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Abstract
In capability secure systems it is important to understand the re-
strictive influence programmed entities (e.g. procedures,objects,
modules, components) have on the propagation of influence ina
program. We explain why Take-Grant systems are not sufficiently
expressive for this task, and we provide a new formalism – Autho-
rity Reduction systems (AR-systems) – to model collaborative pro-
pagation. AR-systems provide safe and tractable approximations of
adequate precision for the confinement properties in configurations
of collaborating entities.

We propose a domain specific declarative language – SCOLL
(Safe COLlaboration Language) – to express the collaborative be-
havior of subjects, the initial conditions in a configuration, and the
requirements about confinement and liveness that are to be ensured.
We provide the syntactic structure and an operational and denota-
tional semantics for the language. From experiments with a first
implementation, we provide a preliminary result and show how pat-
terns for capability based collaboration can be analyzed and gener-
ated.

Keywords language, collaboration, security, safety, capability,
pattern, authority, model checking, authority reduction

1. Introduction
In capability secure languages and systems [MSC+01, SV05a,
SW00, SDN+04] the mechanism that allowsaccess rightsto pro-
pagate through an access graph of connected program entities (e.g.
loaded procedures, functions, objects, agents, components, some
having references to others) is essentially the same as the mecha-
nism that enablesdatato flow in the access graph. This mechanism
is based oncollaborationbetween an invoker entity and an invoked
entity. Both entities are programmed with certain behaviorthat will
decidewhatwill actually be propagated during a collaboration (in-
vocation), andin what direction.

Our domain specific language SCOLL is designed for expres-
sing the propagative behavior-aspects of programmed entities, and
for consequently analyzing thepositive impact of local, entity-
specific behavior on the global propagation of influence (authority
and information) throughout an evolving access graph. Its practi-
cal use is most beneficial in capability systems however, because
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in these systemseverycritical propagation of access rights is con-
trolled by collaborative behavior.

This allows us to also drawnegativeconclusions from such ana-
lysis: if behavior controlled propagationcannotprovide any access-
to-file-F to program entityAlice, thenAlice will be effectively
prevented from getting access to fileF . The actual mechanisms
for behavior-controlled propagation in capability systems are de-
scribed in Section 2.

The most important propagation mechanism in capability sys-
tems involves behavior controlledcollaboration, in whichbothcol-
laborating entities have control: no propagation will happen unless
both entities are programmed to enable it. Relying on restrictively
programmed behavior to control propagation, capability systems
can allow collaboration among mutually suspicious entities, in all
confidence that the global confinement requirements will be respec-
ted. Access control policies areprogrammed, relying on the restric-
ted propagative behavior of some of the entities (the ones that are
usually called “trusted”).

Behavior not only controls the confinement of access, but more
importantly the confinement ofauthority. Authority is the whole
of effects an entity can potentially cause to the system, by using
its access rights. An entity with restricted behavior will only use
certain access rights in certain ways, under certain conditions.
Thus its behavior willreduce the authorityof other entities that
collaborate with it. For instance, an entity could have direct access
to a file, but only use that file to append data to it in a certain
format, and thus provide exactly this reduced form of authority to
its clients.

In Section 3 we present a new formal system forauthority re-
ductionin capability systems that can model conditional behavior,
and provides a safe, precise, and tractable approximation of autho-
rity confinement. This formal system builds on earlier results that
had less expressive power [SV05b].

Sections 2 and 3 having described the domain of behavior con-
trolled collaboration and propagation, Section 4 will thenpresent
our language for this domain. SCOLL is a very simple declarative
language that resembles Datalog, and uses predicates and implica-
tions to represent conditional behavior and positive knowledge. The
capability rules for propagation are enforced by the language. We
describe the language’s syntactic structure, and give a complete de-
notational and operational semantics. The implementationis based
on concurrent constraint programming [Sar93], and will be briefly
explained too.

We consequently highlight the practical value of using SCOLL
in Section 5. Behavior based authority control makes it necessary
for the programmer to adhere strictly to the principle of least autho-
rity (POLA): program the propagation of authority strictlyon a
need-to-use base. This is not an easy task, as correctly program-
ming an entity now entangles two opposite concerns: making the
entity’s behavior permissive enough to help provide the required
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global functionality, but restrictive enough to help guarantee the
required global confinement.

Programmed abstractions for access control and patterns of
collaborative behavior can help, but only if their preconditions and
consequences are well understood. We show how SCOLL is used
to derive such preconditions, from a partial description ofa pattern
of capability based collaboration and the constraints representing
the global confinement policy. A capability pattern for revocable
authority called ”the caretaker” will be examined as an example.

We conclude and summarize what remains to be done in Section
6. Related work is mentioned in Section 7.

2. Capability Patterns
In this section we first introduce the view on capabilities that will
be used in the rest of the paper. We also give a brief introduction to
the formalism of Take-Grant systems that was designed to analyze
capability propagation, and we investigate why it does not suffice.
We then explain the requirements for an expressive formal system
to be able to safely and precisely analyze patterns of capability
based collaboration.

2.1 Capability Based Security

Dennis and Van Horn [DH65] introduced the concept of a capabi-
lity in 1965. A capability is an unforgeable designation (reference)
to a resource that is inextricably combined with an access right to
that resource. In capability systems, authority is only available in
the form of capabilities, and all references to resources are capabi-
lities. If you are able to reference an entity (via a capability), you
are allowed to use it and to pass it on to other entities you have ac-
cess to. This may seem a very weak and discretional policy at first
sight, but a brief explanation will correct that impression.

In [MS03] Miller and Shapiro propose a view on capabilities
they callobject-capabilities. All references to program entities are
capabilities that provide the right touse (invoke) the designated
entity. The authority exerted when using the entity is decided by
the entity’s programmed behavior. We distinguish the rolesentities
play in the collaboration as follows:

invoker : the entity that invokes
responder : the entity that is being invoked
emitter : an entity that collaborates byemitting(providing) autho-

rity or information.
collector : an entity that collaborates bycollecting (accepting)

authority or information.

There is always exactly one invoker and one responder in a colla-
boration. The invoker decides what entity (or data) will be invoked
(among the ones it has access to), the emitter decides what entity
will be emitted (among the ones it has access to). To propagate
something, one entity has to emit it and the other one has to collect
it. These rules for propagation reflect the scoping rules forinvoca-
tion in an object oriented capability language that provides strict
encapsulation [MSC+01, SV05a].

This is the view on capabilities we will use in this paper. It
unveils the real preconditions for propagation of authority: entities
have to collaborate to pass a capability, and such collaboration
involves both entities’ behavior. While it is the inalienable and
eternal right of the holder of a capability to invoke the designated
entity, the effect (authority) that is resorted is dynamic and largely
decided (possibly reduced to zero) by the invoked entity’s behavior.

It becomes clear in this view that the “discretional” natureof
capabilities is not actually a weakness. Propagation is notan eternal
right but a potential effect of using a right, that can be restrained by
eachof the collaborating entities. Confinement policies can now
be implemented by introducing entities with carefully restricted

behavior at strategic places in a configuration (access graph) of
mutually distrusting entities.

