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ABSTRACT
Multi-language, multi-thread, multi-paradigm, net-centric
programming is becoming widely used. Our teaching of
programming has to adapt to the requirements of these new
directions. How can we do that without an explosion in required
course-hours?

This WG explores a concepts first approach to introductory
programming courses that attempts to describe important ideas not
simply in terms of a particular programming language but rather
in terms that will permit the student to gracefully work with
multiple programming paradigms. The paradigms appear naturally
depending on which concepts are used for the problem being
solved. The student is able to situate the paradigms in a more
general framework that shows their relationships and how to use
them together.

We discuss one way in which concepts first may be taught based
on the kernel language hierarchy and its implementation as a
subset of the programming language Oz [10]. We also discuss
how concepts first may be introduced in situations where Java or a
similar OO language is the base language. We comment on the
impact of concepts first on existing courses and problem solving
methodology.

We are proposing here an additional ingredient in freshman
teaching, namely, language-independent concept descriptions.
This approach has yet to be tried at the freshman level.  Hence, we
have no evidence that what we propose will make a difference. 
Nevertheless, we are hopeful that it will make a difference.

Categories and Subject Descriptors
D.1. Programming Techniques. D.3. Programming Languages.

Keywords
Concepts first; programmer’s theory of programming; kernel
language approach; multi-language, multi-thread, multi-paradigm
programming; encapsulation, orthogonality, polymorphism, and
abstraction; paradigms; toolkits.

1. INTRODUCTION
The working group, although small in number, was blessed with a
rich set of strong viewpoints from an almost orthogonal variety of
backgrounds. Therefore it first engaged in a vigorous, extended
brainstorming phase both electronically prior to the conference
and in person at the working group sessions.

From day one we made strong and valid points to substantiate our
positions, but it took some time before we became willing and
able to listen to the viewpoints of others that were equally strong
and valid, but not necessarily in complete agreement with our own
views. This report reflects both those ideas that we came to agree
upon and some of the divergences of opinion that remain.

The original call for participation in the WG was posted on the
ITiCSE’2003 website as follows:

Byte-code has enabled ubiquitous multi-platform
programming. Dot NET and its Open Source implementation
MONO are enabling multi language, multi-paradigm code.
Our teaching of programming has to adapt to the
requirements of these new directions, but how to do it
without an explosion of required course hours?

Programming languages dwell on syntactic and semantic
differences that distinguish one language from the others.
Programming theory extracts and studies the concepts and
mechanisms that are common to programming languages. A
Programmer's Theory of Programming deals with concepts
that programmers use to reason about programs. An



approach through a Programmer's Theory of Programming is
one way that an introduction to multi-language, multi-
paradigm, distributed computing can be fitted into the class-
hours currently allocated to CS-1 and CS-2.

This Working Group will explore and define a concepts-first
approach to introductory programming, compare it to the
current approaches and contrast it with other possible
approaches that are intended to equip CS graduates to better
deal with the programming needs of tomorrow.

Although the invitation to the WG explicitly stated that the
concepts for the concepts first approach should be chosen with a
specific purpose in mind, WG members could not resist the
temptation to make an attempt to produce a list of all concepts that
are relevant to programming and problem solving. However, since
no one could come up with a taxonomy of the concepts of
programming and problem solving, this approach was abandoned
by most members of the WG when the ad hoc list reached several
pages in length without any sense of completeness.

The “natural” next step was to determine a short list of “the most
important concepts”. To do this, only two members of the WG
addressed the challenge issued in the WG invitation, the rest of
the members did not. Abstraction and encapsulation, perhaps the
most fundamental concepts of problem solving, as well as objects,
inheritance, and polymorphism, the most interesting concepts of
the currently dominant object-orientation paradigm, emerged as
clear winners. Although important in their own right, these
concepts do not directly show us a way to include multi-language,
multi-thread, multi-paradigm, net-centric programming into
introductory programming courses which was the challenge
issued by the invitation to the WG.

As we prepared for the WG, we kept in mind the strong warnings
about the current state of introductory computer science education
that were issued by Niklaus Wirth in the ITiCSE 2002 Keynote
[20] and David Gries in SIGCSE Bulletin [5]. It turned out that
equally strong warnings were made by Don Knuth [8] in the
ITiCSE 2003 Keynote.  It is worth extracting a few quotations
from each of these well-known computer scientists.

In his keynote Computer Science Education: The Road Not Taken,
Wirth deplores the complexity of current languages such as C,
C++, and Java and the baroque nature of many of the details of
these languages.  He then criticizes the current introductory
textbooks as merely attempting to describe what is a mess to start
with rather than attempting to explain clear and solid principles.
He then goes on to state what he believes should be the focus of
introductory education.

Considering our own subject, the field of computing and
programming, an academic institution’s ultimate goal must
be much wider than the mastery of a language. It must be
nothing less than the art of designing artifacts to solve
intricate problems. Some call it the art of constructive
thinking. It is in this context that the availability of an
appropriate tool, a properly designed language, is of
importance. It assumes the role of a theory on which we base
our methods. How can anyone learn to design properly and
effectively, if the formalism, the foundation, is an
overwhelming, inscrutable mess? How can one learn such an
art without master examples worth studying and following?
Surely, some people are more, some less gifted for good

design, but nevertheless, the proper teaching, tools, and
examples play a dominant role.

After further discussion, Wirth imagines the characteristics of an
exemplary textbook:

1. It starts with a succinct introduction into the basic
notions of program design.

2. It uses a concise, formal notation. This notation is
rigorously defined in a report of no more than some 20
pages.

3. Based on this notation, the basic concepts of iteration,
recursion, assertion, and invariant are introduced.

4. A central topic is the structuring of statements and
typing of data.

5. This is followed by the notions of information hiding,
modularization, and interface design practiced on
exemplary applications.

6. The book establishes a terminology that is both intuitive
and precisely defined.

7. The book is of moderate size.

We have quoted Wirth’s wish list at length because its ideas occur
throughout this working group report.

