when invoked

rCollect(S1,S2) |Si1 tries to collect when invoked
rExch(S1,X,Y) |Si tries to emit Y when invoked with input X
pCreate(S1,S2)  |S1 intends to create Sz

pEndow(St, S2, X)|Parent S1 endows its child Sz with access to X

we know about (and model from) S;’s behaviour does not exclude the possibility
that S; tries to invoke Sy with input argument X.

2.2 Subject Knowledge

A subject can differentiate its behaviour towards its potential collaborators,
based on the knowledge it has about them. Such knowledge can be built-in
(initial knowledge) or it can be acquired during collaboration (knowledge from
experience). For instance, a subject could decide to provide maximal collabora-
tion to subjects it trusts, and to trust every subject it collected from the trusted
subjects it invoked. Knowledge about subjects is modeled as predicates.

Table 2 lists the knowledge predicates that can become available to a subject
from successful collaboration. The first argument references the subject who'’s
knowledge is expressed.

Table 2. Predicates for subject knowledge

predicate comments

tEmitted(S1, S2, X) |S1 invoked Sz and emitted X to it
iCollected(S1,S2, X) |S1 invoked S2 and collected X from it
1Exchd(S1,S2,X,Y) |S1 invoked Sz and emitted X to it,
and collected Y in the same invocation.
rEmitted(S1, X) S1 emitted X to an invoker (S2)
rCollected(S1, X) S1 collected X from an invoker
rEzchd(S1,X,Y) S1 collected X from an invoker,

and emitted Y in the same invocation.
pCreated(S, S2) parent S created Sa

pEndowed(S1, S2, X)|parent S1 endowed its child Sz with X
cEndowed(S1, X) child S; was endowed with X

Since we only model safe approzimation of the actual behaviour of the sub-
jects, the knowledge arising “from experience” in or model, is not strict know-
ledge : it represents the fact that we cannot exclude that the subject can actually



reach this knowledge. For instance, iEmitted(S1, S2, X) means: we cannot ex-
clude the possibility that subject S7 succeeds in invoking subject Se and thereby
emitting X to Ss.

2.3 Conditional behaviour and Derived Knowledge : Subject Rules

Subjects now have knowledge and behaviour, and we want to express how their
behaviour depends on their knowledge. To model a safe (over) approximation
of an entity’s behaviour, we demand that this dependency is monotonic: more
knowledge should not lead to less behaviour. We will explain later how mon-
monotonic behaviour can be modeled anyway, e.g. to express revocation The
monotonic dependency is expressed for a subject s; with simple implications of
the form:

know (s1,...5:) A ... AN knowy,(s1,...S;) = behave(si,...Sk)

We call the implications that define conditional behaviour subject rules. We
denote s in lowercase, to indicate that it is a constant, representing the subject
who’s behaviour is being defined here. Al other arguments are (logic) variables
ranging over the domain of subjects.

Private Knowledge Subject rules can also derive private knowledge:
knowi(s1,...5;) A ... Nknowy(s1,...8;) = knowPriv(sy,...Sk)

Private knowledge is knowledge that is available to the subject s; only. It is
denoted with unique, user defined predicates. Think of private knowledge as a
combined and contracted from of knowledge. Private knowledge is also useful to
model the use of local variables inside a procedure: the fact that an entity gets
assigned to a local variable is modeled as a relationship (knowledge predicate)
with that entity.

If it is clear from the context that we are defining behaviour for s;, we will
drop the first argument of every predicate in the rule. For concise notation the
right part of the rules can be a conjunction of predicates.

Example Here is simple example of a subject’s behaviour, in concise notation.
trust(A) = iEmit(A, X) (1)
trust(A) = iCollect(A) (2)
secret(X) = rExch(X,Y) (3)

trust(A) AiCollected(A, X) = trust(X) (4)

When invoking, the subject maximally emits to (1) and collects from (2)
trusted subjects. When responding, it emits maximally to invokers that emit a
secret in the same invocation (3). The subject will trust every subject it collects
by invoking a trusted subject (4).This subject has to be initialized with some
trust() and secret() predicates, before it will be able to collaborate.

2.4 System Rules

System rules specify when behaviour succeeds and what the effects will be. Suc-
cessful behaviour is what can not with certainty be prevented from occurring.