Besides collaboration, creating new entities can also cause pro-
pagation in the following restricted sense:

parenthood : The creating entity (parent) gets access to the cre-
ated entity (child).

endowment : The parent can endow part of its access to the child,
at the time of creation.

These rules reflect the scoping rules for object creation in an
object oriented capability language. The parent object assembles
the internal state of the child object from the entities the parent can
access. In practice this means of course that the parent can set up
bidirectional communication channels to its child.

The inextricable combination of and entity’s designation with
the right to use it has an important advantage over the so called
“mandatory” access control policies that separate these concepts.
When designation means right-to-use, delegation of authority be-
comes propagation of capabilities. Deputy entities can nowbe de-
signed to use the authority provided by their clients in the form of
capabilities provided to them by their clients upon invocation, with-
out becoming vulnerable to a confused deputy attack. A confused
deputy is an entity that cannot tell the difference between its own
authority and the authority that is supposed to be delegatedto it by
its client. It cannot avoid being lured into using its own authority
on its client’s behalf, even if this client has no such authority.

As explained in [Har89] and [SV05a], only capabilities can pre-
vent such an attack. Stack-walking mechanisms can help in verify-
ing who delegated what authority for what purpose to whom, and be
very expressive and relatively efficient [WBDF97] but stillcannot
avoid the possibility of confused deputies in general, particularly
since they provide no solution for concurrency and distribution.

A brief overview of the advantages and drawbacks of capability
security in the view of object-capabilities is provided in [SV05b].
One important drawback is the lack of orthogonality of the con-
cernssecurityandfunctionality. Confinement becomes completely
entangled with functionality, programmed together into the same
object methods and procedures. In [MTS05] Miller, Tulloh, and
Shapiro explain the deeper reasons for this intrinsic entanglement
of concerns. It remains to be investigated whether this unavoidable
burden can somehow be relieved.

Related to this drawback is the need for powerful tools that help
design and analyze safe patterns of collaboration. Withoutsuch a
tool it is very hard for an application developer to precisely assess
what effects programmed behavior has on the global confinement
requirements. Our main contribution in this paper, is to provide a
formalism and a language that will be the basis for such a tool.

2.2 Take-Grant Systems

We will now briefly introduce the Take-Grant systems of [BS79].
For a more detailed account on the particularities of the Take-Grant
formalism with respect to propagation and collaboration, we refer
to [SV05b].

Take-Grant systems are configurations of subjects propagating
information and capabilities. The configurations are labeled di-
rected graphs of nodes representing the subjects, arcs representing
access, and labels on the arcs representing sets of access-rights to
the subject pointed at by the arc. Capabilities are the labeled arcs
in a configuration. The subjects (nodes) model entities thatcan use
capabilities (outgoing arcs) and to which rights (incomingarcs) can
be applied via capabilities.

Two rights govern the propagation of capabilities:grant and
take. A grant-labeled capability allows the holder to emit any ca-
pabilities it holds to the subject pointed at by the capability, in-
cluding its own take and grant capabilities. Atake-labeled capabi-
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lity allows the holder to collect any capabilities hold by the subject
pointed at by thetake-capability. Figure 1 illustrates both mecha-
nisms: the new capabilities arising from propagation are indicated
with a dashed arrow.

Figure 1. Capability Propagation viaTake (left) andGrant (right)

Some subjects will not use their own rights to propagate infor-
mation and capabilities. We will refer to them as “passive subjects”.
Their behavior is restricted in the following sense: passive subjects
will only provide and accept capabilities when being invoked.

A subject can also create a new subject and thereby take any
rights it wants to it. Subjects can also drop their rights, partially or
completely.

The advantages of this formal system are its simplicity and the
fact that global confinement properties are tractable [LS77, FB96].
The main drawbacks are its lack of power to express restricted
behavior, and the fact that propagation is modeled with rights
rather than with authority. The collaborative aspect of propagation
is therefor completely lost. As explained in [SV05b], this has added
to a certain under appreciation of the fitness of capability systems
to guarantee certain forms of confinement [Boe84, KL87].

2.3 Patterns of Collaboration

The formal system we are looking for should allow us to ex-
press and analyze useful patterns of safe collaboration. Patterns of
safe collaboration are programming idioms for writing capability
based secure programs, analogous to object-oriented design pat-
terns [GHJV94]. Such a pattern is useful if its preconditions to be
effectively applicable are well understood and described.As an ex-
ample, let us look at the pattern for revocable authority called the
caretakerin [MS03].

Figure 2. The caretaker pattern for revocable authority

Figure 2 depicts a configuration of collaborating subjects.Sha-
dowed subjects indicate that we make no assumptions about their
behavior: these subjects areunspecified. In the pattern, Alice
wanted to give Bob revocable authority to use Carol, and therefor
created a proxy (Caretaker) to Carol and gave that to Bob instead.
Alice will also emit what she can collect from collaborations. Carol
has access to an unspecified subject Dave. This is the initialconfi-
guration depicted by the solid arrows in the figure.

Alice relies on Caretaker’s behavior to stop proxying when she
sends it a certain message. For this revocation to have effect, Bob

should of course never get direct access to Carol (indicatedby the
arrow ending in a cross). It is OK for Bob to get direct access to
Dave though: that is depicted by the dashed arrow from Bob to
Dave.

Given the behavior mentioned for Alice and for Caretaker (the
latter one being a proxy object to Carol and onlyrelaying propa-
gation), it is mentioned in [MS03] that Carol’s behavior also has
to be restricted in a certain way: she should for instance notreturn
herself when being invoked.

To make the caretaker pattern useful, we have to understand
very preciselywhat Carol should not do in this case. In general,
given a configuration of collaborating subjects of which thebeha-
vior is partially described, and given a set of confinement require-
ments (what should not happen) and liveness requirements (what
should not be prevented from happening), we have to be able to
calculate all minimal sets of restrictions in the non-described part
of the behavior of any subject in the configuration, that suffice to
guarantee these requirements.

3. Authority Reduction Systems
In this section we propose a formalism capable of expressingca-
pability based patterns of collaboration. We will aim for simplicity
and expressive power, and devise a formalism that allows to model
collaborative behavior at different levels of refinement, while al-
lowing a tractable and safe calculation of confinement.

3.1 Goal

We want our formalism to be practically useful for software engi-
neers during the design and implementation phase:

• to reason about the feasibility of confinement requirements
during the design of their program, and

• to verify existing code and check if the confinement require-
ments are respected.

That means that the necessary translations between existing code
and behavior specifications for subjects in the formalism should
be straightforward in both directions. To safely model entity code
into subject behavior, the collaborative behavior should be appro-
ximated from above: making sure that the subject willcollaborate
whenever it is not impossiblethat the actual entity would collabo-
rate in that fashion. The precision of modeling should be adaptable,
so that the model can be refined exactly in the places where it turns
out to be too crude.

When refining subject behavior into actual code, it should be
easy to interpret the specified restrictions in subject behavior as
requirements for the modeled entities.