The article Where is Programming Methodology These Days? by
Gries [5] emphasizes the conscious application of principles to the
problem solving process.  He states:

In any case, teaching programming as a skill means more
than teaching facts. It means teaching students how to think
when designing, developing, testing, and debugging a
program. It means extending their problem-solving abilities.
It means giving them effective strategies and principles that
will shorten programming time and reduce the need for
debugging (but not for testing). It means teaching good
thought habits. In addition, it means teaching basic theory
that provides understanding and that they can put into
practice.

Although Gries does not advocate the development of new formal
notations as does Wirth, Gries does advocate a focus on the
fundamental organizing concepts and strategies and is thus quite
in agreement with Wirth.

In his keynote entitled Bottom Up Education, Knuth is also
critical of computer science education.  Although the full text of
this address is not yet available, here is the opening portion of his
abstract:

People who discover the power and beauty of high-level,
abstract ideas often make the mistake of believing that
concrete ideas at lower levels are relatively worthless and
might as well be forgotten.  The speaker will argue that, on
the contrary, the best computer scientists are thoroughly
grounded in basic concepts of how computers actually work,
and indeed the essence of computer science is an ability to
understand many levels of abstraction simultaneously.

In the keynote, Knuth then went on to explain his MMIX
simulation of a RISC machine as a tool for computer science
educators to explain how computers actually work.  Although



MMIX is not relevant to this working group report, Knuth’s more
general advice that understanding abstractions is always based on
intellectually integrating the more concrete levels that underlie
these abstractions is important as we propose a concepts first
orientation to the introductory curriculum.

This working group report consists of two fairly distinct parts.
The first part addresses the challenge of the WG invitation
directly. The second part raises issues that might impact the
programming component of introductory CS courses and either
help or hinder early introduction of multi-thread, multi-paradigm
programming, based on a concepts first approach.

2. WHAT CONCEPTS ?
The challenge here is to avoid a union of the concepts of
Imperative First, Functional First, Logic First, Objects First, and
so on. Programming languages and programming paradigms
justify their existence by emphasizing how they differ from other
languages and paradigms. This leads to the erroneous, but widely
held, view that there is little that these paradigms have in common
and that what there is in common is not worth talking about.

In this section we present two approaches that look for what is
common to programming languages and paradigms. We will see
that there is so much that is common or only slightly different that
the teaching of multi-thread, multi-paradigm programming
becomes feasible without any significant increase in the class-time
that is currently allocated to the teaching of single-thread, one-
paradigm programming.

Both approaches lead to the same Kernel Languages of
Programming of Van Roy & Haridi [18] that capture the essence
of all major paradigms as well as distributed and parallel
programming. The first approach starts with a small functional
language, the core Kernel Language, and a set of functionally
oriented concepts. This approach is well suited for students who
already have had some exposure to functional programming or to
the mathematics that goes with functional programming.

The second approach critically examines and redefines the most
basic concepts of programming, such as value, type, variable,
expression, statement, assignment statement, procedure, function,
thread, program and a few others to create a Programmer’s
Theory of Programming that provides a beginner’s path to the
same Kernel Language that is introduced in the first approach.

2.1 The Kernel Language Approach
The kernel language approach came out of research into
programming language concepts.  We observed programming as a
splintered discipline, divided into programming paradigms, and
taught with little rigor (more like a craft than a discipline with an
underlying scientific theory).  The basic research question was to
find the unity in this diversity and to put it on a solid scientific
foundation.  The focused attack on this question started in the late
1980s, and was led by people like Hassan Aït-Kaci [2], Gert
Smolka [6], and Seif Haridi [7] and their students and colleagues.
In 1999 we suddenly realized that we had made enough progress
to teach programming in this way.  We set about distilling our
results in a textbook and teaching with it [19].

The basic idea of the kernel language approach is to translate
practical languages (with all their rich expressiveness) into simple
kernel languages.  Widely different languages and programming
paradigms can be translated into closely related kernel languages.

The next step is to organize the kernel languages into a sequence,
such that successive kernel languages differ only in one concept.
For example, it is well known that object-oriented programming
can be considered as a set of programming abstractions built on
functional programming with state. We have proposed an
organization principle (the “creative extension principle”) that
allows us to decide when and what concepts to add to a kernel
language.  With this principle we have organized several dozen
programming concepts into a coherent progression, covering all
well-known programming paradigms.

Based on this research, the textbook gives a comprehensive view
of the whole discipline of programming.  It is therefore not
targeted for first-year courses.  We have used it successfully from
second-year to graduate level courses. It is an interesting question
whether the approach can be adapted to first-year courses.  The
main questions are what subset of concepts should be chosen and
in what order they should be introduced.  Several authors have
proposed answers to these choices.

We see three obvious ways to organize the concepts for a first-
year course.  The first possibility is exemplified by Abelson &
Sussman [1] and Felleisen et al [4], who both propose to start with
a small functional language and to extend this language with state
and/or objects later in the course.  A second possibility that has
been used with success is to start with the basic concepts of
object-orientation (encapsulation, polymorphism, state, and
inheritance) so that the student can quickly get started in modeling
real-world problems.  Later in the course, these concepts can be
defined precisely in terms of an underlying functional language
with state.  A third possibility is to start with active objects that
send each other messages.  This would bring the concept of
concurrency to the forefront.  We believe that this approach can
be used successfully if an appropriate concurrency-oriented
programming language is used.

2.2 A Programmer’s Theory of Programming
Programming languages come and go, programming paradigms
fall in and out of favor. A programmer's theory of programming
provides a stable framework of concepts that programmers may
use when they design programs or reason about programs.
Research work is under way [13] that studies the partially
overlapping programming concepts of various programming
languages and then extends or redefines these basic programming
concepts so that they can cover as much of the programming
language landscape as possible. In this way, beginning students
can get equally ready for subsequent specialization in any
programming language or paradigm.

The development of programmer's theories of programming have
already had successful applications to the conceptual
simplification of introductory as well as advanced CS courses.
Edsger W Dijkstra introduced the first Programmer’s Theory of
Programming in the late sixties [3]. Dijkstra’s theory was concise,
precise and elegant, but it only applied to imperative
programming.