System rules are dual to subject rules: they derive knowledge from subject be-
haviour and system knowledge. System knowledge is available only to the system
(and not to the subject in the first argument of the predicate). The predicates
in system rules cannot use shortcut notation: all arguments are (logic) variables

The system rules serve a second purpose: to model the protection mechanism
in the system the user wants to analyze. To show how both concerns combine,
we give here a realistic example of a consistent set of system rules, divided into
two parts for clarity.

Example (part 1) Collaboration Rules :

Let us use a system knowledge predicate: access(A, B), to indicate the per-
mission of A to both invoke B and emit B. During collaboration, this permis-
sion to use and pass a specific subject will be propagated from the emitter to
the collector, and both parties will be informed (given knowledge) about the
consequences of their behaviour.

1. iEmit(A, B, X) A access(A, B) A access(A, X) A rCollect(B)
= access(B, X) N iEmitted(A, B, X) A rCollected(B, X)

2. iCollect(A, B) N access(A, B) ArEmit(B, X) A access(B, X)
= access(A, X) AiCollected(A, B, X) A rEmitted(B, X)

3. iEmitted(A, B, X) A access(B,Y) ArExch(B, X,Y) AiCollect(A, B)
= access(A,Y) NiExchanged(A, B, X,Y) A rExchanged(B, X,Y)

Rule 1 is applicable when the invoker (A) is also the emitter. The invoker
needs access to the responder (B) and to the emitted subject (X) and the re-
sponder must be willing to play the complementary collector role. As a result B
gets access to X and A and B are informed about their part in the successful
collaboration.

Rule 2 describes the dual mechanism of rule 1. Now the invoker (A) is col-
lecting, the responder (B) needs access to the emitted subject X, and the colla-
boration results in new access from A to X.

Rule 3 shows the meaning of rExch() behaviour. It allows the responder (B)
to decide wether it wants to emit Y, based on what it collected (X) from the
invoker (A).

Example (part 2) Creation Rules :

We use another system predicate: child(A, B), to indicate that A can create B.
Rule 1 models parenthood: it gives the parent the permission to use and pass
its child. Rule 2 models endowment: it enables the parent to propagates access
permissions without the collaboration of the child.

1. pCreate(A, B)child(A, B) = access(A, B) A pCreated(A, B)
2. pEndow(A, B, X) A access(A, X) A pCreated(A, B)
= access(B, X) A pEndowed(A, B, X) A cEndowed(B, X)

An interesting class of systems that are modeled exactly by the rules in this
example, is described in [MS03].



2.5 Patterns of Collaborating Subjects

A pattern of collaborating subjects is a set of subjects, with zero or more be-
haviour rules for every subject (Section 2.3), together with a set of system rules
(Section 2.4) and an set of initialization predicates. Initialization predicates are
grounded facts that seed the subject rules (subject knowledge and private sub-
ject knowledge predicates) or the system rules (system knowledge).

2.6 Restrictions

Our approach has several restrictions, some of which we plan to remove in the
future.

Multiple arguments : We model only one input and/or one output argument
per invocation, and express more complex invocations by multiple simple
ones. This approximation restricts the power of the tool to express fine-
grained behaviour, and we will refine this model in future versions.

Modeling data : We currently have no separate way to represent data, and
propose to model data as a passive subject (no collaborative behaviour) if
necessary. This is not sufficient, because data can sometimes propagates in
ways subjects cannot. Two untrusted subjects having access to a common
trusted subject can communicate data between them if one can influences
the trusted subject ’s behaviour (by collaborating) and the other one can
observe (the modulation of) this influence.

Non monotonic changes in behaviour : Our monotonic approach does

not allow us to directly model a subject that changes its behaviour in a
non-monotonic way (e.g. by using less or completely different rules) when
it becomes aware of an event (knowledge). We want to keep the monotonic
approach at the subject level, as it can guarantee that our models can be
expressed with arbitrary many subjects and rules, approximating reality
better and better, and still be computable (see Section 3).
Instead we propose to model the entity as two subjects. One models the be-
haviour before the change, the other one after the change, but the rules of the
latter will all have the change-triggering knowledge as an extra precondition
to ensure that it is completely passive before the change is triggered. The
subjects having access to the composed subject do not need to be split up.
By carefully adapting the system initialization (making sure they have access
to both parts of the decomposed subject, and they have no initial knowledge
to differentiate between the parts), their behaviour will automatically apply
to both subjects, as if it was just one from their point of view.

