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Abstract

This dissertation presents a study on the extent and limits of network trans-
parency in distributed programming languages. This property states that the
result of a distributed program is the same as if it were executed on a single
computer, in the case when no failure occurs. The programming language may
also be network aware if it allows the programmer to control how a program is
distributed and how it behaves on the network. Both aim at simplifying dis-
tributed programming, by making non-functional aspects of a program more
modular.

We show that network transparency is not only possible, but also practical :
it can be efficient, and smoothly extended in the case of partial failure. We
give a proof of concept with the programming language Oz and the system
Mozart, of which we have reimplemented the distribution support on top of
the Distribution Subsystem (DSS). We have extended the language to control
which distribution algorithms are used in a program, and reflect partial failures
in the language. Both extensions allow to handle non-functional aspects of a
program without breaking the property of network transparency.
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1
Introduction

This dissertation presents a study on the extent and limits of network trans-
parency in distributed programming languages. A programming language is
said to be network transparent if a distributed program gives the same result
as if it were executed on a single computer, provided network delays are ig-
nored and no network failure occurs. The language is said to be network aware
if the language definition allows to predict and control how the program is dis-
tributed, and its network behavior. The conjunction of both properties aims
at simplifying distributed programming by separating a program’s functional-
ity, in which distribution can be ignored, from its distribution behavior, which
includes network performance, partial failure (when part of the system fails),
and security.

Earlier works have shown that network transparency is possible, like [Jul88].
We show that network transparency is also practical : it can be efficient, and
smoothly extended in the case of partial failure. Efficiency is possible if the
programming language supports programming with asynchronicity, which is
reasonable in general, and fits well with distribution. Performance can also be
tuned by the choice of distributed algorithms used by the underlying system,
without affecting functionality in the case when there are no failures. Partial
failure can be reflected in the language in a simple way, so that fault tolerance
can be added in a modular fashion completely within the language. Security
is beyond the scope of this thesis and is a subject of future work. We give a
proof of concept with the programming language Oz and the system Mozart
[Moz99]. We have extended the language to improve its network awareness,
both for controlling distribution and handling partial failures.

This work is a continuation of earlier works on distributed programming
languages, mainly done at the Swedish Institute of Computer Science (SICS).
Among the results of those works are the system Mozart and the Distribution
Subsystem (DSS), and two dissertations:

1



2 Introduction

• Per Brand, in The Design Philosophy of Distributed Programming Sys-
tems: the Mozart Experience [Bra05], presents the first design, imple-
mentation, and evaluation of the distributed system Mozart.

• Erik Klintskog, in Generic Distribution Support for Programming Sys-
tems [Kli05], presents the design, implementation, and evaluation of the
DSS, a middleware which provides efficient distribution support for pro-
gramming languages.

Per Brand showed that asynchronous stream communication can be orders of
magnitude faster than synchronous communication (such as Java RMI). He also
showed that an Oz program was almost unchanged when going from centralized
to distributed, and much simpler than a corresponding Java program.

This thesis both extends and simplifies the network-transparent distribu-
tion in Mozart. We have modified and extended the language Oz, in order to
improve the network awareness in the language. We have reimplemented the
distribution layer in the platform Mozart on top of the DSS middleware, and
completed the latter to make it able to handle and reflect partial failures. We
have also redesigned failure handling in Oz to make it completely asynchronous,
and showed that it was the right default.

1.1 Distributed systems

Distributed systems are becoming ubiquitous; today all computers are con-
nected to the internet, which provides many collaborative tools and programs.
Moreover, many computers today contain multiple processors that run in par-
allel. This is a consequence of the current limits in increasing processors’ speed,
which makes manufacturers increase the number of processors instead. Com-
puters with multiple processors can be considered as distributed systems on
their own, with fast communication between processors.

Software development is progressively shifting towards concurrent and dis-
tributed programs that can take advantage of this available parallelism. Se-
quential programming is still acceptable for small programs, but not for large
applications. By necessity, large programs will be distributed, and therefore
concurrent. Alas, the introduction of concurrency into existing systems is
rather poor, and inter-thread communication is often based on shared state.
This model is difficult and bug-prone for programmers, which are discouraged
to program in concurrent style. However, some systems propose different mod-
els for concurrent programming, like message passing in Erlang, and dataflow
concurrency in Mozart.

Partial failures also make distributed programs more complex than central-
ized ones. Programs that run on a certain number of machines should be able
to deal with faults in parts of the system. On one hand, writing distributed
applications without taking partial failures into account was quickly seen as
unrealistic. On the other hand, one needs abstractions to avoid the application
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code to be cluttered with failure-handling code everywhere. Failure handling
should be as modular as possible.

Programming languages and systems. We claim that the design of the
programming language is essential when writing such applications. Extending
a sequential language may lead to bad surprises, because the distributed pro-
gram will not be sequential. So the language or its libraries should at least
provide good abstractions to handle concurrency. Moreover, letting parts of
a program share data introduces many subtle problems. For instance, remote
references may be provided either via proxy entities, or transparently by the
language itself. The programmer needs clear indication about what can be
shared between sites1. Also, transferring data requires serialization.

There are basically two ways for a programming language to support the
development of distributed applications. The first approach is to augment the
language with libraries for distribution. Those libraries provide abstractions
to make sites interact with each other. This typically involves communica-
tion channels, abstract representations of distributed entities, and so on. The
programmer is responsible to integrate its application with the distribution
library.

The second approach is to provide distribution as an inherent property of
the programming language itself. In this case, we talk about a distributed pro-
gramming language. A program is seen as a collection of threads and data that
are spread over a set of sites. From a functional point of view, the interac-
tion between the parts of the application is not different from the interaction
between concurrent threads on a single host. However, the semantics of the
language is extended to incorporate new aspects, like network latency and par-
tial failures. This thesis explores some of the possibilities that are offered by
these systems.

1.2 Models of distributed programming

The choices made to bring distribution in a programming language clearly
determines the model that the programmer has to use. We define the pro-
gramming model as a set of language constructs together with how they are
executed [VH04]. It is sometimes called more informally programming para-
digm. Examples are: declarative programming, object-oriented programming,
processes with message passing. Here we are interested in the underlying mod-
els of the programming systems (the languages and their libraries) that are
used to build distributed applications. We consider a few concepts that may
or may not be part of a programming model.

1The site is the unit of localization. Sites execute code concurrently, and are independent

of each other. A typical example is a system process.
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Concurrency. By definition, a distributed program involves several activities
that run more or less independently on different sites. This implies that the pro-
gramming model is necessary concurrent and non-deterministic, because those
properties are intrinsic to distributed systems. Therefore concurrent program-
ming languages have an advantage over sequential languages when it comes
to distribution. A concurrent language makes it possible to test a distributed
program in a single site.

Moreover, good language support for controlling concurrency is also an
advantage. For instance, in Oz one can synchronize two threads with a dataflow
variable. This technique is simple, elegant, and is useful even if the threads are
located on different sites.

Synchronous and asynchronous operations. Many programming lan-
guages only provide synchronous operations in their model. Synchronous oper-
ations are fast and natural in centralized applications, but they can be pretty
slow in a distributed setting. Indeed, distributed synchronous operations often
require several sites to exchange messages, and cannot proceed immediately.
Asynchronous operations do not wait: the operation terminates immediately,
and its effect will be performed eventually. This scheme fits well in a distributed
environment: the operation may simply prepare a message and terminate, while
the message delivery will perform the expected effect. The network latency is
partly hidden to the user.

Most programming languages designed with distribution in mind provide
asynchronous operations in their model [Van06]. In some of them, like Erlang,
synchronous operations are not even part of the core of their model, but are
simply defined as a derived concept [AWWV96].

Stateful and stateless data. Does the programming model makes a dis-
tinction between stateful and stateless data? This is more important than it
seems at first sight. “One size fits all” does not hold for distributed data. On
one hand, stateless data can be copied between sites, which provides minimum
latency for operations. Once the data are copied, all operations are purely
local.

On the other hand, stateful data need different protocols to handle their
state and keep it consistent between sites. The state may be stationary, and
behave like a server for remote operations, like distributed objects in Java
Remote Method Invocation (RMI) [GJS96, Sun97]. But other protocols are
useful as well. A migratable state may give better performance when a site
has to perform many operations on it. Once the state has moved to the site,
it can be considered as a cache, because several operations on that site may
be performed in a batch. Replicating the state is yet another option, if read
operations are more frequent than updates.
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Multiplicity of paradigms. The ability to choose between several para-
digms when writing a distributed application may lead to better programs. If
a problem has a natural solution in a given programming model, its imple-
mentation will be simpler. The programmer may also choose the paradigm
depending on the problem to solve and how various concepts of the language
are distributed. The system does not force the programmer to emulate a dis-
tributed protocol on top of inappropriate concepts.

Distributed and local references. In programming systems that provide
distribution as a separate library, distributed and local references often have
different interfaces. An example is given by Java RMI, where distributed objects
introduce exceptions where equivalent local objects would not. Distributed
objects have a slightly different semantics, too. Reference integrity of remote
objects is not guaranteed in general, for instance [Sun97]. Turning local objects
into distributed ones may break an application.

Making no visible difference between local and distributed data allows the
runtime system to choose the right representation for a given datum. A local
reference that is sent to a remote site automatically switches to a distributed
representation for the corresponding data. The conversion may be reverted
once the distributed reference is used by one site only. This implies less effort
from the programmer.

Partial failures. They are inherent to distributed systems, so reflecting fail-
ures in the programming model is very important. It basically provides the
programmer with a semantic representation of the failure. This semantic sup-
port allows the programmer to reason about failures, and handle them properly.
Besides a semantic representation, the programming model should also provide
a way to detect failures. Failure detectors are the basic ingredient of failure
handlers.

We believe that causing a partial failure by program can be useful: it may
simplify a failure handler. Sometimes a component cannot be fixed easily be-
cause it strongly depends on another component, which has failed. Making the
former one fail may accelerate the failure recovery, which can be handled at a
higher level in the application.

1.3 Network transparency

As we said, network transparency states that the result of a distributed program
is the same as if it were executed on a single computer, in the case when
no failure occurs. The meaning can be more precise if we consider network
transparency at the level of the programming language. A given entity or piece
of code is network transparent if its semantics does not depend on whether it
is run in a distributed environment, provided no failure occurs.
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Several forms of transparency have been proposed in the literature. The
following ones are taken from [ISO98]. They use the term resource in a very
general sense. When applied to a programming language, a resource typically
corresponds to an object or an agent.

• Access transparency masks differences in data representation and invoca-
tion mechanisms, to provide a single and uniform access to resources.

• Location transparency states that the user of a resource should not be
aware of where the resource is physically located. Migration transparency
states that the user should not be aware of whether a resource or com-
putation has the ability to move to a different location, while relocation
transparency guarantees that its migration should not be noticeable to
the user.

• Replication transparency makes a resource appear as unique even if it is
replicated among several locations. Persistence transparency makes no
difference between resources located in volatile and permanent memory.

• Failure transparency masks the failure and possible recovery of resources
or computations.

• Transaction transparency masks coordination of activities amongst a con-
figuration of entities to achieve consistency.

Our definition of network transparency covers the above notions of access, loca-
tion, migration, relocation, and replication transparency. We also cover trans-
action transparency in the sense that primitive operations on distributed entity
should be atomic, just like in the centralized case. Persistence transparency
is rarely present in programming languages, where the program’s memory is
often considered as volatile. Our definition does not cover failure transparency,
and our proposal for a distribution model in Chapter 4 will even make failures
explicit in the language.

In practice. Some researchers have maintained that network transparency
cannot be made practical, see, e.g., Waldo et al. [WWWK94]. They cite four
reasons: pointer arithmetic, partial failure, latency, and concurrency. The first
reason (pointer arithmetic) disappears if the language has an abstract store.
The second reason (partial failure) requires a reflective fault model, which we
designed for the Distributed Oz language. The authors of the paper above
expected that failures could be always hidden behind abstractions. They were
wrong: sometimes failures cannot be resolved locally, and requires some global
action.

The final two reasons (latency and concurrency) lead to a layered language
design. Latency is a problem if the language relies primarily on synchronized
operations, like procedure calls. The authors of the paper explicitly mention
the disappointing experience of remote procedure calls, that they see as the
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only way to make distributed objects. In the terminology of Cardelli, latency
is a network awareness issue [Car95]. The solution is that the language must
make asynchronous programming both simple and efficient.

Concurrency is also seen as an obstacle. A closer look at the paper reveals
that the authors actually talk about shared-state concurrency. Indeed, most
people consider that programming languages are always stateful. The prob-
lem with concurrency in those languages is how to control concurrent accesses
to state, in order to avoid invariant violations and glitches. A solution is to
support a form of stateless concurrency, known as dataflow concurrency. Con-
current threads interact by sharing values, and automatically synchronize on
the availability of data. Threads can be programmed as if they were never
waiting for data. An example of this kind of communication is pipelining in
Unix-like systems. Moreover, values can be copied between memory stores,
which substantially reduce their latency. Using dataflow concurrency can re-
duce the need for shared state to a minimum. We conclude that language
design is an important issue for network transparency.

1.4 Thesis and contributions

This thesis proves that network transparency is practical in a distributed pro-
gramming language. It gives concrete proposals of language extensions that
deal with performance and failure handling, and demonstrates their usage
with practical examples. It also describes the implementation of the platform
Mozart/DSS, with insights on various implementation issues.

Contributions. This thesis extends, simplifies, and completes the past work
on network-transparent distribution in Mozart. The initial distribution model
and the initial failure detection model [HVS97, VHB99] formed the core of
the first distributed release of Mozart in 1999. Erik Klintskog made the first
design of a distribution subsystem (DSS) in which the distribution support is
completely factored out of the run-time emulator [Kli05]. The work on the DSS

was incomplete, however. The present thesis brings the following scientific and
technical contributions.

• We extend the distribution model of Oz to make it customizable. We
introduce entity annotations, so that the programmer has the ability to
choose between several protocols for each entity, including its distributed
memory management.

• We design a failure handling model for Oz that is simpler and more
expressive than the initial one. Each language entity produces a stream
of fault states that is extended asynchronously, whenever the entity’s
fault state changes.

• We design an effective post-mortem finalization mechanism based on the
fault stream. This mechanism did not exist in the language.
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• We give distributed programming patterns that show how the system
simplifies programming robust distributed systems.

• We complete Erik Klintskog’s work by presenting more precise definitions
of the distribution protocols that include failure handling, in particular
the mobile state protocol.

• We have rebuilt the distribution support of the platform Mozart on top
of the DSS library, and implemented the new distributed programming
model of the language. The reflection of failures in the language, and the
implementation of the new language features (annotations, fault stream,
making entities fail) are entirely our work.

• We have also completed the implementation of the DSS. In particular
we have rewritten all entity protocols such that they can handle partial
failures. We have also extended the DSS interface to handle and reflect
entity failures.

• We evaluate the new implementation in a realistic setting.

Publications. The following publications contain substantial contributions
by the author on the topics of this thesis. The first two papers focus on the
extension of a mobile state protocol to make it handle failures. That protocol
is part of the platform Mozart. The implementation of that protocol is now
part of the DSS. Its semantics as a migratory protocol are given in Chapter 7,
and its implementation is described in Chapter 8.

• Peter Van Roy, Per Brand, Seif Haridi, and Raphaël Collet. A lightweight
reliable object migration protocol. Lecture Notes in Computer Science,
1686:32–46, 1999 [VBHC99].

• Per Brand, Peter Van Roy, Raphaël Collet, and Erik Klintskog. Path
redundancy in a mobile-state protocol as a primitive for language-based
fault tolerance. Research Report RR2000-01, Université catholique de
Louvain, Département INGI, 2000 [BVCK00].

The next two papers propose a formal definition of lazy computations in terms
of concurrent constraints. That definition led to an efficient distributed imple-
mentation of that concept. Laziness is mentioned in Chapter 3, and a concrete
example of its usage is shown in Chapter 5. Its semantics are defined in Chap-
ters 6 and 7, and its implementation is described in Chapter 8.

• Alfred Spiessens, Raphaël Collet, and Peter Van Roy. Declarative lazi-
ness in a concurrent constraint language. 2nd International Workshop on
Multiparadigm Constraint Programming Languages MultiCPL’03, 2003
[SCV03].
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• Raphaël Collet. Laziness and declarative concurrency. 2nd Workshop on
Object-Oriented Language Engineering for the Post-Java Era: Back to
Dynamicity PostJava’04, 2004 [Col04].

The fifth paper shows how to design a transactional system for a distributed
store of objects, on top of an overlay network. That work put some emphasis
on what kind of primitives were desired in the language to handle failures.

• Valentin Mesaros, Raphaël Collet, Kevin Glynn, and Peter Van Roy. A
transactional system for structured overlay networks. Research Report
RR2005-01, Université catholique de Louvain, Département INGI, 2005
[MCGV05].

The latter paper is the author’s proposal to favor asynchronous failure han-
dling in a distributed programming language. The paper contains the essential
contributions of Chapter 4.

• Raphaël Collet and Peter Van Roy. Failure handling in a network-trans-
parent distributed programming language. In C. Dony et al., editor,
Advanced Topics in Exception Handling Techniques, volume 4119 of Lec-
ture Notes in Computer Science, pages 121–140. Springer-Verlag, 2006
[CV06].

1.5 Structure of the document

Chapter 2 gives an introduction to the programming language Oz. That lan-
guage is the vehicle we have chosen to explain all our proposals. This chapter
may safely be skipped if the reader already knows the language. Note that
most code snippets in Oz appear in special figures called “snippets”.

Chapters 3 and 4 detail our proposals for dealing with an application’s
distributed behavior, and failure handling, respectively. The programming
model is exposed and explained, together with some practical intuition for
all concepts. Concrete examples using those language features are given in
Chapter 5.

Chapters 6 and 7 propose a formal definition of the language, in centralized
and distributed settings, respectively. Operational semantics are given for the
core of the language, and the centralized semantics are refined into distributed
semantics that reflect the aspects related to distribution.

Chapter 8 describes the implementation of Mozart/DSS, the reimplementa-
tion of Mozart on top of the DSS library. It gives a definition of the protocols
that are used to implement basic operations on distributed entities, sketches
the DSS application programming interface, and explains how the distribution
support is implemented on top of it.

Chapter 9 evaluates the work done so far. Comparisons with other systems
are made. Chapter 10 concludes the work. Scientific results are summarized,
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and future directions are given. Appendix A gives a summary of the model,
and the language extensions proposed in this work.



2
An introduction to Oz

In this text, we use the programming language Oz as a vehicle to express a
certain number of concepts related to distributed programming. The concepts
themselves are language independent, but few programming languages are able
to express them in a natural way. Oz makes it possible, thanks to its support for
multiple programming paradigms, among which we find declarative program-
ming, dataflow concurrency, and object-oriented programming [Smo95, VH04].
This chapter gives a quick introduction to the language, and the basic model
of its distribution. A formal definition of the language is given in Chapter 6.

2.1 The kernel language approach

The language Oz is based on a small set of concepts, that form a kernel lan-
guage, called Kernel Oz. In the kernel language, all concepts are primitive:
they cannot be defined in terms of each other. The full language is defined
as the kernel language extended with language abstractions, i.e., programming
abstractions with syntactic support. All those abstractions are defined in terms
of Kernel Oz, so that every program can be reduced to an equivalent program
in the kernel language.

The advantage of the kernel language approach is that the language is de-
fined by layers. The bottom layer is the kernel, with all primitive concepts.
The upper layers then define abstractions built on concepts defined in layers
below. In practice, two layers are enough to define a very expressive language.
Figure 2.1 on the following page shows a certain number of concepts that are
present in the language. All concepts in bold font are part of the kernel lan-
guage, while the others are derived concepts. The arrows indicate from what
a given concept derives.

11
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S h a r e d s t a t e
D e c l a r a t i v e M e s s a g e p a s s i n gC o nc urrent

S equenti al r e a d " o n l yv i e w s
b y " n e e ds y n c h r o n i z a t i o nt h r e a d ss e q u e n t i a le x e c u t i o nv a r i a b l e s ,r e c o r d s p r o c e d u r e s c e l l s e x c e p t i o n s

s t r e a m s
f u n c t i o n s ,e x p r e s s i o n s

l a z yf u n c t i o n s p o r t s p o r to b j e c t s c o n c u r r e n to b j e c t sr e e n t r a n tl o c k ss e q u e n t i a lo b j e c t sd a t a fl o ws y n c h r o n i z a t i o n
Figure 2.1: Primitive and derived concepts in the language Oz

The paradigm space. When writing a program or module, the programmer
will often use only a subset of the concepts provided by the programming
language. Every subset of concepts defines a programming model, or paradigm.
Each paradigm comes with its own set of techniques and design rules. As you
can see, the derived concepts shown in figure 2.1 are not placed randomly.
There are two major axes in the diagram.

The base of all derived concepts is a sequential declarative language, which
can be made a functional language with the appropriate language support.
It contains no state and no concurrency. The language is mainly enriched by
adding state (right direction in the diagram) and concurrency (upper direction).
Moreover, the derived concepts are grouped together to form three major pa-
radigms, namely declarative, message passing, and shared state programming.

Section 2.2 introduces the kernel concepts of the core language, together
with concurrency. This part of Oz is completely declarative. The non-declara-
tive kernel concepts are introduced in section 2.3. In section 2.4 we present
syntactic extensions, and language abstractions used in the text. There we
show two important techniques for controlling concurrency in the presence of
state: message passing with ports, and locks. Note that we have chosen to
introduce concurrency before state in the presentation. This is because it is
possible to make distributed programs that are declarative; all they need is
concurrency. The base distribution model is given in Section 2.5.

2.2 Declarative kernel language

An Oz program consists in a set of threads computing over a shared store.
Threads execute statements in a sequential way. The program will be sequential
if it contains a single thread. The store is the memory of the program; it
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contains logic variables and data structures used by the threads. Threads are
connected to the store by variables.

2.2.1 The store

The program store has two parts: the so-called constraint store and the proce-
dure store. The constraint store contains logic statements about the program’s
variables. For now consider that those logic statements have the form x=t,
where x is a variable, and t is either a variable or a value. The procedure store
contains the procedures created by the program.

Values. The different kind of values are integers, atoms, names, and records.
Names are primitive entities that have no structure; they are used to give an
identity to other data structures, like procedures. The boolean values true

and false are defined as names.

Atoms are literal constants that are defined by a sequence of characters.
Syntactically they are words starting with lowercase letter, like atom or nil , or
they are surrounded by quotes, like ´ Hello world ´ or ´ | ´ . A literal is either
a name or an atom, and a simple value is either a literal or an integer.

A record is a compound value l(k1:v1 . . . kn:vn) formed by a label l (a literal)
and fields v1, . . . , vn. Each field vi is associated to a key ki, which is a simple
value. An example is person(name:raph age:32) . A tuple is a record whose
keys are the integers 1 to n. Syntactically the keys can be omitted, as in
person(raph 32) , which is equivalent to person(1:raph 2:32) . Lists are
defined in terms of tuples and atoms as follows. A list is either the empty list
(the atom nil ), or a head-tail pair ´ | ´ (xy). The latter can be written infix as
x| y.