The Kernel Language approach of Van Roy and Haridi [19],
includes all major paradigms including distributed and parallel
computations and concepts of internet-wide computations.  The
Kernel Language approach, initiated through a small functional
core kernel language, has been successfully class tested in a
number of courses at the second year and higher level in several
universities [18], [14].



For a surprising glimpse at how many new insights can be found
and old misconceptions laid to rest by an examination and
redefinition of the most basic programming concepts, the ones
that most programming textbooks gloss over, let us discuss a
couple of these concepts.

2.2.1 The Programming Concept “value”
When we say “value”, the typical response is int or float, or “a
string of characters”. Let us extend the definition of the concept
of “value” to:

A value is any piece of information
 that is capable of encapsulation.

The extended definition includes much more than int or float. The
extended definition includes functions, procedures, records,
classes, objects, and methods as well as integers, floats and
strings. Classifying all these as values suggests that, ideally, they
should all follow similar usage rules. Today, usage rules differ
widely, especially for procedures, functions, classes, objects, and
methods, but this is largely because compiler writers could not
efficiently handle procedures as first class values for a long time
and language designers have not yet woken up to the fact that
today that restriction is no longer necessary.

With the expanded definition of a “value”, exposure to a new
programming language or paradigm will raise the question: “How
are the different types of values treated here, compared to what I
used before?”. The student will not be shocked or surprised if the
new paradigm treats procedures as values that can be assigned to
variables and passed as parameters to other procedures. Instead,
the student might think: “If this language lets me introduce the
source code text of procedures or functions into the program in
the same way as it allows me to introduce the source code text of
integers, then this language will be easier to learn and use.”  In
addition, the student will cease to think of any particular language
as the standard and will instead begin to think of language
evolution as just as natural as the evolution of individual programs
albeit on a longer time frame.

2.2.2 The Programming concept “variable”
From the programmer's point of view, a variable

n has a scope that determines where in the program this
variable is valid.

n may meaningfully exist unbound to any value or may be
bound to a value via some reference mechanism.

n .has a name with which programmers refer to it.

For a long time we have claimed that imperative languages have
assignments to variables and functional languages do not. This is
actually not quite true, as a precise and somewhat more general
definition of the assignment shows.

An assignment statement links a variable to a value.

This definition includes all paradigms. All programming
languages have variables. Variables may be linked to values or
may be unbound. The difference between paradigms is in the
linking rules. For example, in imperative languages variables may
be linked to values in any place in the program, any number of
times. In functional languages a variable may be linked to a value
exactly once. In logical programming, variables may be re-linked
to values at specific points (choice points) in the program.

2.2.3 Procedures as Values
We have no problem with the source-code description of an
integer by a sequence of ASCII characters that may appear
whenever there is an “expression situation” in a program where
an integer value is needed.

Similarly, we should expect that future compilers will allow us to
place the source code of a procedure, which is also a sequence of
ASCII characters, in any expression situation in the program,
where a procedure value is required. The typical expression
situation where a procedure-value is used is on the right hand side
of an assignment statement that assigns a variable to the
procedure. This sounds strange only because most programming
languages introduce a procedure definition via a special construct
called declaration that automatically binds a variable to the
procedure and discourages or prevents redefinition. To refer to a
procedure in a different way from its declared name in such a
language or to pass such a procedure as an argument, we need to
introduce either the concept of pointers or to learn about “strategy
patterns” that perform the encapsulation of procedures as first
class objects.  In either case, we need a complicated
implementation mechanism for an idea that is actually relatively
simple.

Our approach provides a gentle introduction to the use of
procedures and functions as values. Higher order programming
and other “heavy duty” concepts of functional programming can
be introduced later.

2.2.4 Programming Aspects of OO concepts
The OO paradigm offers a rich set of problem solving concepts.
For example, objects are model entities of the problem area and
methods define behaviours that these entities should exhibit.  Of
course, one can also view objects as bundles of functional
behavior whose specific actions are influenced by the internal data
of the object.

From the programmer's point of view, an object has a global
existence that transcends the particular place in the program
where the object was created.  An object may be passed as an
argument and returned as a value.  Once created, an object can
exist for the duration of the execution of a program.  Of course,
for storage efficiency, objects that cannot be accessed by any part
of the running program are deleted via garbage collection.

It is common though not always essential to link objects to
variables.  These variables have the same block-based scope of
definition as all the other named entities of the program, so if a
programmer asks the question: “Where can I use a variable that is
bound to an object?” the answer is “According to the same block-
scope rules as for any other entity that is bound to a value.” It is
important to recognize that the scope of the object which is global
is not the same as the scope of any particular variable that may be
used to refer to the object.

If a programmer asks the question: "What methods are available
for this object?" the block-based scope does not apply, but an
extension of the scope concept does. Whenever it is necessary to
decide whether an object may call a particular method, the
programmer has to look at the scope of method names of the class
from which that object was constructed. In this sense, the scope-
concept extends to method calls.



With inheritance (both explicit and anonymous), the number of
available methods increases because the methods of the
superclasses are available also. The basic idea is simple, but
current languages complicate this issue with ad hoc rules as to
what method-names are actually available, which ones are
blocked in certain situations, and so on.  Note that the type of an
object is determined by its own construction not by the type of
any particular variable that refers to the object. Object-oriented
languages normally permit an object of a derived class to be
referenced by a variable with the type of a base class while
maintaining the object identity. In this situation, if the object is
asked to execute a method via a call using the base type variable,
then the normal object-oriented response is to dynamically
execute the corresponding method of the derived class rather than
any related method of the base class.  This is part of what is called
dynamic polymorphism.  Unfortunately, some so-called object-
oriented languages really muddy the waters by defining situations
in which the base class method will be called rather than the
derived class method.  Such language designs make pedagogy
extremely difficult not to mention the problems that arise in
practical use of such languages in industry.

3. ISSUES OF CONCERN
In this section we discuss a number of issues that positively or
negatively impact a concepts first approach to introductory
programming courses. We examine the most important problem
solving concepts (encapsulation, orthogonality, polymorphism,
and abstraction) and we consider the role of programming
paradigms. Then we examine how we may apply the theory of
programming to large, messy languages such as Java. We argue
that the use of toolkits such as the Java Power Tools [11] can
provide a bridge that illustrates how the simple concepts may be
expressed within the constraints of an existing commercial
language. Finally, we consider some of the reservations expressed
within the working group about how the concepts first approach
can work within a language such as Java.

