
Search heuristics and optimisations to solve package
installability problems by constraint programming

Sébastien Mouthuy∗, Luis Quesada†, Grégoire Dooms‡

August 2, 2006

Abstract

The aim of this work is to present a constraint programming formulation of the
package installability problem. The package installability problem deals about de-
termining whether a package of a repository could be installed or not. This problem
is known to be NP-complete.Efficient search heuristics will be presented, leading
to few failures. Our solver is able to determine whether all packages of the Debian
distribution can be installed in less than 6 minutes. At the end, implementation of
optimisation criteria are also presented.

1 Introduction

The problem we want to solve is to check whether all packages of a repository can
be installed. Such repositories are common in Open-Source software distributions
like Debian, Fedora,. . . These distributions support a set of software (one piece of
software is called a package). This set is called a repository. The question is to
check whether a repository is trimmed as defined in [1], this means all packages
of a repository can be installed. This property is very important in the maintenance
of distribution like Debian. People used to softwares like apt-get could think that
such problems are very easy to solve. But it has been shown [1] that the package
installability problem is NP-complete, by reducing it to 3SAT. Tools like apt-get are
thus incomplete. As we will see later, real repositories can be checked efficiently by
using smart search heuristics.

We will use the same notation as [1]. A package is a couple (unit, version), e.g.
gnome − 2.6. A unit is the name of the package like gnome, apache, . . . The set of
all packages in a repository will be denoted by P .

∗sebastien.mouthuy@student.uclouvain.be
†luque@info.ucl.ac.be
‡dooms@info.ucl.ac.be

1

2 PREPROCESSING

Figure 1: Dependencies between packages of a repository

Dependencies in a repository will be specified by a function D : P → ℘(℘(P))
.The dependencies of a package a will be defined by a set of sets of packages:
D(a) = {d1, . . . , dn} with di ∈ ℘(P),∀i : 1 ≤ i ≤ n. This means all di should be
satisfied in order to install a. di’s are called disjunctive dependency as only one
package p ∈ di should be installed in order for di to be satisfied.

Conflicts are defined as couples of packages (P1, P2) that cannot be installed
together. The set of conflicts in a repository is denoted by C ⊆ P × P .

A repository is defined as a tuple R = (P,D,C). π will usually denote the
package we want to install. For convenience the set of units in a repository will also
be defined: units(P) = {u | ∃v : (u, v) ∈ P}.

These dependencies are illustrated in FIG-11. The V nodes represents a dis-
junctive dependency. For example, in order to install package d, we should install
either package h or package i. On this example, D(a) = {{b}, {c, d}, {d, e}, {d, f}}.

2 Preprocessing

An entire distribution contains many packages (more than 33’000), so it is worth
preprocessing them. We can easily compute a set of packages that will not be of
interest for a given problem. For example, if we want to install a unique package
π having not many dependencies, a lot of packages don’t need to be considered
because they would never satisfy a required dependency.

An easy solution to remove some not-relevant packages is to compute the set
of packages ∆(π) that could be required in order to install a given package π. This

1This figure comes from [1]

- 2 -

4 DESCRIPTION OF OUR CURRENT SOLUTION

can be achieved easily by traversing the dependency graph from π along the depen-
dency edges. All reached nodes are of interest, all others can be discarded without
eliminating any solution of the problem. In FIG-1, we have ∆(c) = {g, h, i}.

The dependency closure ∆(π) was introduced and defined formally in [1]. They
show ∆(π) always exists and can be computed by traversing the dependency graph.
In our implementation, the dependency graph like the one in FIG-1 is traversed by
DFS and each node not reached at the end of the traversal is discarded.

3 Formulation of the package installability problem
as a CSP

In this section we will formulate the package installability problem as a constraint
satisfaction problem (CSP). We will use the same notations as in the introduction.

3.1 Inputs and solution

Here are the inputs of the CSP:

R = (P,D,C): A repository

(u∗, v∗) ∈ P : the unit and the version of the package for which we want to check
whether it could be installed

The solution our solver should return is a function install : U → Z indicating for
each unit the version we should install in order to install (u∗, v∗) while respecting all
dependencies constraints.