Variables. The store contains logic variables that can be bound to values and
other variables. Upon creation, a variable x is always unbound. It is bound to
a value v if the store contains the statement x=v. It can be bound to at most
one value, and the binding cannot change over time. A variable bound to a
value is said to be determined.

Variables x and y can also be bound together, if the store contains x=y.
The binding relation is transitive: if x is bound to a value v, then y is also
bound to the same value v. Note that undetermined variables can be bound
together.

2.2.2 Declarative statements

The declarative kernel statements are given in Figure 2.2 on the following page.
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S ::= skip empty statement
| S1S2 sequential composition
| local X in S end declaration
| X=Y | X=v unification
| if X then S1 else S2 end conditional statement

| proc { P X1 . . . Xn} S end procedure creation
| { P X1 . . . Xn} procedure application

| thread S end thread creation
| {WaitNeeded X} by-need synchronization

v ::= s simple value
| l(k1:X1 . . . kn:Xn) record

s ::= l | i literal or integer

l ::= atom | true | false atom or name

P, X, Y ::= identifier variable identifier

Figure 2.2: Declarative kernel concepts of Oz

Empty statement and sequential composition. The execution of the
statement skip simply has no effect. The sequence of statements S1S2 first
executes S1, then executes S2.

Declaration. The statement local X in S end creates a fresh variable x
in the store, and reduces to the statement S, where X is associated to x. It
defines a lexical scope between the keywords in and end for the identifier X .

In order to be executable, a statement must have all its free identifiers
correspond to store variables. For the sake of simplicity, in the rest of the text,
we will refer to the variable corresponding to identifier X as “the variable X .”

Unification. Variables are bound in the store by unification. The state-
ments X=Y and X=v add the necessary variable bindings to make their argu-
ments equivalent. For instance, the following statements binds R to the record
foo(a:X b:Y) , then by unification of records makes both X and Y equal to Z,
and finally binds them all to 42.

R=foo(a:X b:Y) R=foo(a:Z b:Z) Z=42

A unification triggers an error if its arguments cannot be made equal. The
error shows up as an exception (see below).

Conditional statement. The statement if X then S1 else S2 end blocks
until the variable X is determined. It reduces to S1 if X equals true , and S2
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if X equals false . Other values trigger an error (in the form of an exception,
see below).

Procedure creation. The statement proc { P X1 . . .Xn} S end creates
a fresh name ξ, adds the procedure λX1 . . . Xn.S under the name ξ in the
procedure store, and reduces to the statement P=ξ. Since the name ξ is fresh,
the procedure store defines a mapping of names to procedures. Note also that
the name makes the procedure a first-class entity: it can be passed as arguments
and stored in data structures.

The procedure may refer to anything in the lexical scope of its definition.
Those external references are determined by the variables corresponding to the
free identifiers in S that do not occur in the procedure’s parameters X1, . . . , Xn.
The proc statement defines a lexical scope for the identifiers X1, . . . , Xn. Note
that the declaration of the identifier P is done outside the procedure definition.
This implies that the order of creation of procedures that use each other is
irrelevant, provided they are all created before their use.

Procedure application. The statement { P Y1 . . . Yn} blocks until the vari-
able P is determined. If P is the name of an n-ary procedure λX1 . . . Xn.S in
the procedure store, it reduces to the statement S where each Xi corresponds
to the variable Yi. If P is not a procedure, or a procedure with a different arity,
the statement triggers an error.

Thread creation. The statement thread S end creates a new thread that
consists of the statement S. The new thread is independent from the current
thread. The threads in a program execute concurrently. The following primitive
store operations are guaranteed to be atomic: creating a fresh name or variable,
binding a variable, and storing a procedure. This makes the concurrency in Oz
fine-grained.

A thread is runnable if its first statement is executable. When the first
statement of the thread blocks on a variable, we say that the thread is blocked
or suspended. It remains blocked until the variable is determined by the store.
It then becomes runnable again.

By-need synchronization. We say that a variable X is needed when either
it is determined, or a thread waits for its determination. This property is
monotonic: when a variable is needed, it remains needed. The statement
{WaitNeeded X} blocks until the variable X becomes needed. This primitive
is used to attach a lazy computation to the variable X : a thread blocks until
X becomes needed, then computes the value of X .

thread
{WaitNeeded X} % block until X is needed
... % compute a value and assign it to X

end
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2.2.3 A few convenient operations

Here are a few extra statements, that complete the declarative kernel language
with common primitive operations.

Tests. The statement X=(Y ==Z) blocks until there is enough information
in the constraint store to logically entail Y =Z or Y 6=Z. The statement then
reduces to X=true or X=false , respectively. The operator \= is similar, but
returns the opposite results. The statement

X=Y op Z with op ∈ {<, =<, >, >=}

blocks until both Y and Z are determined to atoms or integers. It then reduces
to X=true or X=false , depending on the result of the comparison. Atoms
are ordered lexically, and atoms and integers are not comparable.

Arithmetic operations. The statements

X=˜ Y X=Y op Z with op ∈ {+, - , * , div , mod}

block until their arguments (Y and Z) are determined to integers, and reduce
to X=i, where i is the result of the corresponding operation.

Record operations. The statements

{Label X Y } {Width X Y } {Arity X Y }

block until X is determined to be a record l(k1:v1 . . . kn:vn). They then reduce
to Y =l, Y =n, and Y =k1| . . . | kn|nil , respectively.

The statement X=Y . Z blocks until Z is determined to a simple value and
Y to a record l(k1:v1 . . . kn:vn). If Z is equal to ki for a certain i, the statement
reduces to X=vi. Otherwise an exception is raised.

2.3 Nondeclarative extensions

Figure 2.3 on the next page shows nondeclarative extensions to the language.
They include exceptions, state, and read-only views.

2.3.1 Exceptions

Try statement. The statement try S1 catch X then S2 end starts by
executing S1. If S1 terminates normally, the statement reduces to skip . If an
exception x “escapes” from S1, i.e., x is raised inside S1 but not caught, the
try statement reduces to S2 (the exception handler), with X corresponding to
variable x. Note that the try statement can only catch exceptions raised in its
own thread.
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S ::= try S1 catch X then S2 end try statement
| raise X end raise statement
| {FailedValue X Y } failed value creation

| X=!! Y read-only view creation

| {NewCell X Y } cell creation
| X=Y := Z cell exchange

Figure 2.3: Nondeclarative kernel concepts of Oz

Raise statement. The statement raise X end throws an exception with
the variable X . The exception will be caught by closest exception handler in
the thread, if it exists.

Failed values. A failed value is a special value that encapsulates an excep-
tion. The statement {FailedValue X Y } creates a failed value v encapsulating
the variable X , and reduces to Y =v. Any statement that attempts to use the
value v automatically raises an exception with X .

Failed values are used to pass exceptions between threads. This is particu-
larly useful when an exception occurs in a thread that is responsible to compute
the value of a variable Z. If the thread binds Z to a failed value encapsulating
the exception, all the other threads that use Z will know why the value of Z
could not be determined.

thread
try

local V in
... % compute a value V
Z=V % return the value in Z

end
catch E then

{FailedValue E Z} % return a failed value in Z
end

end

2.3.2 Read-only views

“Bang bang” operator. The statement X=!! Y creates a read-only view u
of variable Y , and reduces to X=u. A read-only view of a variable is logically
equal to that variable, but it cannot be bound by the program; every statement
that attempts to bind it blocks. When the variable is determined to a value,
the read-only view is also bound to that value.

Read-only views are used to protect abstractions from accidental bindings
that may break them. They are often used to build robust streams. A stream
is a list that is built incrementally. During its construction, a read-only view
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of its tail variable is put in the list tuple. This prevents the consumer of the
stream to bind the tail, and provoke a failure in the producer of the stream.

2.3.3 State

The primitive concept of state in Oz is the cell. A cell is a mutable container
for a variable. Cells are contained in a new part of the store called the cell
store. A cell is a first-class value, identified by a name, and its contents is given
by a (possibly determined) variable. Similarly to the procedure store, the cell
store defines a mapping of names to variables.

A cell can be used by a single thread or shared among several threads.
Concurrent accesses to a cell are relatively easy to synchronize, because read
and write operations are combined in a single, atomic exchange operation.
Concurrency control abstractions can be built with cells, like ports and locks
(see Section 2.4).

Cell creation. The statement {NewCell X Y } creates a fresh name ξ, adds
the pair ξ:X in the cell store, and reduces to the statement Y =ξ.

State exchange. The statement X=Y := Z blocks until Y is determined. If
Y is a cell ξ:w, the cell store is updated with ξ:Z, and the statement reduces
to X=w.

For instance, if C is a cell that contains an integer, the following procedure
adds N to the contents of the cell. Assume two threads update concurrently C

with AddCounter . If the initial state is x, the first thread takes x and put a
variable y in the cell, then the second thread takes y and put a variable z. The
second thread computes the new state z with y, and automatically waits for
the first thread to determine y. No race condition occurs if all state updates
are done this way.

proc {AddCounter N}
local X Y in

X=C:=Y % get contents X, and put new contents Y
Y=X+N % determine the value of Y

end
end

2.4 Syntactic convenience

This section introduces syntactical convenience that corresponds to the full
language, at least the part of the language that is relevant for this text. All
the rules in this section suggest how to rewrite statements in the full language
to statements in the kernel language.

Comments. All the characters that follow the percent sign (%) until the end
of the line are comments.
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2.4.1 Declarative programming

Declarations. Multiple variables can be declared simultaneously. For in-
stance,

local X Y in S end ⇒ local X in local Y in S end end

If a declaration statement comprises the body of a procedure definition or the
branch of a conditional, local and end can be omitted. For example:

proc {P} Y in S end ⇒ proc {P} local Y in S end end

Declaration can be combined with initialization through unification:

local X=5 in S end ⇒ local X in X=5 S end

Expressions. We first define the statement Z={ P X1 . . . Xn} as shorthand
for { P X1 . . . Xn Z} . Similarly, nesting of record construction and procedure
application avoids declaration of auxiliary variables. For example:

X=b({F N+1}) ⇒ local Y Z in

Y=N+1 X=b(Z) {F Y Z}

end

Record construction is given precedence over procedure application to allow
more procedure definitions to be tail recursive. The construction is extended
analogously to other statements, allowing statements as expressions. For ex-
ample:

X=local Y=2 in

{P Y}

end

⇒ local Y=2 in X={P Y} end

Procedure definitions as expressions are tagged with a dollar sign ($) to distin-
guish them from definitions in statement position:

X=proc {$ Y} Y=1 end ⇒ proc {X Y} Y=1 end

Another common expression is the anonymous variable:

_ ⇒ local X in X end

Functions. Motivated by the functional notation of procedure calls, we define
a function of n arguments as being equivalent to a procedure of n+1 arguments,
the extra argument being bound to the result of the function body, which is an
expression:

fun {Inc X} X+1 end ⇒ proc {Inc X Y} Y=X+1 end
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Lazy functions. Function definitions with the decoration lazy create a
thread that uses WaitNeeded to wait for the result to be needed. Chapter
6 proposes a translation that avoids creating threads in the presence of tail
recursive calls.

fun lazy {Inc X}

X+1

end

⇒ proc {Inc X Y}

thread

{WaitNeeded Y} Y=X+1

end

end

Lists. Complete lists can be written by enclosing the elements in square
brackets. For example, [1 2] abbreviates 1|2|nil , which abbreviates ´ | ´ (1

´ | ´ (2 nil)) .

Infix tuples. The label ´ #´ for tuples ´ #´ (X Y Z) can be written infix:
X#Y#Z.

Pattern matching. Programming with records and lists is greatly simplified
by pattern matching. For instance, a pattern matching conditional

case X of person(name:N age:A) then S1 else S2 end

is an abbreviation for

if {Label X}#{Arity X} == person#[age name] then

N A in X=person(name:N age:A) S1

else S2 end

The else part is optional and defaults to else skip . Multiple clauses are
handled sequentially, for example:

case X

of f(Y) then S1

[] g(Z) then S2

end

⇒ case X of f(Y) then S1 else

case X of g(Z) then S2 end

end

The try statements are also subject to pattern matching. For example:

try S1

catch f(X) then S2

end

⇒ try S1 catch Y then

case Y of f(X) then S2

else raise Y end

end

end
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Loops. Recursive functions are expressive enough to implement all kinds of
loops in the language. Oz supports a simple yet powerful for loop on lists:

for X in L do S end ⇒ {ForAll L proc {$ X} S end }

where ForAll is defined as

proc {ForAll L P}
case L of X|T then {P X} {ForAll T P} else skip end

end

Waiting for determinacy. A common abstraction is the procedure Wait ,
that blocks until its argument is determined. It is often used to explicitly
synchronize threads. It can be defined as follows, using the blocking behavior
of ==.

proc {Wait X} _=(X==1) end

2.4.2 Message passing

Ports. A port is associated to a stream (defined in Section 2.3.2 above), which
lists all the messages sent on the port. Ports are defined by two operations:
NewPort , which creates a port and its stream, and Send, which sends a message
on a given port. They can be defined in terms of cells as

fun {NewPort S}
T in S=!!T {NewCell T}

end
proc {Send P X}

T in X|!!T=P:=T
end

Note, however, that ports are not truly defined like that. When it comes to dis-
tribution, they do not behave like cells, but have a behavior of their own. This
is because ports are intrinsically asynchronous, which cells are synchronous.

Ports are very convenient to handle nondeterminism, since they are asyn-
chronous (they never block), and all the messages sent to a port are serialized
into a list (the stream).

Port objects. A port object consists in a port and a thread that reads se-
quentially its message stream. Because the message processor is sequentially
reading a list, it can be written as a simple recursive function. The latter can
use an accumulator to maintain a state.

Snippet 2.1 on the following page shows a simple abstraction that builds
port objects. The argument function Func takes the object’s current state and
a message, and returns the new state of the object. The function FoldL is used
to apply Func on every message. An example is shown below, with a object
Counter . This object recognizes three kind of messages: inc , inc(N) , and
get(N) . See how the latter binds N to the current value of the counter.
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fun {NewPortObject Init Func}
S in
thread {FoldL S Func Init} end
{NewPort S}

end
fun {FoldL L F I}

case L of X|T then {FoldL T F {F I X}} else nil end
end

local
fun {F Count Msg}

case Msg
of inc then Count+1
[] inc(N) then Count+N
[] get(N) then N=Count Count
end

end
in

Counter={NewPortObject 0 F}
end
{Send Counter inc(3)} % increment counter by 3

Snippet 2.1: An abstraction to create port objects, and an ex-
ample of a counter object

Active objects. Active objects are similar to port objects, except that they
use a stateful object instead of a function to process the messages. This tech-
nique is pretty easy to work with, because the underlying object is used se-
quentially.

2.4.3 Stateful entities

State operations. The full language supports two simplified versions of the
state exchange operation, to simply read and write the state.

X=@C ⇒ X=C:=X

C:=X ⇒ _=C:=X

Objects and classes. In Oz an object is defined as a unary procedure, that
takes a method as its argument. The method is represented as a record, and
is therefore first-class. An object usually maintains a proper state. A class is
a value that creates objects. A precise kernel equivalent of classes, and their
inheritance mechanism, is given in [VH04].

Snippet 2.2 on the next page illustrates the class syntax with an exam-
ple with two classes and one object. A base class Stack defines an attribute
elements , which is identified by an atom. It also defines four methods: init ,
isEmpty , push , and pop . The state operators are extended to attributes. The
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class Stack
attr elements % list of elements, from top to bottom
meth init

elements:=nil % initializer
end
meth isEmpty(B)

B=(@elements==nil)
end
meth push(X)

T in T=elements:=X|T % put X in front of elements
end
meth pop(X)

T in X|T=elements:=T % extract front element
end

end

class Stack2 from Stack % Stack2 extends Stack
meth top(X)

{ self pop(X)} { self push(X)}
end

end

S={New Stack2 init} % create an object of class Stack2
{S push(42)} % call method push(42) of Obj

Snippet 2.2: Two classes and an object

class Stack2 extends the class Stack . It defines a method top , which is im-
plemented with the methods push and pop of the object, which is accessible
by the keyword self . Then the function New is used to instanciate the class,
and initialize the object.

There is no concurrency control by default in objects. Concurrent method
invocations will be executed concurrently, and state updates are subject to
the same kind of atomicity as cells. Objects often use locks to create critical
sections inside methods.

Locks. A lock is a binary semaphore, which controls the access to the lock
itself. At most one thread can be in a given lock. The only operation takes
the lock, executes a statement, and releases the lock. If another thread al-
ready owns the lock, the operation blocks until the lock is available. The lock

statement is translated as follows.

lock L then S end ⇒ {L proc {$} S end }

The lock L is created by the following function, which implements a basic lock
with a cell and a procedure.
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fun {NewLock}
C={NewCell unit }

in
proc {$ P}

X Y in X=C:=Y {Wait X} {P} Y=X
end

end

When the lock is applied, it places a new variable into its cell, and waits
until the former variable in the cell is determined. Once it is determined, the
lock is available. The lock then executes the statement, which is abstracted by
a nullary procedure. It then release the lock by binding the new variable to
the value. Several threads applying the same lock will form a chain, and pass
the value unit between each other via a shared variable. The cell’s function is
to connect a thread to its successor in the waiting queue.

The language Oz actually provides reentrant locks. Those locks permit a
thread to take the same lock several times. This is useful when two procedures
or methods call each other, and protect a shared state with the same lock. For
a definition of reentrant locks in Kernel Oz, see [VH04]. Note that distinct
locks are not connected to each other in any way; deadlocks are possible, and
the language provides no deadlock detection mechanism.

2.5 Distribution

In Oz, a distributed program is usually defined as a centralized program where
entities and threads would be partitioned among sites. One can also define a
distributed program as a set of centralized programs running on their own sites,
and sharing language entities. Both definitions are in fact valid and equivalent,
because the language is network-transparent.

Most of the distribution is hidden to the programmer, as shared entities keep
their semantics almost intact. What happens is that the programming system
uses dedicated protocols to implement the entities’ semantics. In Mozart the
distribution of entities is designed to give the programmer full control over
network communication patterns that occur because of language operations.
Not all entities use the same protocol, every entity use a protocol that is adapted
to its nature: mutable, immutable, or transient. This subject is discussed in
detail in Chapter 3.

2.5.1 Application deployment

The deployment of an application covers two situations that are handled dif-
ferently. The first one is how the distribution between sites that already share
entities evolve. The second one is how to create new sites, or connect indepen-
dent sites.
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Sites that know each other. Sites that already share entities evolve by
following which entities they share. They can share new entities by transitivity:
a site obtains a reference to an entity via another entity that it already refer.
For instance, if site a sends a value x on a port, and site b reads the message
stream of that port, site b automatically has access to x.

Note that sites also connect to each other by transitivity: if sites a and b
are connected together, and b and c as well, then a and c will automatically
connect to each other, if the entities they share requires so. This depends on
which protocols are used by the shared entities.

Sites can also reduce their set of shared references. This is handled by dis-
tributed memory managment. The system detects when a site no longer refers
to a given entity, and can globally remove an entity from the distributed pro-
gram. This always works, except for distributed reference cycles, i.e., reference
cycles that involve several sites.

Connecting sites. The definitions we just gave of a distributed program
suggests two ways of deploying an application over new sites: either by splitting
a site into several sites, or by connecting distinct sites. Mozart uses the second
approach, because it is easier to implement and to control in the program. This
is provided by the module Connection .

The function call {Connection.offer X} returns a ticket, i.e., an atom
that represents a reference to X. Conversely, the call {Connection.take T}

returns the entity corresponding to the ticket T. Those functions allow a site
to offer an entity reference to other sites via textual communication means.
Indeed, as an atom is nothing more than a string of characters, it can be
transmitted by e-mail, via a web site, or even told to the phone.

This mechanism is often used as a bootstrapping mechanism for distributing
an application. The first entities that sites share are used to transmit other
entities, by transitivity.

Managing resources. Not everything can be distributed. Assume a site b
executes a procedure sent by site a, and that procedure has to save temporary
data in a file. The site b may grant access to its file system, by it needs a way
to provide this access to the running procedure. In order to solve this issue,
Mozart has a module system based on functors. A functor is the specification
of a module, with a list of modules to import, exported references, and code.
If b receives a functor, it can instanciate it with a module manager that will
provide (or possibly deny) the necessary local resources to the new module.
Consult Mozart’s documentation [Moz99] for more detail about functors.
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3
Application structure

and distribution behavior

With network transparency it is possible to take a program and distribute
it, and it will run correctly. But it might be slow, for instance because its
distribution involves much communication between sites. Here the programmer
can take advantage of the network-aware aspects of the language to control the
communication involved by the program’s distribution. These aspects do not
break transparency in the sense that the program is always a correct centralized
program. So transparency gives two advantages. First, a centralized program is
a correct distributed program. Second, tuning a centralized program for best
distributed performance can be done by modifying the centralized program,
e.g., with annotations that have no effect on centralized meaning. The program
always retains a correct centralized semantics.

When tuning distribution, the fundamental distribution behavior is deter-
mined by the structure of the program. The latter defines the paradigms
that are used: functional, dataflow, message passing, sequential or concurrent
object-oriented, etc. The type of shared entities will determine communication
patterns between sites. At a finer level, a given entity may be distributed in
several ways, for instance stationary or replicated state, each having a specific
distributed behavior. Choosing the most appropriate program structure is the
way to make network transparency work.

3.1 Layered structure

We assume that a distributed application is structured in terms of components.
We define a component as a program fragment with well-defined inputs and
outputs. A component is itself defined in terms of simpler components. Exam-

27
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ples of components are: a procedure, an object, several objects linked together.
In this context, components can themselves be distributed. A distributed com-
ponent can be decomposed into several components running on different sites,
and communicating through shared language entities.

A component can be defined with a mixture of paradigms. Some of its
subcomponent can be purely functional, while others use message passing and
dataflow variables, for instance. The choice of paradigm is an advantage for
reasoning about the program, since simpler components will require simpler
reasoning techniques. For example, a declarative component handling lists will
not be subject to race conditions, provided no other component concurrently
binds its outputs.

The layered structure of the language encourages the programmer to pick
the simplest programming paradigm to solve his or her problem. Concurrency
with shared state is by far the most complex paradigm to program with. Most
components do not need this expressive power. By limiting oneself to a part of
the language, the programmer can take advantage of methodological support
from the paradigm or the abstractions chosen. The network transparency en-
sures that this support is independent to whether the component is distributed.

The general advice is to keep the most general paradigm only for the com-
ponents that need it, and to limit the extent of this paradigm inside the com-
ponent itself. The usage of shared state concurrency is easier to manage when
it is well confined in the program.

3.1.1 Using the declarative model

The simplest declarative components only provide stateless values, like pure
functions without stateful dependencies. Dynamicity in declarative components
are provided by shared logic variables. An example is a pipeline of components,
where inputs and outputs are dataflow streams. Another example is several
sites synchronizing on a given event. The sites only need to share one logic
variable, and block until it is determined. The site notifying the event binds
the variable to a conventional value, which automatically wakes up threads
blocking on that variable.

Declarative components communicate by sharing values through logic vari-
ables. Communication is therefore purely dataflow and monotonic. From a
distribution point of view, the programmer should pay attention to how data
is shared among sites. Sharing stateless data is cheap in general, since it can be
copied. But sharing too much data may imply much communication between
sites.