3.1 Encapsulation, Orthogonality, and
Polymorphism
Understanding of the fundamental elements of the programmer’s
theory of programming will be of little value without a vision of
how these elements can and should be composed to form a
complete program that is organized in a coherent fashion and
capable of being extended in the future.  Although it is not easy to
solve problems using programs, it is even more difficult to solve
problems in a fashion that permits these programs to be adapted
cleanly to handle future problems or additional requirements.  The
essence of program design is to create a program that is so well
organized that adaptations are straightforward.

Three key concepts are central to quality program design:
encapsulation, orthogonality, and polymorphism.  The practical
usefulness of a programming language is often determined by the
degree to which these concepts are supported.  The coherence of a
program or family of related programs is likewise determined by
the degree to which these concepts are utilized.

Encapsulation involves capturing some aspect of programming
knowledge into an entity that is named and reusable.  Here are
some simple object-oriented examples:

1) Collecting data elements into an object.

2) Collecting the operations on a set of data elements into an
object.

3) Defining a method or function to perform some task based on
its own internal state and on its parameters.  This function
may or may not return a value for further processing as
desired.

4) Collecting a set of related behaviors into an object and
providing internal parametric data to support these behaviors.

5) Defining the contract required of a given set of related
objects or related behaviors.

6) Abstracting a common set of behaviors into some entity such
as an interface or an abstract class that may be used to
specify more concrete entities.

Programming languages vary as to what forms of encapsulation
are directly supported and how well they are supported.  The best
form of encapsulation will create a first class entity that may be
saved, assigned, and passed as a parameter to other entities.  The
reason “first class” is so useful is that first class entities enable
substitution, that is, one first class entity may be replaced by a
similar first class entity with almost no effort.  To take Java as a
specific example, items 1, 2, 4, and 6 provide first class
encapsulations.    Methods and functions (item 3) are definable via
declarations but are not first class.  This is a major source of
annoyance in using Java and workarounds, also known as design
patterns, are needed to overcome this gap.  Finally, contracts (item
5) are only weakly supported in Java so contracts must often be
specified in comments not code.

Orthogonality is a term borrowed from mathematics to describe
the ability of some entity to be varied independently along several
axes of parameters.   Orthogonality is desirable in programs since
it allows the programmer to make independent changes to
decisions and settings.  Data orthogonality is the ability to modify
or substitute data values independently as long as the meaning of
the program requires no mutual constraints.  Data orthogonality is
widely supported in programming languages.  Functional or
algorithmic orthogonality is the ability to vary functions or
algorithms.  This type of orthogonality is not so widely supported
and so it often becomes important to develop patterns that enable
such orthogonality to be achieved in spite of the language.

Suppose, for example, that an algorithm is embedded inline in the
body of a method in a Java class.  It is not altogether easy to
change that algorithm.  The most common solution to this
problem is to define a derived class in which the method in
question is overridden to use a different algorithm.  This
inheritance mechanism may be acceptable if there are only one or
a few possible replacement algorithms but becomes unwieldy if
there are many possible options.  Moreover, if there are two
methods with separate algorithms each of which may possibly be
replaced, the entire process of inheritance breaks down in
excessive complication.

A second solution is to use inline definitions that combine the
definition of an object with the replacement of one or more of its
algorithms.  Since this technique is not well known, we will
illustrate it by sketching an example.  Consider:



public class Foo {
...

public void bar(...)
{ ... original body ... }

...
}

Suppose we want to build a Foo object but replace its bar method
inline.  We may do this as follows:

Foo alternateFoo =
new Foo( ... parameters ...)

{
public void bar(...)

{ ... replaced body ... }
};

We can explain this to students as follows.  In the new Foo
operation, the ordinary parentheses enclose zero or more
constructor data parameters that set or modify the internal
member data of the object.  If the ordinary parentheses are
followed by braces, then the methods defined within the braces
override corresponding methods in the original definition of the
Foo class.  We also point out to students that it is valid to add
additional member data and additional helper methods within the
braces.  These helpers cannot easily be visible outside of the
object but can nevertheless make the code more readable.

The technique of inline definition is obviously most useful when
the number of replaced methods is small and the object created is
one-of-a-kind.  It is clearly less useful if we wish to make several
objects with exactly the same method changes.  It is worthwhile to
note that the same technique works if Foo is an interface.  In that
case, use

Foo object = new Foo() { ... };
and supply all of the necessary methods of the interface.

The cognoscenti will observe that the technique of inline
definition relies on anonymous inner classes for its
implementation but there is never any need to say this to students.
Instead, the construction new Foo( ... ) { ... } may be introduced as
a syntactic idiom that permits the programmer to initialize both
data and methods to a desired state.

The third way to achieve orthogonality for algorithms is not to
embed alogorithms inline into functions in the first place.  Rather,
it may be better to have separate encapsulations for the algorithms
needed by a class, to store an encapsulated algorithm as member
data, and then to simply have the corresponding member function
call on its current algorithm as needed.

As an example, let us show the setup for an abstract
ArrayAlgorithm class that encapsulates algorithms that can
operation on an abstract Array class.

public abstract class ArrayAlgorithm {

public final void perform
(Array data)

{

if (data != null) {
int max = data.length() – 1;

perform(data, 0, max);
}

}
public abstract void perform

(Array data, int min, int max);

}

Notice that the 1 argument method is final and simply calls the 3
argument method using the ends of the array as the min and max
parameters.  The 3 argument method is the one that must be
supplied by the algorithm designer.  This is an instance where a
contract between two methods (1 and 3 argument versions) can be
written into code and enforced.

In this situation, it is now quite convenient to apply the technique
of inline definition to actually specify algorithms.

ArrayAlgorithm algorithm =
new ArrayAlgorithm() {

public void perform
(Array data, int min, int max)

{ ... definition ... }
};

Once these definitions are in place, ArrayAlgorithm’s may be
passed to, stored in, and used by any object interested in doing
something on another object that implements the Array class.

