SCOLL
A Language for Safe Capability Based Collaboration

Yves Jaradin

Fred Spiessens

Peter Van Roy

Université catholique de Louvain
{yjaradin,fsp,pvr}@info.ucl.ac.be

Abstract

In capability secure systems it is important to understdmadre-
strictive influence programmed entities (e.g. proceduoegcts,
modules, components) have on the propagation of influenee in
program. We explain why Take-Grant systems are not suffigien
expressive for this task, and we provide a new formalism -héut
rity Reduction systems (AR-systems) —to model collabeegtro-
pagation. AR-systems provide safe and tractable apprdxinsof
adequate precision for the confinement properties in coraiguns

of collaborating entities.

We propose a domain specific declarative language — SCOLL
(Safe COLlaboration Language) — to express the collatver -
havior of subjects, the initial conditions in a configuratiand the
requirements about confinement and liveness that are tosleszh
We provide the syntactic structure and an operational andtde
tional semantics for the language. From experiments withisa fi
implementation, we provide a preliminary result and show pat-
terns for capability based collaboration can be analyzeidgener-
ated.

Keywords language, collaboration, security, safety, capability,
pattern, authority, model checking, authority reduction

1. Introduction

In capability secure languages and systems [VIST, SV05a,
SWO00, SDN 04] the mechanism that allovegcess rightso pro-
pagate through an access graph of connected program (¢itip
loaded procedures, functions, objects, agents, compangsoine
having references to others) is essentially the same as ¢lohan
nism that enabledatato flow in the access graph. This mechanism
is based orollaborationbetween an invoker entity and an invoked
entity. Both entities are programmed with certain behathat will
decidewhatwill actually be propagated during a collaboration (in-
vocation), andn what direction

Our domain specific language SCOLL is designed for expres-
sing the propagative behavior-aspects of programmede=nténd
for consequently analyzing thgositive impact of local, entity-
specific behavior on the global propagation of influenceh@ttty
and information) throughout an evolving access graph. astp
cal use is most beneficial in capability systems howeveralrse

[copyright notice will appear here]

in these systemaverycritical propagation of access rights is con-
trolled by collaborative behavior.

This allows us to also drawegativeconclusions from such ana-
lysis: if behavior controlled propagati@annotprovide any access-
to-file-F' to program entityAlice, then Alice will be effectively
prevented from getting access to file The actual mechanisms
for behavior-controlled propagation in capability systeare de-
scribed in Section 2.

The most important propagation mechanism in capability sys
tems involves behavior controllellaboration in whichbothcol-
laborating entities have control: no propagation will happinless
both entities are programmed to enable it. Relying on iettely
programmed behavior to control propagation, capabilitytayns
can allow collaboration among mutually suspicious ertjtia all
confidence that the global confinement requirements wiltspec-
ted. Access control policies apegogrammedrelying on the restric-
ted propagative behavior of some of the entities (the onstsatte
usually called “trusted”).

Behavior not only controls the confinement of access, buemor
importantly the confinement afuthority. Authority is the whole
of effects an entity can potentially cause to the system, digqu
its access rights. An entity with restricted behavior witlyouse
certain access rights in certain ways, under certain comgit
Thus its behavior willreduce the authorityf other entities that
collaborate with it. For instance, an entity could have digecess
to a file, but only use that file to append data to it in a certain
format, and thus provide exactly this reduced form of althdo
its clients.

In Section 3 we present a new formal systemdathority re-
ductionin capability systems that can model conditional behavior,
and provides a safe, precise, and tractable approximatiaatbo-
rity confinement. This formal system builds on earlier resthat
had less expressive power [SV05b].

Sections 2 and 3 having described the domain of behavior con-
trolled collaboration and propagation, Section 4 will tiaesent
our language for this domain. SCOLL is a very simple dechegat
language that resembles Datalog, and uses predicates plicaim
tions to represent conditional behavior and positive kieolge. The
capability rules for propagation are enforced by the lagguaVe
describe the language’s syntactic structure, and give pletende-
notational and operational semantics. The implementasibased
on concurrent constraint programming [Sar93], and will Hefly
explained too.

We consequently highlight the practical value of using SCOL
in Section 5. Behavior based authority control makes it ssag/
for the programmer to adhere strictly to the principle oblesutho-
rity (POLA): program the propagation of authority stricty a
need-to-use base. This is not an easy task, as correctlygpneg
ming an entity now entangles two opposite concerns: makieg t
entity’s behavior permissive enough to help provide theiireql

2005/7/19

global functionality, but restrictive enough to help gudee the
required global confinement.

Programmed abstractions for access control and patterns of
collaborative behavior can help, but only if their precadimtis and
consequences are well understood. We show how SCOLL is used
to derive such preconditions, from a partial descriptioa pattern
of capability based collaboration and the constraintsesgmting
the global confinement policy. A capability pattern for resble
authority called "the caretaker” will be examined as an eglam

We conclude and summarize what remains to be done in Section
6. Related work is mentioned in Section 7.

2. Capability Patterns

In this section we first introduce the view on capabilitieattivill
be used in the rest of the paper. We also give a brief introalutd
the formalism of Take-Grant systems that was designed tyzma
capability propagation, and we investigate why it does nifice.
We then explain the requirements for an expressive fornstegy
to be able to safely and precisely analyze patterns of chiyabi
based collaboration.

2.1 Capability Based Security

Dennis and Van Horn [DH65] introduced the concept of a capabi
lity in 1965. A capability is an unforgeable designationférence)
to a resource that is inextricably combined with an accegt tb
that resource. In capability systems, authority is onlyilalsée in
the form of capabilities, and all references to resourcesapabi-
lities. If you are able to reference an entity (via a capahiliyou
are allowed to use it and to pass it on to other entities yoe hav
cess to. This may seem a very weak and discretional policysat fi
sight, but a brief explanation will correct that impression

In [MSO03] Miller and Shapiro propose a view on capabilities
they callobject-capabilitiesAll references to program entities are
capabilities that provide the right tase (invoke) the designated
entity. The authority exerted when using the entity is dedithy
the entity’s programmed behavior. We distinguish the relatities
play in the collaboration as follows:

invoker : the entity that invokes
responder : the entity that is being invoked

emitter : an entity that collaborates lgmitting(providing) autho-
rity or information.

collector : an entity that collaborates bgollecting (accepting)
authority or information.

There is always exactly one invoker and one responder inla-col
boration. The invoker decides what entity (or data) will beoked
(among the ones it has access to), the emitter decides wtitgt en
will be emitted (among the ones it has access to). To propagat
something, one entity has to emit it and the other one hadlecto

it. These rules for propagation reflect the scoping rulesriorca-
tion in an object oriented capability language that prosigdgrict
encapsulation [MS€01, SVO05al.

This is the view on capabilities we will use in this paper. It
unveils the real preconditions for propagation of autlyoentities
have to collaborate to pass a capability, and such collébara
involves both entities’ behavior. While it is the inalietatand
eternal right of the holder of a capability to invoke the desited
entity, the effect (authority) that is resorted is dynamid ¢rgely
decided (possibly reduced to zero) by the invoked entitgisavior.

It becomes clear in this view that the “discretional” natofe
capabilities is not actually a weakness. Propagation iameternal
right but a potential effect of using a right, that can berased by
eachof the collaborating entities. Confinement policies can now
be implemented by introducing entities with carefully riesed

behavior at strategic places in a configuration (accesshyjrap
mutually distrusting entities.

Besides collaboration, creating new entities can alsoecpts
pagation in the following restricted sense:

parenthood : The creating entity (parent) gets access to the cre-
ated entity (child).

endowment : The parent can endow part of its access to the child,
at the time of creation.