Using the full power of the declarative model, one can also share lazy com-
putations between components. What is shared is actually a logic variable.
The by-need synchronization mechanism works through distribution.

Nondeterminism. Distributed declarative components are subject to non-
determinism in the sense that concurrent threads may bind variables in any
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order. However, this nondeterminism is not observable from within the declar-
ative model. If a declarative component terminates without failing, its outputs
(defined by variable bindings) can be expressed as a mathematical function of
its inputs. Their value do not depend on the execution order of the various
threads in the component.

Note that if a failure occurs, for instance because of incompatible concurrent
bindings, a part of the component will be failed state. From a strictly declara-
tive point of view, the whole program has failed. But in the wider model, the
failure does not automatically propagate to the whole program. If the rest of
the program continues to run, then we have observable nondeterminism. But
we are no longer in the declarative model.

3.1.2 Using message passing

When observable nondeterminism is required in a component, message passing
is a good way to go. Ports provide a easy and efficient way to handle the
nondeterminism in the component. The Send operation is asynchronous, and
therefore it only requires a message to be sent by the system. The port’s stream
itself is monotonic, and behaves like a declarative component if it is distributed.

An effective use of this model is to let only one thread read the stream
of messages, and treat them sequentially. This is the idea underlying active
objects. An active object is a component that runs on only one site, and
communicate with other active objects by sending messages.

Replying with variables. The model naturally offers two ways to reply to
a given message. The simplest solution is to use the declarative model, and put
a logic variable in the message. This logic variable will be bound to the reply.
Snippet 3.1 on the following page shows two abstractions that implement this
technique. The function MakeServer takes a function, and returns a port with
a server. The server thread applies the function to each message, and binds
the reply variable to the result of the call. The procedure SendRecv sends
a message X to a port P, together with a reply variable Y. The code below
creates a stateless server which adds 42 to each message it receives. Then the
server is called with 54, with Result as the reply variable. As you can see, the
functional notation allows to call SendRecv as a function.

Server={MakeServer fun {$ X} X+42 end }
Result={SendRecv Server 54}

Replying with continuations. A slightly more general technique is to put
a continuation in the message, i.e., a procedure that is called by the receiver
to reply the message. Note that the procedure is copied to the receiving site,
so that it can be applied there. The continuation allows to program more
sophisticated patterns of communication, like the promise pipelining provided
in the language E [Mil06].
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fun {MakeServer F}
S in
thread

for X#Y in S do Y={F X} end
end
{NewPort S}

end

proc {SendRecv P X Y}
{Send P X#Y}

end

Snippet 3.1: Abstractions to create and call a server with a
reply variable

Snippet 3.2 on the next page defines a few abstractions that can be used to
program in a “promise pipelining” style. The function MakeServerC creates
a port with a server. The server thread applies a function F to each received
message, and calls the continuation with the result. Let us create three servers
P, Q, and R with that function. The server P replies either Q or R, depending
on the message it receives. Servers Q and R expect an integer as message,
and return the message after an arithmetic operation. Note that those servers
should be created on different sites.

fun {F X} ( if X==foo then Q else R end ) end
P={MakeServerC F}
Q={MakeServerC fun {$ X} X+42 end }
R={MakeServerC fun {$ X} X div 2 end }

Now let us call P, thanks to the procedure SendToPort , with a continuation
C1 that is not determined yet. We will determine its value right after.

C1={SendToPort P foo}
%% is equivalent to: {Send P foo#C1}

The server will determine a result for the message, in this case Q, and eventually
call {C1 Q} . During that time, the sender determines what C1 does: it should
send the message 54 to its argument. The fact that the continuation C1 is
called by server P makes that the message to Q is sent directly from P. There
is no need to come back to the sender. The procedure SendToCont determines
its first argument to do exactly that:

C2={SendToCont C1 54}
%% is equivalent to: proc {C1 Res} {Send Res 54#C2} end

The variable C2 will thus be sent to Q as a continuation, so server Q will
eventually call {C2 96} . We now define this continuation with the procedure
GetResultC : C2 binds its result to the variable X.

X={GetResultC C2}
%% is equivalent to: proc {C2 Res} X=Res end
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fun {MakeServerC F}
S in
thread

for X#Cont in S do {Cont {F X}} end
end
{NewPort S}

end

proc {SendToPort P Msg Cont} % send Msg to port P
{Send P Msg#Cont}

end
proc {SendToCont C Msg Cont} % send Msg to promise C

proc {C Res} {SendToPort Res Msg Cont} end
end
proc {GetResultC C X} % get result from continuation C

proc {C Res} X=Res end
end

Snippet 3.2: Promise pipelining with continuations

These continuations have defined the following pipeline: the client sends mes-
sage foo with continuation C1 to server P; then P sends message 54 with con-
tinuation C2 to server Q; then Q sends its result 96 back to the client via the
variable X. Note that this machinery relies on the fact that procedures are
copied from site to site.

3.1.3 Using shared state concurrency

This is the most complex model from a programming point of view. And it
is also the most demanding for the distribution. Shared state implies that
read/write operations can be performed from multiple sites. Moreover, those
operations are synchronous, and create many dynamic dependencies between
sites. The difficulty stands in managing the state such that it is consistent:
all the updates of a stateful entity must be serializable, as in a centralized
multithreaded program.

Moreover, the shared state concurrency model is very sensitive to errors.
This is because the threads follow an interleaving semantics. Consider the
following example, where two threads perform each a read and a write operation
on the cell C.

C={NewCell 0}
thread C:=@C+1 end % thread A
thread C:=@C+2 end % thread B

The result of the execution does not depend on where the threads and the cell
are localized in the distributed system. When both threads terminate, the cell
may contain either 1, 2, or 3. Some executions lead to surprizing behaviors. For
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instance, the cell contents may decrease in this execution: thread A reads 0,
then thread B reads 0, then thread B writes 2, then thread A writes 1.

Managing the nondeterminism in the programming language can be a prob-
lem. Using locks can help to create critical sections into the code, but they
quickly lead to deadlock avoidance issues. In both the centralized and dis-
tributed cases, the programmer should use transactions to handle atomicity
issues in his or her program. Transactions can be implemented quite efficiently
in a centralized setting [ST95, VH04].

Implementing a distributed transaction system with good network behavior
is not an easy task. Two systems have been proposed so far by our research
team. The “GlobalStore” is fault-tolerant transactional replicated object store
designed and implemented by Iliès Alouini and Mostafa Al-Metwally [AM03].
It takes advantage of replication to reduce latency when computing the transac-
tion. Another transactional system was proposed to run on structured overlay
networks, and was designed by the author and Valentin Mesaros [MCGV05].
The latter uses transaction priorities to avoid deadlocks, and the two-phase
commit algorithm to ensure consistency between sites. Note that these sys-
tems only handle permanent failures.

3.2 Classification of language entities

The design of Oz is such that different entities may use different distribution
protocols, and thus have different network behaviors. In fact, the distributed
behavior of the whole program is determined by what type of entities are used,
and how they are shared among sites. This section explores the different kinds
of entities in Oz, and how they can be distributed.

Entities can be partitioned into three main categories: mutable, immutable,
and monotonic. Each category has specific requirements that influences their
possible distributed behavior. All the entities in a given category share the
same set of distribution protocols. So the category of an entity determines
what possible protocols it may use, and thus what possible network behavior
it may have. We present each category, with the protocols available for each,
and examples of Oz entities in those categories.

3.2.1 Mutable entities

This is the category of stateful entities in general. Those entities have an
internal state, and the distribution must maintain a globally consistent view of
the state. Here we sketch three possible distribution strategies for them.

• The simplest way to distribute a mutable entity is to make its state
stationary. All operations are sent to the site holding the state, performed
there, and a value can be returned.
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• In the “mobile state” strategy, the state moves on the sites where opera-
tions are attempted. When the state is on a given site, it can be accessed
locally. The state behaves like a cache, since several operations can be
performed locally before the state leave the site.

• One can also replicate the state through sites. An update of the entity
first invalidates all copies, then sends the new state. Reading the state
is a pure local operation, and it can be done immediately if the copy is
valid. This scheme is efficient when reading the state is more common
than updating it.

Read and write operations are synchronous in general. Oz cells, objects,
locks, dictionaries, threads belong to that category. Ports can be considered
a special subcategory: the operation Send is an asynchronous update. The
simplest strategy in this case is to leave the state stationary. To make an
update it is enough to send a message to the site holding the state.

3.2.2 Monotonic entities

Those are also stateful, but their state is updated in a monotonic way. From a
distribution point of view, they are more flexible that mutable entities. Their
state can be replicated without the need to synchronize all the sites to perform
an update. Single-assignment variables and streams are examples of monotonic
entities.

Monotonic entities support the concurrent constraint operations ask and
tell [Sar93]. The ask operation is just like a read. The tell operation updates
the state of the entity. To ensure the consistency of the tell, all updates are
serialized on one site. This site forwards the operation to all the other sites.

Single-assignment variables are transients, which is a subcategory of mono-
tonic entities. Transients have a final state where they become another entity.
The entity exists until is is bound. In Oz, logic variables have three states:
free and not needed, free and needed, and determined. Note that streams are
built from transient entities (read-only views), and therefore inherit from the
distributed behavior of transients.

3.2.3 Immutable entities

Those are constants. One can only read them. They are usually copied eagerly
or lazily between sites. When the entity has an identity, the protocol can
guarantee that the copy is done once. This is useful when the value is large. In
some cases the value cannot be copied, for instance because of implementation
or security limitations. Read operations are then performed like in the mutable
case.

Immutable entities range from simple values (atoms, numbers), to com-
pound values (records), and even closures (procedures, classes). A compound
value is copied with its fields, which may also be compound values or closures.
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The copy of a compound value should have the same structure as its origin,
including possible cyclic references and coreferences. Cycles and coreferences
are detected when the value is serialized, so that they are not an issue for the
programmer.

Closures are extremely powerful, because they contain both code and exter-
nal references. The latter are handled just like records. And the code is copied
between sites. The promise pipelining example in Snippet 3.2 on page 31 makes
use of them, for instance. Note that cycles may also happen with closures, since
closures can contain record references, which can contain references to closures.
An again, the cycles are gracefully handled by the system, such that each entity
in the reference graph of a given entity is copied at most once.

3.3 Annotations

The application is structured into components, and those components are them-
selves decomposed, layer by layer, up to primitive components, i.e., language
entities. In its first implementation of distribution, Mozart was providing its
distributed entities with fixed behavior for each. It was considered that those
choices were expressive enough for the programmer to code the distributed
behavior of his or her choice. Objects were distributed with mobile state. Sta-
tionary objects had to be reimplemented in Oz on top of ports, for instance.

We now let the programmer choose the distributed strategy for each lan-
guage entity in his or her program. This choice is stated by annotating the
entity. An application can be structured from top to bottom, with the anno-
tation system providing the shaping of the distributed behavior at the lowest
level of the structure. Annotations are part of the network awareness of the
language, since they give some explicit control on an entity’s distributed be-
havior.

Annotations may cover many facets of the distribution system. The first
and most evident one is how the state of an entity is distributed, and the impact
on primitive operations on that entity. Another facet is the distributed memory
management of that entity. The system could also provide some robustness for
its entities, and annotations may help to parameterize how robust an entity
must be.

How to annotate. Conceptually an annotation is a bit like a declarative
statement. It states something about an entity. It can even be thought as a
constraint that the user posts about the distributed behavior of an entity. It is
not fully declarative, since logic variables have a specific status. Annotating a
variable is not equivalent to annotating its value.

In our proposal, which is explained in detail in the next section, annotating
an entity is done by the statement

{Annotate entity parameter }
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The nice property about annotations is that they can be ignored in case of
no failure. They do not change the semantics of the program in that case.
Moreover, if the program is not distributed at all, they will not be taken into
account by the system.

3.3.1 Annotations and semantics

Annotations describe programmer choices for the distribution of an entity. Net-
work transparency implies that the distribution must be an implementation, or
a refinement, of the entity’s semantics. The centralized semantics of an entity
often admits several distributed semantics. Annotations give the possibility to
the programmer to specify which distributed semantics should be used for a
given entity. The semantics of the language is given in chapters 6 and 7. The
latter also gives the semantics of annotations themselves.

The semantics of a language entity is thus partly reflected in the application.
The annotation system let the latter make semantic choices for language entities
at runtime. We could say that annotations allows the programmer to change
the semantics of the language. But one can only choose between semantic
variants, which are well defined, and do not break the centralized semantics of
an entity in case of no failure.

Annotations are thus a limited form of reflection in the programming lan-
guage. Its boundaries are defined by the programming system and by the cen-
tralized semantics. The programmer may tweak an entity’s semantics within
safe boundaries.

3.3.2 Annotation system

In practice an annotation specifies parameters of the distribution subsystem.
The actual annotation system goes slightly beyond the conceptual level, be-
cause it allows implementation compromises that may break the semantics of
an entity. The typical example is the time-lease based garbage collector, which
may remove an entity from memory even if some sites in the application still
refer to it.

The procedure Annotate is called to specify distribution parameters for an
entity. We have chosen annotations to be monotonic: you cannot change your
mind once you have chosen an option. Moreover, once an entity is actually
distributed, i.e., when it has been shared by at least two sites, its distribution
parameters can no longer be changed. As a consequence, an entity can only be
annotated before it gets distributed. It is therefore useful to annotate entities
into the abstractions that create them.

Distribution parameters are specified as atoms or records. For instance,
stationary state is specified with the atom stationary , and the use of a mo-
bile access reference is specified by the record access(migratory) . Several
parameters are combined in a list, like in the example

{Annotate E [stationary access(migratory) lease]}
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We will see in the next section that this statement is equivalent to the following
three ones.

{Annotate E stationary}
{Annotate E access(migratory)}
{Annotate E lease}

3.3.3 Partial and default annotations

Our annotation system is not only monotonic, it is even incremental. Several
annotations can be put on a given entity, at different times. The result is
that the entity is annotated by the conjunction of them, provided that it is
consistent. For instance, mobile and stationary state are inconsistent together,
but stationary state and time-lease garbage collection are consistent, because
both parameters are orthogonal to each other. In our implementation, Mozart
considers three orthogonal distribution parameters, namely the access archi-
tecture, the state protocol, and the distributed garbage collection. Those are
described in more detail in the next sections.

The system also permits partial annotations. It means that some distri-
bution parameters may be left unspecified whenever an entity becomes dis-
tributed. In that case, the system completes the annotation with default val-
ues. For instance, if the programmer annotates a cell with lease (time-lease
based garbage collection), the system may complete the annotation to

[migratory access(stationary) lease]

right before distributing the cell.

Each type of entity has a default annotation, giving a value for each distri-
bution parameter. The default annotation must be complete, of course. The
system implementation may or may not allow the programmer to modify de-
fault annotations. In our prototype, default annotations can be modified by
the program at any time.

3.3.4 Access architecture

The access architecture of an entity defines how all the sites sharing the entity
coordinate with each other. This architecture is the base of the other protocols
(state and reference consistency, see below). It could be anything, as long as
one can implement the entity operations and garbage collection on top of it.

In Mozart, all sites sharing the entity own a proxy, and all those proxies
refer to a unique coordinator, which is hosted by one of the sites. It is used by
the other protocols as a reference point. When an entity reference is sent from
one site to another, a network address of its coordinator is given. This allows
the receiver to connect its proxy to the other proxies of the same entity in the
whole system. The architecture is similar to a client-server architecture.
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Knowing the type of access architecture already gives some information
about the network behavior of the entity. For instance, an entity with station-
ary state will have its state located on the same site as the entity’s coordina-
tor. Another example is garbage collection, where the coordinator determines
whether the entity is referred to by remote sites. If not, the entity is no longer
distributed.

Mozart/DSS defines one parameter for the access architecture, which states
whether the coordinator is stationary or mobile.

• access(stationary) : the coordinator is located where the entity was
created, and remains on that site. This is the simplest strategy to manage
the access architecture.

• access(migratory) : the coordinator can be moved from one site to
another by a specific operation. There are several possibilities on how
proxies can find where it is. Details can be found [Kli05].

A single point of failure. The coordinator of an entity is obviously a single
point of failure. When it crashes, the entity’s proxies are usually no longer
capable of finding each other. Note however that we have a single point of
failure per entity. This design decision is motivated by the fact that entity
protocols should not solve all the problems. Entities are generally not robust
to failures. Instead, failures are detected, and can be handled at the language
level. Fault-tolerant protocols can be implemented in Oz, and hide failures by
abstractions.

3.3.5 State consistency protocols

Those protocols implement the operations of the entity itself. The choice of
protocol depends on the entity’s nature, i.e., mutable, immutable, or mono-
tonic. This parameter is the most important when considering the network
behavior of entity operations. Here are the protocol annotations considered in
Mozart/DSS.

1. Mutable entities.

• stationary : the state of the entity is located on the site of the en-
tity’s coordinator. All operations on the entity’s state are performed
on this site. Synchronous operations therefore need a full round-trip
from the requesting site to the coordinator to complete.

• migratory and pilgrim : the state of the entity migrates from one
site to another, and a site executes operations locally when the state
is on that site. The state behaves like a cache: once the state is on a
site, that site may perform several operations without extra network
overhead.
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• replicated : the state of the entity is copied on all the sites that use
the entity, and the copies are synchronized by a two-phase commit
protocol. This protocol is useful for data structures that are rarely
updated. Read operations can be performed locally, while write
operations require an atomic update of all sites using the entity.

2. Monotonic entities.

• variable : this corresponds to the protocol described in [HVB+99].
The binding of the variable is performed on the site of the entity’s
coordinator.

• reply : this is a variant of the variable protocol, where the binding
is done on the first site that receives the reference. This protocol has
the best network behavior when the receiver site attempts to bind
the variable. The variable is typically used to a reply to a query.

3. Immutable entities.

• immediate : the value is sent together with the reference of the
entity. The unicity of the entity is guaranteed, even if its value is
sent multiple times. All values with structural equality (numbers,
atoms, records) use this protocol.

• eager and lazy : those protocols guarantee that the value is sent
at most once. When the entity is sent to a site, only its reference
is actually sent. The receiving site requests the entity’s value if it
does not have it yet. In the eager case, the value is requested upon
receipt, while in the lazy case, it is requested once the value is
actually needed.

• stationary : the value is not copied on other sites. Remote opera-
tions require a full round-trip to the coordinator. For instance, one
can provide access to a chunk without allowing copies on possibly
untrusted sites.

3.3.6 Reference consistency protocols

Those protocols ensure the reference integrity, by implementing a distributed
garbage collector. Here the choice is not exclusive: one can combine several
protocols in a single annotation. An entity is kept in memory if all protocols
require so. Mozart proposes three algorithms:

• persistent simply keeps the entity alive forever on its coordinator. The
entity is simply never removed by the garbage collector. This can be
useful for providing a service on a site, which should run until the site
terminates.
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• refcount uses a weighted reference counting scheme. Each reference to
the entity is assigned a weight, and the entity’s coordinator keeps track
of the sum of the weights of all remote references. When this number
reaches zero, the entity is no longer distributed. The advantage of using
weighted references is that new remote references can be created without
notifying the coordinator. It suffices to keep the total weight constant.

• lease uses time-lease based mechanism. Sites holding a remote reference
to an entity regularly notify its presence to the coordinator of the entity.
The time between successive notifications is called the lease period. If
the coordinator has not been notified during a long time (typically much
longer than the lease), the entity is no longer considered distributed.

The algorithm refcount guarantees consistency, i.e., a coordinator remains
alive while its proxies are, even in case of long network failures, but is not
robust to site failures. The algorithm lease does not guarantee consistency
in case of network delays, but handles site failures gracefully. It is up to the
programmer to choose what fits best for his or her application.

3.4 Related work

How do other systems provide tuning of a distributed program? Are they easy
to tune at all? Can the tuning process be programmed in the language, or is it
external to it? In the latter case, are the tuning techniques heavily modifying
the program?

3.4.1 Erlang

In the Erlang philosophy, everything is a process, and the only communication
primitive between processes is message passing with values. Processes are inde-
pendent of each other, and cannot share memory. Every process is sequential
and programmed in functional style. This simple model fits pretty well with
distribution, and allows efficient implementations.

Process identifiers can be sent between sites, and sending messages to a
remote process is transparent. Processes do not migrate between sites, and
garbage collection is up to the programmer. The language favors lightweight
client-server style. For instance, the Open Telecom Platform (OTP) provides
generic server abstractions, which support transactional semantics (crashed
servers are restarted with a valid former state) and code swapping (the server
code can be changed on-the-fly). In fact, the OTP provides many more abstrac-
tions to build large-scale, fault-tolerant, distributed applications [Arm07].

With the simplicity of Erlang’s programming model, any communication
pattern can be programmed with processes and messages. Libraries like the
OTP already provide powerful abstractions for distributing applications. Of
course, the programmer should always use this kind of abstraction to build
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his or her applications. Changing the network behavior can then be done in
a modular way. Using directly the distribution facilities makes the program
harder to adapt.

3.4.2 Java RMI

There is no distribution mechanism defined by the language Java itself. But
the Java Remote Method Invocation (RMI) library has quickly become the
most popular distribution mechanism in the Java community. The library
provides two ways to distribute an entity: full serialization and remote method
invocation. In the first case, a copy of the object is made once a reference
to that object is sent to a site. In the second case, only a reference to the
original object is created on the receiving site. When that reference is invoked,
the method invocation is sent to the object’s site and the calling thread waits
for its termination. These objects are said to be remote, while fully serialized
objects are non-remote.

This mechanism imposes synchronous interaction between sites, which can
be slow in a distributed setting. But worse, reference integrity is only guar-
anteed per method invocation, and not in general [Sun97]. The consequence
is important: distributed objects have a different semantics than centralized
objects.

Besides these semantic issues, Java RMI is not transparent to the program-
mer. Remote objects must implement the interface java.rmi.Remote, while
non-remote objects implement java.io.Serializable. Turning a local object
in a distributed one requires to modify its class. The library provides a few
abstractions to write servers, though.

3.4.3 E

The language E is an object-oriented programming language designed for secure
distributed computing. It was created by Mark S. Miller, Dan Bornstein, and
others at Electric Communities in 1997. It combines capabilities and a message
passing concurrency model with Java-like syntax. Its concurrency model is
based on event loops and promises, in order to prevent deadlocks. More on
security aspects of E can be found in Mark Miller’s thesis [Mil06].

Objects behave like concurrent sequential agents with synchronous or asyn-
chronous method invocation. Each object is stored into a vat, which is the unit
of localization. Synchronous invocation can only happen between objects in
the same vat, and corresponds to a sequential method call.

def result := bob.foo(carol) /* synchronous call */

println(‘done: $result‘)

A method is always executed atomically, and should never block or run forever.
This strong limitation to concurrency was chosen to avoid common program-
ming errors due to shared state concurrency.
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Objects can also invoke each other asynchronously, with the eventually or
send operator <- (see below). If the method returns a result, the operation
returns immediately a promise for the result.

def result := bob <- foo(carol) /* eventual send */

when (result) -> { /* promise resolution */

println(‘done: $result‘)

} catch problem {

println(‘oops: $problem‘)

}

One can send to the promise immediately; a promise pipelining mechanism
ensures that the resulting object is eventually sent the method (like in Sec-
tion 3.1.2 on page 29). One can also synchronize on the result with a when

statement. Once the promise is resolved, the code is eventually run (atomi-
cally). The catch part allows to handle a promise failure.