3.2 Constraints of the CSP

The solution should satisfy different constraints.
First, we need to constraint the solution to respect all dependencies:

∀(u, v) ∈ P, install(u) = v ⇒ ∀d ∈ deps((u, v)),∃(u′, v′) ∈ d | install(u′) = v′

.
Second, conflicts should be taken into account:

∀
(
(u1, v1), (u2, v2)

)
∈ C, install(u1) = v1 ⇒ install(u2) 6= v2

Third the version of the unit we want to install should be imposed:

install(u∗) = v∗

4 Description of our current solution

From the problem formulation above, we can express the installability problem as
a CSP using finite domain (FD) variables. In this formulation, we are using a FD
variable Vu per unit u in the repository. This variable contain the version of this

- 3 -

4 DESCRIPTION OF OUR CURRENT SOLUTION

Figure 2: Time taken in function of the number of nodes after preprocessing

unit that should be installed2. 0 means that no version of the package should be
installed. These variables implement the install function.

This CSP problem was implemented in Oz [2]:

Vu∗ = v∗

∀ package (u, v) ∈ P, ∀
(
(u1

k, v1
k), . . . , (ur

k, vr
k)

)
∈ D((u, v)),

{FD.impl Vu =: v {FD.disj{. . . {FD.disjVu1
k

=: v1
kVu2

k
=: v2

k} . . .} Vur
k

=: vr
k} 1}

∀ conflict
(
(u1, v1), (u2, v2)

)
∈ C,

{FD.impl Vu1 =: v1 Vu2\ =: v2}

This Oz implementation can find an installation solution to all packages of the
entire Debian distribution (33200 different packages) in less than 20 minutes on a
notepad3. FIG-2 shows the search time in millisecond taken to find a solution in
function of the number of nodes in the dependency closure (ie after preprocessing).

It would be interesting to create artificial repository that contain packages very
hard to install. Ratio #Solution

Searchspace of current distributions (Debian, Mandriva,Fedora,. . .)
is not as low as it could be; that is the reason why tools like apt-get can install most
of the packages while being polynomial in time. As shown in [1], the temperature4 of
the installation problem under its SAT formulation is well under 4.2, meaning current
repositories are not as hard as they could be. Evolution of the time taken by the
algorithms on these fake repositories would allow us to measure the real limitations
of our solvers.

Another improvement that enhances performances is to keep in memory all
packages of all installability solutions found so far. If a given package p is con-

2Using integer for the version number of packages has been justified in [1]
3with a Pentium Intel Centrino 1,5GHz and 512 MB memory
4ratio m/n where m is the number of clauses and n the number of variables in a SAT problem

- 4 -

5 SEARCHING HEURISTIC

tained in the solution of the installability of another package p′, then we don’t need
to check whether p can be installed or not, as we already know that at least one
solution exists. This small improvement can decrease the time required to analyse
the entire Debian distribution to less than 6 minutes5.

5 Searching Heuristic

The searching strategy is very important in constraint programming and has a great
impact on performances.

Our searching strategy is based on the fact that we should decide to install
a package only if it is required by another package we must install. So we be-
gin branching on packages that are close to the package π we want to install. A
BFS traversal of the dependency graph from π is done and all packages are con-
cateneted in a list Lp in the order they are visited. During searching, the algorithm
branch on the first undetermined variable it finds in Lp. Pseudo code of this algo-
rithm is shown in Algo-1 to Algo-4. Solution is a data structure containing all the
FD variables of the problem. Solution.U is the FD variable representing the version
of unit U to install (or 0 if we should not install any version of unit U). The function
processDeps is introduced here as its definition will change below.