These rules reflect the scoping rules for object creatiomin a
object oriented capability language. The parent objectrabtes
the internal state of the child object from the entities theept can
access. In practice this means of course that the parentetamp s
bidirectional communication channels to its child.

The inextricable combination of and entity’s designatioithw
the right to use it has an important advantage over the sedtall
“mandatory” access control policies that separate theseegis.
When designation means right-to-use, delegation of aityhoe-
comes propagation of capabilities. Deputy entities can bewle-
signed to use the authority provided by their clients in threnf of
capabilities provided to them by their clients upon invaaatwith-
out becoming vulnerable to a confused deputy attack. A catfu
deputy is an entity that cannot tell the difference betwégmin
authority and the authority that is supposed to be deledatidy
its client. It cannot avoid being lured into using its ownlaarity
on its client’s behalf, even if this client has no such autior

As explained in [Har89] and [SV05a], only capabilities cae-p
vent such an attack. Stack-walking mechanisms can helprifyve
ing who delegated what authority for what purpose to whord fan
very expressive and relatively efficient WBDF97] but sti#innot
avoid the possibility of confused deputies in general,ipalirly
since they provide no solution for concurrency and distitisu

A brief overview of the advantages and drawbacks of caggbili
security in the view of object-capabilities is provided 8M05b].
One important drawback is the lack of orthogonality of th@-co
cernssecurityandfunctionality Confinement becomes completely
entangled with functionality, programmed together inte ftame
object methods and procedures. In [MTS05] Miller, Tullohda
Shapiro explain the deeper reasons for this intrinsic géament
of concerns. It remains to be investigated whether this cidable
burden can somehow be relieved.

Related to this drawback is the need for powerful tools tled h
design and analyze safe patterns of collaboration. Witeooh a
tool it is very hard for an application developer to pregisetsess
what effects programmed behavior has on the global confineme
requirements. Our main contribution in this paper, is tovjgle a
formalism and a language that will be the basis for such a tool

2.2 Take-Grant Systems

We will now briefly introduce the Take-Grant systems of [BE79
For a more detailed account on the particularities of theTakant
formalism with respect to propagation and collaboratioa,refer
to [SV05b].

Take-Grant systems are configurations of subjects propagat
information and capabilities. The configurations are labetli-
rected graphs of nodes representing the subjects, aresesping
access, and labels on the arcs representing sets of agglessto
the subject pointed at by the arc. Capabilities are the ¢abatcs
in a configuration. The subjects (nodes) model entitiesdhatuse
capabilities (outgoing arcs) and to which rights (incormangs) can
be applied via capabilities.

Two rights govern the propagation of capabilitieggant and
take A grantlabeled capability allows the holder to emit any ca-
pabilities it holds to the subject pointed at by the capghilin-
cluding its own take and grant capabilitiest#kelabeled capabi-

2005/7/19

lity allows the holder to collect any capabilities hold by thubject
pointed at by theéakecapability. Figure 1 illustrates both mecha-
nisms: the new capabilities arising from propagation adicated
with a dashed arrow.

Figure 1. Capability Propagation vidake (left) andGrant (right)

Some subjects will not use their own rights to propagaterinfo
mation and capabilities. We will refer to them as “passivgiscts”.
Their behavior is restricted in the following sense: passitbjects
will only provide and accept capabilities when being invibke

should of course never get direct access to Carol (indidayettie
arrow ending in a cross). It is OK for Bob to get direct access t
Dave though: that is depicted by the dashed arrow from Bob to
Dave.

Given the behavior mentioned for Alice and for Caretakee (th
latter one being a proxy object to Carol and ordyaying propa-
gation), it is mentioned in [MS03] that Carol's behavioralzas
to be restricted in a certain way: she should for instanceetatn
herself when being invoked.

To make the caretaker pattern useful, we have to understand
very preciselywhat Carol should not do in this case. In general,
given a configuration of collaborating subjects of which hieda-
vior is partially described, and given a set of confinemequire-
ments (what should not happen) and liveness requiremettst (w
should not be prevented from happening), we have to be able to
calculate all minimal sets of restrictions in the non-disad part
of the behavior of any subject in the configuration, that saffo
guarantee these requirements.

3. Authority Reduction Systems

A subject can also create a new subject and thereby take anyjn this section we propose a formalism capable of expressig

rights it wants to it. Subjects can also drop their rightstipby or
completely.

The advantages of this formal system are its simplicity dned t
fact that global confinement properties are tractable [L.&$BB6].
The main drawbacks are its lack of power to express redfricte
behavior, and the fact that propagation is modeled withtsigh
rather than with authority. The collaborative aspect ofjaigation
is therefor completely lost. As explained in [SV05b], thastadded
to a certain under appreciation of the fitness of capabilistesns
to guarantee certain forms of confinement [Boe84, KL87].

2.3 Patterns of Collaboration

The formal system we are looking for should allow us to ex-
press and analyze useful patterns of safe collaboratidterRa of
safe collaboration are programming idioms for writing daifity
based secure programs, analogous to object-orientedndpatg
terns [GHJV94]. Such a pattern is useful if its precondgion be
effectively applicable are well understood and descrildexhn ex-
ample, let us look at the pattern for revocable authorityedahe

caretakerin [MSO03].

Figure 2. The caretaker pattern for revocable authority

Figure 2 depicts a configuration of collaborating subjeStsa-
dowed subjects indicate that we make no assumptions abeiut th
behavior: these subjects armspecified In the pattern, Alice
wanted to give Bob revocable authority to use Carol, andefoer
created a proxy (Caretaker) to Carol and gave that to Bokadst
Alice will also emit what she can collect from collaboratsoi€Carol
has access to an unspecified subject Dave. This is the ool
guration depicted by the solid arrows in the figure.

Alice relies on Caretaker’s behavior to stop proxying whee s
sends it a certain message. For this revocation to havet efeb

pability based patterns of collaboration. We will aim famgiicity
and expressive power, and devise a formalism that allowsoein
collaborative behavior at different levels of refinemenhiles al-
lowing a tractable and safe calculation of confinement.

3.1 Goal

We want our formalism to be practically useful for softwargie
neers during the design and implementation phase:

e to reason about the feasibility of confinement requirements
during the design of their program, and

o to verify existing code and check if the confinement require-
ments are respected.

That means that the necessary translations between excsiie
and behavior specifications for subjects in the formalisimugh
be straightforward in both directions. To safely model tyntbde
into subject behavior, the collaborative behavior showdappro-
ximated from above: making sure that the subject edllaborate
whenever it is not impossibtlat the actual entity would collabo-
rate in that fashion. The precision of modeling should betatde,
so that the model can be refined exactly in the places wharmi t
out to be too crude.

When refining subject behavior into actual code, it should be
easy to interpret the specified restrictions in subject tiehas
requirements for the modeled entities.

To achieve the necessary expressive power we model an'gntity
awareness of its environment lasowledgeof the subject. A sub-
ject’sintentdescribes how itbehavioris positively influenced by
its knowledge. This is illustrated in Figure 3. The effectzalla-
boration will provide more knowledge to the subject. Mor@wn
ledge can only lead to more collaborative behavior. The alutu
interaction between behavior and knowledge in a subjecbris-c
pletely monotonic. The rules that govern collaboratiomteen en-
tities will model the capability rules for propagation oftharity
and information.

For simplicity we will model neither time nor non-monotonic
changes (decrease) in knowledge or collaboration. Seétionil
briefly mention how to model non-monotonic effects in our mon
tonic system.