The distributed model of E is strongly determined by the security aspect
of the language. By default, vats do not trust each other. Therefore objects
are never copied or moved between vats. Vats are strongly isolated from each
other, and inter-vat communications are encrypted. The encryption also guar-
antees that object references cannot leak into intermediate vats in the promise
pipelining process. The distribution model is thus limited to client-server com-
munication with promises, but the capability system is guaranteed safe.



42 Application structure and distribution behavior



4
Asynchronous failure

handling

We go one step further in the distribution support by reflecting partial failures
in the programming language. We propose a language-level fault model that is
compatible with network transparency. Because a site or network failure may
affect the proper functioning of a distributed entity, our model defines how
entities can fail, and how those failures are reflected at the entity level in the
language. Here are the principles of the model, each being described in the
corresponding subsection below.

• Each site assigns a local fault state to each entity, which reflects the site’s
knowledge about the entity.

• There is no synchronous failure handler. A thread attempting to use a
failed entity blocks until the failure possibly goes away. In particular, no
exception is raised because of the failure.

• Each site provides a fault stream for each entity, which reifies the his-
tory of fault states of that entity. Asynchronous failure handlers are
programmed with this stream.

• Some fault states can be enforced by the user. In particular, a program
may explicitly provoke the global failure of an entity.

This fault model is an evolution of the first fault model of Oz, and integrates
parts of another proposal made by Donatien Grolaux et al. [GGV04]. The
next chapter will demonstrate that it improves the ease of programming and
modularity of failure handlers. A comparison with the other fault models of
Oz is given in Section 4.5 on page 56.

43
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4.1 Fault model

We first provide a precise description of the kind of faults we consider in the
system in which the program runs. This system is composed of sites that
communicate through a network. We model a certain number of failures in that
system, how they affect the system, and how they can be detected. Failures
affect language entities, so we also consider failures at the entity level. The
model we use here is inspired from Rachid Guerraoui et al. [GR06], and is
quite standard in the field of distributed systems.

Note that we will sometimes use the term process. A process is simply
something that has some autonomous behavior, some internal state, and which
interacts with other processes by exchanging messages through the network.
Both sites and language entities can be considered as processes.

4.1.1 Failures

Site failures. A site may fail by crashing, i.e., at a given time t, it stops
doing anything, especially sending and receiving network messages. There is
no recovery mechanism by default, the failure is permanent. This kind of failure
is called crash-stop or fail-stop. A site that has not crashed yet is said to be
correct.

We assume that sites are subject to neither omission (where the process
may “miss” some messages), nor Byzantine faults (where the site may perform
any arbitrary action). Those are much harder to handle, and detect. The lack
of generic detection mechanism makes any kind of language support for them
virtually impossible.

Network failures. The network is considered reliable in the sense that a
message sent by a site a to a site b will eventually be delivered, unless a or b
crashes. Messages are never corrupted nor delivered more than once. However,
the communication between two sites may take arbitrary time. The commu-
nication link may appear to have failed if no message is delivered to the des-
tination site during a long but finite period of time. In other words, network
failures can be defined as communication delays that are longer than expected.
We do not consider the case where network failures would be permanent. Such
a failure would mean that a site can no longer communicate with any other
site. By convention, network failures are always considered to be temporary.

Entity failures. Language entities are subject to the same kind of failures
as sites. A failed entity stops being functional. No language operation can
have an effect on it. Its state is lost, and there is no recovery mechanism. The
failure is permanent and global: a failed entity is unusable for all sites.

We also consider a failure of type fail-stop, but which is valid for a given
site: the entity is crashed for that site, but may be functional for other sites.
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In other words, that site can no longer use the entity. We say that the entity is
locally failed on the given site. This failure is triggered by the operation Break ,
which is described in Section 4.3.2. It is typically used to prevent the site from
using the entity, and does not affect the other sites.

4.1.2 Failure detectors

In order to handle failures at the program level, we need failure detectors. A
failure detector is a component that tries to determine whether a given process
has crashed. It notifies the program when it suspects the process to have
crashed. Not all failure detectors are identical, there exists several types of
them. We can classify them according to three properties: their completeness,
accuracy, and monotonicity.

• A failure detector is complete if a crashed process is always eventually
suspected.

• A failure detector is accurate if a suspect process has actually crashed, and
inaccurate if it may suspect a correct process. It is eventually accurate if
no correct process is suspected forever.

• A failure detector is monotonic if a suspect process is never notified cor-
rect later. In other words, the failure detector never “changes its mind.”

The completeness is a liveness property, it ensures the eventual detection of
a crash. On the other hand, the accuracy is a safety: it prevents erroneous sus-
picions. Those two properties are essential for reasoning about the correctness
of an algorithm that handle failures. The monotonicity also helps for reasoning,
because monotonic detectors have a simpler behavior than nonmonotonic ones.

A failure detector is perfect if it is complete and accurate. It is eventually
perfect if it is complete and eventually accurate. Perfect failure detectors are
not so common, because they require strong properties of the underlying sys-
tem. For instance, perfect detectors are possible on a local area network (LAN),
but not on the internet in general. For the internet, one has to use eventually
perfect detectors.

Three simple failure detectors. Our model proposes a combination of
three failure detectors, namely tempFail, permFail, and localFail. Each detector
has its own properties in terms of completeness, accuracy, and monotonicity.
We will show in the next sections how we use them to handle language entity
failures.

• The tempFail detector is eventually perfect. It uses two notifications:
tempFail and ok . The first one occurs when the target process is sus-
pected, the second one occurs when the detector has found evidence of
correctness of the process. This detector is nonmonotonic.
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detector complete accurate monotonic
tempFail yes eventually no
localFail no no yes
permFail no yes yes

Table 4.1: Summary of the properties of the three failure de-
tectors (for global failures)

• The permFail detector is accurate but incomplete. It is not guaranteed
to detect a crash, but it never erroneously reports a crash. It uses the
notification permFail . By definition it is monotonic.

• The localFail detector is perfect for local failures, and uses the notifica-
tion localFail . However it is neither complete, nor accurate for global
failures in general. Its completeness and accuracy depend entirely on the
program. However it is monotonic: suspicion remains forever.

A summary of the properties of the three failure detectors is shown in Table 4.1.
Note that these properties are given with respect to global failures. This is why
localFail is neither complete nor accurate.

4.1.3 Entity fault states

For each entity e, every site has a failure detector that combines the three failure
detectors tempFail, permFail, and localFail. That failure detector maintains a
local fault state, which is like a view of the actual fault state of the entity. The
failure detector sends a notification at every state transition. The notification
mechanism is described in Section 4.2.3.

The failure detector has four states, called local fault states, or fault views :
ok , tempFail , localFail , and permFail . Valid state transitions are depicted
in Figure 4.1 on the facing page. The semantics of the states are the following.

• ok is the initial state, and can also be triggered by the tempFail detector.
It means that the entity is not suspected by any of the basic failure
detectors.

• tempFail is triggered by the tempFail detector. It means that the site
is temporarily unable to complete any operation on the entity. This
typically happens when this site cannot communicate with other sites
that are necessary for performing language operations on the entity.

• localFail is triggered by the localFail detector. It means that the entity
is permanently unavailable for this site. Note that it is local, i.e., other
sites may still have access to the entity. This state can be enforced by
the program.



4.1 Fault model 47o k t e m p F a i ll o c a l F a i lp e r m F a i l
Figure 4.1: Local fault state diagram of an entity

• permFail is triggered by the permFail detector. It means that the entity
has crashed. No site can ever perform an operation on it. This state is
final.

The main advantage of this model is that it provides a simple yet precise
description of an entity’s state, from the viewpoint of one site. It abstracts the
type of hardware and system used, the protocols, and even the kind of entity
it applies to. It describes the failure from the programming language’s point
of view. Yet its simplicity still allows to reason about the partial failures in a
program.

4.1.4 Concrete interpretation of fault states

Knowing the kind of an entity and its distribution strategy, one can easily
give a more precise interpretation of a fault state. Here we give the various
concrete reasons for an entity to fail. The only concepts we rely on are the ones
given in Chapter 3. All failures can be expressed in terms of sites, protocols,
coordinators, and memory management.

Note that the interpretation we provide for fault states is of course related
to how the distribution of an entity is implemented. A sophisticated implemen-
tation of distribution would have led to a complex fault model. In our work
we favor a simple fault model, therefore keeping the implementation simple.
The programmer should be able to reason easily about the properties of the
distribution. Complex fault-tolerant abstractions should be built at the higher
user level, not at the low level.

Mutable entities. Two sites are usually involved when reasoning about mu-
table entity failures: the coordinator site and the site holding the state. The
coordinator is necessary in all protocols to manage the entity’s state. It is
the site holder if the state is stationary; it manages to bring the state to the
requester in case of a mobile state; and it ensures mutual exclusion when the
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state is replicated. The state holder is also crucial: its failure always implies
that the state is lost.

A mutable entity is in state tempFail if the coordinator or state holder
is unreachable. The state localFail is triggered by the program. The state
permFail is reached when the coordinator or the site holding the state has
crashed, or the coordinator has removed the entity from its memory. The
coordinator crash can be provoked by the program (see Section 4.3).

The second reason for the state permFail has already been mentioned in
Chapter 3: time-lease based garbage collection is not correct in case of network
failures. The coordinator considers that the entity is no longer used when no
other site has showed interest for a certain duration. A problem arises when
a site cannot reach the coordinator because of a network problem. In that
case, the entity will fail on that site. The good property is that it is diagnosed
properly, and reflected in the language. If the network recovers and the site
can reach the coordinator again, the removal of the entity will be notified, and
result in the entity failure.

Monotonic entities. Transients are pretty similar to mutable entities when
it comes to failures. In the protocol variable , the coordinator is also a state
holder. The state holder might be different in the reply protocol. If only one
site refers to the variable besides the coordinator, then that site is the state
holder. The same reasoning as with mutable entities applies here.

A property of logic variables is that they conceptually disappear once they
are bound. In fact, bound variables have reached their final state, and become
invisible to the program. For the sake of consistency, bound variables do not
fail, and failed variables remain unbound.

Immutable entities. Immutable entities are simply values. Their possi-
ble fault state depend on whether they are copied between sites (protocols
immediate , eager , lazy ) or not (protocol stationary ). Note that entities
using the immediate protocol never fail, since one cannot have a reference to
the entity without having its state. As all entities with structural equality
(numbers, atoms, records) use this protocol, they are not subject to failure.

Values cannot fail permanently if they are copied between sites. If the site
from where the copy is made is unreachable or has crashed, a temporary failure
will be notified. The local fault state can even be localFail . But the state
permFail should never be observed, because any other site may provide a copy
of the value. The fault state permFail requires that no copy of the value is
available anywhere, even in a file. This property is difficult to verify in practice.

Values distributed with a stationary state are different. This protocol can
be used when copying the whole value is too costly or insecure. Remote sites
can still access the value, typically with the dot operation “. ”. In that case,
the causes of failure are the same as mutable entities with stationary state.
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4.2 Failure handlers

We now discuss the possible ways to handle entity failures in the language. We
make a clear distinction between two basic ways of handling failures, namely
synchronous and asynchronous handlers. As we shall see, asynchronous failure
handling is preferable to synchronous failure handling.

4.2.1 Definition

A synchronous failure handler is executed in place of a statement that attempts
to perform an operation on a failed entity. In other words, the failure handling
of an entity is synchronized with the use of that entity in the program. Raising
an exception is one possibility: the failure handler simply raises an exception.
In contrast, an asynchronous failure handler is triggered by a change in the
fault state of the entity. The handler is executed in its own thread. One could
call it a “failure listener”. It is up to the programmer to synchronize with the
rest of the program, if that is required.

The following rules give small step semantics for both kinds of handlers.
The symbol σ represents the store, i.e., the memory of the program. The store
is partitioned among the sites, and the elements of the store that are specific
to a site a are subscripted by a. Each site a reflects its view of the fault state
of an entity in the store through a system-defined function fstatea(x), which
gives the local fault state of x. Each execution rule shows on its left side a
statement and the store before execution, and on the right side the result of
one execution step.

Rule (4.1) describes the semantics of a synchronous failure handler. It states
that a statement S attempting an operation on entity x can be replaced by a
handler H if the fault state of entity x is not ok , i.e., if x has failed.

Sa Ha

σ σ
if

statement S uses entity x
and σ |= fstatea(x) 6= ok

(4.1)

Rule (4.2) gives the semantics of an asynchronous failure handler. A new thread
is spawned with handler H whenever the fault state of x changes. Note that
there may be more than one handler on x; we assume all handlers are run when
the fault state changes.

Ha

σ ∧ fstatea(x)=fs σ ∧ fstatea(x)=fs ′
if fs → fs ′ is valid (4.2)

4.2.2 No synchronous handlers for Oz

In Oz, when the fault state of a given entity is not ok , operations on that entity
may not succeed. Raising an exception in that case might look reasonable, but
our experience suggested that it is not. Because of the highly concurrent nature
of the language, raising exceptions quickly creates race conditions between
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threads. The functional code is cluttered with failure handling code. Other
kinds of handlers have been tried, but without success.

We have chosen to use asynchronous failure handlers only. We propose the
following model.

“Failure causes blocking”: an operation on a failed entity simply
blocks until the entity’s fault state becomes ok again.

The operation naturally resumes if the failure proves to be temporary. It sus-
pends forever if the failure is permanent (localFail or permFail ). With this
model, nothing extra can happen in a program that does not handle distribu-
tion failures.

4.2.3 Entity fault stream

In our proposal, asynchronous failure handlers are programmed as threads that
monitor entities, and take action when an entity changes its local fault state.
On every site, each entity is associated with a fault stream, which reflects the
history of the fault state’s view of the entity. The system maintains the current
fault stream, which is a list fs |s, where fs is the current view of the fault state,
and s is an unbound variable. It is defined semantically as a system-defined
function fstreama(x) that returns the current fault stream of the entity x on
site a. The semantic rule

σ ∧ fstreama(x)=fs |s σ ∧ fstreama(x)=s ∧ s=fs ′|s′
if fs → fs ′ is valid

(4.3)
reflects how the system updates the fault state to fs ′. The dataflow synchro-
nization mechanism wakes up every thread blocked on s, which is bound to
fs ′|s′. An asynchronous handler can thus observe the new fault state simply
by reading the elements of the fault stream.

To get access to the fault stream of an entity x, a thread simply calls the
function GetFaultStream with x, which returns the fault stream of x on the
current site. A formal definition is given below. To read the current fault state,
one simply takes the first element of the returned list.

(y={GetFaultStream x} )a (y=fs |s)a

σ σ
if σ |= fstreama(x)=fs |s (4.4)

Figure 4.2 on the next page shows an example of how an entity’s fault stream
may evolve over time. The stream is a partially known list, and the underscore
“_” denotes an anonymous logic variable. In the last step, the stream is closed
with nil . This may happen in two situations, which are explained below.
Snippet 4.1 on the facing page shows a thread monitoring an entity E, and
printing a message for each fault state appearing on the stream. The printed
message is chosen by pattern matching. The thread is woken up each time the
stream is extended with a new state.
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time

?

FS={GetFaultStream E}
FS=ok|_
FS=ok|tempFail|_
FS=ok|tempFail|ok|_
FS=ok|tempFail|ok|localFail|_
FS=ok|tempFail|ok|localFail|nil

Figure 4.2: An example of a fault stream evolving over time

thread
for S in {GetFaultStream E} do

T = case S % pattern matching on S
of ok then "entity is fine"
[] tempFail then "some problem, don ´ t know"
[] localFail then "no longer usable locally"
[] permFail then "no longer usable globally"
end

in
{Show T}

end
end

Snippet 4.1: A thread that prints messages when entity E’s
fault state changes

Special case: variables. Monitoring variables requires a bit more care than
other entities. This is because variables conceptually disappear once they are
bound: they become what they are bound to. The question is: what happens to
the fault stream of a variable once the latter is bound? There are two distinct
cases to consider, as the variable is bound to either a value, or another variable.

Consider a variable x that is bound to another variable y. From a program-
mer’s point of view, the binding is transparent: x remains a variable. For a
thread monitoring x, it seems quite natural to smoothly switch to monitoring
y. We propose to make this transition automatic by merging the fault streams
of x and y. Basically the tail of the fault stream of x is bound to the tail of
fault stream of y, prepended by y’s current fault state if it is different from x’s
current fault state. This binding makes sure that the monitor does not miss a
fault state.

The other case we have to consider is the binding of the variable to a value.
We think that merging the fault streams is not a good idea here, because the
entities are of different nature, and this may lead to confusion. However, we
need a clear mechanism to notify the monitoring thread that the variable has
been bound. We propose to close the fault stream by binding its tail to nil ,
because the variable has conceptually disappeared. Once this happens, calling
GetFaultStream on the variable will return the fault stream of its value.
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Failure history. The fault stream of an entity e on a site a reifies the history
of fault state observations of e by a. Moreover it transforms the nonmonotonic
changes of a fault state into monotonic changes in a stream. It provides an
almost declarative interface to the fault state maintained by the system. This
interface looks much simpler and more elegant than registered handlers, which
is what Mozart used before [VHB99]. In particular, the fault stream guarantees
that the failure handler cannot miss a state transition.

Note that the fault stream may also be closed, i.e., its tail bound to nil ,
whenever it is no longer maintained by the system. This is performed by the
system when the entity is no longer in memory. See Section 4.4.

4.2.4 Discussion

Synchronous failure handlers are natural in single-threaded programs because
they follow the structure of the program. Exceptions are handy in this case
because the failures can be handled at the right level of abstraction. But the
failure modes can become very complex in a highly concurrent application.
Such applications are common in Oz and they are becoming more common in
other languages as well. Because of the various kinds of entities and distribution
protocols, there are many more interaction patterns than the usual client-server
scheme. Handlers for a given entity may run in many threads at the same time,
and those threads must be coordinated to recover from the failure.

All this conspires to make fault tolerance complicated to program if based
on synchronous failure handling. This mechanism was in fact never used by Oz
programmers developing robust distributed applications [GGV04]. Instead,
programmers relied on the asynchronous handler mechanism to implement
fault-tolerant abstractions. One such abstraction is the “GlobalStore”, a fault-
tolerant transactional replicated object store designed and implemented by Iliès
Alouini and Mostafa Al-Metwally [AM03].

4.3 Making entities fail

Failures in distributed systems are often partial. This will be the case with
entity failures in a distributed application, especially if the programmer defines
components that are spread among many sites. In many cases, if a subset of
the entities of a component have failed, the component itself might no longer
function. The components that use the failed component must be able to detect
the failure, and trigger a recovery mechanism. The question is: which entity
should they monitor?

A component should not monitor all entities of another component explic-
itly. This would prevent any encapsulation in the monitored component. But
monitoring the entities it has access to might not be enough, if none of the
monitored entities fails. One possibility is to design a component-level proto-
col that makes sites consider the component as failed. Another possibility is to
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proc {SyncFail Es}
Trigger in
for E in Es do

thread
if {List.member permFail {GetFaultStream E}} then

Trigger= unit
end

end
end
thread

{Wait Trigger}
for E in Es do {Kill E} end

end
end

Snippet 4.2: Synchronize the failure of a set of entities

make the monitored entities fail on purpose. We propose to provide support
for the second alternative in our failure model, i.e., the program can make an
entity fail.

4.3.1 Global failure

We provide a new operation to make an entity fail. The statement {Kill e}

attempts to make the entity e permanently failed, i.e., in fault state permFail .
The operation is asynchronous, which means that it returns immediately, and
is idempotent. It initiates a protocol that tries to make the entity globally
failed. Once it is done, the local fault state of e becomes permFail . Because of
the definition of the state permFail , the operation may require some synchro-
nization with other sites that refer to e. The operation must ensure that no
other site can perform operations on the entity. Therefore the operation Kill

is not guaranteed to succeed.
The example in Snippet 4.2 shows a simple abstraction, yet quite powerful.

It basically tries to ensure that all entities in a list eventually fail when one of
them fails.

4.3.2 Local failure

Sometimes it is not possible to make an entity fail globally, for instance be-
cause a site that is involved in the operation Kill has silently crashed. We
therefore provide the operation Break . The statement {Break e} has a pure
local effect. It makes the entity e fail locally, and forces its fault state to be at
least localFail .

The first motivation for Break is that it is irreversible. Once an entity is
permanently failed, even locally, it cannot go back to the fault state ok . This is
useful when a site triggers a recovery mechanism, based on the state tempFail
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proc {FailAfter E TimeOut}
proc {Loop L}

case L of H|T then
if H==tempFail andthen {WaitTwo {Alarm TimeOut} T}==1
then {Break E}
else {Loop T}
end

else skip end
end

in
thread {Loop {GetFaultStream E}} end

end

Snippet 4.3: A failure handler that provokes local failure after
a certain duration of temporary failure

of an entity e. Enforcing the failure of e simplifies the task of recovering. The
threads blocked because of the failure of e will never wake up, for instance.
This is useful if a service is backed up, and at most one instance of the service
can run at any given time.

The second motivation is resource management. By making an entity per-
manently failed, the programmer gives a hook to its memory management
system. Threads that block because of the failure will block forever, unless
they can be woken up explicitly by other threads. The system can therefore
use the permanence of the failure to detect parts of the program (threads and
data) that will no longer affect its behavior. Those parts can be safely removed
from memory. Some issues about memory management are described in detail
in the next section.

Snippet 4.3 shows a small failure handler that can be used together with
other failure handlers. Basically it uses a timeout to make an entity locally
failed if it remains temporarily failed for a certain time. The timeout duration
is specified in the parameter TimeOut . Other failure handlers waiting for state
localFail are thus automatically triggered after the given inactivity duration.

4.4 Failures and memory management

4.4.1 Blocked threads and fault streams

Entity failures have an effect on the memory management of a program. First,
a failed entity can make a thread block. If the failure is temporary, that
thread must be kept in memory for its possible resumption. As that thread
normally refers to the entity, it keeps the entity alive. However, if the failure
is permanent, the thread will block forever, unless it is referred to by another
living entity. As we already mentioned in Section 4.3.2, a thread blocking



4.4 Failures and memory management 55

forever can be safely removed from memory.
Something similar happens with fault streams. An entity keeps its own fault

stream alive in memory. This guarantees that the threads monitoring the entity
do not silently disappear. But the fault stream itself does not keep the entity
alive, so the entity can be removed from memory anyway. Once the entity is
removed from memory, the fault stream will no longer be kept alive, and the
monitoring threads may block forever. In order to clearly reflect that the fault
stream has been “disconnected” from the entity, we make the system close the
stream, i.e., its tail is bound to nil . This action is perfectly consistent, since
once the entity is gone, the fault stream will no longer be updated.