3 The Knowledge behaviour Model

In this section we define a formal model for the approach we explained. It proves
that our approach allows us to model arbitrary sets of entities as one composed
subject, and still have a safe approximation for the modeled system. We call such



multi-entity subjects aggregates, and the principle and mechanism aggregation.
Aggregation ensures us that we can make safe and computable approximations,
simply by using only a finite set of subjects and predicates.

Aggregating entities with their (potential) children can be useful and avoids
the need to model and calculate creation rules. In fact, every pattern that is safe
for a certain safety property, and uses only subjects that do not create, will also
be safe if the subjects do create, as long as their offspring are in no circumstances
more collaborative than the original subject.

Depending on the purpose, it can be interesting to aggregate all entities of
the same behaviour, the same security clearance level, or a similar position in
an access graph (e.g. between two subjects that need to be kept confined).

Definition 1 (KBM). Knowledge behaviour Model :
A KBM is a tuple < S, K, B,ar, Subj, Sys > such that:
S is a set of subjects.
K is a set of knowledge predicate labels (e.g. the ones defined in table 2).
B is a set of behaviour predicate labels (e.g. the ones defined in table 1).
Let Q=KwWB
ar : Q — N be an arity function for the predicate labels.
Let K = {q(s1,...5qr(q))|5: € S,q € K}
Let B = {q(s1,- .- 5ar(q))|5: € S,q € B}
Let P = KW B be the set of propagation predicates over S
Vs € S: Let Ks = {q(s1,. .. Sar(q))|5i € S,81 = 5,9 € K}
Let Bs = {q(s1,. .- Sar(q))|5: € 5,81 = 5,q € B}
Let F(A, B) denote the set of functions from A to B
Subj : S — F(2P,2P) : Subj(s)(X) C Bg and
Subj(s)(X) = Subj(s)(X NKs) and
X CY CP = Subj(s)(X) C Subj(s)(Y) (monotonic)
Sys: 2P — 2P : Sys(X) C K and
Sys(X) = Sys(X N (BUK)) and
X CY CP = sys(X) C Sys(Y) (monotonic)

For every subject s, Subj(s) is a monotonic function that represents the
combined effects of the subject rules for s. Sys is a monotonic function that
represents the combined effects of the system rules. By defining them as functions
from and to the set of subsets of the propagation predicates in P, we can easily
derive fix point functions from them.

Definition 2 (). Evolution in a KBM :

Let G = < S, K, B,ar, Subj, Sys > be a KBM.

The evolution function € of H is :

£:2P 2P 1 £(X) = X USys(X) UU,eq Subj(s)(X)

Lemma 1. & is increasing for C.



Definition 3 (C). Completion :

Let G = < S, K, B,ar, Subj, Sys > be a KBM.
The completion function C of H is :

C:2P - 2P C(X) = lim, o E™(X)

Lemma 2. C is increasing for C.

Lemma 3. C(X) = U,y €"(X)

These lemmas follow directly from the definitions and the monotonicity of
Sys and Subj(s). To indicate the KBM G these functions correspond to, we
index them by G : Subjg(s), Sysa, £, Cq. We will denote the set of propagation
predicates in the same way: Pg.

Theorem 1. Computability of finite KBM’s :
If S is finite and G = < S, K, B, ar, Subj, Sys >, then Cq is computable.

Definition 4 (Ag). Aggregation :

Let G = < S, K, B,ar, Subj, Sys > is a KBM.

Let Ag: S — S’ be a surjection.