To keep confinement tractable, we allow subjects to modsl set
(aggregates) of entities instead of a single entity. We wwilesti-
gate and proof the conditions for this to be a safe approximat
Aggregation will be used to implicitly model subject creati(ag-
gregating a entity with all its offspring), but it can also bgeful

2005/7/19

subject
knowledge

subject

collaboration| behavior

Figure 3. The amplifying influence of knowledge and behavior

to model composite entities (e.g. components), clusteentfies
(e.g. unspecified entities that are connected), or enthigshave a
similar purpose or equal clearance or confidentiality level

Subject behavior is expressed with the predicates list@dtite
1. The prefixi means the subjed, invokes, the prefix means it
responds to invocation. The lower part of the table showstite
ject behavior predicates to create other subjects. Nolmmidion
is needed for creation and endowment: it is subjecs sole de-
cision to create subjects and endow it. The prefimneanssS; is
the endowing parent, the prefexmeanss; is the child receiving
endowment.

Table 1. Predicates for subject behavior
comments

S tries to invoke subjecs$s
and emitX to it

S tries to invoke subjecss
and collect from it

S tries to emitX

when invoked byS;

S tries to collect

when invoked bySs

S1 intends to creat®>
ParentS; endows its childSe with X

predicate
iEmit(S1, SQ, X)

iCollect(S1, S2)
rEmit(Si, S2, X)

rCollect(S1, S2)

create(St, S2)
pEndow(S1, S2, X)

These behavior predicates describe the behavior of thedubj
in its first argument:S;. The fact that no collaboration is needed
for create() andp Endow() does not mean that every creation and
endowment will always succeed. It will for instance not begible
for S; to endowsS> without also creating-. The rules that govern
the actual evolution of a configuration will be defined in $mtt
3.2.

Ther—prefixed predicates, corresponding to behavior when be-
ing invoked, include the invoker as the second argument dbes
not mean that we assume that responders have complete kiyavle
of their invoker. However, we want to be able to model respond
behavior depending gpartial knowledge about the invoker, avail-
able from an invocation. For instance, the fact that an inveknits
X to the responder, might be a precondition for the resporaler t
emitY to the invokelin the same invocatiofmhe language SCOLL
will allow this specific type of invoker-dependent behayiaut re-
strict the use of invoker identity in other cases.

Table 2 lists the knowledge predicates that can be used by a

subject to express its intent.

The knowledge provided in these predicates is availablg
to the subject in the first argumensy(). Notice again that the
r—prefixed predicates, corresponding to knowledge aboutgbein
invoked, include the invoker as the second argument. Adhis,

Table 2. Predicates for subject knowledge

comments

S1 has access t&

S1 succeeded in invoking

and emittingX to it

S1 succeeded in invoking

and collectingX from it

S1 emittedX to an invoker £5)

S collectedX from an invoker §2)
child S1 was endowed with access 10
by its parentSs

predicate
access(S1, X)
iEmitted(Sh SQ, X)

iCollected(St, S2, X)

rEmitted(S1, S2, X)
rCollected(S1, 52, X)
cEndowed(S1, S2, X)

knowledge will be only used to express knowledge availabtia
an invocation, rather than about the invoker.

Notice also that the-prefixed predicate Endowed includes
knowledge about the parent, while in general such knowlésige
not provided in capability systems. To explain why the second
argument ok Endowed() nevertheless indicates the parent subject
we have to consider a child subject that models an aggregefio
entities (e.g. all entities of a certain restricted behgviSome of
the entities modeled by this child subject can be createdfferent
parent entities, that are modeled by different parent stfj&Vhile
entities cannot have more than one parent, subjects caactlaldfch
a subject can even be “created” and endowed by itself. Sindla
the invoker inr Emitted() andrCollected(), the parent subject in
cEndowed() will be used to differentiate a subject’s reaction based
on what can be derived from the other arguments in the endatvme
Thus an aggregate child subject can decide its behaviodlmse
what it is being endowed with biyhe sameparent.

3.2 Formal Authority Reduction Systems

In this section we define the basic concepts and constructofo
laborative behavior.

LetB = {iEmit, iCollect,rEmit, rCollect, create, pEndow}
LetK = {iEmitted, iCollected, rEmitted, rCollected,
access, cEndowed }

Letar : B UK — N be the arity function of the predicates as
defined in Tables 1 and 2.
For an arbitrary se$, define:

Ks = {k(s1,...,8arm))|k € K,s; € Sforl <i<ar(k)}

Bs = {b(s1,...,5ar))|b € B,si € Sforl <i < ar(k)}

DEerFINITION 1 (ARS). Authority Reduction System :
An ARS is a tupléS, P, I) such that:

e S is a countable set of subjects, defining:

e P C S x Sis a parenthood relation.

e Iis an intent function S — F(2¥s 2Bs) (whereF(A, B) is
the set of all functions from to B) such that:

= I(s) is only defined for all local knowledge :
VK,s : (Vk(s1,...,sn) € K : 51 =s) < (3B :
B =I(s)(K))
= I(s) generates only local behavior:
B=1(s)(K) = Vb(s1,...,8arp)) € B:5s1=35
= I(s) is monotonic:
B=1I(s)(K)AB =1(s)(K')YNK CK' = BC
/

DEFINITION 2 (ARC). Authority Reduction Configuration
LetA = (S,P,I) be an ARS.
An ARCis atuplésS, E, K, A) such that:

2005/7/19

e S C S contains the subjects of the configuration

e E C S x Srepresents the access relation between them

e K C Ks C Ks represents the actual (initial) knowledge of
the subjects in the configuration.

Givenan ARCQ = (S, E, K, A), we will indicate its components:
Sc=285;

Fc=F;
KC:K;
Ac = A.

In the next definition we define the ways an ARC can evolve.
The following implications of capability based collabdcet are
enforced:

parenthood : The parent entity gets access to its child entity upon
creation. Since subjects can model sets of entities, thatgin

E2 = E1 U {(a,b)}

K> = K1U{iEmitted(z,a,b),rCollected(a, z,b), access(a,b)}
takes(a,z,b) : Ja,b,x € S1:S2 = 51

{(a,2),(2,b)} C Ex

3K, C K; : iCollect(a,x)

3K, C K; : rEmit(z,a,b) €

Ey2=FE1 U {(a,b)}

K> = Ki1U{iCollected(a,z,b), rEmitted(z, a,b), access(a,b)}

€ I(a)(K.)
I(z)(K2)

From this we derive the following definitions:

F* . is the reflexive and transitive closuretof

Frr CFY CandCHY O <= CF"1C"AC" F O
(InfactC+* D <= IneN:CF" D)

The evolution of a configuration via* can modekll possibil-

can arise that two or more subjects can create a common childities for propagation in a capability system, be it that AR-system

subject. The subject will be added to the configuration tre fir
time it is created. Subsequent creation will give the nevepiar
subject access to the child subject.

endowment : The parent entity can give part of its access to its
child. The rules make sure that a parent subject can onlywendo
access to subjects the parent has access to.

propagation : The emitter needs access to the subject that is pro-
pagated, the invoker needs access to the responder. Emittin
data is not explicitly modeled but data can be mimicked by
entities with no behavior (no intent). As will be mentioned i
Section 6, we have future plans to model data propagation in
its own right however, to refine the analysis in situationgreh
data can propagate but capabilities can not.

The following restrictions of capability based collabdvatare
not enforced by evolution in an ARC. They will be enforced by
restrictions in Section 4, when the intent functidk(s) for the
subjects will be expressed in the SCOLL language.

endowment: A child does not know the identity of its parent.
This principle can be violated ¥(s) expresses behavior based
on parent identity.

propagation : A responder does not know the identity of its in-
voker. This principle can be violatedIfs) expresses behavior
based on invoker identity.

DEFINITION 3 (). Step

LetA = (S,P,I) be an ARS.