Finalization. The closing of the fault stream provides a simple and effec-
tive post-mortem finalization mechanism. The following abstraction executes
a procedure P once the entity E is no longer in memory. The closing of the
stream simply lets the loop exit.

proc {Finalize E P}
thread

for X in {GetFaultStream E} do skip end
{P}

end
end

This is particularly useful to recollect memory from failed components in a
program. A thread monitoring an entity can already remove references to the
entity when it fails, and once it is removed from memory, the monitor can
perform some extra actions.

4.4.2 Entity resurrection

It is possible for a site to remove an entity e from its memory, even when that
entity is still used by other sites. Indeed, if the site owns a proxy for e that is
not necessary for the distribution of the entity, it can safely remove the entity’s
proxy from its memory (see Sections 3.3.4 and 3.3.6). When this happens, the
site simply no longer refers to e, which remains alive on a global scale.

Now assume that the entity e was removed from the memory of site a, and
that a reference to e is sent again to that site. A new proxy for e is created on
a, and that proxy creates a new fault stream for e on a. This reintroduction of
e on site a brings a few issues. First, there is no connection between the new
fault stream of e and its former fault stream, which was bound to nil by the
finalization mechanism described above. The instances of the fault stream in
memory correspond to different sessions of the entity on the site.

Second, it is possible that the fault state of e was localFail before e’s
removal, and ok after its reintroduction. This state transition is normally
forbidden by the fault model. To avoid this situation, site a should have kept
some information about entity e in memory. But keeping that information in
memory is unreasonable in general, because site a’s memory would grow beyond
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any limit. Our proposal is to not keep that information, but to implement a
specific solution to handle the issue at the application level. An application
may use a centralized or distributed repository of valid entities. Any occurrence
of a non valid entity can then be discarded. The management of the repository
and the choice of which entities to check is thus specific to the application.

4.5 Related work

4.5.1 Java RMI

In Java Remote Method Invocation (RMI), every distributed operation is a
method call. The standard way in that language to report a problem inside
a method call is the exception mechanism. The fault model thus favors syn-
chronous failure handlers, which are implemented as exception handlers.

4.5.2 Erlang

The power and simplicity of failure handling in Erlang was an inspiration for our
work. Erlang provides asynchronous detection of permanent failures between
processes [Arm07]. Two processes can be linked together. When one of them
(say a) terminates normally or because of a failure, the other one (say b) is
notified by the runtime system. By default, process b will die if a died because
of a failure. However, if b is a system process, it will receive a message of the
form {’EXIT’,Pid,Why}, where Pid is the identifier of process a, and Why is a
value that describes the reason why a died. A special built-in turns a process
into a system process.

Erlang chose to model all failures as permanent failures, in accordance with
its philosophy of “Let it fail”. That is, keeping the fault model simple allows
the recovery algorithm to be simple as well. This simplicity is very important
for correctness. We can see our model as an extension of Erlang’s model with
temporary failures and with a fault stream. Furthermore, our model is designed
for a richer language than Erlang, which only has stationary ports (in our
terminology). Chapter 5 will show how to program something similar to process
linking in Oz.

4.5.3 The first fault model of Mozart

Our argument against the use of exceptions to handle distribution failures
comes from the original fault model used in Oz, which was introduced with the
first release of Mozart in 1998. The original model overlaps with the model
we propose in this chapter. It was providing much more fault information
(most of which was not used in practice) and was supporting both synchronous
and asynchronous handlers. The major difference was the ability to define
synchronous failure handlers, i.e., handlers that are called when attempting an
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operation on a failed entity. The programmer could either ask for an exception
or provide a handler procedure that replaces the operation. The failure handler
was defined for a given entity and with certain conditions of activation.

Instead of the synchronous handlers, programmers favored a kind asyn-
chronous handler, called a watcher. A watcher is a user procedure that is
called in a new thread when a failure condition is fulfilled. The fault stream
we propose in this paper simply factors out how the system informs the user
program. It also avoids race conditions related to the watcher registry system,
which could make one miss a fault state transition. And finally, a watcher
could not be triggered by a transition to state ok . The latter soon revealed to
be problematic for handling temporary failures.

An alternative model. The original model is criticized in [GGV04], which
proposes an alternative model. That paper proposes something similar to our
fault stream and an operation to make an entity fail locally. In order to handle
faults, it proposes to explicitly break the transparent distribution of a failed
entity. The local representative of the failed entity is disconnected from its
peers and is put in a fault state equivalent to localFail . Another operation
replaces that entity by a fresh new entity. This model has the advantage
to avoid blocking threads on failed entities, because you can replace a failed
entity by a healthy one. But this replacement introduces inconsistencies in the
application’s shared memory. We were not able to give a satisfactory semantics
that takes into account these inconsistencies.
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5
Applications

We present several abstractions that show how to program with the model we
proposed in the former chapters. We first show how to hide network delays in
a lazy producer/consumer situation, with a bounded buffer. We propose two
implementations for the buffer: a fully declarative version, and a version that
automatically adapts the buffer size.

We also show how to implement Erlang-like processes in Oz. Process linking
and monitoring is very easy to implement. We then provide an abstraction that
deals with temporary failures, and guarantees a consensus about failures in a
set of processes monitoring each other. The consensus is reached by a vote
among the correct processes.

5.1 Distributed lazy producer/consumer

Assume we have a component producing a stream lazily, and sharing that
stream with other components, possibly on other sites. From a language point
of view, those components simply share a logic variable. Consumers make the
variable needed, which awaken the producer. The latter binds the variable to
a pair X|T , where T is computed lazily as well.

This scheme is a nice example of a declarative communication channel be-
tween components. Moreover, its performance is not bad: making the variable
needed typically costs one message from the consumer to the producer, and
binding the variable costs one message in the other direction. So the variable
imposes a communication delay of one round-trip per element. Note that this
delay is independent from the number of consumers.

59
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fun {BoundedBuffer N Xs}
fun lazy {Deliver Xs Xr}

case Xs of X|Xt then X|{Deliver Xt thread Xr.2 end } end
end

in
{Deliver Xs thread {Drop N Xs} end }

end

Snippet 5.1: A first implementation of a bounded buffer

5.1.1 A bounded buffer

In order to avoid the communication delay, one may insert a buffer between the
producer and the consumer. The buffer triggers the evaluation of n elements
ahead of the consumer. If the number n is well chosen, and the consumer does
not run faster than the producer, then the consumer will not wait for reading
one element from the stream. The value n is chosen such that the average time
for producing one element, together with the communication delay, does not
exceed the average time for consuming n elements.

Snippet 5.1 shows an implementation of a bounded buffer which is equiv-
alent to the one proposed in [VH04]. The function BoundedBuffer takes as
input the size of the buffer n, and the lazy stream Xs, and returns a lazy stream
Ys:

Ys={BoundedBuffer N Xs}

The value of Ys is equal to Xs, except that if m elements of Ys are computed,
m + n elements of Xs are computed. The function call {Drop N Xs} returns
the list Xs without its first N elements.

Behavior analysis. First, let us notice that calling BoundedBuffer on the
producer’s site will not fit our needs. Indeed, in that case, the lazy computa-
tion associated to the output variable Ys is on the producer side. When the
consumer makes that variable needed, a full round-trip to the producer’s site
is necessary to trigger the lazy computation and send the value back.

Suppose now that BoundedBuffer is called on the consumer’s site. When
the consumer reads an element, it triggers a local lazy computation which re-
turns immediately, if the element is available. At the same time, the lazy
computation triggers the need for an element n positions ahead in the stream.
However, when the consumer reads an extra element, the element n positions
ahead will be requested whenever the element before is delivered on the con-
sumer’s site.

To illustrate that behavior, assume we have a producer/consumer pair with
a bounded buffer of size n = 5. Let us analyze what happens when the consumer
reads three elements from the stream. The interactions between both sites are
shown in the left picture of Figure 5.1 on the facing page. The arrows to the
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c o m p u t e 6 t hc o m p u t e 7 t hc o m p u t e 8 t h
P r o d u c e r C o n s u m e rr e a d 1 s tr e a d 2 n dr e a d 3 r d c o m p u t e 6 t hc o m p u t e 7 t hc o m p u t e 8 t h

P r o d u c e r C o n s u m e rr e a d 1 s tr e a d 2 n dr e a d 3 r d

Figure 5.1: Network behavior of two implementations of a
bounded buffer of size 5

left represent the messages that make a variable needed, while the arrows to the
right are the messages with the binding of the corresponding variable. What we
observe is that an element cannot be requested before the list pair containing
the former element arrives on the consumer’s site.

What we really want is something like the right picture of Figure 5.1. For
each element read, the element n positions ahead should be requested as soon
as possible. With this behavior, the elements are still produced in a sequential
way, but the message round-trips to trigger the production of elements are truly
concurrent. In the first behavior, those message round-trips are serialized.

5.1.2 A correct bounded buffer

Snippet 5.2 on the next page shows an implementation that provides the desired
behavior. The producer performs the following statement on its site.

Es={Encapsulate Xs}

The returned value is a pair of variables that will be bound to streams. The
first variable is the stream Xs, while the second variable is a stream Rs that is
built by the consumer and read by the producer. For each element appearing
on that stream, the producer requests one extra element on the data stream
Xs. This is done by the thread running procedure Prepare on the producer.
The consumer makes the following call to get a stream Ys.

Ys={DecapsulateN N Es}

This immediately builds a stream with N elements that will be read by the
producer. Then, for every element consumed on Ys, the stream Rs is appended
with the statement Rs=unit |Rt .
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fun {Encapsulate Xs}
proc {Prepare Rs Xs} {Prepare Rs.2 Xs.2} end
Rs

in
thread {Prepare Rs Xs} end
Xs#Rs

end

fun {DecapsulateN N Es}
fun {Prepend K Xt}

if K>0 then unit |{Prepend K-1 Xt} else Xt end
end
fun lazy {Deliver Xs Rs}

case Xs of X|Xt then Rt in
Rs=unit |Rt % trigger need at producer
X|{Deliver Xt Rt}

end
end
Rt

in
Es.2={Prepend N Rt} % trigger N elements ahead
{Deliver Es.1 Rt}

end

Snippet 5.2: A correct implementation of a bounded buffer

Let us now check that the behavior of the abstraction corresponds to the
picture on the right of Figure 5.1. The arrows from right to left correspond
to the bindings Rs=unit |Rt , while the arrows from left to right correspond to
the bindings of the producer’s output stream. Note that the bindings of Rs are
performed immediately by the consumer. This is because the variables Rs are
created on the consumer’s site, hence the coordinators of those variables are on
that site, and variable bindings are performed by the variable’s coordinator. A
more detailed explanation can be found in Section 8.2.3.

If several consumers are present, the stream can be encapsulated once, and
each consumer decapsulates it by applying DecapsulateN . The producer will
be driven by the consumer that requests the furthest ahead. However, the
network behavior involved by the stream Rs is more difficult to describe, since
the consumers will share that stream. Therefore a binding like Rs=unit |Rt

might require an intermediate network message to another consumer site, if
that other site holds the coordinator of Rs.

5.1.3 An adaptive bounded buffer

Snippet 5.3 provides a replacement for the function DecapsulateN . The stream
is decapsulated on the consumer’s site by the statement
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fun {Decapsulate Es}
fun lazy {Deliver Xs Rs}

case Xs of X|Xt then Rt in
Rs = if {Not {IsDet Xt}} then unit | unit |Rt

elseif {Not {IsDet Xt.2}} then unit |Rt
else Rt end

X|{Deliver Xt Rt}
end

end
Rt

in
Es.2= unit |Rt
{Deliver Es.1 Rt}

end

Snippet 5.3: An adaptive bounded buffer

Ys={Decapsulate Es}

This new function no longer takes a buffer size, but instead adapts how elements
are requested ahead in order to always have one element ready at the consumer’s
site.

Let us make a quick comparison between the functions DecapsulateN and
Decapsulate . The main difference is the binding of Rs, the second argument
of the internal lazy function, which is called Deliver in both versions. For
each consumed element, the adaptive version checks how many elements are
available in front of Xt . We use the function IsDet which returns true if its
argument is determined, and false otherwise. If no element is available (Xt

is not determined), the size of the buffer is increased by triggering the need
for two extra elements with the statement Rs=unit | unit |Rt . If exactly one
element is available (Xt.2 is not determined yet), we keep the same buffer
size by requesting one extra element (Rs=unit |Rt ). If more than one element
is available, we decrease the buffer size by not requesting any extra element
(Rs=Rt ).

This adaptive version of the bounded buffer will work well if the consumer
reads the stream at a regular pace.

5.1.4 A batch processing buffer

The reader might be surprised by the solution proposed in the previous sections.
The abstractions effectively improve the network behavior of lazy evaluation,
but they do it by avoiding the distributed mechanism of lazy evaluation. We
were also disappointed by this solution when we realized this. So we came up
with a solution that relies on the distributed by-need mechanism.

In order to avoid the sequential “ping-pong” effect illustrated in Figure 5.1,
one may let the producer site trigger the evaluation of several elements in a row.
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proc {BatchBuffer N Xs}
proc {BatchLoop I Xs}

if I>0 then {BatchLoop I-1 Xs.2} else
{WaitNeeded Xs} {BatchLoop N Xs}

end
end

in
thread {BatchLoop 0 Xs} end

end

Snippet 5.4: An abstraction that forces the evaluation of a
stream in batches

Whenever the first element is requested, an abstraction forces the production
of n elements. In other words, we can force the producer to work by batches.

The abstraction is shown in Snippet 5.4. One simply has to call

{BatchBuffer N Xs}

on the producer’s site. The procedure creates a thread that detects when an
element is needed, and automatically makes the n−1 following elements needed.
The thread then waits until the element after that batch becomes needed, and
requests a new batch.

This abstraction can be used solely, or in combination with the simple
bounded buffer given in Snippet 5.1. When used solely, the full round trip
delay will occur only once every n elements. If the consumer uses the simple
bounded buffer, the round-trip delay can be completely hidden if n is large
enough.

5.2 Processes à la Erlang

In the language Erlang, almost everything is a process. A process consists
of a port, on which messages can be sent, and a function that processes the
messages. A process is created by the primitive spawn, and messages are sent
with the binary operator !:

Pid = spawn(F) % create a process from a function F

Pid ! Msg % send a message Msg to process Pid

The function takes a message from the incoming queue with the statement
receive. The statement uses pattern matching to specify valid messages, and
subsequent actions.

It is pretty easy to write a function Spawn in Oz that is similar to the
corresponding Erlang primitive. The function, shown in Snippet 5.5 on the next
page with an example, creates a port and runs the procedure in its own thread.
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%% create a process with unary procedure Process
fun {Spawn Process}

Xs Ys Self={NewPort Xs}
fun {Loop Xs}

case Xs of user(M)|Xt then M|{Loop Xt} end
end

in
thread Ys={Loop Xs} end
thread {Process Ys} end
Self

end

%% send message M to process A
proc {SendProc A M}

{Send A user(M)}
end

Snippet 5.5: Spawning an Erlang-like process in Oz

The procedure takes the stream of messages in argument. The procedure should
process the messages in a sequential way. The procedure SendProc sends a
message M to a process A. Note that messages are put in a record user(M) , in
order to distinguish them from system messages that are introduced below.

Here is an example with two processes A and B sending each other ping-pong
messages:

proc {ProcessA Xs}
case Xs of X|Xt then

case X
of stop then skip
[] ping(P) then {SendProc P pong(A)} {ProcessA Xt}
end

end
end
A={Spawn ProcessA}

proc {ProcessB Xs}
{SendProc A ping(B)}
case Xs of pong(P)|_ andthen P==A then skip end

end
B={Spawn ProcessB}

Process linking. Erlang processes can be linked together, such that when
one of them terminates abnormally, the other ones die also, unless they are
system processes. System processes are explained below. Linking is symmetric,
and implements a property which states that a group of processes must crash
as soon as one of them crashes. A process A adds the process B to its link set
by evaluating the built-in function link(B).
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%% link process Self to process A
proc {Link Self A}

{Send Self link(A)} {Send A link(Self)}
end

%% change the ’system process’ flag
proc {SetSystem Self B}

X in {Send Self system(B X)} {Wait X}
end

%% create a process with unary procedure Process
fun {Spawn Process}

Xs Ys Self={NewPort Xs} T
fun {Loop Xs Linkset Sys}

case Xs of X|Xt then
case X
of user(M) then M|{Loop Xt Linkset Sys}
[] system(B X) then X=unit {Loop Xt Linkset B}
[] link(A) then {Monitor A} {Loop Xt A|Linkset Sys}
[] exit(E) then {Notify E Linkset} nil
[] exit(A E) andthen Sys then X|{Loop Xt Linkset Sys}
[] exit(A normal) then {Loop Xt Linkset Sys}
[] exit(A E) then {Kill T} {Notify E Linkset} nil
end

end
end
proc {Monitor A}

thread
if {Member permFail {GetFaultStream A}} then

{Send Self exit(A crashed)} end
end

end
proc {Notify E Linkset}

for A in Linkset do {Send A exit(Self E)} end
end

in
thread Ys={Loop Xs nil false } end
thread

T={Thread.this}
try {Process Ys} {Send Self exit(normal)}
catch E then {Send Self exit(E)} end

end
Self

end

Snippet 5.6: Asymmetric linking and monitoring of processes



5.3 Failure by majority 67

In Snippet 5.6 on the facing page we propose a new implementation of Spawn

that handles linking and system processes. The internal loop of the process
handles system messages, and maintains a link set, i.e., a list of processes that
are notified of the termination of the current process. The message link(A) is
sent by the procedure Link , and notifies the current process that it is linked to
process A. The current process adds A to its link set, and monitors A to detect
a failure that A itself would not be able to notify.

When the process terminates, it sends the message exit(E) to itself, in
order to notify its link set. The value E describes the reason of the termina-
tion. Processes in the link set are notified with the message exit(Self E) .
The latter message is handled in a different way, depending on whether the
current process is a system process. Non-system processes are killed when E is
not normal , while system processes simply receive the message. The message
system(B) is sent by procedure SetSystem by the process itself in order to
change its status (system process or not).

5.3 Failure by majority

Failure detectors are extremely useful for writing programs that react to partial
failures. Failure handling can be written in a rule-based style. However our
detector model is weak in the sense that detectors are not required to be con-
sistent between sites. This can sometimes lead distributed programs to behave
strangely, because some sites consider an entity failed, and others don’t.

In this section we propose an algorithm that makes a group of N processes
find a consensus about the failure status of a given process. Group members
may themselves fail during the consensus algorithm. However, the algorithm
is guaranteed to reach consensus about crashed processes if less than N/2
processes crash.

5.3.1 Algorithm

The idea is quite simple. For the sake of simplicity, let us assume that the
group wonders about the status of process S. Whenever process P suspects
S, it broadcasts vote(P, +1). If it changes its mind about S, it broadcasts
vote(P,−1). Every process sums the values received from every other process,
and maintains how many of them have a positive account. When this number
becomes greater than N/2, it means that a majority of processes have suspected
S. At that point a message is broadcast to make all correct processes consider
S as permanently failed, i.e., {Break S} . The latter message must be broadcast
in a reliable manner, in order to guarantee the consistency between processes.

The algorithm is described in Figure 5.2 on the next page in the style of
Guerraoui et al. [GR06]. Processes perform actions when some events occur,
some of those events being messages. An implementation with objects is given
in Snippet 5.7 on page 71. The specificity of the algorithm is that there is
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upon S is suspect do

broadcast vote(self , +1)

upon S is non-suspect do

broadcast vote(self ,−1)

upon event vote(P, x) do

count .P := count .P + x

upon event kill(S) do

execute {Break S}

upon #{P | count .P > 0} > N
2

do

reliableBroadcast kill(S)

Figure 5.2: Majority voting for consensus on failure status of S

only one possible decision, and that decision is taken whenever a majority of
processes agreed with that decision. Moreover, the decision is monotonic.

Note. Counting the votes from a given process P consists in summing all the
+1’s and −1’s sent by P . The counter allows to receive votes from P in any
order. If all messages from P are received in order, the counter will always
belong to the set {0, 1}.

5.3.2 Correctness

Assume that S has crashed. Because we rely on eventually perfect failure
detectors, all correct processes will eventually suspect S forever. So at some
point, at least N/2 processes will broadcast a positive vote. And all correct
processes will eventually sum all the votes broadcast by the positive majority
we mentioned. Note that broadcasting the decision is only an optimization in
that case.

Now assume that S has not crashed. There may be enough suspicions
among the other processes to let one of them observe a majority of positive
votes. The latter observation might be temporary if processes change their
mind quickly. In that case, broadcasting the decision with a reliable algorithm
ensures that all correct processes will eventually consider S as permanently
failed.

In order to show the necessity of the final broadcast, let us imagine an
extreme case where only one process P observes a majority of positive votes.
Such a scenario is depicted in Figure 5.3 on the next page. A group of NX

processes X suspect S, then cancel their suspicion. Their messages reach P
faster than another group Y . The group Y has NY processes, that also suspect
S then revise their judgment. If we have both NX , NY < N/2 and NX +
NY > N/2, then only P will observe a majority of positive votes. If P does
not broadcast its observation, its view will not be consistent with the other
processes.
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PX Y

Figure 5.3: A scenario where only one process P observes a
majority

5.3.3 The whole code of processes

The process itself is implemented as an object that multiplexes voters. Each
process has one voter per other process it monitors. The whole code is given
in Snippets 5.8 to 5.12 on pages 72–74.

The class BaseProcess is the mother class of all processes. It creates the
process’ port, and a thread that processes messages. An identifier id is also
provided. The latter is useful if one wants to use a process as a key in a
dictionary.

The class ProcessWithFailureDetector extends BaseProcess by moni-
toring other processes. It is initialized with the list of processes, with their iden-
tifier and port. A process using this class should implement method failure()

in order to handle failures. In our example, this method is defined in subclass
MonitoringProcess .

The classes BestEffortBroadcast and ReliableBroadcast provide sim-
ple methods to broadcast messages to all processes. The latter is reliable in
the sense that either all correct processes deliver the message, or none of them
deliver it. Each process that receives the message broadcast it once, too. This
ensures the delivery in case the original sender crashes. This implementation
is not efficient, but it fulfills its specification.

The class MonitoringProcess is the main class. It multiplexes its voters,
and provides all the support they need for communicating. In method failure ,
you can see that the “opinion” of a voter is changed when the failure state of
the corresponding process changes.

5.3.4 Variants

The algorithm we gave was kept simple for the sake of explanation. But it is
quite flexible, and admits variants, which are easy to implement. Here are a
few ideas that can improve the abstraction.
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• One may change the number of positive votes that must be reached to
trigger the decision. A value of N/3 may be considered enough, for
instance.

• We have assumed the number of processes to be known and fixed. The
algorithm works fine if that number varies over time, and processes regu-
larly update this number. The condition for triggering the decision simply
has to be reevaluated.