To achieve the necessary expressive power we model an entity’s
awareness of its environment asknowledgeof the subject. A sub-
ject’s intent describes how itsbehavioris positively influenced by
its knowledge. This is illustrated in Figure 3. The effects of colla-
boration will provide more knowledge to the subject. More know-
ledge can only lead to more collaborative behavior. The mutual
interaction between behavior and knowledge in a subject is com-
pletely monotonic. The rules that govern collaboration between en-
tities will model the capability rules for propagation of authority
and information.

For simplicity we will model neither time nor non-monotonic
changes (decrease) in knowledge or collaboration. Section7 will
briefly mention how to model non-monotonic effects in our mono-
tonic system.

To keep confinement tractable, we allow subjects to model sets
(aggregates) of entities instead of a single entity. We willinvesti-
gate and proof the conditions for this to be a safe approximation.
Aggregation will be used to implicitly model subject creation (ag-
gregating a entity with all its offspring), but it can also beuseful
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Figure 3. The amplifying influence of knowledge and behavior

to model composite entities (e.g. components), clusters ofentities
(e.g. unspecified entities that are connected), or entitiesthat have a
similar purpose or equal clearance or confidentiality level.

Subject behavior is expressed with the predicates listed inTable
1. The prefixi means the subjectS1 invokes, the prefixr means it
responds to invocation. The lower part of the table shows thesub-
ject behavior predicates to create other subjects. No collaboration
is needed for creation and endowment: it is subjectS1’s sole de-
cision to create subjects and endow it. The prefixp meansS1 is
the endowing parent, the prefixc meansS1 is the child receiving
endowment.

Table 1. Predicates for subject behavior
predicate comments
iEmit(S1, S2, X) S1 tries to invoke subjectS2

and emitX to it
iCollect(S1, S2) S1 tries to invoke subjectS2

and collect from it
rEmit(S1, S2, X) S1 tries to emitX

when invoked byS2

rCollect(S1, S2) S1 tries to collect
when invoked byS2

create(S1, S2) S1 intends to createS2

pEndow(S1, S2, X) ParentS1 endows its childS2 with X

These behavior predicates describe the behavior of the subject
in its first argument:S1. The fact that no collaboration is needed
for create() andpEndow() does not mean that every creation and
endowment will always succeed. It will for instance not be possible
for S1 to endowS2 without also creatingS2. The rules that govern
the actual evolution of a configuration will be defined in Section
3.2.

Ther−prefixed predicates, corresponding to behavior when be-
ing invoked, include the invoker as the second argument. This does
not mean that we assume that responders have complete knowledge
of their invoker. However, we want to be able to model responder
behavior depending onpartial knowledge about the invoker, avail-
able from an invocation. For instance, the fact that an invoker emits
X to the responder, might be a precondition for the responder to
emitY to the invokerin the same invocation. The language SCOLL
will allow this specific type of invoker-dependent behavior, but re-
strict the use of invoker identity in other cases.

Table 2 lists the knowledge predicates that can be used by a
subject to express its intent.

The knowledge provided in these predicates is availableonly
to the subject in the first argument (S1). Notice again that the
r−prefixed predicates, corresponding to knowledge about being
invoked, include the invoker as the second argument. Again,this

Table 2. Predicates for subject knowledge

predicate comments
access(S1, X) S1 has access toX
iEmitted(S1, S2, X) S1 succeeded in invokingS2

and emittingX to it
iCollected(S1, S2, X) S1 succeeded in invokingS2

and collectingX from it
rEmitted(S1, S2, X) S1 emittedX to an invoker (S2)
rCollected(S1, S2, X) S1 collectedX from an invoker (S2)
cEndowed(S1, S2, X) child S1 was endowed with access toX

by its parentS2

knowledge will be only used to express knowledge available about
an invocation, rather than about the invoker.

Notice also that thec-prefixed predicatecEndowed includes
knowledge about the parent, while in general such knowledgeis
not provided in capability systems. To explain why the second
argument ofcEndowed() nevertheless indicates the parent subject
we have to consider a child subject that models an aggregation of
entities (e.g. all entities of a certain restricted behavior). Some of
the entities modeled by this child subject can be created by different
parent entities, that are modeled by different parent subjects. While
entities cannot have more than one parent, subjects can. In fact such
a subject can even be “created” and endowed by itself. Similar to
the invoker inrEmitted() andrCollected(), the parent subject in
cEndowed() will be used to differentiate a subject’s reaction based
on what can be derived from the other arguments in the endowment.
Thus an aggregate child subject can decide its behavior based on
what it is being endowed with bythe sameparent.

3.2 Formal Authority Reduction Systems

In this section we define the basic concepts and constructs for col-
laborative behavior.

LetB = {iEmit, iCollect, rEmit, rCollect, create, pEndow}
Let K = {iEmitted, iCollected, rEmitted, rCollected,

access, cEndowed}
Let ar : B ∪ K → N be the arity function of the predicates as
defined in Tables 1 and 2.
For an arbitrary setS, define:

KS = {k(s1, . . . , sar(k))|k ∈ K, si ∈ Sfor1 ≤ i ≤ ar(k)}
BS = {b(s1, . . . , sar(b))|b ∈ B, si ∈ Sfor1 ≤ i ≤ ar(k)}

DEFINITION 1 (ARS). Authority Reduction System :
An ARS is a tuple(S, P, I) such that:

• S is a countable set of subjects, defining:
• P ⊆ S × S is a parenthood relation.
• I is an intent function :S → F(2KS , 2BS ) (whereF(A, B) is

the set of all functions fromA to B) such that:

I(s) is only defined for all local knowledge :
∀K, s : (∀k(s1, . . . , sn) ∈ K : s1 = s) ⇐⇒ (∃B :

B = I(s)(K))

I(s) generates only local behavior:
B = I(s)(K) =⇒ ∀b(s1, . . . , sar(b)) ∈ B : s1 = s

I(s) is monotonic:
B = I(s)(K) ∧ B′ = I(s)(K′) ∧ K ⊆ K′ =⇒ B ⊆

B′

DEFINITION 2 (ARC). Authority Reduction Configuration
LetA = (S,P, I) be an ARS.
An ARC is a tuple(S, E, K, A) such that:
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• S ⊆ S contains the subjects of the configuration
• E ⊆ S × S represents the access relation between them
• K ⊆ KS ⊆ KS represents the actual (initial) knowledge of

the subjects in the configuration.

Given an ARCC = (S,E, K, A), we will indicate its components:
SC = S ;
EC = E ;
KC = K ;
AC = A.

In the next definition we define the ways an ARC can evolve.
The following implications of capability based collaboration are
enforced:

parenthood : The parent entity gets access to its child entity upon
creation. Since subjects can model sets of entities, the situation
can arise that two or more subjects can create a common child
subject. The subject will be added to the configuration the first
time it is created. Subsequent creation will give the new parent
subject access to the child subject.

endowment : The parent entity can give part of its access to its
child. The rules make sure that a parent subject can only endow
access to subjects the parent has access to.

propagation : The emitter needs access to the subject that is pro-
pagated, the invoker needs access to the responder. Emitting
data is not explicitly modeled but data can be mimicked by
entities with no behavior (no intent). As will be mentioned in
Section 6, we have future plans to model data propagation in
its own right however, to refine the analysis in situations where
data can propagate but capabilities can not.