By abuse of notation, let Ag : P — P’ : Ag(q(s1,...8ar(q))) = a(Ag(51), ... Ag(Sar(q)))
define H= < S', K, B, ar, subj’, Sys’ > = Ag(G) such that :

Subj’ : 28" — 2P Subj’(s')(X') = Ag(U,e g1 (s) Subi(s)(Ag~ (X))

Sys' 1 2F" — 2P Sys' (X') = Ag(U,eay1(e) Sys(Ag—1 (X))

From the definition of aggregation and the lemmata, it is straightforward to
check:

Theorem 2. Safe approximation by aggregation :
Let G and H be KBM’s and Ag an aggregation such that Ag(G) = H.
VX CPg: Ag H(Cr(Ag(X))) 2 Cg(X)

Corollary 1. Refining safe approzimations by aggregation

Let G and H be KBM’s and Ag an aggregation such that Ag(G) = H.

Let K be a KBM and Agi, Aga aggregations : Ag1(G) = K and Aga(K) = H.
VX CPg: Ag~ ' (Cr(Ag(X))) 2 Ag; * (Cr (Ag1(X))) 2 Cg(X)

Corollary 2. Computable and iteratively refined safe approzimation :
Every KBM can be safely approximated by a series of computable and progres-
sively more fine grained aggregations.

Theorem 2 and corollary 2 are the main results of this formal interlude.
Aggregation allows us to partition the modeled entities into a limited finite set
of subject, as is most fit for the problem at hand. If a chosen aggregation turns
out to be too coarse, the aggregated subject can be split up into multiple less-
aggregated subjects, and the fix point of evolution can be calculated all over.



As a result of aggregation, child subjects may have more than one parent,
subjects can be their own parent, and subjects can be each others child. That
may seem strange at first, but it is perfectly safe, and it does not pose any
problems for the theoretical model or the tool that computes the completion.

4 SCOLL

The language we use to describe a pattern (configuration) of collaborating sub-
jects to be analyzed for propagation by collaboration (and creation) is a simple,
structured subset of Datalog. The structure contains the system rules, subject
rules, an a pattern description.

The syntax is described in EBNF format:

(Program) ::= (System) (behaviours) (Subjects) (Configuration) (Goals)
(System) ::= system (Rule)™
(behaviours) ::= behaviour (behaviour) ™
(Subjects) ::= subject (Subject) "
(Configuration) ::= config (Fact)”
(Goals) ::= goal ((Safety) | (Liveness))”
(behaviour) ::= (behaviourID) “{” (Rule)” “}”
(Rule) ::= (Pred)* “=>" (Pred)™* «;”
(Pred) ::= (PredLabel) “(” (VarID)" “)”
(Subject) ::= (search)’ (SubjectID) “:” (behaviourID) “{” (Fact)™ “}”
(Fact) ::= (PredLabel) “(” (SubjectID)" “)”
(Safety) ::= “1” (Fact)
(Liveness) ::= (Fact)
(BehaviourID) ::= [“A” — “z7«]T
(VarID) = [“A” Al L A W A
(PredLabel) = [“a” — “2”] [“a” — “z" “A” — 77« 7]*
(SubjectID) ::= [“a” — “z”«]"

The reserved words : system, behaviour, subject, config, goal, and search
cannot be used as (PredLabel) or (Varld).

4.1 Example : The Caretaker Pattern

In this example, the subjects Alice, Caretaker, and Carol are trusted while Bob
and Dave are not. Untrusted subjects are given maximal behaviour for safety.
Bob should only be able to use Carol’s services via Caretaker, a proxy to Carol
who is created by Alice to give Bob revokable , indirect access to Carol.



We want to calculate the necessary restrictions (if any) for Carol, to make
sure that Bob cannot get direct access to Carol. If it would turn out that there
are no restrictions, the role of Carol can be played by untrusted subjects.
system

iEmit (A B X) access(A B) access(A X) rCollect(B)