• One should discard crashed processes when counting votes. One may
also discard suspect processes, such that only known correct processes
are taken into account. The latter idea requires more attention, because
as such, it would allow one process to suspect all other processes.
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class Voter
attr

broadcast % broadcast procedure
rbBroadcast % reliable broadcast procedure
decide % decide procedure
total % number of processes
id % identifier of this process
opinion % this process’ opinion (true or false)
votes % accumulated votes from each voter

meth init(broadcast:B rbBroadcast:RB decide:D N)
broadcast := B
rbBroadcast := RB
decide := D
total := N
id := {NewName}
opinion := false
votes := {NewDictionary}

end

%% set the process’ opinion (true for suspicion)
meth propose(B)

if B \= @opinion then
opinion := B
{@broadcast vote(@id ( if B then 1 else ˜1 end ))}

end
end

%% receive a vote from Id
meth vote(Id X)

@votes.Id := {Dictionary.condGet @votes Id 0} + X
if X > 0 then N in

N={Length {Filter {Dictionary.items @votes} IsPos}}
if N* 2 > @total then {@rbBroadcast decide} end

end
end

%% receive decision
meth decide

{@decide true }
end

end

fun {IsPos X} X>0 end

Snippet 5.7: Implementation of the majority voting algorithm
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class BaseProcess
feat port id

meth init()
Xs in
thread

try {ForAll Xs self }
catch _ then {Kill self .port}
end

end
self .port={NewPort Xs}
self .id={NewName}

end
end

Snippet 5.8: Base class of processes

class ProcessWithFailureDetector from BaseProcess
attr processes

meth initProcesses(IPs)
%% IPs is a list of pairs id#port
processes := {List.toRecord p IPs}
for Id#P in IPs do

thread
{Wait P}
for X in {GetFaultStream P} do

{Send self .port failure(Id X)}
end

end
end

end
end

Snippet 5.9: A class for processes that monitor each other

class BestEffortBroadcast from ProcessWithFailureDetector
meth broadcast(M)

{Record.forAll @processes proc {$ P} {Send P M} end }
end

end

Snippet 5.10: Implementation of best-effort broadcast
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class ReliableBroadcast from BestEffortBroadcast
attr delivered

meth initProcesses(IPs)
BestEffortBroadcast,initProcesses(IPs)
delivered := nil
{ self CheckDelivered}

end

meth CheckDelivered
%% some kind of ’garbage collection’ on delivered
delivered := unit |{List.takeWhile @delivered

fun {$ Id} Id \= unit end }
thread

{Delay 360000} {Send self .port CheckDelivered}
end

end

meth rbBroadcast(M)
%% note: unicity of messages is guaranteed by user
{ self broadcast(rbDeliver(M))}

end

meth rbDeliver(M)
if {Not {Member M @delivered}} then

delivered := M|@delivered
{Send self .port M}
{ self broadcast(rbDeliver(M))}

end
end

end

Snippet 5.11: Implementation of an “eager” reliable broadcast
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class MonitoringProcess from ReliableBroadcast
attr voters

meth initProcesses(IPs)
N={Length Ps}

in
ReliableBroadcast,init(IPs)
voters := {Record.mapInd {List.toRecord v IPs}

fun {$ I P}
proc {B M}

{ self broadcast(voting(I M))}
end
proc {RB M}

{ self rbBroadcast(voting(I M))}
end
proc {D B}

if B then { self kill(I)} end
end

in
{New Voter init(broadcast:B

rbBroadcast:RB
decide:D
N)}

end }
end

%% relay a message for a voter
meth voting(I M)

{@voters.I M}
end

%% failure detector notification, maybe change opinion
meth failure(I State)

{@voters.I propose(State \= ok)}
end

%% decide whether a process has failed
meth kill(I)

{Break @processes.I} {Kill @processes.I}
voters := {AdjoinAt @voters I proc {$ _} skip end }

end
end

Snippet 5.12: Main class, with one voter per process in the
group
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Language semantics

We now give a formal support to the language concepts we presented in Chap-
ters 2, 3 and 4. This chapter defines an operational semantics to Oz without
taking distribution into account. The next chapter presents a refinement of
that semantics, which models distribution, network, and failures. The refine-
ment also give a semantics to the annotation system and the failure handling
primitives.

Section 6.1 defines how to translate a program in Full Oz into an equivalent
program in Kernel Oz. Section 6.2 gives the notations and basic ingredients of
the semantic definitions. Sections 6.3 details the semantics of the declarative
part of the kernel language, while Section 6.4 gives the semantics of the non-
declarative part of the language.

6.1 Full language to kernel language

Every Oz program is equivalent to a program in Kernel Oz. In Chapter 2, we
have introduced the kernel language, and syntactic sugar of common idioms in
the full language. We now see how to formally translate an Oz program into an
equivalent Kernel Oz program. The kernel language is given by the grammar
in Figure 6.1. Both the declarative and non-declarative parts of the language
are given in the grammar.

The translation is defined by the relation ⇒, which reduces statements to
simpler statements. The kernel program equivalent to a given Oz program
is defined as the fixpoint of the program by the relation. This relation is
structural: one can reduce a statement inside another statement.

For the rest of the section, D denotes a declaration (statement or identifier),
E an expression, P a pattern, S a statement, SE a statement or expression,
and X and Y identifiers.
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S ::= skip | S1S2 | thread S end

| local X in S end

| X=Y | X=f(Y1 . . . Yn)

| if X then S1 else S2 end

| case X of f(Y1 . . . Yn) then S1 else S2 end

| {WaitNeeded X}

| proc {X Y1 . . . Yn} S end | {X Y1 . . . Yn}

| try S1 catch X then S2 end | raise X end | {FailedValue X Y }

| X=!! Y

| {NewCell X Y } | X0=Y := X1

Figure 6.1: Grammar of Kernel Oz

Expanding declarations. The following rules split up declarations into
declared identifiers and initializing statements. It simplifies declarations as
“local X=foo in ”. We assume that the statements that appear in the decla-
ration D have already been reduced to kernel statements.

D in SE ⇒ local D in SE end

local D in SE end ⇒ local decl(D) in stmt(D) SE end

local X1 X2 . . . Xn in SE end ⇒ local X1 in

local X2 . . . Xn in SE end

end

The functions decl and stmt respectively return the declared identifiers and the
statements of a declaration. The function ident returns the set of identifiers in
a pattern; each identifier is declared at most once. Those functions are defined
as

decl(X) = {X}

decl(P=E) = ident(P )

decl(P=E1:= E2) = ident(P )

decl(proc {X Y1 . . . Yn} S end ) = {X}

decl(S) = ∅

decl(D1 . . . Dn) = decl(D1) ∪ . . . ∪ decl(Dn)

ident(X) = {X}

ident(f(P1 . . . Pn)) = ident(P1) ∪ · · · ∪ ident(Pn)
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stmt(X) = ǫ

stmt(S) = S

stmt(D1 . . . Dn) = stmt(D1) . . . stmt(Dn)

Expanding nested expressions. Those are the kernel statements that con-
tain an expression E in place of an identifier. The reduction introduces an
identifier X , and expands the evaluation of E before evaluating the statement
itself. The identifier X is chosen such as to not occur in the original state-
ment. Notice that in the procedure call, the first non-identifier is expanded.
We assume that m, n ≥ 0.

E=E′ ⇒ local X=E in X=E′ end

if E then . . . end ⇒ local X=E in (if X then . . . end ) end

case E of . . . end ⇒ local X=E in (case X of . . . end ) end

proc {E . . .} S end ⇒ local X=E in (proc {X . . .} S end ) end

{Y1 . . . Ym E E1 . . . En} ⇒ local X=E in {Y1 . . . Ym X E1 . . . En} end

raise E end ⇒ local X=E in (raise X end) end

Expanding expressions. Function definitions are expanded to procedures.
The extra parameter X is chosen to not occur in a free position in E.

fun {. . .} E end ⇒ proc {. . . X} X=E end

Then we expand all the statements of the form X=E. The expansion often
brings the assignment to X inside the language constructs, which sometimes
declares new identifiers Yi. If X occurs in those declarations, then we substitute
this occurrence of X by another identifier. The result of this substitution is
denoted Y ∗

i or E∗.

X=(S E) ⇒ S X=E

X=thread E end ⇒ thread X=E end

X=local Y in E end ⇒ local Y ∗ in X=E∗ end

X=E1=E2 ⇒ X=E1 X=E2

X=if E then E1 else E2 end ⇒ if E then X=E1 else X=E2 end

X=case E of f(Y1 . . . Yn)
then E1 else E2 end

⇒ case E of f(Y ∗

1 . . . Y ∗

n )
then X=E∗

1 else X=E2 end

X=proc {$ . . .} S end ⇒ proc {X . . .} S end

X={E E1 . . . En} ⇒ {E E1 . . . En X}

X=try E1 catch Y then E2 end ⇒ try X=E1 catch Y ∗ then X=E∗

2 end

X=raise E end ⇒ raise E end
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The lazy expansion. Lazy functions can be defined by using fun lazy

instead of fun in their definition. The simplest way to expand this construct
is to create a thread that synchronizes on the demand, then evaluates the
function’s body expression. We assume that the parameter X does not occur
in a free position in E.

fun lazy {. . .} E end ⇒ proc {. . . X}
thread {WaitNeeded X} X=E end

end

While being correct, this expansion may suffer a slight performance over-
head, especially if the function is recursive. The overhead comes from the fact
that every recursive call creates a new thread. Recursive calls in tail position
do not need this extra thread. For those, one may let the current thread sus-
pend. This is correct as long as the initial call to the function is in a different
thread. The following expansion optimizes tail recursive calls.

fun lazy {F X1 . . .Xn} E end ⇒ local F ′ in

proc {F ′ X1 . . . Xn X}
{WaitNeeded X} (X=E)∗

end

fun {F X1 . . . Xn}
thread {F ′ X1 . . . Xn} end

end

end

The identifier F ′ is chosen to not occur in the definition of F . The extra
operation (X=E)∗ expands the statement X=E, and replaces every tail call to
F by a similar call to F ′.

The $ expansion. The main use of the $ sign is in expressions that define
a procedure, or in a procedure call. At some point such an expression E will
be reduced in a statement of the form X=E. The following rules show how to
reduce such a statement. P (X) denotes a pattern containing an identifier X ,
and P ($) is the same pattern with X replaced by $.

X=proc {$ . . .} S end ⇒ proc {X . . .} S end

X=fun {$ . . .} E end ⇒ fun {X . . .} E end

X={E1 . . . Em P ($) Em+1 . . . En} ⇒ {E1 . . . Em P (X) Em+1 . . . En}

More linguistic abstractions. The full language provides even more state-
ments, like class definitions, functor definitions, support for constraints, etc.
We do not show how to expand those in this work. Material can be found in
the book [VH04], and the documentation of Mozart [Moz99].
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6.2 Basics of the semantics

Here we give the basics of the operational semantics of the language. The
semantic rules prescribe how a running program can go from one state to
another. A program state is called a configuration. A configuration consists of
a set of threads connected to a shared store:

thread · · · thread
ց ւ

store

The thread is the basic unit of sequential computation. A computation consists
of a sequence of computation steps, each of which transforms a configuration
into another configuration. At each step, a thread is chosen, and executes an
atomic operation. The choice of the thread is nondeterministic among all the
executable threads in that configuration. Thread execution follow the inter-
leaving semantics.

6.2.1 The store

The store is a single-assignment store (or constraint store), extended with first-
class procedures, mutable entities, and a few other specific extensions [Smo95,
VH04]. The extensions will be introduced step by step, together with their
corresponding reductions rules. Those extensions are grouped together under
the term predicate store.

The constraint store contains variable assignments made by the program.
Assignments are between variables (x=y), or between variables and values
(x=v). The constraint store is a conjunction of such assignments. It has the
property of being monotonic, in the sense that one can only add assignments;
existing assignments cannot be removed.

Store entailment. The constraint store has a logic nature, it can entail
information that is not directly present in the store. For instance, the store
x=3 ∧ x=y entails y=3. We denote a store by σ, and a basic relation like an
equality by β. The statement σ |= β means that the store σ entails β. We
assume that the store conjunction is associative, commutative, and has neutral
element ⊤, which also denotes the empty store.

What the constraint store entails is defined by the following inference rules.
The rules are given with premises on top of a horizontal line, and a conclusion
below. The horizontal line is not shown when the premises are true. The very
first rule states that the store entails at least what it contains, and in particular,
that adding information in the store never reduces entailment.

σ ∧ β |= β (6.1)

The next rules are specific to the equality relation. Rules (6.2) simply reflect
that equality is reflexive, symmetric, and transitive. The metavariables t, u, v
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can be either variables or values. The values we consider here are either simple
values, or records.

σ |= t=t
σ |= u=v
σ |= v=u

σ |= t=u σ |= u=v
σ |= t=v

(6.2)

We now define rules for record equality. Two records are equal if and only
if they have identical labels, arities, and their fields are pairwise equal. The
following two rules establish the “positive” side of this statement.

σ |= u1=v1 · · · σ |= un=vn

σ |= f(u1 . . . un)=f(v1 . . . vn)
(6.3)

σ |= f(u1 . . . un)=f(v1 . . . vn)
σ |= ui=vi

1 ≤ i ≤ n (6.4)

The constraint store can also disentail some equalities, i.e., inferring that they
are false. The following rules state explicitly that records with different labels,
arities, or different corresponding fields are unequal.

f 6=g or m 6=n
σ |= f(u1 . . . um)6=g(v1 . . . vn)

(6.5)

σ |= ui 6=vi

σ |= f(u1 . . . un)6=f(v1 . . . vn)
1 ≤ i ≤ n (6.6)

Determinacy. We can generalize a bit store entailment, in order to introduce
derived concepts like determinacy. We say a variable x is determined by a store
σ if σ entails that it is equal to a given value. We note this as σ |= det(x). If
the store cannot infer the value of the variable, we say that the variable is free.

σ |= x=v
σ |= det(x)

for a certain value v (6.7)

Ask and tell. The two basic operations on a store are called ask and tell.
The ask operation queries the store to know whether a given constraint is
entailed or disentailed. Asking β on store σ returns a positive answer if σ |= β,
a negative answer if σ |= ¬β. There is no answer otherwise. The monotonicity
of the store guarantees that the answer of an ask never changes.

The tell operation adds a basic constraint to a store, provided that the
store remains consistent. The store becomes inconsistent as soon as it infers
something like 1=2, for instance. Telling β to σ updates the store to σ∧β. The
rules that update the store are written such that they never make the store
inconsistent. If an inconsistency could be introduced by a program statement,
that statement should fail.
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Predicate store. The predicate store is subject to the principle of substitu-
tion by equals. The following inference rule states that an instance of predicate
p is entailed by the store if the store contains a similar predicate whose argu-
ments are pairwise equal.

σ |= u1=v1 · · · σ |= un=vn

σ ∧ p(u1, . . . , un) |= p(v1, . . . , vn)
(6.8)

Contrary to the constraint store, elements of the predicate store can be re-
moved, or replaced. The valid ways to update the predicate store depends on
each predicate, and is defined by the semantic rules.

6.2.2 Structural rules

The semantics are given by transition rules (or reduction rules1) that describe
valid computation steps. The rules have the form

T T ′

σ σ′
if C

It states that a configuration with a multiset of threads T and store σ can
be reduced to the configuration with threads T ′ and store σ′, provided the
condition C is fulfilled. We often write the left-hand side of the rule as a pattern,
so that a configuration must match the pattern for the rule to be applicable.
The disjoint union of multisets is written with commas, and singletons are
written without curly braces. For instance, “T1, T , T2” stands for {T1} ⊎ T ⊎
{T2}. There is no ambiguity because of the thread syntax.

The following two rules are convenient for simplifying the expression of the
rules. The first one expresses the relative isolation of concurrent threads: a
subset of the thread may reduce without directly affecting the other threads.

T ,U T ′,U
σ σ′

if
T T ′

σ σ′
(6.9)

The second rule states that stores can be considered up to equivalence. This
allows to choose the most convenient representation for a store in a reduction
rule.

T T
σ σ′

if σ and σ′ are equivalent (6.10)

Store equivalence is defined as follows. Let us first consider the constraint
store. Two stores σ = β1 ∧ · · · ∧ βn and σ′ = β′

1 ∧ · · · ∧ β′

n′ are equivalent if

σ |= β′

i for every i, and σ′ |= βj for every j. (6.11)

1This expression comes from the chemical analogy of transition rules, where the execution

takes a statement, and reduces it to a simpler statement.
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The other part of the store follows a similar rule, except that each instance of a
predicate in σ must correspond to exactly one predicate in σ′. This is necessary
for some predicates, like the one that defines the current state of a cell, which
must occur exactly once per cell in the store.

6.3 Declarative subset of the language

6.3.1 Sequential and concurrent execution

A thread is a sequence of statements S1S2 . . . Sn. Parentheses are introduced
to avoid ambiguities when necessary. The empty thread is written (). The
abstract syntax of threads can thus be defined as

T ::= () | S T (6.12)

The empty thread reduces to an empty multiset of threads. A nonempty thread
reduces by reducing its first statement. The latter rule will again simplify the
expression of rules.

()
σ σ

S T S′ T
σ σ′

if
S S′

σ σ′
(6.13)

The empty statement, sequential composition, and thread statement are
tied to the notion of thread. For those rules we have to show explicitly how
they modify the structure of the threads. Notice that the latter creates a new
thread with the statement S only.

skip T T
σ σ

(S1 S2)T S1 (S2 T )
σ σ

thread S end T T, S
σ σ

(6.14)

6.3.2 Variable introduction

The local statement creates a new variable in the store, and make the de-
clared identifier correspond to that variable. Instead of maintaining an explicit
mapping between identifiers and variables, we directly substitute the declared
identifier by its corresponding variable. The notation S[X/x] stands for the
substitution of X by x in S. The substitution takes care of lexical scope issues.

local X in S end S[X/x]
σ σ

where x is a fresh variable (6.15)

The condition of the rule requires x to be a fresh variable. A fresh variable is
a variable that does not appear anywhere in the initial configuration. This can
written formally, but we have chosen to keep the rule more readable.
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Variable substitution. The identifier substitution operation is quite usual.
Assume that θ denotes the substitution [X/x]. Let χ denote an identifier or a
variable.

χθ =

{

x if χ = X

χ otherwise
(6.16)

We now define the substitution inductively on the syntax of statements. The
following statements do not involve lexical scoping.

(skip )θ = skip (6.17)

(S1 S2)θ = S1θ S2θ (6.18)

(thread S end)θ = thread Sθ end (6.19)

(χ1=χ2)θ = χ1θ=χ2θ (6.20)

(χ=c)θ = χθ=c (6.21)

(χ=f(χ1 . . . χn))θ = χθ=f(χ1θ . . . χnθ) (6.22)

(if χ then S1 else S2 end)θ = if χθ then S1θ else S2θ end (6.23)

({χ χ1 . . . χn})θ = {χθ χ1θ . . . χnθ} (6.24)

(raise χ end)θ = raise χθ end (6.25)

In the following equations, we assume that the lexical scope introduced by the
statement does not catch X , i.e., X is different from the identifiers Y, Y1, . . . , Yn.

(local Y in S end )θ = local Y in Sθ end (6.26)
(

case χ of f(Y1 . . . Yn)
then S1 else S2 end

)

θ =
case χθ of f(Y1 . . . Yn)

then S1θ else S2θ end
(6.27)

(proc {χ Y1 . . . Yn} S end )θ = proc {χθ Y1 . . . Yn} Sθ end (6.28)

(try S1 catch Y then S2 end )θ = try S1θ catch Y then S2θ end (6.29)

We now define the substitution when X is caught by the lexical scope of the
statements. We assume that X ∈ {X1, . . . , Xn}.

(local X in S end )θ = local X in S end (6.30)
(

case χ of f(X1 . . . Xn)
then S1 else S2 end

)

θ =
case χθ of f(X1 . . . Xn)

then S1 else S2θ end
(6.31)

(proc {χ X1 . . . Xn} S end )θ = proc {χθ X1 . . . Xn} S end (6.32)

(try S1 catch X then S2 end )θ = try S1θ catch X then S2 end (6.33)

6.3.3 Unification

The unification operation in Oz imposes equality between two terms. It in-
crementally tells basic constraints to the store until the equality is entailed or
disentailed by the store. The operational semantics of unification is therefore
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non atomic. This lack of atomicity permits a realistic extension of unification
in the distributed case.

The following two rules terminate the unification when it is either entailed,
or disentailed. The statement fail is used for the sake of readability; it is
shorthand for raise failure end , which raises a failure exception.

u=v skip

σ σ
if σ |= u=v (6.34)

u=v fail

σ σ
if σ |= u 6=v (6.35)

We then give the rule that incrementally tells basic constraints to the store.
Those basic constraints are necessary for the unification to succeed. They are
of the form x=t, where x is not determined by the store yet, and t is either a
variable or a value.

u=v u=v
σ σ ∧ x=t

if σ ∧ u=v |= x=t and σ 6|= det(x) (6.36)

There exists an optional simplification rule, that rewrites a unification as
another one. This simplification does not change the effect of unification, but
it allows an implementation to simplify it.

u=v u′=v′

σ σ
if σ ∧ u=v |= u′=v′ and σ ∧ u′=v′ |= u=v (6.37)

Example. Executing x=f(y) with the store σ ≡ x=f(x1) ∧ x1 = 2 tells y=2
to the store, then reduce to skip . Indeed, the first reduction applies since the
store inference rules give

σ ∧ x=f(y) |= x=f(y)

σ ∧ x=f(y) |= f(y)=x σ ∧ x=f(y) |= x=f(x1)

σ ∧ x=f(y) |= f(y)=f(x1)

σ ∧ x=f(y) |= y=x1 σ ∧ x=f(y) |= x1=2

σ ∧ x=f(y) |= y=2

The rule leads to the store σ′ ≡ σ ∧ y=2, which entails x=f(y):

σ′ |= x=f(x1)

σ′ |= x1=2

σ′ |= y=2

σ′ |= 2=y

σ′ |= x1=y

σ′ |= f(x1)=f(y)

σ′ |= x=f(y)
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6.3.4 Conditional statements

Those statements perform an ask operation on the store, and possibly block
until a condition is entailed or disentailed.

The if statement. The classical conditional statement reduces depending
on the value of its condition variable. The statement waits until the variable
equals true or false , then reduces accordingly:

if x then S1 else S2 end S1

σ σ
if σ |= x=true (6.38)

if x then S1 else S2 end S2

σ σ
if σ |= x=false (6.39)

The value of x is usually determined by a boolean function, like a comparison
operator. If x is different from true and false , the statement reduces by
raising an exception (see Section ).

The case statement. It can be seen as a linguistic abstraction for pattern
matching, expressed in terms of a conditional statement, variable introduction,
and record operations Label and Arity . However the concept is important
enough to be presented with its semantic rules.

case x of f(X1 . . .Xn)
then S1 else S2 end

S1[X1/x1] · · · [Xn/xn]

σ σ
if σ |= x=f(x1 . . . xn)

(6.40)

case x of f(X1 . . . Xn)
then S1 else S2 end

S2

σ σ
if σ |= x6=f(x1 . . . xn) (6.41)

The pattern matches if the store entails the equality x=f(x1 . . . xn), for some
variables x1, . . . , xn. In case of a match, the statement reduces to S1, where
the identifiers Xi are substituted by the corresponding variables xi in x. If
the store disentails any such equality, the statement reduces to S2. If the store
does not contain enough information to decide one way or another, then the
statement cannot reduce.

Waiting for determinacy. We have defined above what it means for a store
to determine a variable. Waiting for the determination of a variable is the most
direct way to show the dataflow behavior of variables. It can be expressed
explicitly with the unary procedure Wait . Its semantics is extremely simple: it
reduces to skip once its argument is determined.