Let6’1 = (Sl, El, Kl,A) be an ARC.

LetCs (SQ, Fs, Ko, A) be an ARC witht; C Sy

C1 F Cy <= one of the following conditions applies:

creates(p,c): Ip,c € Sy :
So =81 U{c}
(p,c) eP
3K, C K; : create(p,c) € I(p)(Kp)
Ky = K1 U{access(p,c)}
Ey = E1U{(p, o)}

endows(p,c,x): Ip,c,x € S1
S2 =51
((0.0). (. 1)} € B
(p,c) eP
3K, C K; : create(p,c) € I(p)(K,)
K> = K1 U{cEndowed(c,p, z),access(c,z)}
Ey = E1U{(c,2)}

grants(z,a,b) : Ja,b,x € S1: 52 =51
{(x7 a)7 (l’, b)} CE
3K, C K : iEmit(z,a,b) € I(z)(K:)
3K, C K : rCollect(a,z) € I(a)(Ka)

are a bit too expressive. As mentioned before, the interdtioms
can take knowledge into account that is not available in @boa-
pability systems (about the invoker or the parent), but shiplus
in expressive power will be naturally removed by the speiiimn
language for intent that will be presented in Section 4.

To analyze confinement properties in an AR-configuration
is to analyze the boundaries of propagation that the configu-
ration allows. We will therefor define a propagation pretica
couldGetAccess(C, x,y) for every pair of subjects in a configu-
ration, indicating that evolution in the configuratiéhwill allow
(not prevent) subject to get access to subjegt

DEFINITION 4. couldGetAccess(C, x,y)
LetC be an ARC withe,y € S
couldGetAccess(C,z,y) <= IC" : C+* C' A (x,y) € Ecv

We also define a predicate for the propagation of knowledge.

DEFINITION 5. couldGet Knowledge(C, k(s1, - .
LetC be an ARC
couldGetKnowledge(C, k(s1, . .
C'A k(sl, - 7Sar(k)) € Ko

'7Sar(k)))
'7Sar(k))) — 3IC': C+*

3.3 Safe Approximation via Aggregation

When calculating confinement results, a strict one-to-oapping

of programmed entities to subjects in an ARS is not always re-
commended. In principle, entities can keep on creatingrathe
tities, and the configuration might never stop evolving,desing
precise calculation of confinement intractable. We hawenstin-
dications that, just like the calculation of safety propesrtin the
protection systems described in [HRU76], the calculatiboan-
finement boundaries in Authority Reduction Systems is atéale

in general. We have a scheme of a proof — which we will not pro-
vide in this paper — for the Turing completeness of thesecayst

to support this believe.

To ensure that a reasonable approximation to the confinement
result is tractable, we propose the technique of aggreyatitmt
was introduced informally in Section 3.1.

We will proof that the following properties of a configuratio
with aggregated subjects are sufficient to provide a safeoapp
mation of confinement:

e The aggregate subject should collaborate, create, andwado
soon as one of its constituting subjects does.

e Any subject should collaborate with the aggregate subject a
soon as it would collaborate with one of the constituting-sub
jects.

2005/7/19

¢ Any subject should emit (collect) an aggregate subject as so
as it would emit (collect) one of the constituting subjects.

e Any subject should create an aggregate subject as soon as i

would create one of the constituting subjects.

with the help of Lemma 2. The proof of pa®tis completely
analogue and is not provided.

U EmmA 1. Commutativity of- and Agg.(g)

Forany ARAA = (S, P, I), any ARQC in A and any surjective

* Any subject should endow a child with access to an aggregate gppjicationg : S — S/,
subject as soon as it would endow that child with access to one ¢ |- ¢, — Agg(9)(C) F Agg(g)(Ch).

of the constituting subjects.

This set of rules is formalized in the following definition.

DEFINITION 6. ARS Aggregation

LetA = (S,P,I) be an ARS.

Let g be a surjective application$ — S’

Agg(g) is the ARS-aggregation function defined as follows:
Agg(g)(A) = (S',P',T') where

1. behavior aggregation
B =T(s)(K') < 3B4,...
such that
V1 S i S n: Bi =5 I(SZ)(KZ)
Vi<i<n:g(si)=s
B’ =J,<;<, Bi where
b(8/17 e 7_8:1_!‘(1))) S B,Z A EISl7 N
B; AV1 < j<ar(k):g(s;) =s]
K' = <i<, Kiwhere
k(st,... ,_s’;(k)) € K, < 3s1,
KinV1<j<ar(k):g(sj) =sj
2. parenthood aggregation
(p',d)eP < 3Ip,c)eP:glp)=p" Aglc)=g

DEFINITION 7. ARC Aggregation

LetA = (S,P,I) be an ARS

Let g be a surjective application$ — S’

LetC be an ARCi4

Aggc(g) is the ARC aggregation function defined as follows:
Agge(g)(C) = D where

e Ap = Agg(g)(A)

,Bn,sl,...,sn,Kl,...,Kn

s Sarv) : b(51,. .., 5arv)) €

.. -7Sar(k) : k‘(sl, ..

/

* g(Sc) = Sp

* (s1,%2) € Ep <= J(s1,52) € Ec : g(s1) = 51 Ag(s2) =
S2

L k(8/174..782‘r(k)) € Kp <~ 3](1(81,.“,83,.(;6)) € K¢

such that
Vi:l<i<ar(k):g(si) =sj

Since aggregation is going to be used to turn potentially in-
tractable problems of confinement into practically tralggirob-

K Sar(k)) €

Proof of Lemma 1

LetA’" = (S',P',T') = Agg(g)(A)
By Definition 7,Sc - Scl — SAgg(g)(C) - SAgg(g)(Cl)-
SinceC + (1, one of the conditions from Definition 3 has to
be true. If the step was a creatiameate(p, c):
(p,c) € Soy = (p,¢) € Sagg.(g)(c,) by Definition 7.
Soy = So U{ch = Sagg.(9)(c1) = Sagg.(g)(c) Y{g(c)} by
Definition 7.
(p,c) P = (9(p),g(c)) € P’ by Definition 6
(3K, C K¢ : create(p,c) € I(p)(Kp)) = @Ky C
Kagg.(9)(c) : create(g(p),g(c)) € I'(g(p))(Ky(p))) by Defini-
tion 6 and Definition 7
Ke, = KcUaccess(p, ¢) == Kagg.(g)(01) = Kagge(9)(c)V
access(g(p), g(c)) by Definition 7.
Ec, = Bc U (pc) = Eagg)c) = Faggeo)o) Y
(9(p), g(c)) by Definition 7.
Thus,Agg(g)(C) F Agg(g)(Ch).

For other kinds of steps, the proof is similarly trivial anetigdes
from Definition 6 and Definition 7.

LEMMA 2. Commutativity of-* and Agg.(g) For any ARSA =
(S,P,I), any ARCC in A and any surjective application: S —

CH O = Agg(g)(C) - Agg(g)(Cy).

Proof of Lemma 2

We will prove this lemma by induction on the number of stegse T
base case F° C' = Aggc(g)(C) F° Agg.(g)(C)) is trivial
since the right part of the implication is true by definitich+.

The induction case

(C F O F C" A Agge(9)(C) F* Agge(9)(C') =
Agge(9)(C) F* Agge(g)(C™))is also trivial sinceC’ - C" —>
Agge(9)(C") F Agge(g)(C”) by Lemma 1.

Proof of Theorem 1

By Definition 7, we know that for any ARC; in A, (z,y) €

Ec, = (9(2),9(y)) € Eagg(a)(cr)-

By Definition 4, we know thatouldGetAccess(C,xz,y) <=

lems, we have to be sure that the confinement results are valid 3C, : C " C1 A (z,y) € Ec, .