The following restrictions of capability based collaboration are
not enforced by evolution in an ARC. They will be enforced by
restrictions in Section 4, when the intent functionsI(s) for the
subjects will be expressed in the SCOLL language.

endowment : A child does not know the identity of its parent.
This principle can be violated ifI(s) expresses behavior based
on parent identity.

propagation : A responder does not know the identity of its in-
voker. This principle can be violated ifI(s) expresses behavior
based on invoker identity.

DEFINITION 3 (̀ ). Step
LetA = (S,P, I) be an ARS.
LetC1 = (S1, E1, K1, A) be an ARC.
LetC2 = (S2, E2, K2, A) be an ARC withS1 ⊆ S2

C1 ` C2 ⇐⇒ one of the following conditions applies:

creates(p, c) : ∃p, c ∈ S2 :
S2 = S1 ∪ {c}
(p, c) ∈ P

∃Kp ⊆ K1 : create(p, c) ∈ I(p)(Kp)
K2 = K1 ∪ {access(p, c)}
E2 = E1 ∪ {(p, c)}

endows(p, c, x) : ∃p, c, x ∈ S1

S2 = S1

{(p, c), (p, x)} ∈ E1

(p, c) ∈ P

∃Kp ⊆ K1 : create(p, c) ∈ I(p)(Kp)
K2 = K1 ∪ {cEndowed(c, p, x), access(c, x)}
E2 = E1 ∪ {(c, x)}

grants(x,a, b) : ∃a, b, x ∈ S1 : S2 = S1

{(x, a), (x, b)} ⊆ E1

∃Kx ⊆ K1 : iEmit(x, a, b) ∈ I(x)(Kx)
∃Ka ⊆ K1 : rCollect(a, x) ∈ I(a)(Ka)

E2 = E1 ∪ {(a, b)}
K2 = K1∪{iEmitted(x, a, b), rCollected(a, x, b), access(a, b)}

takes(a, x, b) : ∃a, b, x ∈ S1 : S2 = S1

{(a, x), (x, b)} ⊆ E1

∃Ka ⊆ K1 : iCollect(a, x) ∈ I(a)(Ka)
∃Kx ⊆ K1 : rEmit(x, a, b) ∈ I(x)(Kx)
E2 = E1 ∪ {(a, b)}
K2 = K1∪{iCollected(a, x, b),rEmitted(x, a, b), access(a, b)}

From this we derive the following definitions:

`∗ : is the reflexive and transitive closure of`

`n : C `0 C andC `n C′ ⇐⇒ C `n−1 C′′ ∧ C′′ ` C′

(In factC `∗ D ⇐⇒ ∃n ∈ N : C `n D)

The evolution of a configuration vià∗ can modelall possibil-
ities for propagation in a capability system, be it that AR-systems
are a bit too expressive. As mentioned before, the intent functions
can take knowledge into account that is not available in normal ca-
pability systems (about the invoker or the parent), but thissurplus
in expressive power will be naturally removed by the specification
language for intent that will be presented in Section 4.

To analyze confinement properties in an AR-configuration
is to analyze the boundaries of propagation that the configu-
ration allows. We will therefor define a propagation predicate
couldGetAccess(C,x, y) for every pair of subjects in a configu-
ration, indicating that evolution in the configurationC will allow
(not prevent) subjectx to get access to subjecty.

DEFINITION 4. couldGetAccess(C,x, y)
LetC be an ARC withx, y ∈ SC

couldGetAccess(C,x, y) ⇐⇒ ∃C′ : C `∗ C′ ∧ (x, y) ∈ EC′

We also define a predicate for the propagation of knowledge.

DEFINITION 5. couldGetKnowledge(C,k(s1, . . . , sar(k)))
LetC be an ARC
couldGetKnowledge(C,k(s1, . . . , sar(k))) ⇐⇒ ∃C′ : C `∗

C′ ∧ k(s1, . . . , sar(k)) ∈ KC′

3.3 Safe Approximation via Aggregation

When calculating confinement results, a strict one-to-one mapping
of programmed entities to subjects in an ARS is not always re-
commended. In principle, entities can keep on creating other en-
tities, and the configuration might never stop evolving, rendering
precise calculation of confinement intractable. We have strong in-
dications that, just like the calculation of safety properties in the
protection systems described in [HRU76], the calculation of con-
finement boundaries in Authority Reduction Systems is intractable
in general. We have a scheme of a proof – which we will not pro-
vide in this paper – for the Turing completeness of these systems,
to support this believe.

To ensure that a reasonable approximation to the confinement
result is tractable, we propose the technique of aggregation, that
was introduced informally in Section 3.1.

We will proof that the following properties of a configuration
with aggregated subjects are sufficient to provide a safe approxi-
mation of confinement:

• The aggregate subject should collaborate, create, and endow, as
soon as one of its constituting subjects does.

• Any subject should collaborate with the aggregate subject as
soon as it would collaborate with one of the constituting sub-
jects.
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• Any subject should emit (collect) an aggregate subject as soon
as it would emit (collect) one of the constituting subjects.

• Any subject should create an aggregate subject as soon as it
would create one of the constituting subjects.

• Any subject should endow a child with access to an aggregate
subject as soon as it would endow that child with access to one
of the constituting subjects.

This set of rules is formalized in the following definition.

DEFINITION 6. ARS Aggregation
LetA = (S,P, I) be an ARS.
Letg be a surjective application :S → S

′

Agg(g) is the ARS-aggregation function defined as follows:
Agg(g)(A) = (S′,P′, I′) where

1. behavior aggregation
B′ = I

′(s′)(K′) ⇐⇒ ∃B1, . . . , Bn, s1, . . . , sn, K1, . . . , Kn

such that
∀1 ≤ i ≤ n : Bi = I(si)(Ki)
∀1 ≤ i ≤ n : g(si) = s′

B′ =
S

1≤i≤n
B′

i where
b(s′1, . . . , s

′
ar(b)) ∈ B′

i ⇐⇒ ∃s1, . . . , sar(b) : b(s1, . . . , sar(b)) ∈
Bi ∧ ∀1 ≤ j ≤ ar(k) : g(sj) = s′j
K′ =

S

1≤i≤n
K′

i where
k(s′1, . . . , s

′
ar(k)) ∈ K′

i ⇐⇒ ∃s1, . . . , sar(k) : k(s1, . . . , sar(k)) ∈
Ki ∧ ∀1 ≤ j ≤ ar(k) : g(sj) = s′j

2. parenthood aggregation
(p′, c′) ∈ P

′ ⇐⇒ ∃(p, c) ∈ P : g(p) = p′ ∧ g(c) = g′

DEFINITION 7. ARC Aggregation
LetA = (S,P, I) be an ARS
Letg be a surjective application :S → S