{Wait x} skip

σ σ
if σ |= det(x) (6.42)
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6.3.5 Names and procedures

Names are unforgeable constants, and have therefore no textual representation.
They are useful to give a unique identity to a language entity like a procedure
or a cell. But they can also be used as first-class values by a programmer.
Such a value can be confined by lexical scope to the implementation of a data
structure, for keeping a feature hidden to the user. For instance, names are
used to define private methods in a class, which are by default only accessible
from within the class.

Names are created explicitly by the operation NewName. Its semantics are
given by the following reduction rule. Every fresh name is guaranteed to be
different from all other existing names and values. Names are created in a way
similar to variables. The semantic statement x=ξ is obtained by semantic rule
reduction only. This reduction clearly separates the name creation from the
binding of the variable x.

{NewNamex} x=ξ
σ σ

where ξ is a fresh name (6.43)

Procedures. The proc statement creates a procedure in the store. The pro-
cedure value consists in a name ξ that is associated to a statement abstraction
in the procedure store by the pair ξ : λX1 . . . Xn.S. All the free identifiers of
S are in the set {X1, . . . , Xn}. The name gives the procedure its identity.

Procedure application performs an ask to the store. For applying procedure
p, p must be equal to a name ξ that is associated to a statement abstraction.
Procedure application thus blocks if p is not determined by the store. Once the
procedure is known, the call reduces to the abstracted statement, where each
parameter is substituted by the corresponding argument in the call.

proc { p X1 . . .Xn} S end p=ξ
σ σ ∧ ξ:λX1 . . .Xn.S

ξ a fresh name (6.44)

{ p x1 . . . xn} S[X1/x1] · · · [Xn/xn]
σ σ

if σ |= p=ξ ∧ ξ:λX1 . . .Xn.S (6.45)

6.3.6 By-need synchronization

Lazy evaluation, or demand-driven computation, is possible in Oz via the by-
need synchronization mechanism. It works as follows. In a producer-consumer
scheme, the producer and the consumer are in separate threads, and share a
logic variable x. The producer simply blocks until a consumer requires x to
be determined in order to reduce. The mechanism that allows the producer to
detect the need of a consumer is called by-need synchronization. Note that the
mechanism is very general, and allows several producers and consumers for a
single variable.
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The semantics is defined in terms of ask and tell on the by-need store. The
latter is an extension of the constraint store, and is monotonic as well, which
makes this language concept fully declarative. The predicate needed(x) is used
to synchronize producers and consumers: it is automatically told to the store by
the consumer if the determinacy of x is required for its reduction. The producer
uses the unary procedure WaitNeeded to synchronize on the entailment of the
predicate by the store.

In our proposal, we consider that determined variables are needed by con-
vention. This simplifies the behavior of a variable. We identify three states,
which are ordered in this way: free, needed, and determined. State transi-
tions follow that order, which ensures the monotonicity of the store. Moreover,
this convention disambiguates a producer-consumer situation where a consumer
would bind the shared variable. The variable automatically becomes needed,
and the producer is woken up. We provide this property with the following
inference rule.

σ |= det(x)
σ |= needed(x)

(6.46)

Now consider a statement S. We define needed(S) as the set of variables
which must be determined for S to be executable.

x ∈ needed(S) iff

{

for every store σ:

if S is executable with σ, then σ |= det(x)
(6.47)

The condition can also be expressed as: the statement S cannot reduce in a
configuration where x is not determined. The definition directly applies to the
Wait statement: x ∈ needed({Wait x} ). The variable x is also needed by the
statements “if x . . .” and “case x . . .”.

The first reduction rule below describes how the predicate needed(x) is told
to the store. The second rule states that the statement {WaitNeeded x} asks
the store for the predicate needed(x), and reduces to skip once it is entailed.

S S
σ σ ∧ needed(x)

if x ∈ needed(S), and σ 6|= needed(x) (6.48)

{WaitNeeded x} skip

σ σ
if σ |= needed(x) (6.49)

6.4 Nondeclarative extensions

6.4.1 Nondeterministic wait

The function WaitTwo takes two arguments, and returns the number of the
argument that is determined (1 or 2). The returned value is nondeterministic
in case both arguments are determined. It can be used for merging streams,
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for instance.

{WaitTwo x y z} z=1

σ σ
if σ |= det(x) (6.50)

{WaitTwo x y z} z=2

σ σ
if σ |= det(y) (6.51)

6.4.2 Exception handling

We first introduce the try statement. In order to simplify the management of
the scope defined by the statement, we consider a catch statement, which can
only be obtained by the reduction of the first rule below. The catch statement
itself reduces to skip . These two rules model all executions where no exception
is raised.

try S1 catch X then S2 end S1 (catch X then S2 end)
σ σ

(6.52)

catch X then S2 end skip

σ σ
(6.53)

Consider now the raise statement. This statement is either written ex-
plicitly in the program, or is obtained by a reduction rule in case of an error.
For instance, an if statement reduces to a raise statement if the condition
variable is not of type boolean. The effect of the raise statement is to skip all
statements after it, except a catch statement.

raise x end (catch X then S2 end ) T S2[X/x] T
σ σ

(6.54)

raise x end S T raise x end T
σ σ

if S is not a catch statement (6.55)

This simple model works fine with any number of nested try statements, and
reflects well that the scope defined by the statement only covers the current
threads. An exception in a thread cannot be caught by another thread.

Failed values. Those special values provide a way to transmit exceptions
from one thread to another. A failed value y encapsulates an exception x,
and is represented in the store by y=failed(x). It is created by the operation
FailedValue .

{FailedValue x y} y=failed (x)
σ σ

(6.56)
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If a statement S needs a failed value, S immediately reduces by raising the
exception. The exception is also raised if the statement tries to bind the value.

S raise x end

σ σ
if y ∈ needed(S) and σ |= y=failed(x) (6.57)

u=v raise x end

σ σ
if σ ∧ u=v |= det(y) and σ |= y=failed(x) (6.58)

6.4.3 Read-only views

Oz provides a useful concept for protecting data structures from accidental
bindings from the user. This protection allows a user to read a variable without
being able to bind it. The idea is to pair two variables x and y by making y a
read-only view of x. We write this pairing as y=view (x). Such a pair is created
by the “bang bang” operator !! .

y=!! x y=z
σ σ ∧ z=view (x)

where z is a fresh variable (6.59)

Once the variable x is determined, being a view of x implies being equal to x.
This property is given by the following inference rule. Note that it could be
used to drop views from the store, and replace them by equalities: when x is
determined, y=view (x) is replaced by y=x.

σ |= y=view (x) σ |= det(x)
σ |= y=x

(6.60)

Preventing unification. As read-only views cannot be determined before
their variable, we have to strengthen the condition for binding a variable during
unification, and make sure that we never bind a read-only view of a variable.
The rule (6.36) is rewritten as

u=v u=v
σ σ ∧ x=t

if

{

σ ∧ u=v |= x=t

σ 6|= det(x), and for all y, σ 6|= x=view (y)
(6.61)

Views and by-need synchronization. Read-only views can be used to
protect lazy computations, provided that a variable becomes needed when its
view is needed. The following inference rule on the store does the job.

σ |= y=view (x) σ |= needed(y)
σ |= needed(x)

(6.62)

Just like a determined variable is needed, one can expect that any attempt to
determine a view by unification makes the view needed. Although it does not
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exactly fit our definition of needing a variable, we propose the following rule,
which makes views needed in case of unification.

u=v u=v
σ σ ∧ needed(y)

if

{

σ ∧ u=v |= det(y)

σ |= y=view (x), and σ 6|= needed(y)
(6.63)

6.4.4 State

All stateful entities can be built on top of cells. The semantics of cells will
therefore serve as a reference for all stateful entities with synchronous opera-
tions: arrays, dictionaries, etc. Ports can also be built on top of cells. However
we will consider a fully asynchronous version of the Send operation, which will
be given a specific distributed semantics.

A cell is semantically defined as a name associated to a state in the stateful
store. If ξ is the name of the cell, the stateful store contains the predicate
ξ:x, where the variable x is the current state of the cell. The creation of a cell
consists in creating a name, and adding an initial state for it in the stateful
store.

{NewCell x c} c=ξ
σ σ ∧ ξ:x

where ξ is a fresh name (6.64)

Just like names, the statement reduces to unifying the cell variable to the name:
c=ξ. This separates the creation of the cell from the binding of the variable c.

Synchronous operations. All synchronous operations can be modeled as
a cell exchange operation. This operation possibly changes the state of the
entity, and returns its former state. The semantics of the operation is given by
the following reduction rule.

x=c:= y x=w
σ ∧ ξ:w σ ∧ ξ:y

if σ |= c=ξ (6.65)

Asynchronous operations. The operation Send on port will serve as a
reference for asynchronous operations. Its specificity is that the statement re-
duction and the state update are not necessarily made together. The statement
reduction corresponds to the message begin sent, and the state update to the
message being received.

Let us first propose a definition of ports on top of cells. The port is defined
as a cell that contains a part of the stream of received messages. This reference
to is used to extend the stream as new messages arrive. The stream of messages
does not reveal the tail itself, but a read-only view instead. This guarantees
that only the port abstraction can add messages to the stream.
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proc {NewPort S P}
T in P={NewCell T} S=!!T

end

proc {Send P X}
T in X|!!T = P := T

end

The semantics of NewPort is derived from its code. However the semantics
given by this definition of Send is not satisfactory. This definition is actually
synchronous. It works perfectly in a centralized setting. It has the observable
property that all messages sent from a given thread are received in the order
they were sent. In other words, each thread imposes a partial order on the
reception of its own messages. We call this property the sender ordering.

Let us propose a fully asynchronous definition of Send. The definition below
allow messages to arrive in any order. We will use this definition as a reference.

proc {Send P X}
thread T in X|!!T = P := T end

end

Let us provide semantic rules that reflect well the semantics of the asynchronous
Send. The thread created is modeled as a special thread n⇐x, which represents
the message being sent. This special thread reduces upon message reception,
which adds the message to the message stream.

{Send p x} T T, ξ⇐x
σ σ

if σ |= p=ξ (6.66)

ξ⇐x
σ ∧ ξ:t σ ∧ ξ:t′ ∧ t=x|s ∧ s=view (t′)

if s, t′ are fresh variables (6.67)

Note that the real semantics of Send satisfies the sender ordering property.
This property is clearly not satisfied by our semantic rules. It would require
to model one message queue per port and per thread. We have chosen to keep
the semantics simple, as we believe that this improved model is not significant
for the operation itself.
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7
Distributed semantics

The operational semantics we give in this chapter refines the centralized se-
mantics given in the former chapter. The refinement is defined in the following
way: every distributed configuration D maps to a centralized configuration C,

and every distributed reduction D
d
→ D′ maps to a valid centralized reduction

C
c
→ C′. The identity reduction, where C=C′, is considered valid. This kind of

property is usually visualized by a commutative diagram like

C
c
→ C′ (centralized)

↑ ↑

D
d
→ D′ (distributed)

The semantics should reflect some aspects of the distribution, like partial
failures and network latency. Those are necessary to reason about the program.
The semantics should also reflect the distribution strategy of entities. Not all
entities are distributed the same way. For instance, stateful entities allow at
least three schemes (centralized, mobile, and replicated). Each strategy should
be clearly identifiable in the semantics, but they all must map to the same
centralized semantics.

That being said, the semantics should abstract as much as possible the
details which are not relevant for the programmer. For instance, we do not
describe how failures are detected in practice, but we give conditions that fail-
ure detectors must satisfy. Neither do we specify how communication takes
place over the network, how data are serialized, or how Oz names are guaran-
teed unique across machines. Those issues are supposed to be solved for the
programmer. What the semantics give are the elements that the programmer
must be aware of, like network and site failures, and the elements that are un-
der the programmer’s control, like the distribution strategy and failure modes
of language entities.

93
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Sections 7.1 and 7.2 define store extensions that reflect the sites, the net-
work, and how entities are distributed among sites. The semantics of Annotate

is also given there. Sections 7.3 and 7.4 give the distributed semantics for the
declarative and nondeclarative parts of the kernel language, respectively. Sec-
tion 7.5 gives the semantics of the fault stream and the operations Kill and
Break . Section 7.6 gives the mapping from distributed to centralized semantics.

7.1 Reflecting network and site behavior

The basic principle of a distributed semantics is to incorporate some infor-
mation about the network and sites in the system. The semantics implicitly
provides a formal model of the program environment. The advantage is to
reflect site and network behavior at the programming language level. So that
the programmer can explain or predict the effect of environment changes on
his or her program.

7.1.1 Locality

The very first consequence of distributing a program is to introduce a notion
of locality. Each site in the system has only a partial view of the whole store.
Though the network transparency aims at abstracting this fact, it is essential
for reflecting performance and failure issues. We consider that a distributed
configuration is like a centralized configuration, where each thread and each
store element is tagged with a site identifier. Consider for instance

(y=x+1 z=y* 2)a, (w=z>100)b

(x=42)a ∧ (x=42)c ∧ . . .

The first thread runs on site a, while the second thread runs on site b. The
store contains at least the constraint x=42, which is present on both sites a
and c. Dropping the site index gives an equivalent centralized store.

The local configuration of a site a in the system is simply the restriction
of the distributed configuration to the elements indexed by a, that we denote
T |a/σ|a. The operator |a (“at a”) is defined by the following equations. Both
β and γ denote predicates, but γ has either a subscript different from a or no
subscript (like the predicate a↔b defined in the next section).

(T , T ′)|a = T |a, T ′|a

Ta|a = T

Tb|a = ∅

(σ ∧ σ′)|a = σ|a ∧ σ′|a

βa|a = β

γ|a = ⊤

(7.1)

7.1.2 Network failures

Let us first enrich the store with information about network links. A network
link between sites a and b is operational when the predicate a↔b is present in



7.2 Reflecting entity behavior 95

the store. We consider for the sake of simplicity that those links are bidirec-
tional.

σ |= a↔b
σ |= b↔a

(7.2)

The rules below temporarily cut network links, and restores them. We consider
that those rules are triggered by the system itself. They define valid state
transitions for the model of the environment.

σ ∧ a↔b σ σ σ ∧ a↔b
if σ 6|= a↔b (7.3)

7.1.3 Site failures

The notion of locality above is expressed in terms of site. We now model site
failures in the semantics. Remember that a site failure is of the kind crash-stop.
Its effect is simply to drop the part of the configuration that is specific to that
site. It is described by the global reduction rule

T T ↓ a
σ σ ↓ a

(7.4)

where the operator ↓ a (“down a”) is defined by the following equations, with
the same convention as above for γ.

(T , T ′) ↓ a = (T ↓ a), (T ′ ↓ a)

Ta ↓ a = ∅

Tb ↓ a = Tb

(σ ∧ σ′) ↓ a = (σ′ ↓ a) ∧ (σ′ ↓ a)

βa ↓ a = ⊤

γ ↓ a = γ

(7.5)

Site failures have no synchronous effect on other sites. Therefore the oper-
ators ↓ and | have the following properties. The first states that a site failure
removes everything that is specific to the site, and the second states that other
sites are not affected by the failure.

(C ↓ a)|a = ⊤ (7.6)

(C ↓ a)|b = C|b (7.7)

7.2 Reflecting entity behavior

In order to handle distributed entities, we introduce three extra ingredients
that reflect parts of their behavior. Those elements are mostly independent
from the type of entity.
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7.2.1 Entity failures

In order to reflect entity failures, we introduce the predicate alive(e) in the
predicate store. This predicate is put in the store at the creation of e, and
its absence means the permanent failure of e. It may occur at most once per
entity in the whole store, and is localized on a given site (its coordination site).
Note that it applies to variables as entities, and that alive(x) is not equivalent
to alive(ξ), even if x=ξ in the store. The principle of substitution by equals
does not apply to the predicate alive.

Remember that each site maintains a current fault state for each entity in
the system. We assume that on every site a, the store entails one equality like
(fstate(e)=s)a, which states that a considers entity e to be in fault state s. The
precise definition of how the store entails that fact and modifies it, is given in
Section 7.5. The principle of substitution by equals does not apply to fstate.

An entity e is correct if and only if the distributed store contains alive(e)a

for some site a. Removing the predicate automatically makes e permanently
failed. For a site b to perform an operation on e, we will require e to be correct,
accessible, and not locally failed on b. Note that this condition is necessary
but not sufficient. In order to abstract a bit this condition, we introduce the
predicate correct on b, which is defined by the following equation.

correct(e, a)b ≡ alive(e)a ∧ a↔b ∧ (fstate(e)=ok )b (7.8)

Let us comment a bit on each of the conditions required by correct(e, a)b.

• The failure of site a causes the predicate alive(e)a to be dropped from
the store; this effectively prevents any further operation on e that would
require it to be correct. This property is enough to model the blocking
behavior of operations on failed entities.

• The second condition states that site b must be able to communicate with
site a. This is because making a consistent update of the entity generally
requires some synchronization with the coordination site of the entity.

• The third condition states that b considers e to be in fault state ok . This
means that b must be consistent with itself. This is necessary, as b may
consider e to be locally failed.

7.2.2 Entity annotations

Some entities have several alternatives for their distributed semantics. Which
alternative is used depends on an entity’s annotation. Every entity annotation
is visible in the store as a predicate, like stationary(e). Note that the predicate
is not localized to a site, which means that any site referring to the entity
should know its annotations.
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Let us consider protocol annotations. We define the predicates stationary,
migratory, replicated, variable, reply, immediate, eager, lazy. They are idempo-
tent and mutually inconsistent for a given entity. For instance, we have

variable(x) ∧ variable(x) ≡ variable(x)

stationary(ξ) ∧ replicated(ξ) ≡ ⊥

Access architecture annotations are defined in a similar way. Reference consis-
tency protocol annotations as well, except that an annotation specifies a subset
of the provided protocols. Note also that annotations may be inconsistent if
they are applied to the wrong type of entity. A cell cannot be annotated with
variable, for instance.

We also use the predicate annot(e, v) as an alternative notation to state that
entity e is annotated with v. Each predicate mentioned above corresponds to
exactly one value v:

annot(e, stationary ) ≡ stationary(e)

annot(e, migratory ) ≡ migratory(e)

...

annot(e, lazy ) ≡ lazy(e)

Setting annotations. Here we define how annotations are set on entities.
The first rule tells the annotation of the entity to the store. There is a similar
rule, which we don’t mention here, that raises an exception if the annotation
is inconsistent.

({Annotate e t} )a (skip )a

σ σ ∧ annot(e, v)
if











σ |= alive(e)a

σ|a |= t=v for a value v

σ ∧ annot(e, v) is consistent

(7.9)

The second rule defines the effect of a default annotation: if the entity is shared
by more than one site and no annotation was specified, a default one is picked
at the home site of the entity.

σ σ ∧ annot(e, v)
if



















σ|b refers to e

σ |= alive(e)a

v is default for e on a

σ ∧ annot(e, v) is consistent

(7.10)

The condition “σ|b refers to e” means that e occurs in a predicate or an equality
in the store σ|b.



98 Distributed semantics

7.3 Declarative kernel language

We now give the distributed semantics of language statements.

7.3.1 Purely local reductions

The rules that do not modify the store require very small adaptation to the
distributed case. Basically the threads must be localized on a site, and the
condition must be evaluated with the local store σ|a, where a is the site of the
reduced thread.

This is the case for the sequential and concurrent composition. Notice that
the thread statement creates a thread on the site where the statement reduces.
The conditional statements and procedure application are also extended in this
way.

7.3.2 Variable introduction and binding

The rules that introduce and bind variables require an extra adaptation. The
creation of a variable x on a site a automatically introduces the predicate
alive(x)a in the store:

(local X in S end )a (S[X/x])a

σ σ ∧ alive(x)a
x fresh variable (7.11)

This predicate is necessary for binding the variable, as shown in the rules
below. The first rule binds x on its coordination site first, while the second
rule is responsible for propagating the basic constraint from the coordination
site to the other sites. Note that the binding x=t proposed by site b depends
on its local store σ|b.

(u=v)b (u=v)b

σ σ ∧ (x=t)a
if











σ|b ∧ u=v |= x=t

σ|a 6|= det(x)

σ |= correct(x, a)b

(7.12)

σ ∧ (x=t)a σ ∧ (x=t)a ∧ (x=t)b
if











σ|b refers to x

σ|b 6|= x=t

σ |= correct(x, a)b

(7.13)

Notice how the latter rule propagates references to t on all sites b that refer to
the variable x.

7.3.3 Procedure creation and copying

Procedures do not require much adaptation, since they are values. However, we
should model the copying of the value from site to site. The value is copied at
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most once per site, which keeps the local stores consistent. In the rules below,
P is the abstraction λX1 . . .Xn.S.

(proc { p X1 . . . Xn} S end)a (p=ξ)a

σ σ ∧ (ξ:P )a
ξ fresh name (7.14)

σ ∧ (ξ:P )a σ ∧ (ξ:P )a ∧ (ξ:P )b
if











σ|b refers to ξ

σ |= eager(ξ) ∧ a↔b

σ 6|= (ξ:P )b

(7.15)

The latter rule propagates the abstraction P on all sites that refer to ξ. As a
consequence, all the references in the procedure body S are also propagated on
those sites.

Lazy copying. If the procedure is annotated with lazy , the copy of the
abstraction should be done lazily. The reduction rule for copying is similar to
the one above, except that it should be reducible only when it is needed on site
b, i.e., when a thread on b tries to call it.

Sb Sb

σ ∧ (ξ:P )a σ ∧ (ξ:P )a ∧ (ξ:P )b
if











p ∈ needed(S), σ|b |= p=ξ

σ |= lazy(ξ) ∧ a↔b

σ 6|= (ξ:P )b

(7.16)

7.3.4 By-need synchronization

This mechanism is easy to extend in the distributed case, since making variable
x needed consists in telling the constraint needed(x) everywhere in the system.
The two existing rules are extended as purely local rules, such that needed(x)
is told and asked locally. The additional rules below propagate the predicate
needed(x) to all sites via the coordination site, provided the variable is correct.

σ σ ∧ needed(x)a
if

{

σ |= correct(x, a)b ∧ needed(x)b

σ 6|= needed(x)a

(7.17)

σ σ ∧ needed(x)b
if

{

σ |= correct(x, a)b ∧ needed(x)a

σ 6|= needed(x)b

(7.18)

7.4 Nondeclarative extensions

We now complete the distributed semantics of Oz by extending the semantics of
nondeclarative language features to the distributed case. Like in the centralized
case, those features admit a semantics that is mostly compositional with respect
to the declarative part of the language.
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7.4.1 Exception handling and read-only views

The exception mechanism interacts with thread execution. Its reduction rules
are extended to purely local reductions. Failed values are also reduced locally,
and are copied from site to site just like ordinary values.

Read-only views are also handled locally. The basic constraint x=view (y)
is handled like an ordinary binding, and copied on all sites that refer to x. The
binding rule (7.12) is extended with the extra condition

for all y, σ|a 6|= x=view (y).

7.4.2 State

Stateful entities are somewhat richer when it comes to their distribution. As
we have seen already, several strategies are possible for maintaining their state.
We consider three strategies here, and each has its own semantics: stationary
state, migratory state, and replicated state. The properties of those strategies
have been discussed in Chapter 3. Our concern in this chapter is that all
variants are refinements of the centralized semantics.