Approximation by aggregation can sometimes provide “falas-
itives”, indicating possibilities for propagation wheigete actu-
ally are none, but it should never provide “false negatiyésdi-

cating confinement (impossibility of propagation) whiles thon-
aggregated system could detect possibilities for propagat

THEOREM1. ARC aggregation keeps confinement properties
LetC and D be AR configurations such thatgg.(C) = D

1. —couldGetAccess(D, g(x), g(y))
= —couldGetAccess(C, x,y)

2. ~couldGet Knowledge(D, k(g(s1), .-, 9(Sar(x))))
= —couldGetKnowledge(C, k(s1,. .., Sar(k)
Proof

We will proof the converse implication of pattof the theorem:
couldGetAccess(C,x,y) = couldGetAccess(D, g(x),g(y))

Thus couldGetAccess(C,z,y) = 3C1 : C F* C1 A

(9(2),9(y)) € Eagg(g)c1)-

By Lemma2C " Cy = D" Agge(g)(C1).

Finally, by Definition 4,

couldGetAccess(C,x,y) = couldGetAccess(D,g(x),g(y))

COROLLARY 1. Existence of tractable aggregation

For any ARCC, there exists computable predicates
couldGetAccessAggc(z,y) and
couldGet Knowledgec (k(s1,. .., Sar(k))) Such that
—couldGetAccessAggc(z,y) = —couldGetAccess(C,x,y)
and
—couldGetKnowledgec (k(s1, ..., Sar(k))) =
—couldGet Knowledge(C, k(s1, ..., Sar(k)))-

Proof of Corollary 1

For any ARSA’ = (S',P’, T'), such tha®&’ is finite, P’ andI’ are
finite. Any ARC D in A’ will also be finite. Because the rules are

2005/7/19

monotonic and confluent, we can fidd, such thatD +* E and
VF : E+"F = FE = F by a finite number of reductions.

By the Theorem 1, we can conclude that any surjective agjmita ar: GP —N
from S to a finite set, define an aggregation which is computable in access — 1
finite time. child — 1
A very simple approach is to take a subSetf S and to define .

active — 0
iEmited +— 2
g: S —SU {fmt} iCollected + 2
seP(S) s eP(s) rEmited 1
sg P(S) r—out rCollected +— 1
cEndowed 1
where P(S) = {s~|E|so, coySn S0 € SAVI <1 < n: create 1
Z('sé_;; ;SZ)Sf:)s}i)agdPP}(,S) {s0|3s1,...,8n : Sn = sAV1 < iEmit .
iCollect — 1
rEmit — 1
rCollect +—0
pEndow — 2

4. SCOLL : Safe Collaboration Language peSP +—neN

The SCOLL language is a subset of the LP calculus extenddd wit | ot 7ar be the global arity application for the predicates.

search. It is tractable and therefor not Turing completeait be
made Turing-complete by making its domain countably indiaid

allowing an countably infinite number of clauses. Gar : GP — N
We will define the language without using LP calculus and access — 2
will show the correspondence to LP calculus only afterwaftisit .
allows us to take advantage of the restricted definitiongd@BL, child =2
which will improve clarity. active —1
iEmited +— 3
iCollected +— 3
4.1 Definitions rEmited 3
A storeover a setX named by a seP with aritiesar is a set of rCollected 3
tuples onX labeled by elements dP. The arity of a tuple in the cEndowed — 3
store is determined by an arity function. create — 2
For example: iEmit 3
o = {pl (1'1, x3, 1‘4),])2 (:81, :Eg),pg (:81:83)} is a store over .
{21, w2, w3, 24} Named by{p1, p2} iCollect +— 2
of arity ar, with ar(p1) = 3 andar(p2) = 2. rEmit — 3
We will denoteX(X, P,ar) as the set of all stores ovet rCollect 1+ 2
named byP with arity ar.
Thetransformationdefined byf : X — Y is the function: pEndow +—3
peSP w—ar(p)+1

Tr: X(X,Par) — X(Y,Par)
o = {p(f(z1), ...

LetGV =V W {a, 5} be the set of global variables.

,f(:En))|p(l'1, .- '717”) S U}

A configuration is an element &t(.S, C P, Gar)

A condition is an element c(V, KP W SP, ar)

A consequence is an elementXfV, BP & SP, ar)

A rule is a pair made of a condition and a consequence.

An intent is a set of rules.

The set of all possible intents iitents

An explicit behavior onS’ C S is a functioneb : ' —
(S, BP,ar). The set of all explicit behaviors o8’ is noted

4.2 Program structure

Let CP = {access,child, active} be the set of configuration
predicate hames.
Let K P = CP U {iEmited, iCollected, r Emited, rCollected,

cEndowed} Exp(S).
be the set of knowledge predicate names. A SCOLL program is a6 element tuple(b, ss, ic, si,l, s)
Let BP = {create,iEmit, iCollect, r Emit,rCollect, pEndow} where:

be the set of behavior predicate names.

Let S be the countable set of SCOLL subjects.

Let V' be the countable set of SCOLL variables.

Let SP be the countable set of subject predicate names.

Let ar be the local arity application for the predicates.

LetGP = K PUBPWSP be the set of the global predicate names.

b: S — Intents is the behavior (intention) function,

ss C S'is the set of search subjects,

ic is a configuration (the initial configuration),

si S — X(S, SP,ar) is the subjects initialization function,
l € X(S,CP,Gar) is the liveness property and

s € (S, CP,Gar) is the safety property.

7 2005/7/19

A SCOLL state is an element &(S, GP, Gar). A SCOLL
result is a special SCOLL state. Characterization of SCGidults

Take Vz,y, 2 active(x) A active(y) A active(z) A
access(z,y)Aaccess(y, z)AiCollect(z, y) ArEmit(y, x,z) =

is done in the semantics of the language. For a SCOLL program access(z, z) A iCollected(z,y, z) A rEmited(y, z, z)

prg we will call the outcome of the programes(prg), the set of
all maximal (for inclusion) SCOLL results of this program.

A SCOLL program describes the behavior and initialization
from the subject point of view. To ease the definition of theame-
tics of a SCOLL program, we define the globalization of a SCOLL
program, that is, the program seen from a global point of view

G(b, ss,ic, si,l,s) = (Gu(b), s8,ic, Gsi(s1),1,)

Gy: S — Intents — 2B(SUGV.GP,Gar)xR(SUGV,GP,Gar))
b = {(Gst(s,0), Gt (s, d))
ds € S :(c,d) €b(s)}
Gst: SxS—X(V,GPar) — XZ(SUGV,GP,Gar)
s,0Uo’ — Gsi(s,0) UGs(s,0")
{rEmited(x)} — {rEmited(s, o, z)}
{rCollected(z)} — {rCollected(s,, x)}
{cEndowed(z)} — {cEndowed(s, 3,x)}
{rEmit(x)} — {rEmit(s,a, x)}
{rCollect()} — {rCollect(s, o)}
{p(z1,...,20)} — {p(s,z1,...,2n)}
where
p € (GP)\

{rEmited,rCollected, cEndowed, r Emit,rCollect}

Gsi: S —X(S,SP,ar) — X(S,GP,Gar)
b — {p(s,81,...,5n)]
Js € S:p(s1,...,5n) €b(s)}

4.3 Denotational semantics

We can consider a first order logic with a signature congjsuiit
the predicates; P with the arities inGar and
the nullary functionsS. The set of variables symbols of the logic is
GV

Any SCOLL stateo can be completed to an interpretatién
by stating that it's universe iS,

$°={0} —8
0 s

(The interpretation in the model gfas a nullary function in first
order logic is the constant function returniags an element of the
universe),
I,(p) = {(s1,...,8n)|p(S1,...,8n) Ec}

Since the formulas will be closed, we won'’t need to define the
interpretation of variables.