This technique, which is an instance of the Strategy Pattern, has
been used successfully in teaching array algorithms and in
providing automatic array algorithm animations.  The students
write the algorithms and supply them to a test suite.  The test suite
executes the algorithms on a BarChart class derived from the
Array class that automatically repaints itself on the screen when
any data element in the bar chart is changed.

Polymorphism is closely related to encapsulation and
orthogonality.  Polymorphism occurs if two behaviors can act
differently even though syntactically in the language the
invocations of the behaviors have the same structure.  In an
object-oriented setting, polymorphism is usually applied to the
situation in which two calls a.bar(...) and b.bar(...) have different
behavior.  Of course, if a and b are the same type of object with
different dumb data parameters (numbers, ...) then although the
behavior may vary we do not normally use the word
polymorphism.  We restrict polymorphism to those cases where
the difference in behavior is due to deeper reasons.

Often, polymorphism has been associated with behavior variations
created by inheritance.  However, as we have seen, inheritance is
only one way to achieve orthogonality of behavior.  Thus, it
would seem that behavior variation induced by inline definition or
by a different choice of algorithmic data object should equally be
viewed as instances of polymorphism.

As we said above, the goal of programming is to solve problems
in a fashion that permits these programs to be adapted cleanly to
handle future problems or additional requirements.  The essence
of program design is to create a program that is so well organized



that adaptations are straightforward.  We can now see that
encapsulation, orthogonality, and polymorphism are essential
programming concepts that guide the process of program design.
A programmer must not only be able to write correct code, he/she
must also be able to stand back and assess where in the program
are the critical points at which implicit choices are being made via
inline code.  Once these choice points are recognized, the design
will become more flexible if explicit orthogonality is provided so
substitution may occur either by later programmer choice or by
selection of an option by the end user.  Encapsulation and
polymorphism provide the means to achieve the desired
orthogonality in well-designed programs.

3.2 Abstraction
The three fundamental topics we have just discussed,
encapsulation, orthogonality, and polymorphism, are all related to
abstraction so it seems useful to say a few words on this more
general concept.  Abstraction is first of all a process.  If a person
is confronted with several concrete objects, actions, or scenarios,
it is natural to ask: “Are these all different or is there something in
common?”  Abstraction is the process of identifying what is
common.

For example, consider some children’s toys, say, balls and blocks.
If we drop some of the balls and blocks from the same height, we
may notice that they hit the ground at the same time.  Thus, we
have found a common property that we may abstract.  If we lift a
small ball and a large block, we may notice that it takes more
effort to lift the large block than the small ball.  This is a
difference.  Further investigation, may show that objects that are
about the same size take a similar effort to lift regardless of
whether they are balls or blocks so now we have found something
common in the difference we just observed.  Next, if we want to
put the balls and blocks into holes in a wooden board, we will
notice that balls fit better into circles and blocks fit better into
squares.  Thus, we have another difference and another common
feature among a different subset of the objects.

Notice that, in these examples, our identification of what is
common depends on the kind of observation we are making or
question we are asking, that is, on the context.  Thus, our
definition of abstraction above is itself incomplete.  We should
say that abstraction is the process of identifying what is common
in a given context.

Abstraction is the most pervasive concept in computer science
since we cannot push actual objects of the real world into a
computer. We must always deal with actual objects or actual
actions or actual scenarios by means of some representation that
captures what we think are the “important properties” of the
entity. Making a representation is already an abstraction process
since it is both impossible to represent all properties of a real
object and quite undesirable to be so verbose. This is one of the
root causes of the difficulty of teaching computer science, namely,
that we must deal with abstractions from the very beginning. Both
as individuals and as members of the computing community, we
decide “what we want to study”, “what properties are important
about these entities we want to study”, and “how shall we
represent the objects, the actions, and the scenarios we want to
study in the computer using some programming language(s) and
paradigm(s)”.

So, the fundamental problem of computer science is to create
abstract representations of many entities using a medium,

programming language(s) and paradigm(s), that is full of it own
set of internal abstractions. No wonder computer science
pedagogy is so hard.

The main thesis of this report is that the programming languages
in use in industry and the classroom are so complex that the
important abstractions in these languages are themselves obscured
by the complexity. This is exactly the position articulated by
Wirth in his keynote to ITiCSE 2002.  It is our proposal to
emphasize the key programming concepts in their cleanest form
and then to explain, if needed, how to implement these clean ideas
in the baroque languages we are often forced to deal with.

These recommendations are synergistic with the approach of
Felleisen [4].  What Felleisen accomplishes is teaching students
how far you can go using a strict recipe for data definitions and a
corresponding template for function definitions.  What is left is
the more creative programming that is not simply forced by the
structural information.

3.3 Paradigms
There are several programming paradigms that are commonly in
use or are coming into existence: procedural, functional, object-
oriented, event driven, logic, concurrent, parallel, genetic, and
quantum.

Different languages adopt the various programming concepts in
different ways (often with restrictions) to support the paradigm on
which the language is based. Not all concepts are in all paradigms
and therefore not in all languages. For example, programming by
extension or subclassing is not a part of the procedural
programming and so it has no direct support there. Since almost
all languages are equivalent to a bounded Turing Machine you can
introduce the “left out” concepts via lower level programming in
your language of choice, but usually only with difficulty.
Interestingly, Lisp, being among the simplest of languages,
simulating most other paradigms in Lisp is not much harder than
doing any other Lisp programming.

However, many people believe that each paradigm requires a
certain “mind set” on the part of the programmer in order to
program at the expert level in a language built from that paradigm.
Often this mind set will conflict with that of another paradigm
(hence the word, paradigm). In particular, if you think like a
procedural programmer, where problems are solved with
assignment and loops, you will have difficulty in Lisp as these
concepts are missing there. In many ways, however, paradigms
that don't overlap much are easier to switch into and out of than
those that overlap strongly. This is due to the fact that you must
adopt the more appropriate tools of the different paradigm as the
more familiar constructs are probably not available. In Lisp, for
example, you must use recursion in all those places in which you
would use loops in C. When paradigms overlap, however, it can
be much harder, especially in the learning phase, because it is
tempting to use known constructs rather than become skilled in
using the alternate paradigm.