′

LetC be an ARC inA
Aggc(g) is the ARC aggregation function defined as follows:
Aggc(g)(C) = D where

• AD = Agg(g)(A)
• g(SC) = SD

• (s′1, s
′
2) ∈ ED ⇐⇒ ∃(s1, s2) ∈ EC : g(s1) = s′1 ∧ g(s2) =

s′2
• k(s′1, . . . , s

′
ar(k)) ∈ KD ⇐⇒ ∃k(s1, . . . , sar(k)) ∈ KC

such that
∀i : 1 ≤ i ≤ ar(k) : g(si) = s′i

Since aggregation is going to be used to turn potentially in-
tractable problems of confinement into practically tractable prob-
lems, we have to be sure that the confinement results are valid.
Approximation by aggregation can sometimes provide “falsepos-
itives”, indicating possibilities for propagation where there actu-
ally are none, but it should never provide “false negatives”, indi-
cating confinement (impossibility of propagation) while the non-
aggregated system could detect possibilities for propagation.

THEOREM 1. ARC aggregation keeps confinement properties
LetC andD be AR configurations such thatAggc(C) = D

1. ¬couldGetAccess(D, g(x), g(y))
=⇒ ¬couldGetAccess(C, x, y)

2. ¬couldGetKnowledge(D, k(g(s1), . . . , g(sar(k))))
=⇒ ¬couldGetKnowledge(C, k(s1, . . . , sar(k)))

Proof

We will proof the converse implication of part1 of the theorem:
couldGetAccess(C,x, y) ⇒ couldGetAccess(D,g(x), g(y))

with the help of Lemma 2. The proof of part2 is completely
analogue and is not provided.

LEMMA 1. Commutativity of̀ andAggc(g)
For any ARSA = (S,P, I), any ARCC in A and any surjective

applicationg : S → S
′,

C ` C1 =⇒ Agg(g)(C) ` Agg(g)(C1).

Proof of Lemma 1

Let A′ = (S′,P′, I′) = Agg(g)(A)
By Definition 7,SC ⊆ SC1

=⇒ SAgg(g)(C) ⊆ SAgg(g)(C1).
SinceC ` C1, one of the conditions from Definition 3 has to

be true. If the step was a creation,create(p, c):
(p, c) ∈ SC1

=⇒ (p, c) ∈ SAggc(g)(C1) by Definition 7.
SC1

= SC ∪ {c} =⇒ SAggc(g)(C1) = SAggc(g)(C) ∪ {g(c)} by
Definition 7.
(p, c) ∈ P =⇒ (g(p), g(c)) ∈ P

′ by Definition 6
(∃Kp ⊆ KC : create(p, c) ∈ I(p)(Kp)) =⇒ (∃Kg(p) ⊆
KAggc(g)(C) : create(g(p), g(c)) ∈ I

′(g(p))(Kg(p))) by Defini-
tion 6 and Definition 7
KC1

= KC∪access(p, c) =⇒ KAggc(g)(C1) = KAggc(g)(C)∪
access(g(p), g(c)) by Definition 7.
EC1

= EC ∪ (p, c) =⇒ EAggc(g)(C1) = EAggc(g)(C) ∪
(g(p), g(c)) by Definition 7.

Thus,Agg(g)(C) ` Agg(g)(C1).

For other kinds of steps, the proof is similarly trivial and derives
from Definition 6 and Definition 7.

LEMMA 2. Commutativity of̀ ∗ andAggc(g) For any ARSA =
(S,P, I), any ARCC in A and any surjective applicationg : S →
S
′,

C `∗ C1 =⇒ Agg(g)(C) `∗ Agg(g)(C1).

Proof of Lemma 2

We will prove this lemma by induction on the number of steps. The
base case (C `0 C =⇒ Aggc(g)(C) `0 Aggc(g)(C)) is trivial
since the right part of the implication is true by definition of `0.
The induction case
(C `∗ C′ ` C′′ ∧ Aggc(g)(C) `∗ Aggc(g)(C′) =⇒
Aggc(g)(C) `∗ Aggc(g)(C′′)) is also trivial sinceC′ ` C′′ =⇒
Aggc(g)(C′) ` Aggc(g)(C′′) by Lemma 1.

Proof of Theorem 1

By Definition 7, we know that for any ARCC1 in A, (x, y) ∈
EC1

=⇒ (g(x), g(y)) ∈ EAgg(g)(C1).
By Definition 4, we know thatcouldGetAccess(C,x, y) ⇐⇒
∃C1 : C `∗ C1 ∧ (x, y) ∈ EC1

.
Thus couldGetAccess(C,x, y) =⇒ ∃C1 : C `∗ C1 ∧
(g(x), g(y)) ∈ EAggc(g)(C1).
By Lemma 2,C `∗ C1 =⇒ D `∗ Aggc(g)(C1).
Finally, by Definition 4,
couldGetAccess(C,x, y) =⇒ couldGetAccess(D, g(x), g(y))

COROLLARY 1. Existence of tractable aggregation
For any ARCC, there exists computable predicates

couldGetAccessAggC(x, y) and
couldGetKnowledgeC(k(s1, . . . , sar(k))) such that
¬couldGetAccessAggC(x, y) =⇒ ¬couldGetAccess(C, x, y)
and
¬couldGetKnowledgeC(k(s1, . . . , sar(k))) =⇒
¬couldGetKnowledge(C, k(s1, . . . , sar(k))).

Proof of Corollary 1

For any ARSA′ = (S′,P′, I′), such thatS′ is finite,P′ andI
′ are

finite. Any ARCD in A′ will also be finite. Because the rules are
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monotonic and confluent, we can findE, such thatD `∗ E and
∀F : E `∗ F =⇒ E = F by a finite number of reductions.
By the Theorem 1, we can conclude that any surjective application
from S to a finite set, define an aggregation which is computable in
finite time.

A very simple approach is to take a subsetS of S and to define

g : S → S ∪ {out}

s ∈ P (S) 7→ s
′ ∈ P̃ (s)

s 6∈ P (S) 7→ out

whereP (S) = {s|∃s0, . . . , sn : s0 ∈ S ∧ ∀1 ≤ i ≤ n :
(si−1, si) ∈ P} andP̃ (s) = {s0|∃s1, . . . , sn : sn = s ∧ ∀1 ≤
i ≤ n : (si−1, si) ∈ P}.

4. SCOLL : Safe Collaboration Language
The SCOLL language is a subset of the LP calculus extended with
search. It is tractable and therefor not Turing complete. Itcan be
made Turing-complete by making its domain countably infinite and
allowing an countably infinite number of clauses.

We will define the language without using LP calculus and
will show the correspondence to LP calculus only afterwards. That
allows us to take advantage of the restricted definitions in SCOLL,
which will improve clarity.

4.1 Definitions

A storeover a setX named by a setP with aritiesar is a set of
tuples onX labeled by elements ofP . The arity of a tuple in the
store is determined by an arity functionar.