The denotational semantics of a progrémss, ic, si, [, s) are
given by the following formulas:
DS(b, ss,ic, si,l,s) =
/\(c,d)GGb(b) (V*Dsstore(c) - DSstore(d)) A DSstore (ZC) A
DSstore(Gsi(si)) A System
whereV* F' denotes the universal closure Bf
DSstore(0) = true A /\p(al’wan)@p(cn7 ceeyan)
System = Grant A\ Take N\ Create A Endow
Grant = Vz,y,z : active(x) A active(y) A active(z) A
access(x,y)Naccess(x, z) NiEmit(z,y, z)ArCollect(y,z) =
access(y, z) A iEmited(x,y, z) A rCollected(y, x, z)

Create = Vx,y : active(z) A child(z,y) A create(z,y) =
active(y) A access(z,y) A created(z,y)
Endow Vz,y,z : active(x) A active(y) A active(z) A
access(z, z) Aereated(x, y) ApEndow(z,y, z) = access(y, z)A
cEndowed(y, z, z)

A SCOLL stater is final for program(b, ss, ic, si, [, s) if there
isane € Exp(ss) such that
I, = DS(b, ss,ic, si, 1, s),
I, ': DSstore (Gst (6)) and
there is no SCOLL state’ such that’ C o and
I, = DS(b, ss,ic, si,1, s),
Io'/ ': DSstore(Gst(e))-

A SCOLL stater is a SCOLL result of progrartb, ss, ic, si, 1, s)
if:
o is final,
Io’ ': DSstore(l)1
I, ': _‘DSstm"e(S)-

4.4 Operational semantics

For a prograntb, ss, ic, si, [, s), the initial statero € (S, GP, Gar)
is defined byoo = ic U Gs;i(si).

The operational semantics of a program are defined in twe,part
the propagation part and the liveness checking part: Thectih
rules are from a set of states to a set of states.

For the propagation part, they are:

e Monotonicity
UuVEU UVIEURU
¢ Intentional propagation
{o}F{ocUTs(D)}if
I(C,D) € Gp(b) : 3f : GV — S :T¢(C) Co
¢ System propagation
{0 = {active(z), active(y), active(z),
access(x,y), access(x, z),
iEmit(z,y,z),rCollect(y,z)}} F
{o U{access(y, z),iEmited(z,y, z), iCollected(y,z, z) } }
{0 = {active(z), active(y), active(z),
access(x,y), access(y, z),
iCollect(z,y), rEmit(y,x,z)}} b
{o U{access(z, z), iCollected(x,y, z), r Emited(y,z, z) } }
{o = {active(x), child(z,y), create(x,y)}} b
{o U {active(y), access(z,y), created(z,y)}}
{0 = {active(z), active(y), active(z),
access(x, z), created(x, y), pEndow(z,y, 2)} } +
{o U{access(y, z), cEndowed(y, z, z),r Emited(y,z, z) } }
e Search
{o}F{o,0 UGu(e)}if e € Exp(ss)
e Safety
{o}FDifsno#£0

And for the liveness checking part:

e Monotonicity
UUVHUUVIfEUF U
e Liveness

(oY F Qifl ¢ o

The outcome of the program i if there is aU’, such that
{o0} F* U', U’ is stable fot-, U’ ' U andU is stable fot-'.

If only a finite number of subjects, variables and predicates
used in the program, then the monotonicity of the rules quaes
that the operational semantics can give an outcome in a finite
number of reductions.

2005/7/19

4.5 Relation to LP calculus

Except for search subjects, SCOLL is a strict subset of LFs Th
can be seen from the denotational semantics. Liveness gotile
safety is negative knowledge (grounded, without usingalaeis)
and can only cause failure. Other conditions are Horn ckuse
restricted to positive information.

The main difference is in the search subjects. We are irttates
in all (variations of) solutions of a problem, defined by tkteasive
behavior of the search subjects. Rather than deriving tleadiss
property, we analyze all the knowledge that can be deriveah fa
solution.

4.6 Relation to ARS/ARC

Thechild relation in SCOLL represents the parenthood relalon
of the AR-system.

Theaccess relation corresponds txcess(x,y) in K¢ and toEc
foran ARCC.

Theactive relation corresponds t8c for an ARCC.

The behavior functiorb corresponds to the intedt of the ARS
without the restrictions stated in section 3.2. Théunction solves
these restrictions so that, (b) corresponds td. The System in
the denotational semantics and the “System propagatiorthén
operational semantics correspond tottheelation in AR -systems.

4.7 Implementation

The first version of SCOLL is implemented in Mozart-Oz [M0}03
and described in [SJV05]. It provides no syntactic suppett gnd

it is merely a proof of concept at this early stage. The ihkisow-
ledge and the intent of the subjects in a configuration anatjrgmd
constraint propagators are created from these description

The propagators monotonically add information to a common

constraint store, corresponding to the propagation of kedge,
behavior and access between the subjects. Explicit creatinot
handled yet: all subjects therefor represent aggregataspafent
entity with all its potential offspring.

When the store has evolved to a fix point before all behavior

parameters of the search subjects are defined, one paraimeter
picked, to be tested with the valueue. Only when backtracking,
in case no solutions were found with this parameter setite, will
the parameter be tested wifhlse. This search strategy guarantees
that the first solution found has maximal collaboration (maxm
set of parameters set toue). For all following solutions, extra
constraints are added to avoid finding sub solutions (noxifmal
collaboration) of the solutions that were previously found

The final configurations corresponding to the solutions aan b
visualized with GraphViz [GNOO, JM04, GVO05]. For a detailed
account of the implementation we refer to [SJV05].

5. Using SCOLL in Practice

In this section we provide an example program that expretsses
caretaker capability pattern for revocable authority. Alice wants
to give Bob revocable authority to Carol, and therefor @sa
proxy she can control: the caretaker. Given a safe appraxima
of Alice’s and the caretaker's behavior, we want to cal®ulte
maximum collaborative behavior for Carol, that will prevd&ob
from getting irrevocable authority to Carol (e.g. directess).
Carol will be the only search subject in our problem.

Figure 4 shows the initial access graph with solid arrowe Th
confinement property to be guaranteed here is: Bob shoultdenot
able to get direct access to Carol. The liveness propertystimald
not be prevented is: Bob should be able to use Carol indjtectl
We therefor add Dave to the configuration: an untrusted stibje
only Carol initially has access to, and we will check if Bomaget
access to Dave.

Figure 4. Initial configuration of the caretaker pattern

Since we do not know the behavior of Bob and Dave, the only
safe approximation is to consider them to be completelyabolia-
tive (undefined) subjects.