Object-orientation and procedural programming both have the
idea of state maintained in something like a variable and most OO
languages also have if statements. But if statements are much less
essential to the OO paradigm and expert OO programs have few if
statements, relying instead on dynamic polymorphism. While this
seems like a simple distinction it is actually quite profound
requiring a rather different mind set. In procedural programs in



which decisions are made with if statements, a lot of information
about the structure of the data is distributed throughout the
program. Everywhere that we must manipulate a complex data
structure in a large program we need an if or switch to distinguish
cases. This distribution of information has proven problematic in
large programs as it decreases cohesion. On the other hand, in OO
programming, information about a data structure and its
operations are centralized in one or more related class definitions
which implies that there is often a single point of change in the
program as the problem evolves or is extended.

Viewed from a client-server standpoint the procedural
programmer has to get the clients right: the code that calls the
functions. Client code must know what function to call even as the
data referenced may vary. This is actually improper information
for a client to have for it requires to client to know too much about
the associated data. This kind of knowledge is best encapsulated
by making the data into a server object that knows about its own
appropriate behavior.  More precisely, there will usually be a set
of server objects that may be supplied to the client and each of
these servers can do one thing well without explicit decisions. So,
the procedural programmer must get the clients (callers) right
while the successful OO programmer thinks in terms of getting
the servers right and also in getting a sufficiently rich set of
servers to cover all options.

The implication of all this is that when the basic concepts are
matched to paradigms it is not enough to just present the concepts
or the paradigms. Two additional things are needed. We need to
show students how the concepts maps into the paradigms,
including any restrictions, and we must also guide the learner in
how to adopt the appropriate mind set that they need to be
successful in the paradigm.  Typically the standard idioms of the
language help in this.  More recently, design patterns have been
shown to be even more powerful in capturing the mindset of the
successful practitioner.

There is one aspect of this discussion of paradigms that may be
altered as experience with a concepts first approach develops.  A
great deal of the difficulty that procedural programmers have with
learning the object-oriented paradigm may be due the fact that the
limitations of the procedural paradigm are so significant that the
procedural programmer builds the necessary workarounds deeply
into his/her mind and thereafter such workrounds are hard to
dislodge.  With a more balanced concepts first approach in which
the idea of value is so general, students may learn to think flexibly
from the very beginning and find that transitions from paradigm to
paradigm are not as difficult as in the past.

3.4 The Role of Toolkits
One of the authors, Richard Rasala, together with his colleagues,
Jeff Raab and Viera Proulx, has built a large toolkit known as the
Java Power Tools [11] whose purpose is to dramatically reduce
the time required to create graphical user interfaces in Java. We
wish to discuss here how the Java Power Tools and similar
toolkits can contribute to the goals of the concepts first approach.

As Wirth states, the fundamental problem with commercial
languages is that they exhibit complexity far in excess of what is
conceptually required to solve the problems they deal with. In
Java, such complexity is evident in the design of the GUI tools.
Although Swing is a significant advance over the earlier AWT, it
is still that case that creating a GUI using Swing is a painstaking
experience with myriad repetitious details. The difficulty is that

the tools provided are too atomic, that is, that they provide the raw
ingredients needed to build a GUI but not the encapsulations
needed to match the higher level of thinking that a GUI designer
would like to employ.  This gap between the conceptual level of
GUI design and the granularity of the actual Swing tools is the
source of the extra complexity that is found in building Java
GUIs.

The origin of the Java Power Tools was in the desire to provide
quality GUIs for freshman computer science courses. However,
from the very beginning, it was our plan that these tools would be
of such high quality that students would wish to use them
throughout their education and that we, as faculty, could use them
as design models in upper-level courses on object-oriented design
and software development. Therefore, every aspect of the design
was carefully considered from the generality of the abstractions,
the structure of the classes, and the names of the methods down to
the format of the code so that it could be displayed in a large font
for classroom presentation.  No detail was left to chance.  We did
not want our students to view these tools merely as “training
wheels” but rather as a serious model of object-oriented design.

An ITiCSE 2003 paper [12] discusses the design themes of the
JPT.  Let us briefly summarize some key points here. The most
fundamental theme is extreme encapsulation, that is, the
systematic effort to encapsulate all technical detail so that the user
of the JPT classes need only provide those parameters that relate
to the conceptual design level. One instance of this is the
TablePanel class which can organize a one or two dimensional
collection of objects into a panel with corresponding Java
components.  The conversion of objects to components is an
important aspect of the power of this class.  Another example is
the systematic encapsulation of algorithms as Java Action objects
which may then be used define the behavior of buttons and other
components.  A wrapper class ThreadedAction may be used to
guarantee that each click of a button causes its associated
algorithm to be run in a separate thread.  Thus, basic multi-thread
programming is achieved almost for free.  A third instance of
encapsulation is the Paintable family of classes that encapsulate
shapes, images, and text in a uniform fashion, handle mutation by
affine transformations, and arrange that property change listeners
are automatically set up with no special manual intervention.
Using encapsulations of this caliber, it is possible to build GUIs in
minutes rather than in hours or days and, indeed, GUIs have often
been created in lecture on demand in a short period of time.

There is a special set of classes in JPT called the Java Power
Framework (JPF) that are used to create automatic test suites.
The user builds a class, say, Methods that extends the base class
JPF. When the constructor, new Methods(), is called, the base
class constructor then creates two panels, a simple console for text
I/O and a graphics panel with buttons to control the test process.
Using Java reflection, there is a button in the GUI for each
method in the class Methods  that is public and has simple
arguments and return values.  Clicking a button executes its
associated method. If the method requires arguments or has a
return value then an auxiliary GUI is generated on the fly that
permits to user to provide the arguments, execute the method, and
see the return value.