Algorithm 1 branch(Uto install, Vto install)
Lp ← computeBFSTraversal([(Uto install, Vto install)], [])
distribute(Lp)

Algorithm 2 computeBFSTraversal(Ls, Acc)
case Ls
of nil then

return Acc
of H|T then

if isV isited(H) then
computeBFSTraversal(T,Acc)

else
markV isited(H)
Acc2← Append(Acc, [H])
Lt← Append(T, processDeps(D(H)))
computeBFSTraversal(Lt,Acc2)

end if
end case

This searching strategy seems nearly optimal since we rarely observe failures
when searching for a solution to an installation problem. only 3800 packages made
our search algorithm fail at least once, nevertheless our algorithm fails at most 8

5with a Pentium Intel Centrino 1,5GHz and 512 MB memory

- 5 -

6 OPTIMISATION

Algorithm 3 processDeps(Ls)
return Ls

Algorithm 4 distribute(Lp)
case Lp

of nil then
return

of (U, V)|T then
if isAssigned(U) then

distribute(T)
else

choice
post(Solution.U = V)
distribute(T)

or
post(Solution.U 6= V
distribute(T)

end choice
end if

end case

times for the worst package (the entire distribution was composed of 33220 different
(package, version) couples). Length of branches of the search tree leading to a
failure is at most 2: when we make a wrong decision, it is detected after at most two
other decisions. So this searching heuristic seems really efficient.

6 Optimisation

On the recommendations of Roberto Di Cosmo (head of the EDOS project), we
decided to investigate further how we could optimize the solution our solver returns.

Several criteria over the solution returned could be of interest:

Overall freshness: measured by the number of packages to install that are the
last version of their unit

Size: the number of packages that should be installed

Difference from the current system: the number of packages whose status should
change (package installation, removal or upgrade)

Minimum storage requirements: finding the solution requiring the smallest amount
of disk space

...

We focused on the two first optimisations: freshness and size of the solution
returned. We wanted to find a trade-off between speed and optimality. Because of
the huge number of solutions for a given problem, optimality could require too much

- 6 -

6 OPTIMISATION

computation. The search heuristic was modified in order to find very good solutions
while maintaining efficiency.

6.1 Freshness of the solution

In the search heuristic we presented in 5, we did a BFS traversal on the dependency
tree. When analysing a disjunctive dependency, all the packages were added to the
list Lp without any preference. We modified this algorithm in order to first append
to Lp the packages that are up to date (their version is the latest available). For
example, in order to install gnome, we should either install Xfree86 either Xorg.
Imagine a repository containing two versions of each unit: Xfree86-3, Xfree86-4,
Xorg-1 and Xorg-2. Then Xfree86− 4 | Xorg − 2 | Xorg − 1 | Xfree86− 3 would
be appended to Lp. The pseudo code of the new searching heuristic is nearly the
same as the one presented in section 5. Only the processDeps(Ls) procedure must
be redefined. Its specifications are shown in Algo-5.

Algorithm 5 processDeps(Ls)
Require: Ls is a list of packages
Ensure: ∀i, j | i < j, isLatest(Ls[i]) ∨ not isLatest(Ls[j])

On the Debian distribution tested, there were 20’000 distinct unit. With this
change in the searching heuristic, we tried to install the latest version of each unit
and we looked for the ones that required to install some packages which were not
the freshest. Only 390 packages required to install such packages.

6.2 Smallest number of packages to install

The search heuristic explained in section 5 could install more packages than needed.
This is due to the fact that the branching algorithm try to install the first undetermined
package it encounters in Lp. But in the case of a disjunctive dependency that can
be satisfied by two different units, we would try to install one package of these units.
Taking into consideration that the different units could have very different dependen-
cies, this could lead to a significant number of useless packages installed. Another
reason why we could install more packages than needed is that a package Pd could
be in Lp because Pd satisfies a dependency of another package Pd2. If we don’t
install Pd2, Pd and all its dependencies would nevertheless be installed.