=> access(B X) iEmitted(A B X) rCollected(B X);
iCollect(A B ) access(A B) rEmit(B X) access(B X)
=> access(A X) iCollected(A B X) rEmitted(B X);
iEmitted(A B X) access(B Y) rExch(B X Y) iCollect(A B)
=> access(A Y) iExchd(A B X Y) rExchd(B X Y);
pCreate(A B) child(A B) => access(A B) pCreated(A B);
pEndow(A B X) access(A X) pCreated(A B)
=> access(B X) pEndowed(A B X) cEndowed(B X);
behaviour
MAXIMAL { => iEmit(X Y) iCollect(X) rEmit(X) rCollect() rExch(X Y);}
ALICE {
isCT(X) isBob(B) isCarol(C)=> pCreate(X) pEndow(X,C) iEmit(B X);
use(X) => iCollect(X) ; wuse(X) pass(Y) => iEmit(X Y);
pass(X) => rEmit(X) ; iCollected(X Y) => use(Y);
=> rCollect() ; rCollected(X) => pass(X); isCarol(C) => use(C);
CARETAKER {
=> rCollect(); IsProxy(C) => iCollect(C);
IsProxy(C) rCollected(X) => iEmit(C X); cEndowed(C) => isProxy(C);
iCollected(C, X) => rEmit(X); iExchd(C X Y) => rExch(X Y);}

MINIMAL {}
subject
alice : ALICE {isBob(bob) isCT(caretaker) isCarol(carol) use(alice)

pass(alice)}
bob : MAXIMAL {}
search carol : MINIMAL {}
caretaker : CARETAKER {}
dave : MAXIMAL {}
config
access(alice alice) access(alice bob) access(alice carol)
access(bob bob) access(carol carol) access(carol dave)
access(dave dave) child(alice caretaker)
goal access(bob dave) !access(bob carol)

4.2 Operational Semantics

We define a SCOLL program’s operational semantics as a KBM. We give here
an informal account of how the different parts of a SCOLL program add to the
definition of the KBM < S, K, B, ar, Subj, Sys > .

S is the set of (SubjectID)’s used in (Subjects). For the program to be valid,
all instances of (SubjectID) in the program should be defined (mentioned) in a
(Subject) part within (Subjects).



K is the set of predicate labels defined in table 2. B is the set of predicate
labels defined in table 1. The function ar defines the arity for these predicates,
as in tables 1 and 2.

The function Sys is defined by the rules in (System) and by the facts in
(Configuration). To be valid, the rules in (System) should have no predicates
from B in their right part. The predicates in the system rules that are not in
BUK are system knowledge predicates (e.g. access() and child() in the example
of Section 2.4), and so are the predicates in the (Configuration) facts.

The value of Sys for a certain set of facts X is calculated from the fix
point of the iterative application of the system rules to the predicates in X U
(Configuration).

The functions Subj(s) for every subject s € S are defined by the (Subject)
part with the corresponding (SubjectID). To be valid, the rules in the (behaviour)
part with the corresponding (behaviourID) can contain no predicates from B in
their left part, and no predicates from K in their right part. The predicates in
the subject rules that are not in BU K are private knowledge predicates for the
subject (e.g. trust() and secret() in the example of Section 2.3), and so are the
predicates in the subject’s initialization facts.

The value of Subj(s) for a certain set of facts (grounded predicates) X is
calculated from the fix point of the iterative application of these subject rules
to the predicates in X U {initialization facts for s}.

5 SCOLLAR

The SCOLLAR tool does more that just calculating the completion (maximal
evolution) of a given SCOLL pattern. It uses techniques from concurrent con-
straint programming (CCP) [Sar93] to search for (all) safe combinations of be-
haviour in the search subjects. It makes the distinction between safe behaviour
that can or can not influence the propagation (some behaviour of the search-
subject might never be used because of a lack of suitable collaborators for that
behaviour in the pattern).

5.1 Implementations

We are pursuing two complementary CCP based approaches for the implemen-
tation of SCOLLAR. CCP involves a shared store of basic constraints, that is
updated by concurrent threads called constraint propagators. Constraint prop-
agators can only add more basic constraints to the store, never remove them.
This monotonic mechanism fits our purposes perfectly: we can use constraint
propagators to implement both the subject rules and the system rules.

In the first approach we use finite domain integer (FD) basic constraints,
that constrain a logic variable to a finite set of possible integer values. FD vari-
ables represent the subjects by their (integer) ID. Predicates are represented as
structures of the form ¢(A, B, ...D) where A, ... D are FD variables representing
the subject IDs. CCP in Oz [Sch02] allows the encapsulation of a (copy of the)



store in computation spaces. A computation space will fail when its copy of the
store contains inconsistent basic constraints, and succceed when all the FD vari-
ables are completely narrowed down to one integer and no running constraint
propagators can cause failure. By tuning the search and distribution mechanisms
that govern the exploration of the search space, we are able to find all succeed-
ing spaces while only exploring a tiny portion of the theoretical possibilities.
The stores in the succeeded spaces correspond to a safe behaviour for the search
subjects.