For example:
σ = {p1(x1, x3, x4), p2(x1, x2), p2(x1x3)} is a store over
{x1, x2, x3, x4} named by{p1, p2}
of arity ar, with ar(p1) = 3 andar(p2) = 2.

We will denoteΣ(X, P, ar) as the set of all stores overX
named byP with arity ar.

Thetransformationdefined byf : X → Y is the function:

Tf : Σ(X, P, ar) → Σ(Y, P, ar)

σ 7→ {p(f(x1), . . . , f(xn))|p(x1, . . . , xn) ∈ σ}

4.2 Program structure

Let CP = {access, child, active} be the set of configuration
predicate names.
Let KP = CP ∪ {iEmited, iCollected, rEmited, rCollected,

cEndowed}
be the set of knowledge predicate names.
LetBP = {create, iEmit, iCollect, rEmit, rCollect, pEndow}
be the set of behavior predicate names.
Let S be the countable set of SCOLL subjects.
Let V be the countable set of SCOLL variables.
Let SP be the countable set of subject predicate names.
Let ar be the local arity application for the predicates.
LetGP = KP∪BP]SP be the set of the global predicate names.

ar : GP → N

access 7→ 1

child 7→ 1

active 7→ 0

iEmited 7→ 2

iCollected 7→ 2

rEmited 7→ 1

rCollected 7→ 1

cEndowed 7→ 1

create 7→ 1

iEmit 7→ 2

iCollect 7→ 1

rEmit 7→ 1

rCollect 7→ 0

pEndow 7→ 2

p ∈ SP 7→ n ∈ N

Let Gar be the global arity application for the predicates.

Gar : GP → N

access 7→ 2

child 7→ 2

active 7→ 1

iEmited 7→ 3

iCollected 7→ 3

rEmited 7→ 3

rCollected 7→ 3

cEndowed 7→ 3

create 7→ 2

iEmit 7→ 3

iCollect 7→ 2

rEmit 7→ 3

rCollect 7→ 2

pEndow 7→ 3

p ∈ SP 7→ ar(p) + 1

Let GV = V ] {α, β} be the set of global variables.

A configuration is an element ofΣ(S, CP, Gar)
A condition is an element ofΣ(V, KP ] SP, ar)
A consequence is an element ofΣ(V, BP ] SP, ar)
A rule is a pair made of a condition and a consequence.
An intent is a set of rules.
The set of all possible intents isIntents
An explicit behavior onS′ ⊂ S is a functioneb : S′ →

Σ(S, BP, ar). The set of all explicit behaviors onS′ is noted
Exp(S′).

A SCOLL program is a6 element tuple(b, ss, ic, si, l, s)
where:
b : S → Intents is the behavior (intention) function,
ss ⊂ S is the set of search subjects,
ic is a configuration (the initial configuration),
si : S → Σ(S, SP, ar) is the subjects initialization function,
l ∈ Σ(S, CP, Gar) is the liveness property and
s ∈ Σ(S, CP, Gar) is the safety property.
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A SCOLL state is an element ofΣ(S, GP, Gar). A SCOLL
result is a special SCOLL state. Characterization of SCOLL results
is done in the semantics of the language. For a SCOLL program
prg we will call the outcome of the program,res(prg), the set of
all maximal (for inclusion) SCOLL results of this program.

A SCOLL program describes the behavior and initialization
from the subject point of view. To ease the definition of the seman-
tics of a SCOLL program, we define the globalization of a SCOLL
program, that is, the program seen from a global point of view.

G(b, ss, ic, si, l, s) = (Gb(b), ss, ic, Gsi(si), l, s)

Gb : S → Intents → 2(Σ(S∪GV,GP,Gar)×Σ(S∪GV,GP,Gar))

b 7→ {(Gst(s, c), Gst(s, d))|

∃s ∈ S : (c, d) ∈ b(s)}

Gst : S × S → Σ(V, GP, ar) → Σ(S ∪ GV, GP, Gar)

s, σ ∪ σ′ 7→ Gst(s, σ) ∪ Gst(s, σ
′)

{rEmited(x)} 7→ {rEmited(s, α, x)}

{rCollected(x)} 7→ {rCollected(s, α, x)}

{cEndowed(x)} 7→ {cEndowed(s, β, x)}

{rEmit(x)} 7→ {rEmit(s, α, x)}

{rCollect()} 7→ {rCollect(s, α)}

{p(x1, . . . , xn)} 7→ {p(s, x1, . . . , xn)}

where
p ∈ (GP )\

{rEmited, rCollected, cEndowed, rEmit, rCollect}

Gsi : S → Σ(S, SP, ar) → Σ(S, GP, Gar)

b 7→ {p(s, s1, . . . , sn)|

∃s ∈ S : p(s1, . . . , sn) ∈ b(s)}

4.3 Denotational semantics

We can consider a first order logic with a signature consisting of :
the predicatesGP with the arities inGar and
the nullary functionsS. The set of variables symbols of the logic is
GV

Any SCOLL stateσ can be completed to an interpretationIσ

by stating that it’s universe isS,

Iσ(s) = ks : S0 = {()} → S

() 7→ s

(The interpretation in the model ofs as a nullary function in first
order logic is the constant function returnings as an element of the
universe),
Iσ(p) = {(s1, . . . , sn)|p(s1, . . . , sn) ∈ σ}

Since the formulas will be closed, we won’t need to define the
interpretation of variables.

The denotational semantics of a program(b, ss, ic, si, l, s) are
given by the following formulas:
DS(b, ss, ic, si, l, s) ≡
V

(c,d)∈Gb(b)(∀
∗DSstore(c) =⇒ DSstore(d)) ∧ DSstore(ic) ∧

DSstore(Gsi(si)) ∧ System
where∀∗F denotes the universal closure ofF .
DSstore(σ) ≡ true ∧

V

p(a1,...,an)∈σ
p(a1, . . . , an)

System ≡ Grant ∧ Take ∧ Create ∧ Endow
Grant ≡ ∀x, y, z : active(x) ∧ active(y) ∧ active(z) ∧
access(x, y)∧access(x, z)∧iEmit(x, y, z)∧rCollect(y, x) =⇒
access(y, z) ∧ iEmited(x, y, z) ∧ rCollected(y, x, z)

Take ≡ ∀x, y, z : active(x) ∧ active(y) ∧ active(z) ∧
access(x, y)∧access(y, z)∧iCollect(x, y)∧rEmit(y, x, z) =⇒
access(x, z) ∧ iCollected(x, y, z) ∧ rEmited(y,x, z)
Create ≡ ∀x, y : active(x) ∧ child(x, y) ∧ create(x, y) =⇒
active(y) ∧ access(x, y) ∧ created(x, y)
Endow ≡ ∀x, y, z : active(x) ∧ active(y) ∧ active(z) ∧
access(x, z)∧created(x, y)∧pEndow(x, y, z) =⇒ access(y, z)∧
cEndowed(y, x, z)

A SCOLL stateσ is final for program(b, ss, ic, si, l, s) if there
is ane ∈ Exp(ss) such that
Iσ |= DS(b, ss, ic, si, l, s),
Iσ |= DSstore(Gst(e)) and
there is no SCOLL stateσ′ such thatσ′ ⊂ σ and
Iσ′ |= DS(b, ss, ic, si, l, s),
Iσ′ |= DSstore(Gst(e)).