This is how the the problem is programmed in SCOLL:
CaretakerPattern &, ss, ic, si,1, s).

b = {(alice, AliceIntent), (bob, Unspeci fiedIntent),
(carol, SearchIntent), (ct, CaretakerIntent),
(dave, Unspeci fiedIntent)}

The Intents of the subjects usedbiare defined in Table 3

Table 3. The behavior of Alice and the caretaker
Alicelntent

({}, {rCollect()}),

{{use(X)}, {iCollect(X)}),
({poss X)) {rmit(X)),
({use(X), pass(¥)} | {iEmit(X,V)}),
({isBob(X),isCaretkr(Y)} , {iEmit(X,Y)}),
({rCollected(X)} , {pass()})7
({isCarol(X)} , {use(X)})}
Caretakerintent
(T, [rCollect() 1]
' {przy(X)}, {iCollect(X)}),
({iCollected(X)} , {rEmit(X)}),
{{przy(X),rCollected(Y)} , {iEmit(X,Y)}),

UnspecifiedIntent
{{}. {iEmit(S, X), rEmit(X),
iCollect(X),rCollect(),
create(X),pEndow(X)})}
Searchintent

{

ss = {carol}

ic = {access(alice, alice), access(alice, bob),
access(alice, carol), access(alice, ct),
access(bob, bob), access(bob, ct),
access(carol, carol), access(carol, dave),
access(ct, ct), access(ct, carol),
access(dave, dave),
child(bob, bob), child(dave, dave),
active(alice), active(bob),
active(carol), active(ct), active(dave) }

st = {(alice, {use(alice), pass(alice),isBob(bob),

isCaretkr(ct),isCarol(carol)}),

(ct, {pray(carol)})}

I = {access(bob, dave)}

s = {access(bob, carol)}

2005/7/19

5.1 The solutions

Table 4 lists the the sets of minimal restrictions corresiiam to

the two maximal solutions found for Carol’s extensional debr.
Notice that Carol is not only prevented to return herself mvhe
being invoked. She should also never grant herself to BobeweD
Moreover, it is safe to either grant Alice to Bob (Dave) orrgra
herself to Alice, but she should not do both. The reason it tha
Alice, while not granting Carol initially, does not checksifie gets
Carol from a collaboration. Alice might therefor start “pasy”
Carol (to Bob) after Carol has granted herself to Alice.

Table 4. Solutions
| Carol should noi Emit herself to Alice, Bob, or Dave.

1
2 | Carol should not Emit herself to Bob or Dave,
Carol should not Emit Alice to Bob or Dave.

These results are calculated with an incomplete implentienta
of the language. We expect that the complete implementattoe:
cause of added expressive power — will be able to find moregarec
refinements of these solutions, each of them being someesbst |
restricting.

Figure 5 represents the final configuration for the first sofut
Dashed arrows represent access that can be reached vigg@ropa
tion of access, in this solution. It is clear from the graphttthe
confinement property and the liveness property are resgietd
has got access to Dave but not to Carol.

graph1.dot (=]

410 pt x 447 pt.

Figure 5. The graph generated from solution 1 by GraphViz

6. Conclusion and Future Work

In this paper we presented a new formalism called Authorigy R
duction systems to model the propagation of authority ard ite.
capability based configurations. We showed how the cldssags
to model capabilities had insufficient expressive powerrtptacti-
cally useful when analyzing patterns of collaborating eaty. We
proved that this formalism can be used to efficiently caleutafe
but precise approximations of the confinement propertiesoim
figurations where the exact calculation of confinement pitogse
would be practically intractable. We provided a domain #jiec
declarative language SCOLL to express the collaboratitentrof
subjects, the initial conditions of a configuration, and rtbguire-

provided the abstract syntax, operational and denotdtseraan-
tics, and an initial implementation for this language, are ex-
plained how patterns of safe collaboration can be invetgtihasing
the language.

While the caretaker pattern presented in Section 5 is istere
ing for its need of expressive power, it is of course in itset
sufficient to justify a complete formalism and a languagehebt
patterns have been used in the practice of secure progranmin
and they should also be analyzed to understand in whatisitsat
they can safely be applied. Examples are patterns that relg o
trusted third party to guarantee secure and non-repueistans-
fer (e.g. money) can be found in [MMFOQ]. The sealer/unseale
pair is simple pattern that seals off authority (makes iteach-
able without preventing the propagation of the sealed aiffhso
that only holders of the specified unsealer capability canthe
sealed authority. Sealer/unsealer pairs are a crucial coemt in
other patterns, to the degree that some capability secngeidges
[MSC'01, Ree96] provide them as primitives in the language.
Auditors [YMO0O] are another important mechanism that cdugd
modeled as patterns and studied in combination with othézna.

As mentioned in Section 3.2, and contrary to earlier, matcst
versions of Authority Reduction Systems [SVO05b], we havé no
yet explicitly modeled the propagation dhta for the formalism
presented in this paper. In capability systems, preverdatg to
flow is a harder than preventing capabilities from being poated,
even if we only consider overt communication channels.

AN
data™

channel ,

‘/

>(Diode

Bob

Figure 6. Overt data channel with capability diodes

Figure 6 shows an example of what we mean. Two clients Al-
ice and Bob use a common diod® that collects from its clients
and emits to a file. Since AR-systems only model plossibility
of collaborative behavior, the diode’s actual acceptarfcmfor-
mation from its clients may be influenced by these clienterlh
when this influence is observable for clients, an effectaadom-
munication channel between clients is created that is netctil
by the current system. Future work will therefor explicityodel
data propagation, and take these channels into account.

We plan to enhance the way confinement properties can be
expressed. While we can only put restrictions on éfifectsof
propagation of authority and data, it would be interestin@lso
be able to express requirements about the way authority ated d
flows We are therefor investigating the use flow graphs that are
derivedfrom the configuration and in which these restriction can
be expressed as graph reachability constraints [QVDO5].

The implementation of the current version of our patterryana
sis tool as described in [SJV05] is in a prototype phase asdse
improvement on functionality and efficiency.

7. Related Work

The way we analyze the flow of authority in capability basetd pa
terns of collaboration bears similarity to recent work iat&al

ments about confinement and liveness that are to be ensueed. W[NNH99] and partially statical [Mye99] flow analysis. An irop

10

2005/7/19

tant difference and complementarity is in the scale of tlobl@ms
that are analyzed, and consequently in the goal of the dralys

For patterns of secure collaboration to be useful, we have to [FB96]

find and understand the boundaries of their applicabilitjiffierent

contexts. A pattern will typically consist of only a few rsléoften

less than 10), but if the language to describe the roles is eer
pressive, the possible ways for them to interact can be Hurgen

these possible ways of interacting, some have to be avoetslise
of their effects. The approach presented in this paper alftaxibi-

lity and arbitrary precision in the specification of the eblbrative
behavior of the roles in the pattern.

The results of pattern analysis are@mpletelist of possible
concrete minimal sets of limitations on the behavior of tharsh
roles in the pattern, that will each be sufficient (in an emment
that complies with the capability rules) to guarantee thefioe-
ment properties for which the pattern is designed. From lisiis
the programmer can choose the set of limitations best stothis
needs.

The work of Guttman et al. [Jos05] models dialogs between

two parties that accumulate monotonically growing knowgkedo
analyze security protocols. In their setting, the accuied&now-

ledge can result in less cooperation as well as in more caeper

tion. Whereas a “simplistic” way to model protocols wouldséa
involved temporal logic to constrain the order between thents,
they were able to avoid this. This gave us hope that thereldmil
a way for us to model a conditiondecreaseén collaborative beha-
vior without resorting to non-monotonic modeling techréqusuch
as (default) timed concurrent constraint programming [E&]®r
temporal concurrent constraint programming[NPV02].

The insight inspired us to a solution that completely alottra
from time. We will model an extra subject for every decreasa i
subject’s knowledge or behavior that is to be modeled. Thgi-or
nal subject will exhibit its behavior before the behaviocmase
whereas the new one will be created when the specified consliti
apply, and exhibit only the post-decrease behavior. To inibae
uncertainty about the actual time of the revocation, thataa of
the second one will not disable the first one. This allows ugto
quire different behavior before and after a certain “evdaty. the
actual revocation of authority in the caretaker patterithout mo-
deling the event in time.

Except for our previous research in this field [SV05b, SMR S04
we have not found any recent work that focusses on formatysafe
analysis in capability systems.