We changed the search algorithm in order to assign a value to a variable only
if no other variable is assigned to a value that satisfies the disjunctive dependency.
This solved the first point of the preceding paragraph. The difficulty of solving the
second point is that we don’t know a priori which packages we will install and thus
we cannot build a minimal L − p before branching. A concurrent approach is used
to solve this easily: a port (see [3]) Prt is created and its stream is used instead of
a list Lp. A thread per unit u is waiting for the corresponding variable Vu to be set.
Once a version is assigned to it, the thread appends to the stream of Prt all the
dependencies required by Vu. The element sent to Prt are thus disjunctive depen-
dencies: lists of packages. The initial value for Prt is [Pto install] | _. Pseudo code of
this new search heuristic is shown in Algo-6 to Algo-7. The goal of alreadySatisfied
is to receive a list of packages Ls as argument and to return the sublist of Ls with

- 7 -

8 CONCLUSION

packages that can still be installed (this depends on choices made before in the
search tree). satisfied is returned if Ls contains one package already installed.
This means the dependency Ls is already satisfied. if alreadySatisfied returns nil
we fail (Algo-7 on line 5), because it means the dependency cannot be satisfied.
The propagators should deduce it before getting there.

Algorithm 6 alreadySatisfied(Ls, Solution, Acc)
case Ls
of nil then

return Acc
of (U, V)|T then

if Solution.U = V then
return satisfied

end if
if V ∈ dom(Solution.U) then

return alreadySatisfied(T, Solution,Append(Acc, [(U, V)]))
else

return alreadySatisfied(T, Solution,Acc)
end if

end case

This two improvements can decrease the number of packages to install by a
factor of two. In average, solutions found with this improvements contains 33% less
packages to install than the solutions returned with the original search heuristic.
The time decreases by 8%.

7 Future work

Some more preprocessing could allow us to compute an upper bound of how many
packages need to be installed in order to install a given package π. This information
could help us in branching more efficiently in the case of a disjunctive dependency.

It would also be useful to have a second criteria to sort packages satisfying a
given dependency. Currently the procedure processDeps shown in Algo-5 just put
all the freshest packages at the top of Lp. But these freshest packages could also
be sorted among them in function of another criteria . We could try first packages
that seem to require the minimum number of other packages in order to be installed.

We would like also to create complex artificial repository to analyse the limita-
tions of our solver. Future repositories could not be as simple as they are.

8 Conclusion

In this paper we presented a CSP formulation of the package installability problem.
An implementation in Oz showed that contraint programming can be very efficient
for this problem. Every package can be solved in less than 210 ms. The entire

- 8 -

REFERENCES

Algorithm 7 distributeImproved(Ls, Solution)
1: case Ls

of H|T then
2: case alreadySatisfied(H,Solution, nil)

of satisfied then
3: distributeImproved(T)
4: of nil then
5: fail
6: of (U,V)|Ht then
7: choice
8: post(Solution.U = V)
9: distributeImproved(T)

10: or
11: post(Solution.U 6= V)
12: distributeImproved(Ht|T)
13: end choice
14: end case
15: end case

Debian distribution can be solved in less than 6 minutes taking into account all the
optimisation criteria’s presented in this paper.

As shown in the previous sections, simple propagators can be used to formulate
this problem. With current instances, design of good search is the most important
point. This is due to the fact that current tools are polynomial in time and were
implemented using heuristics. CSP implementations of this problem would show
their real power if the complexity of repository increased. Then global constraints
as DomReachability could be of a great help in pruning early bad solutions.

The main advantage of using constaint programming for this problem is the flex-
ibity of such approach. Adding additional constraints or optimisation criteria to the
initial problem can be done easily.

Aknowledgements

We would like to thank professor Peter Van Roy for his help and feedback all along
the duration of this work. We would like also to thank Roberto Di Cosmo who an-
swered to our questions concerning their current work on Open-Source repositories.

References

[1] Roberto Di Cosmo, Berke Durak, Xavier Leroy, Fabio Mancinelli, and Jérôme
Vouillon. Maintaining large software distributions: new challenges from the foss
era. In FRCSS 2006: 1st International EASST-EU Workshop on Future Re-
search Challenges for Software and Services, 2006.

- 9 -

REFERENCES

[2] Mozart Consortium. The Mozart Programming System, version 1.3.0, 2004.
Available at http://www.mozart-oz.org/.

[3] P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer
Programming. The MIT Press, 2004.

- 10 -