A SCOLL stateσ is a SCOLL result of program(b, ss, ic, si, l, s)
if:
σ is final,
Iσ |= DSstore(l),
Iσ |= ¬DSstore(s).

4.4 Operational semantics

For a program(b, ss, ic, si, l, s), the initial stateσ0 ∈ Σ(S, GP, Gar)
is defined byσ0 = ic ∪ Gsi(si).

The operational semantics of a program are defined in two parts,
the propagation part and the liveness checking part: The reduction
rules are from a set of states to a set of states.

For the propagation part, they are:

• Monotonicity
U ∪ V ` U ′ ∪ V if U ` U ′

• Intentional propagation
{σ} ` {σ ∪ Tf (D)} if
∃(C,D) ∈ Gb(b) : ∃f : GV → S : Tf (C) ⊂ σ

• System propagation
{σ = {active(x), active(y), active(z),

access(x, y), access(x, z),
iEmit(x, y, z), rCollect(y, x)}} `

{σ ∪ {access(y, z), iEmited(x, y, z), iCollected(y, x, z)}}

{σ = {active(x), active(y), active(z),
access(x, y), access(y, z),
iCollect(x, y), rEmit(y, x, z)}} `

{σ ∪ {access(x, z), iCollected(x, y, z), rEmited(y,x, z)}}

{σ = {active(x), child(x, y), create(x, y)}} `
{σ ∪ {active(y), access(x, y), created(x, y)}}

{σ = {active(x), active(y), active(z),
access(x, z), created(x, y), pEndow(x, y, z)}} `

{σ ∪ {access(y, z), cEndowed(y, x, z), rEmited(y,x, z)}}
• Search
{σ} ` {σ, σ ∪ Gst(e)} if e ∈ Exp(ss)

• Safety
{σ} ` ∅ if s ∩ σ 6= ∅

And for the liveness checking part:

• Monotonicity
U ∪ V `′ U ′ ∪ V if U `′ U ′

• Liveness
{σ} `′ ∅ if l 6⊂ σ

The outcome of the program isU if there is aU ′, such that
{σ0} `∗ U ′, U ′ is stable for̀ , U ′ `′ U andU is stable for̀ ′.

If only a finite number of subjects, variables and predicatesare
used in the program, then the monotonicity of the rules guarantees
that the operational semantics can give an outcome in a finite
number of reductions.
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4.5 Relation to LP calculus

Except for search subjects, SCOLL is a strict subset of LP. This
can be seen from the denotational semantics. Liveness is thegoal,
safety is negative knowledge (grounded, without using variables)
and can only cause failure. Other conditions are Horn clauses
restricted to positive information.

The main difference is in the search subjects. We are interested
in all (variations of) solutions of a problem, defined by the extensive
behavior of the search subjects. Rather than deriving the liveness
property, we analyze all the knowledge that can be derived from a
solution.

4.6 Relation to ARS/ARC

Thechild relation in SCOLL represents the parenthood relationP

of the AR-system.
Theaccess relation corresponds toaccess(x, y) in KC and toEC

for an ARCC.
Theactive relation corresponds toSC for an ARCC.
The behavior functionb corresponds to the intentI of the ARS
without the restrictions stated in section 3.2. TheG function solves
these restrictions so thatGb(b) corresponds toI. TheSystem in
the denotational semantics and the “System propagation” inthe
operational semantics correspond to the` relation in AR -systems.

4.7 Implementation

The first version of SCOLL is implemented in Mozart-Oz [Moz03]
and described in [SJV05]. It provides no syntactic support yet, and
it is merely a proof of concept at this early stage. The initial know-
ledge and the intent of the subjects in a configuration are input, and
constraint propagators are created from these descriptions.

The propagators monotonically add information to a common
constraint store, corresponding to the propagation of knowledge,
behavior and access between the subjects. Explicit creation is not
handled yet: all subjects therefor represent aggregates ofa parent
entity with all its potential offspring.

When the store has evolved to a fix point before all behavior
parameters of the search subjects are defined, one parameteris
picked, to be tested with the valuetrue. Only when backtracking,
in case no solutions were found with this parameter set totrue, will
the parameter be tested withfalse. This search strategy guarantees
that the first solution found has maximal collaboration (maximum
set of parameters set totrue). For all following solutions, extra
constraints are added to avoid finding sub solutions (non-maximal
collaboration) of the solutions that were previously found.

The final configurations corresponding to the solutions can be
visualized with GraphViz [GN00, JM04, GV05]. For a detailed
account of the implementation we refer to [SJV05].

5. Using SCOLL in Practice
In this section we provide an example program that expressesthe
caretakercapability pattern for revocable authority. Alice wants
to give Bob revocable authority to Carol, and therefor creates a
proxy she can control: the caretaker. Given a safe approximation
of Alice’s and the caretaker’s behavior, we want to calculate the
maximum collaborative behavior for Carol, that will prevent Bob
from getting irrevocable authority to Carol (e.g. direct access).
Carol will be the only search subject in our problem.

Figure 4 shows the initial access graph with solid arrows. The
confinement property to be guaranteed here is: Bob should notbe
able to get direct access to Carol. The liveness property that should
not be prevented is: Bob should be able to use Carol indirectly.
We therefor add Dave to the configuration: an untrusted subject
only Carol initially has access to, and we will check if Bob can get
access to Dave.

Figure 4. Initial configuration of the caretaker pattern

Since we do not know the behavior of Bob and Dave, the only
safe approximation is to consider them to be completely collabora-
tive (undefined) subjects.

This is how the the problem is programmed in SCOLL:
CaretakerPattern =(b, ss, ic, si, l, s).
b = {(alice, AliceIntent), (bob, UnspecifiedIntent),

(carol, SearchIntent), (ct, CaretakerIntent),
(dave, UnspecifiedIntent)}

The Intents of the subjects used inb are defined in Table 3

Table 3. The behavior of Alice and the caretaker
AliceIntent

({} , {rCollect()}),
{({use(X)} , {iCollect(X)}),
({pass(X)} , {rEmit(X)}),

({use(X), pass(Y )} , {iEmit(X, Y )}),
({isBob(X), isCaretkr(Y )} , {iEmit(X, Y )}),

({rCollected(X)} , {pass(X)}),
({isCarol(X)} , {use(X)})}

CaretakerIntent
({} , {rCollect()})}

({prxy(X)} , {iCollect(X)}),
({iCollected(X)} , {rEmit(X)}),

{({prxy(X), rCollected(Y )} , {iEmit(X, Y )}),
UnspecifiedIntent

{({} , {iEmit(S, X), rEmit(X),
iCollect(X), rCollect(),
create(X), pEndow(X)})}

SearchIntent
{}

ss = {carol}
ic = {access(alice, alice), access(alice, bob),

access(alice, carol), access(alice, ct),
access(bob, bob), access(bob, ct),
access(carol, carol), access(carol, dave),
access(ct, ct), access(ct, carol),
access(dave, dave),
child(bob, bob), child(dave, dave),
active(alice), active(bob),
active(carol), active(ct), active(dave)}

si = {(alice, {use(alice), pass(alice), isBob(bob),
isCaretkr(ct), isCarol(carol)}),