Acknowledgments

This work was partially funded by the EVERGROW project in the
sixth Framework Programme of the European Union under aontr

number 001935, and partly by the MILOS project of the Walloon
Region of Belgium under convention 114856. We thank Stefano

Gualandi and Luis Quesada for fruitful discussions on thect
related to constraint programming in Mozart-Oz. We thankiMa
Miller for his much appreciated assistance on issues oftikiya
based security.

References

[Boe84] W. E. Boebert. On the inability of an unmodified capgb
machine to enforce the *-property. Proceedings of 7th
DoD/NBS Computer Security Conferengages 45-54,
September 1984. http://zesty.ca/capmyths/boebert.html

[BS79] Matt Bishop and Lawrence Snyder. The transfer of
information and authority in a protection system. In
Proceedings of the seventh ACM symposium on Operating
systems principlepages 45-54. ACM Press, 1979.

[DH65] J. B. Dennis and E. C. Van Horn. Programming semantics

for multiprogrammed computations. Technical Report

11

[GHIV94]

[GNOO]

[GVO5]

[Har89]

[HRU76]

[IM04]

[Jos05]

[KL87]

[LS77]

[MMFO0]

[M0z03]

[MS03]

[MSC*01]

[MTS05]

[Mye99]

[NNH99]

[NPVO2]

[QVDO5]

MIT/LCS/TR-23, M.I.T. Laboratory for Computer Science,
1965.

Jeremy Frank and Matt Bishop. Extending the takevgra

protection system, December 1996. Available at:
http://citeseer.ist.psu.edu/
frank96extending.html.

Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns: Elements of Reusable Object-

Oriented SoftwareAddison Wesley, Massachusetts, 1994.

Emden R. Gansner and Stephen C. North. An open
graph visualization system and its applications to sofwar
engineering.Softw. Pract. Exper30(11):1203-1233, 2000.

GraphViz - Graph Visualization Software, 2005.
http://www.graphviz.org/.

Norm Hardy. The confused deputACM SIGOPS Oper.

Syst. Rev22(4):36-38, 1989.
http://www.cap-lore.com/CapTheory/
ConfusedDeputy.html.

Michael A. Harrison, Walter L. Ruzzo, and Jeffreyllman.
Protection in operating systemSommun. ACM19(8):461—
471, 1976.

Michael Jiinger and Petra Mutz&raph Drawing Software
Mathematics and Visualization. Springer, Dec 2004.

Joshua D. Guttman and Jonathan C. Herzog and John D.
Ramsdell and Brian T. Sniffen. Programming cryptographic
protocols. Technical report, The MITRE Corporation, 2005.
Available at

http://www.ccs.neu.edu/home/guttman/.

Richard Y. Kain and Carl E. Landwehr. On access chegki
in capability-based systemslEEE Trans. Softw. Eng.
13(2):202-207, 1987.

R. J. Lipton and L. Snyder. A linear time algorithm for
deciding subject securityl. ACM 24(3):455-464, 1977.

Mark S. Miller, Chip Morningstar, and Bill Frantz.
Capability-based financial instruments. Fmancial Cryp-
tography 2000 Anguilla, British West Indies, February
2000.

Mozart Consortium. The Mozart Programming Systeat;
sion 1.3.0, 2003. Available attp://www.mozart-oz.org/.
Mark S. Miller and Jonathan Shapiro. Paradigm reggin
Abstraction mechanisms for access control. 8th Asian
Computing Science Conference (ASIAN@8)es 224-242,
December 2003.

Mark Miller, Marc Stiegler, Tyler Close, Bill Frantz, Ka
Ping Yee, Chip Morningstar, Jonathan Shapiro, Norm Hardy,
E. Dean Tribble, Doug Barnes, Dan Bornstien, Bryce Wilcox-
O’Hearn, Terry Stanley, Kevin Reid, and Darius Bacon. E:
Open source distributed capabilities, 2001. Available at
http://www.erights.org.

Mark S. Miller, Bill Tulloh, and Jonathan S. Shapir@he
structure of authority: Why security is not a separable
concern. InMultiparadigm Programming in Mozart/Oz:
Proceedings of MOZ 20040lume 3389 ot.ecture Notes in
Computer ScienceSpringer-Verlag, 2005.

Andrew C. Myers. Jflow: practical mostly-static anmation
flow control. InPOPL '99: Proceedings of the 26th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languagespages 228-241, New York, NY, USA, 1999. ACM
Press.

Flemming Nielson, Hanne R. Nielson, and Chris Hanki
Principles of Program AnalysisSpringer-Verlag New York,
Inc., Secaucus, NJ, USA, 1999.

Mogens Nielsen, Catuscia Palamidessi, and Frank D.
Valencia. Temporal concurrent constraint programming:
denotation, logic and application®ordic J. of Computing
9(2):145-188, 2002.

Luis Quesada, Peter Van Roy, and Yves Deville. The
reachability propagator. Research Report INFO-2005-

2005/7/19

[Ree96]
[Sar93]

[SDNT04]

[SIGY5]

[SIVO5]

[SMRS04]

[SV05a]

[SVO5b]

[SWO00]

[WBDF97]

[YMOO]

07, Université catholique de Louvain, Louvain-la-Neuve,
Belgium, 2005.

Jonathan A. Rees. A security kernel based on thedamb
calculus. Technical report, MIT, 1996.

Vijay A. Saraswat.Concurrent Constraint Programming
MIT Press, Cambridge, MA, 1993.

Jonathan Shapiro, Michael Scott Doerrie, Eric Northup,

Swaroop Sridhar, and Mark Miller. Towards a verified,

general-purpose operating system kernel. Technical tepor

Johns Hopkins University, 2004. Available at
http://www.coyotos.org/docs/osverify-2004/
osverify-2004.pdf.

Vijay A. Saraswat, Radha Jagadeesan, and VineeaGup
Default timed concurrent constraint programming.Pl@PL
'95: Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languagesges
272-285, New York, NY, USA, 1995. ACM Press.
Fred Spiessens, Yves Jaradin, and Peter Van RoyngUsi
constraints to analyze and generate safe capability patter
2005. Submitted to the first International Workshop on
Applications of Constraint Satisfaction and Programming t
Security (CPSec’05). Available at
http://www.info.ucl.ac.be/people/fsp/cpsec/
cpsec05.pdf.
Fred Spiessens, Mark Miller, Peter Van Roy, andathan
Shapiro. Authority Reduction in Protection Systems.
Available at:
http://www.info.ucl.ac.be/people/fsp/ARS.pdf,
2004.
Fred Spiessens and Peter Van Roy. The Oz-E project: D
sign guidelines for a secure multiparadigm programming
language. InMultiparadigm Programming in Mozart/Oz:
Extended Proceedings of the Second International Confer-
ence MOZ 2004volume 3389 otf_ecture Notes in Computer
ScienceSpringer-Verlag, 2005.
Fred Spiessens and Peter Van Roy. A practical fomualel
for safety analysis in Capability-Based systems, 2005.€lo b
published in Lecture Notes in Computer Science (Springer-
Verlag). Available at
http://www.info.ucl.ac.be/people/fsp/tgc/
tgcO5fs.pdf.
Presentation available at
http://www.info.ucl.ac.be/people/fsp/
auredsysfinal.mov.
Jonathan S. Shapiro and Samuel Weber. Verifying ROE
confinement mechanism. Froceedings of the 2000 IEEE
Symposium on Security and Privapages 166-176, 2000.
Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edwsivd
Felten. Extensible security architectures for Javal@th
Symposium on Operating System Principl@stober 1997.
Ka-Ping Yee and Mark S. Miller. Auditors: An extensi
dynamic code verification mechanism.
Available athttp://www.erights.org/elang/
kernel/auditors/, 2000.

12

2005/7/19