Using JPF, a student can execute Java code with as little as one
method. Thus, JPF is a great tool for exploration and learning. As
the student begins to develop more complex classes and programs,



JPF may be used to create and save the methods that do
systematic unit testing as well as testing of the integrated set of
components. The beauty of this approach is that the test methods
do not clutter up the classes being built but nevertheless are
instantly available at the click of a button in the JPF graphical user
interface. Finally, since a method may be defined to call the main
program of an application, it is also possible to build test buttons
for testing a complete application.

The Java Power Framework is related to but different from the
well known Java environment for students called BlueJ [9]. In
BlueJ, the focus is on building objects and then testing method
calls on these objects. In JPF, the focus is on behavior, that is, on
executing methods. Using methods, one can access member
objects, create new objects, test algorithms, do all sorts of
graphics, open auxiliary windows, and launch entire applications.
We believe that JPF is flexible enough for the entire range of
mature test activities and every project we do is undertaken using
a JPF test framework from the start.

Having sketched the Java Power Tools and its test framework
Java Power Framework, let us now explain why these toolkits are
relevant to the themes of this report. The fundamental goal of the
concepts first approach is to cut through the conceptual
complexity of commercial languages and their libraries. We want
students to understand the big ideas and not to be distracted by a
maze of technical debris. We want students to be able to explore
easily and to gradually build a vision of what can be encapsulated,
that is, what may be considered as a value in a programming
language.  The Java Power Tools form, if you will, an existence
proof of the contention that one can dramatically simplify the
process of programming if one works with high level abstractions
that combine power and generality.  Before we built the Java
Power Tools, many people who worked with graphical user
interfaces and event driven programming believed that these
subjects were inherently complicated and nothing could be done
about this complexity.  Now that we can build GUIs in minutes
without ever visibly wiring an event listener, such beliefs have
been proven to be incorrect.

From a concepts first viewpoint, the Java Power Tools
demonstrate that it is possible to write elegant conceptual code in
a language like Java. The JPT promotes an integration of the
functional declarative style of Scheme and the traditional object-
oriented style of Java. The traditional object-oriented style focuses
on the data and indeed this is the foundation level of programming
that must be mastered. Nevertheless, as programs become more
complex, one does not want to continue to focus primarily on the
data. The heart of a large program are the classes that encapsulate
the mutually supporting behaviors of the program and that hide all
information about the underlying program data that is being
manipulated. At this high level, the functional programming style
is much more important and the object-oriented style is simply the
encapsulation infrastructure.

The transition from thinking about objects as data with associated
behavior to objects as behavior with associated data is a bold step
that is supported by the concepts first approach. The concepts first
approach argues that we should frame the key operations in
programming in as general a form as possible prior to committing
to any particular paradigm.  Indeed, individual paradigms make
more sense if we understand their relationship to the other
paradigms rather than what makes them distinct.  The role of

toolkits is then to provide the bridge between paradigms, that is,
to provide the links that the language designers left out.

Finally, a word must be said to those who object to the use of
toolkits on principle because students will not use the real
language and will therefore be handicapped in industry.  Those
who have read the Wirth keynote quoted earlier will know that he
would strongly disagree.  The same question was addressed and
answered more than 10 years ago by Eric Roberts [17] when the
language in question wasn’t Java but C.  Roberts writes:

These reviewers argued that I was changing the language or
that I was likely to distract the students by providing a
mechanism that they would “remember after the course is
over, instead of remembering scanf .” One reader felt
sufficiently strongly about this question to set an entire
sentence in italics: “If you are going to teach ANSI C, teach
ANSI C, not some modified local version of the language!”

I believe that the last comment cuts to the heart of the
controversy. I was not trying to teach ANSI C. I was trying
to teach programming.

If you look back from a vantage point of 10 years and see how
silly it now seems to be fighting over scanf then you realize that
our purpose as educators cannot possibly be to teach particular
languages or technologies as they are used in industry today. This
is one of the main points of this working group report.  Our goal
as educators is to teach programming and all of the grand ideas
that surround this wonderful discipline.  Our goal is not to teach a
particular language (C, C++, Java, C#, or Scheme) and our goal is
not even to teach a particular paradigm.  Our goal is to provide a
vision of what might be in the future given a strong framework of
elegant programming concepts that crosses languages and
paradigms.

3.5 Other Concerns
In this section we have collected some of the concerns that
working group members expressed about the programming theory
of programming approach to introductory programming courses.
Brief responses are provided in typical FAQ style.

Concern: For practical and political reasons, many colleges and
universities will not be able to adopt the Oz language. Java is
currently a very popular language, and the question arises of how
or whether this set of concepts and theory of programming apply,
or can be illustrated, in an introductory course which uses Java
as the programming language.

Answer: The main purpose of a theory is to provide a framework
for better understanding of all of programming and to develop a
mindset in students that ties together concepts that due to
implementation distortions seem unrelated. Oz is a complete,
powerful programming language, but lab-work to support the
concepts of the programmer’s theory of programming and the
Kernel Language requires only a small subset of Oz [19]. A GUI
based incremental compiler coupled to a run-time system is
available that allows Oz [10] to be used as a theory support tool
with a very high gain/pain ratio. Java can, therefore, still retain its
place as the preferred real-world programming language for
introductory computer science courses.  In addition, toolkits such
as the Java Power Tools [11] demonstrate that even in Java a more
conceptually higher level of programming is possible.



Concern: The programmer’s theory of programming deals with
fundamental programming concepts at a very low level. Object-
oriented concepts can be regarded as higher-level, problem
solving abstractions imposed on top of programming.

Answer: True, except that the use of the phrase “very low level”
versus “higher level” carries the, perhaps unintentional,
suggestion that masters of higher levels should not be burdened
with details of lower levels. To create an object or a method, the
programmer has to write statements. A statement contains
variables and values. Hence a thorough understanding of these
concepts is as important as an understanding of the problem
solving concepts of OO that help one to determine what classes
and objects should be created and what behaviours should be
incorporated into their methods.  Moreover, the general concept of
value as any entity that may be encapsulated is a framework that
makes sense of the particular declarations used in a language like
Java.

Concern: Using a language at variance with the theory is a
compromise and presents certain challenges. If Java is the
language of instruction, the concept can be presented and an in-
depth discussion of the theoretically “right” decision should be
deferred to a more advanced course.