(ct, {prxy(carol)})}
l = {access(bob, dave)}
s = {access(bob, carol)}
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5.1 The solutions

Table 4 lists the the sets of minimal restrictions corresponding to
the two maximal solutions found for Carol’s extensional behavior.
Notice that Carol is not only prevented to return herself when
being invoked. She should also never grant herself to Bob or Dave.
Moreover, it is safe to either grant Alice to Bob (Dave) or grant
herself to Alice, but she should not do both. The reason is that
Alice, while not granting Carol initially, does not check ifshe gets
Carol from a collaboration. Alice might therefor start “passing”
Carol (to Bob) after Carol has granted herself to Alice.

Table 4. Solutions
1 Carol should notiEmit herself to Alice, Bob, or Dave.
2 Carol should notiEmit herself to Bob or Dave,

Carol should notiEmit Alice to Bob or Dave.

These results are calculated with an incomplete implementation
of the language. We expect that the complete implementation– be-
cause of added expressive power – will be able to find more precise
refinements of these solutions, each of them being somewhat less
restricting.

Figure 5 represents the final configuration for the first solution.
Dashed arrows represent access that can be reached via propaga-
tion of access, in this solution. It is clear from the graph that the
confinement property and the liveness property are respected: Bob
has got access to Dave but not to Carol.

Figure 5. The graph generated from solution 1 by GraphViz

6. Conclusion and Future Work
In this paper we presented a new formalism called Authority Re-
duction systems to model the propagation of authority and data in
capability based configurations. We showed how the classical ways
to model capabilities had insufficient expressive power to be practi-
cally useful when analyzing patterns of collaborating subjects. We
proved that this formalism can be used to efficiently calculate safe
but precise approximations of the confinement properties incon-
figurations where the exact calculation of confinement properties
would be practically intractable. We provided a domain specific
declarative language SCOLL to express the collaborative intent of
subjects, the initial conditions of a configuration, and therequire-
ments about confinement and liveness that are to be ensured. We

provided the abstract syntax, operational and denotational seman-
tics, and an initial implementation for this language, and we ex-
plained how patterns of safe collaboration can be investigated using
the language.

While the caretaker pattern presented in Section 5 is interest-
ing for its need of expressive power, it is of course in itselfnot
sufficient to justify a complete formalism and a language. Other
patterns have been used in the practice of secure programming,
and they should also be analyzed to understand in what situations
they can safely be applied. Examples are patterns that rely on a
trusted third party to guarantee secure and non-repudiative trans-
fer (e.g. money) can be found in [MMF00]. The sealer/unsealer
pair is simple pattern that seals off authority (makes it unreach-
able without preventing the propagation of the sealed authority) so
that only holders of the specified unsealer capability can use the
sealed authority. Sealer/unsealer pairs are a crucial component in
other patterns, to the degree that some capability secure languages
[MSC+01, Ree96] provide them as primitives in the language.
Auditors [YM00] are another important mechanism that couldbe
modeled as patterns and studied in combination with other patterns.

As mentioned in Section 3.2, and contrary to earlier, more static
versions of Authority Reduction Systems [SV05b], we have not
yet explicitly modeled the propagation ofdata for the formalism
presented in this paper. In capability systems, preventingdata to
flow is a harder than preventing capabilities from being propagated,
even if we only consider overt communication channels.

Figure 6. Overt data channel with capability diodes

Figure 6 shows an example of what we mean. Two clients Al-
ice and Bob use a common diodeD1 that collects from its clients
and emits to a file. Since AR-systems only model thepossibility
of collaborative behavior, the diode’s actual acceptance of infor-
mation from its clients may be influenced by these clients. Then,
when this influence is observable for clients, an effective data com-
munication channel between clients is created that is not detected
by the current system. Future work will therefor explicitlymodel
data propagation, and take these channels into account.

We plan to enhance the way confinement properties can be
expressed. While we can only put restrictions on theeffectsof
propagation of authority and data, it would be interesting to also
be able to express requirements about the way authority and data
flows. We are therefor investigating the use flow graphs that are
derived from the configuration and in which these restriction can
be expressed as graph reachability constraints [QVD05].

The implementation of the current version of our pattern analy-
sis tool as described in [SJV05] is in a prototype phase and needs
improvement on functionality and efficiency.

7. Related Work
The way we analyze the flow of authority in capability based pat-
terns of collaboration bears similarity to recent work in statical
[NNH99] and partially statical [Mye99] flow analysis. An impor-
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tant difference and complementarity is in the scale of the problems
that are analyzed, and consequently in the goal of the analysis.

For patterns of secure collaboration to be useful, we have to
find and understand the boundaries of their applicability indifferent
contexts. A pattern will typically consist of only a few roles (often
less than 10), but if the language to describe the roles is very ex-
pressive, the possible ways for them to interact can be huge.From
these possible ways of interacting, some have to be avoided because
of their effects. The approach presented in this paper allows flexibi-
lity and arbitrary precision in the specification of the collaborative
behavior of the roles in the pattern.

The results of pattern analysis are acompletelist of possible
concrete minimal sets of limitations on the behavior of the search
roles in the pattern, that will each be sufficient (in an environment
that complies with the capability rules) to guarantee the confine-
ment properties for which the pattern is designed. From thislist,
the programmer can choose the set of limitations best suitedto his
needs.

The work of Guttman et al. [Jos05] models dialogs between
two parties that accumulate monotonically growing knowledge, to
analyze security protocols. In their setting, the accumulated know-
ledge can result in less cooperation as well as in more coopera-
tion. Whereas a “simplistic” way to model protocols would have
involved temporal logic to constrain the order between the events,
they were able to avoid this. This gave us hope that there could be
a way for us to model a conditionaldecreasein collaborative beha-
vior without resorting to non-monotonic modeling techniques such
as (default) timed concurrent constraint programming [SJG95] or
temporal concurrent constraint programming[NPV02].

The insight inspired us to a solution that completely abstracts
from time. We will model an extra subject for every decrease in a
subject’s knowledge or behavior that is to be modeled. The origi-
nal subject will exhibit its behavior before the behavior decrease
whereas the new one will be created when the specified conditions
apply, and exhibit only the post-decrease behavior. To model the
uncertainty about the actual time of the revocation, the creation of
the second one will not disable the first one. This allows us tore-
quire different behavior before and after a certain “event”(e.g. the
actual revocation of authority in the caretaker pattern), without mo-
deling the event in time.

Except for our previous research in this field [SV05b, SMRS04],
we have not found any recent work that focusses on formal safety
analysis in capability systems.
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