The actual implementation involves many optimisations like search heuristics
to improve performance, and by-need (lazy) construction of the logic variables,
to minimise memory consumption. Details on the implementation in Mozart-Oz
[Moz03] of both approaches are presented in depth in a technical report [STV05].
Since that report, we have extended the implementation to handle creation and
endowment.

In the second approach we use finite sets of integers (FS) for basic constraints.
These sets represent the predicate relations as such, and every grounded fact of
the predicate is represented by a number.

5.2 Results of the example

When we feed the SCOLL code of Section 4.1 into SCOLLAR, the results show
that C'arol indeed needs to be restricted. This means that the caretaker pattern
is not a safe way to implement revocable authority to arbitrary subjects. While
the pattern is not suitable for general use, it is safe if Carol’s role is played by
a subject who’s behaviour is restricted in a particular way.

The tool calculates 5 alternative ways to restrict C'arol’s behaviour in less
than 5 seconds. Of the 240 theoretical possibilities only 670 needed to be in-
vestigated. The alternatives are expressed here as behaviour Carol should not
have:

1. rEmit(carol), iEmit(alice, carol), iEmit(bob, carol), iEmit(dave, carol),
rExch(alice, carol), rExch(bob, carol), rExch(caretaker carol),
rExch(dave, carol)

2. rEmit(alice), rEmit(carol), iEmit(alice, carol), iEmit bob, alice), iEmit(bob,
carol), iEmit(dave alice), iEmit(dave,carol), rExch(bob, carol), rExch(caretaker,
carol), rExch(dave,carol)

3. rEmit(alice), rEmit(carol), iEmit(bob, alice), iEmit(bob, carol), iEmit(dave,

alice), iEmit(dave, carol), rExch(bob, alice), rExch(bob, carol), rExch(caretaker,

alice), rExch(caretaker, carol), rExch(dave, alice), rExch(dave, carol)
rEmit(carol), iEmit(bob, carol), iEmit(dave, carol), rCollect()

rEmit(carol), iEmit(dave, carol), iCollec(dave), rCollect()

G

6 Related Research and Future Work

Except for our previous research in this field [SJV05,SV05b,SMRS04], we have
not found any recent work that focusses on formal safety analysis of systems
that model the propagation of authority via collaboration.



Ideas from abstraction carrying code [HALGPO05] and model carrying code
[SRRSO01] have inspired us to investigate the use of SCOLL and SCOLLAR
in this way. We want to provide support for the semi-automatic extraction of
SCOLL patterns from code, and for automated checking of code compliancy
with a given SCOLL pattern. A code provider could add a SCOLL pattern to his
code, to reveal the authority-propagation aspects of its internals. The consumer
of the code could check if the code complies to the given pattern. If compliant,
the SCOLL pattern can be connected to the pattern representing the consumer
code to interact with. SCOLLAR can then be used to test if the required safety
properties are respected, and if not, to propose changes in the trusted entities
or add some well-restricted proxy entities between the interacting parties.

To augment the expressive power of the model and the tool, we will directly
support the propagation of lists of subjects. To enhance the usability, we will
provide automated support for iterative refinement of patterns.

We are working on an online version of the tool for demonstration purposes.

Conclusion In this paper we presented a new language SCOLL, a new tool
SCOLLAR, and a new formalism KBM, to describe, compute, and theoretically
found the analysis of the boundaries of authority propagation for systems that
allow the propagation of authority by collaboration. The approach is generally
useful, but most directly applicable to systems that provide unforgeable refer-
ences and avoid ambient authority.

Relying only on language runtime restrictions (e.g. capability safe languages)
the behaviour of trusted entities can implement security policies. The approach
and the tool allow additional or alternative safety mechanism to be modeled,
including mechanisms based on Access Control by runtime reference monitoring.

Further development of this approach into a production ready development
aid will allow software providers and developer to take more and well-defined
respounsibility (including legal responsibility) for the security of their code.
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