Answer: Once a student forms the mindset that Java or any other
first-language is the only way to program, it is almost impossible
to expand that student’s viewpoint in subsequent courses. The
theory expands the definitions of the basic concepts of
programming so that students can see relationships between
programming languages and concepts that were not immediately
obvious before. The key point in starting with these concepts is to
get the student to separate the concept from the restrictions,
extensions and other necessary or ad hoc decorations that disguise
that concept in practical programming languages. For example,
traditional languages emphasize stack-based allocation of data and
the automatic recovery of such data when the stack frame is
closed.  This view actually obscures the fact that objects in Java
are global and do not live simply in the context of a particular
stack frame. Therefore, being too traditional can be a pedagogical
problem.

Concern: Java is a strongly typed language, and variables are
declared with a given type. The beginning student can be safely
told that a variable name, or identifier, is a shorthand for
accessing or using the value stored in a particular location in the
memory of the computer.

Answer: Strong-typing can be achieved by static (compile-time)
type checking or dynamic (run-time) type checking. Java “starts
with” static type checking, but “gets into trouble” and has to
introduce dynamic type checking to deal with polymorphism. A
clarification of the concept of strong-typing simplifies the
comprehension of polymorphism considerably and helps students
to understand, in particular, that the type of an object and the type
of a variable that refers to that object may not be the same.

Concern: When describing variables and types in Java, in
contrast to the theory of programming given above, it is necessary
to talk about references. When objects are created, the “handles”
for these objects are references. These are not pointers, but
unique hash codes based on the location of the object in memory,
and they can be associated with named identifiers which are
declared with a class type that is compatible with an object that a
reference refers to.

Answer: By careful definition of the concepts of value, variable,
assignment and the binding rules of variables and values, the
theory explains both simple variable binding and object references
with one set of concepts. This explanation needs no
implementation concepts such as hash codes or memory locations.

Concern: In the presentation of the theory of programming given
above, there are certain concepts, which are included without a
separate definition. Among these are functions, procedure
declarations, and repetitive statements.

Answer: The above section illustrates the theory of programming
with a few pertinent examples. The whole theory and the Kernel
Language contain precise and complete definitions of functions,
procedures, repetitive constructs and other concepts that are
essential to multi-thread, multi-paradigm programming.

Concern: In the presentation of the theory of programming given
above, there are also certain things, which are said to need a new
definition. The handling of variables and types in Java differs
significantly from that in the theory of programming, but it does
not differ significantly from prior languages. Since over the
previous 5 decades programming has progressed with this earlier
treatment of variables, it seems safe to say that although perhaps
not ideal, the treatment in Java does no harm, and will provide a
sound foundation for further elaboration of the theory later in the
curriculum. The point is that in Java, no new definition of this is
needed.

Answer: Not so. The theory accommodates static and dynamic
binding and explains their differences and the reasons why one or
the other was preferred by the designers of a programming
language e.g. Java. The theory facilitates the introduction of
“references to objects” especially to students with C-programming
experience who have trouble with the conceptual separation of
references from pointers.

Concern: To achieve learning, we have to engage the attention
and awaken the interest of the students. For many students,
computer programming is an abstract practice.

Answer:  As in conventional courses, visualization can aid
understanding and motivate students to spend more time with
class material. If each line of code has a visible effect, students
immediately appreciate core concepts. Early in the course, a
student can observe variable assignments through changing a
quality of an on-screen object or by lighting pixels. With
relatively little pre-existing structure, more complex behaviour
can be implemented through message passing and through
composition of simpler objects. Combined with time delay,
students can observe sequential computations to better understand
order of operations. Sometimes graphical environments require
students to interact with relatively complex systems. The
interaction can serve as an introduction to basic pattern use.

Concern: A course project provides a culminating experience that
can build a sense of satisfaction within students. It is also an
opportunity for a student to demonstrate knowledge and for the
instructor to assess whether the core concepts have been
effectively taught. Does the theory approach leave enough time
for class projects?

Answer: The theory approach saves class time through better
coherence and simpler explanations of programming concepts that
are currently regarded as difficult. Time is also saved by use of



carefully chosen software tools that have high gain/pain ratios. As
in current courses, a class project can be a programming project
separate from the rest of the class programming assignments, or it
can be a series of incremental programming assignments
integrated into the class programming assignments. There are
many obvious options for independent projects. For example, here
is a project that can be integrated into a set of first-semester
programming assignments:

Media database project: Through an introductory course, a class
may develop a database to store book, movie, or music
information. The development begins with the introduction of
objects, constructors, and assignment. The assignments progress
to add features incrementally to prompt the user for new entries,
print out database entries, search the database, store entries to
disk, to develop a graphical interface to the database. Each
successive assignment allows the instructor to guide design
decisions and publish the design of the previous assignment.

4. CONCLUSIONS
Earlier efforts to include several programming paradigms into
introductory CS courses had to introduce a different programming
language and a different program development system and
compiler for each paradigm [15]. In spite of severe difficulties,
this approach showed promising results [16]. Today, at least one
highly usable and effective version of each key component for
success with a multi-paradigm, multi-thread concepts-first
approach to introductory programming courses is in place.

We have a programmer’s theory of programming that uses the
basic concepts of programming to gain unifying insights about
programming as such, in any paradigm or programming language.

We have well defined Kernel Languages that introduce the
essential program components of all paradigms in a surprisingly
short evolutionary sequence starting with a simple functional Base
Kernel Language.

We have a programming language of which the Kernel Languages
are proper subsets. We have a programming system that provides
a GUI based incremental compiler that can be used as a theory
and Kernel Language study tool.

We have toolkits, like the Java Power Tools, that save time in
teaching of Java programming and serve as models of good Java
program design and implementation, thereby saving class-time for
theory and Kernel Language intro to other paradigms.

Finally, we have increasing demand for net-centric GUI based
distributed computation designers and programmers who will
almost certainly have to program in several languages and
paradigms sometime in their computer science careers.

All we need is courage and enthusiasm to use this approach to
endow computer scientists with a good understanding of and
enthusiasm for all of programming, unrestrained by any specific
paradigm or programming language.
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