Let us first extend the cell creation semantics. The new reduction rule is
pretty straightforward: we locate the state on the creation site, together with
the predicate alive(ξ). The cell is distributed once two sites at least refer to the
name ξ.

({NewCell x c} )a (c=ξ)a

σ σ ∧ alive(ξ)a ∧ (ξ:x)a
n fresh name (7.19)

Before we go into the details of the state operations, we have to describe
how the state “becomes” distributed among sites. In the case of stationary or
migratory state, nothing special is needed. The state is already present on the
right site. Replicated state needs some extra support for distributing the state.
All we need is one rule that copies the state from its home site a to every other
site b that refers to the entity.

σ ∧ (ξ:x)a σ ∧ (ξ:x)a ∧ (ξ:x)b
if











σ|b refers to ξ

σ |= correct(ξ, a)b ∧ replicated(ξ)

σ 6|= (ξ:x)b

(7.20)

Synchronous operations. We now give three semantic rules for the cell
exchange operation, each rule reflecting the cell’s possible distribution strategy.
The first rule shows a stationary cell: the state is located at site a. The
operation is performed at a.

The second rule shows a migratory cell. The operation reduces once the
state move to b, coming from another site b′. The semantics does not tell how b
and b′ are chosen, this is left to the actual protocol. But there is an interesting
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case when b = b′: the state remains on b and can be updated without any
network operation. This is the “caching” behavior of the migratory state.

The third rule shows a cell whose state is replicated on several sites. In the
rule, the symbol ∗ denotes the set of sites that have a copy of the cell’s state.
One can see that updating the state is costly: it requires the home site of the
cell to communicate with all the state replicas. However, if an operation does
not change the state, it can be performed on the local copy of the state.

(x=c:= y)b

σ ∧ (ξ:w)a

(x=w)b

σ ∧ (ξ:y)a
if

{

σ|b |= c=ξ

σ |= correct(ξ, a)b ∧ stationary(ξ)
(7.21)

(x=c:= y)b

σ ∧ (ξ:w)b′

(x=w)b

σ ∧ (ξ:y)b
if











σ|b |= c=ξ

σ |= correct(ξ, a)b ∧ migratory(ξ)

σ |= b′↔b

(7.22)

(x=c:= y)b

σ ∧ (ξ:w)∗

(x=w)b

σ ∧ (ξ:y)∗
if











σ|b |= c=ξ

σ |= correct(ξ, a)b ∧ replicated(ξ)

σ |= a↔∗

(7.23)

All those rules have an interesting special case. If site b has the state and
performs a read operation, none of the other sites is affected, and the state can
be read locally. The only condition is that the local fault state of the entity
must be ok . For this case all rules can be simplified to

(x=@c)b (x=w)b

σ ∧ (ξ:w)b σ ∧ (ξ:w)b
if

{

σ|b |= c=ξ

σ |= (fstate(ξ)=ok )b

(7.24)

Asynchronous operations. Just like in the centralized semantics, the Send

operation reduces immediately by sending a message p⇐x.

({Send p x} T )b Tb, (ξ⇐x)b

σ σ
if σ|b |= p=ξ (7.25)

The first rule below shows the case of the stationary port. The message is
received by the coordination site of the entity. Once delivered, the operation
is performed, and the binding of the stream is visible globally. The second
rule considers a mobile port. In that case, the message is kept locally until the
state comes at the site; the operation is then performed locally. The latter rule
considers a replicated port. All the copies of the state are atomically changed.

(ξ⇐x)b

σ ∧ (ξ:t)a σ ∧ (t=x|t′)a ∧ (ξ:t′)a ∧
alive(t′)a ∧ (t′=view ())a

if











t′ is a fresh variable

σ |= correct(ξ, a)b

σ |= stationary(ξ)

(7.26)
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(ξ⇐x)b′

σ ∧ (ξ:t)b σ ∧ (t=x|t′)b ∧ (ξ:t′)b′ ∧
alive(t′)b′ ∧ (t′=view ())b′

if



















t′ is a fresh variable

σ |= correct(ξ, a)b

σ |= migratory(ξ)

σ |= correct(t, b)b′

(7.27)

(ξ⇐x)b

σ ∧ (ξ:t)∗ σ ∧ (t=x|t′)a ∧ (ξ:t′)∗ ∧
alive(t′)a ∧ (t′=view())a

if



















t′ is a fresh variable

σ |= correct(ξ, a)b

σ |= replicated(ξ)

σ |= a↔∗

(7.28)

State failure. An important property of cells is that they fail once their state
is lost. In other words, if the store σ has no occurrence of a state predicate ξ:z
anywhere, the cell ξ must fail. In both the stationary and replicated protocols,
this situation follows from the failure of the coordinator site of the cell. But
in the migratory protocol, we have to add a specific rule that removes the
predicate alive(ξ)a from the store:

σ ∧ alive(ξ)a σ
if σ 6|= (ξ:z)b for all z and b (7.29)

7.5 Failure handling

7.5.1 Failure detectors

We provide a generic rule that reflects how the system may update the fault
stream of an entity on a site. Upon creation, every entity e in the system has
a fault stream on each site a, which is described in the store as the predicate
(fs(e)=s|t)a, where s is the current fault state of e, and t is the tail of the
stream. The latter is a read-only view, but for the sake of simplicity we will
treat it as a plain logic variable. The programmer can access it by calling
GetFaultStream :

({GetFaultStream e x} )a (x=s|t)a

σ σ
if σ |= (fs(e)=s|t)a (7.30)

The fault stream of e on a is updated by the rule

σ ∧ (fs(e)=s|t)a σ ∧ (fs(e)=t)a ∧
alive(t′)a ∧ (t=s′|t′)a

if

{

t′ fresh variable

cond(s, s′)
(7.31)
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where the condition cond(s, s′) is defined below. The site h is the coordination
site of e (its home site). Note that s in (7.34) must be different from permFail .

cond(ok , tempFail ) iff σ 6|= alive(e)h or σ 6|= a↔h (7.32)

cond(tempFail , ok ) iff σ |= alive(e)h and σ |= a↔h (7.33)

cond(s, permFail ) iff σ 6|= alive(e)h and σ |= a↔h (7.34)

cond(s, s′) is false otherwise (7.35)

As you can see in the first condition, a temporary failure for an entity e can
be reported on a site a when either the entity actually failed, or the network
link between a and h is down. The third condition states that detecting the
permanent failure of an entity requires site a to be able to reach the home site
of the entity. This condition is not fulfilled in general if the site h has crashed.
However, it can happen in certain cases, for instance if sites a and h are on the
same local area network (LAN). The operating system may report the crash of
the process corresponding to site h.

The current fault state of an entity on a given site, as it is defined in
Section 7.2 on page 95, is derived from its fault stream on that site. We define
it with the following inference rule.

σ |= (fs(e)=s|t)a

σ |= (fstate(e)=s)a
(7.36)

Fault stream of variables As stated in Section 4.2.3, the fault streams of
unified variables are merged. In order to define which one is bound to the
other, we assume that all variables in the system are ordered by a relation ≺.
This order is used by the system, but not directly available to the programmer
itself. So the semantic rules below give the possible ways to merge. The last
rule finalizes a variable’s fault stream when the variable is determined.

σ ∧ (fs(x)=s|t)a σ ∧ t=t′

∧ (fs(y)=s′|t′)a ∧ (fs(y)=s′|t′)a

if σ|a |= x=y ∧ x≺y ∧ s=s′ (7.37)

σ ∧ (fs(x)=s|t)a σ ∧ t=s′|t′

∧ (fs(y)=s′|t′)a ∧ (fs(y)=s′|t′)a

if σ|a |= x=y ∧ x≺y ∧ s 6=s′
(7.38)

σ ∧ (fs(x)=s|t)a σ ∧ t=nil
if σ|a |= det(x) (7.39)

Creation and finalization of the fault stream. Assuming that every site
maintains a fault stream for every entity in the system may be misleading.
Indeed, this does not take into account the fact that a site may forget some
information about an entity (see the discussion of Section 4.4 on page 54). So
we propose the following two rules for creating and finalizing the fault stream
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of an entity e on a site a. The concept of liveness of an entity is the usual
one used by garbage collectors. For the sake of conciseness, we skip its formal
definition.

T T
σ σ ∧ (fs(e)=ok |t)a

if











e is alive on T |a/σ|a

σ 6|= (fs(e)= . . .)a

t is a fresh variable

(7.40)

T T
σ ∧ (fs(e)=s|t)a σ ∧ t=nil

if e is not alive in T |a/σ|a (7.41)

7.5.2 Making entities fail

In this section, we define the operations Kill and Break .

Global failure. The operation Kill should make its argument fail, i.e., it
should remove the predicate alive(x)a from the store, where x is the argument
of the call. As the operation is asynchronous, we use a “kill” message x⇐†
that is similar to the messages used in Section 7.4.2.

({Kill x} T )b

σ
Tb, (x⇐†)b

σ
(7.42)

(x⇐†)b

σ ∧ alive(x)a σ
if σ |= a↔b (7.43)

Notice that the latter rule states explicitly that communication with the coor-
dinator site of x is necessary to make x permanently failed.

Local failure. The procedure Break is pretty easy to define. Its effect is to
change the fault state of the entity to localFail , unless the fault state already
has that value or permFail .

({Break x} )a (skip )a

σ ∧ (fs(e)=s|t)a σ ∧ (fs(e)=t)a ∧ alive(t′)a

∧ (t=localFail |t′)a

if σ |= s=ok or
σ |= s=tempFail

(7.44)

({Break x} )a (skip )a

σ ∧ (fs(e)=s|t)a σ ∧ (fs(e)=s|t)a

if σ |= s=localFail

or σ |= s=permFail
(7.45)

If site b has locally killed an entity e, the predicate correct(e, a)b will never be
entailed by the store. Hence, all operations that require e to be correct on b
block forever.
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7.6 Mapping distributed to centralized config-

urations

The definition we gave of a refinement on page 93 states that every distributed
configuration maps to a centralized configuration. This section defines precisely
that mapping.

7.6.1 The mapping

The mapping itself is pretty easy to define. Basically we collect the configura-
tions of all sites in the system. We define it in terms of the operator |a. The
disjoint union and conjunction operators range on the set of all sites in the
system.

centralized

(

T

σ

)

=
⊎aT |a
∧aσ|a

(7.46)

There is only a small issue with the conjunction of the local stores. They
are always consistent with each other, except for the entities’ fault streams,
which can be in different states. However, we can consider that a centralized
configuration possibly has several fault streams for a given entity. This looks
like the centralized system maintains many failure detectors for each entity,
which can have different views.

7.6.2 Network transparency

With this definition we can now formulate a theorem which relates the dis-
tributed and centralized semantics of the language Oz. As this property trans-
lates the network transparency at the semantic level, we call it the Network
transparency theorem. The theorem can be proven by induction on every dis-
tributed reduction rule.

Theorem (Network transparency). The distributed semantics of the language
is a refinement of its centralized semantics. In other words, for every pair of
distributed configurations D and D′, if D → D′ is a valid distributed reduction,
then centralized(D) → centralized(D′) is a valid centralized reduction.
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8
Implementation

This chapter describes the new implementation of the distribution of Oz, based
on the Distribution Subsystem (DSS). This work has been achieved by several
developers, among which Erik Klintskog, Zacharias El Banna, Boris Mej́ıas,
and myself. In order to make a clear distinction between the former and new
implementations, we will refer to them as “Mozart” and “Mozart/DSS”, respec-
tively.

In Section 8.1, we explain the architecture, and some principles underly-
ing Mozart/DSS. We show there that the implementation splits up into three
distinct layers. The topmost layer is the virtual machine, which has been mod-
ified as little as possible in order to take distribution into account. Section
8.2 describes the bottom layer, which provides all the distributed protocols.
Section 8.3 describes the middle layer, also known as the Glue, that interfaces
the virtual machine to the DSS layer.

8.1 Architecture of Mozart/DSS

The platform Mozart/DSS is a new implementation of the distribution of Oz,
based on the virtual machine of Mozart and the library DSS. The latter pro-
vides abstractions for distributing programming language entities. The general
architecture for a distributed entity is depicted in Figure 8.1 on the following
page. The diagrams shows the fundamental components implementing an en-
tity that is shared among three sites. The components are divided up into sites,
separated by bold vertical lines, and into implementation layers, separated by
dashed horizontal lines.

All language entities, local or distributed, are stored in virtual machine
heaps. A distributed entity can be seen as a set of local entities connected
together via the network, and cooperating in order to provide the illusion of a
single global entity to the programmer. Note that an entity in the heap might

107
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Figure 8.1: The three layers that implement the distribution in

Mozart/DSS

be only a stub, i.e., the state of the entity is not available locally. In that case,
it is necessary for that site to cooperate with other sites in order to complete
a language operation.

A distributed entity has a special hook that connects it to a proxy in the DSS

library. The proxies of a given entity are connected together with a coordinator
via network links. The coordinator and proxies form the coordination network
of the entity, which has a unique global identity. It is used to identify the
language entity across sites boundaries. The coordination network implements
the access architecture of the entity, which we introduced in Section 3.3.4.

The role of each layer. Each layer in the implementation plays a specific
role. The virtual machine layer implements the entity’s centralized semantics.
The DSS layer provides global naming for entities, a general serialization mech-
anism for user data, a set of selectable protocols implementing generic entity
operations, a distributed garbage collector with several protocols available, and
failure detectors for sites and entities.

The Glue layer implements the distributed semantics of entity operations by
mapping them to DSS entity operations. It implements the failure semantics of
entities, and makes both the local and distributed garbage collectors cooperate.
It also provides network communication channels for the DSS.

The author’s contributions. A prototype of the Glue layer was given to
us by Erik Klintskog. We revised its design, and implemented it entirely, with
a little help from our colleage Boris Mej́ıas. Together with Boris we modified
the Mozart marshaler to serialize and deserialize entities using the DSS. The
new language features, like annotations, the fault stream, and the operations
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Figure 8.2: Architecture of the DSS, shown for one entity shared

among three sites a, b, and c

Kill and Break , were implemented solely by the author. We rewrote all the
entity protocols in the DSS such that they could handle partial failures. We
also extended the DSS interface to handle and reflect entity failures.

We made a few contributions to the virtual machine, too. Together with
Fred Spiessens, we implemented our new design of the by-need synchronization
mechanism. We also had to adapt the virtual machine in order to handle the
new distribution of procedures and object, among others. Finally, we improved
the unification’s implementation to make it more incremental.

8.2 The Distribution Subsystem

The DSS library provides a set of protocols for distributing programming lan-
guage entities [Kli05]. It is itself split into a protocol layer, and a messaging
layer. The protocol layer brings together all the protocols to manage dis-
tributed entities. Protocols are partitioned in three classes, that handle or-
thogonal aspects of an entity’s distribution.

• Coordination protocols provide an entity’s unique identity, and maintain
its coordination network. They let proxies and their coordinators reach
each other by message passing.

• Entity protocols, or consistency protocols, implement generic entity oper-
ations. They also handle partial failures of entities.

• Reference protocols implement distributed garbage collection policies for
shared language entities.

Figure 8.2 shows the main DSS components for one entity shared among
three sites a, b, and c. The sites are separated by the vertical bold lines, and
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the horizontal dashed gray line splits up both layers. One can see that each site
has a proxy for the entity, and site b owns its coordinator; those components
implement the coordination protocol of the entity. Each proxy is connected to
a protocol proxy, while the coordinator has a protocol manager ; protocol prox-
ies and manager implement the consistency protocol of the entity. Finally, the
coordinator owns a home reference, and the remote proxies have a remote refer-
ence; those components implement the distributed garbage collection protocol
of the entity.

Some of those components, like a proxy with its protocol proxy, may call
each other directly, but they interact more generally via the messaging layer.
The latter provides a channel-based communication mechanism (reliable and
ordered message passing) between sites. Each site is abstracted by a DSite
component, which hides the communication channel, and reflects the fault sta-
tus of the given site. The DSS on each site maintains a set of known sites, as it is
shown in Figure 8.2 on the preceding page. Each site also has a representation
for itself, drawn with double lines in the figure.

Each component in the protocol layer can be addressed with its type (proxy,
coordinator, protocol proxy, protocol manager, or reference), the global identity
of its coordination network, and a DSite. For instance, the protocol proxy
on site c can easily send a message to its protocol manager via its proxy,
which knows the global identity and the DSite of its coordinator. The protocol
manager on site b can send a message to its protocol proxy on site a, with its
own reference to the DSite of a, and the global identity of its coordinator. This
facility greatly simplifies the implementation of the protocols.

By design, the coordination network provides a mean for each proxy to send
messages to its coordinator. In case the coordinator is stationary, each proxy
just has to know the coordinator’s site. All the DSS protocols are built on top of
this architecture. By default the protocol manager does not know its proxies,
so in some cases it maintains a list of DSite references corresponding to its
proxies. This list is built either explicitly by making proxies register to their
manager, or implicitly by collecting message origins. The latter case uses the
fact that a message is always delivered together with the DSite representing
the sender’s site.

8.2.1 Protocols for mutables

Those protocols implement three operations, namely read, write, and send. The
operations read and write are synchronous, and may return a result. The send
operation is similar to an asynchronous version of a write, and does not return
any value. There are essentially four protocols available in this category: the
stationary state protocol, the migratory state protocol, the pilgrim protocol,
and the invalidation protocol. The author made significant contributions to
the last three ones.
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Figure 8.3: Basic migratory state protocol

The stationary state protocol

This protocol is the simplest of all. Remote proxies send their operation re-
quests to their protocol manager, which performs the operation. If the opera-
tion is not a send, it returns a result message once the operation on the entity
has completed. The result message allows the proxy to resume the correspond-
ing suspended operation on its site.

The migratory state protocol

This protocol was first described in [HVS97, VHB+97, HVBS98], then extended
in [VBHC99] to make it handle permanent failures. The author proposed a
formalization of the extended protocol, and proved it correct in [BVCK00].
Mozart used that protocol for distributed cells and objects.

The protocol uses a token which is passed between the proxies in the coor-
dination network. The proxy holding the token has sole access to the state of
the distributed language entity, and the entity’s state is passed together with
the token. The migration of the token is shown in Figure 8.3. The protocol
manager M builds a forwarding chain with all the proxies requesting an oper-
ation. When a proxy P2 needs the state of the entity to perform an operation
for thread T, it sends a message get(P2) to M. The latter then sends a mes-
sage forward(P2) to the last proxy in the forwarding chain. This message will
make P1 forward the state token to P2, so that P2 becomes the last proxy in
the forwarding chain. When P2 receives the state token, it sends a message
gotit to its manager. This message allows M to maintain a list of the proxies
that could hold the state token.

Bypassing failed proxies. This simple extension to the basic protocol al-
lows a proxy to avoid sending the state token to a failed proxy. This situation is
depicted in Figure 8.4. The proxy P1 has detected that its successor P2 in the
chain is permanently failed. In order to find the next successor, it notifies its
manager. The manager M can then send a new message forward(), because
M owns a representation of the forwarding chain.

State loss detection. The state token may be lost either if a proxy holds
it and crashes, or it has been sent over the network in a message put, and the
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Figure 8.4: Bypassing a failed proxy

message is lost because of a site failure (of the sender or the receiver). When
the manager detects that a proxy in the chain has permanently failed, it runs
an inquiry protocol, which determines whether the state token has been lost.
The manager asks each proxy where the state token is. The proxy can answer
beforeMe, atMe, or afterMe. If the manager finds two proxies that answer
afterMe and beforeMe, all proxies between them have crashed, and there is
nothing in the network, then the entity state is lost. The permanent failure of
the entity is notified to all proxies.

The pilgrim protocol

This mobile state protocol is inspired by the work in [GLT97]. It can be seen as
a variant of the migratory token protocol, where the proxies accessing the token
form a ring instead of a chain. Each proxy in the ring has a successor, to which
it forwards the token. A proxy remains in the ring unless it has not performed
any entity operation for a certain period of time. The proxies interact with the
manager only to enter or leave the ring. This greatly reduces the interaction
with the manager when a set of proxies regularly access the token.

The author made a significant contribution to make that mobile state pro-
tocol handle failures. The original implementation, as provided by [Kli05], had
no simple way to detect whether the state token was lost. Moreover, proxy
insertions and removals in the ring were serialized at the manager. This im-
plied a strong protocol invariant which was relied upon for garbage collection,
because it allowed proxies to know whether they were inside the ring, and con-
sequently whether they had to be kept alive. Proxies inside the ring should not
be removed by their respective garbage collectors, since their removal would
create a gap in which the state token can be lost. But determining efficiently
when a proxy is no longer accessible from the ring can be tricky, in particular
when ring proxies crash.

In order to remove any dependency of the manager on its proxies, we have
simplified the proxy insertion and removal in the ring. The result is shown in
Figure 8.5. Dashed arrows represent the successor relation in the ring. When
the manager receives a request from a proxy P to enter the ring, it chooses two
consecutive proxies P1 and P2 in the ring. It then sends a message to P1 to
make its successor P, and another message to P to make its successor P2, so
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Figure 8.6: Pilgrim: ring coloring

that P is eventually between P1 and P2 in the ring. Proxy removal is even
simpler: its ring predecessor is sent a new successor. The simplified protocol
allows the manager to remove any suspect proxy from the ring without that
proxy’s cooperation. To compensate for the apparent sloppiness of the protocol,
we have added an orthogonal protocol that both detects the loss of the state
token, and solves the garbage collection issue.

Ring coloring. The idea of the coloring protocol is to mark the proxies that
are inside the ring, following the ring structure. The proxies that have not
been marked during the process are guaranteed to be unreachable from the
ring, and can therefore be safely removed. Moreover, the protocol is able to
detect whether the coloring token or a newly marked proxy has encountered the
state token. At the end of the coloring, the manager checks this information,
and notifies all proxies if the state token is no longer present.

More than two colors are necessary to make the protocol robust. The col-
oring can be interrupted at any moment by a failed proxy, and several color
changes can be performed concurrently. Eventually all proxies will change to
the most recent color.

Figure 8.6 shows how the coloring protocol works. The protocol attaches
a color to every proxy and the state token, and the color is either “light” or
“dark”. A proxy always attaches its own color to the state token. When the
manager initiates a color change, it sends a message to one of the proxies in the
ring with a light color (red in the figure). The proxy creates a color token, and
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passes it around the ring. The color token changes the color of every proxy it
encounters. If the color token meets the state token, its color is darkened, and
the coloring continues. The first proxy also darkens its color when it receives
the state token. When that proxy receives the color token, it knows that the
state token has been lost if and only if the token’s color and its own color are
equal and light. The final color is sent back to the manager. Note that the
proxies never accept a state token with a less recent color, except the proxy
that initiated the coloring.

A color change is triggered each time a proxy fails, or when a proxy wants
to determine whether it is still reachable from the ring. The proxy is guaran-
teed to be unreachable if its color has not been changed by the process. The
manager keeps track of the proxies that left the ring, and forwards them the
new color after the coloring. A proxy that has a different color knows that it
is unreachable from the ring.

The invalidation protocol

This protocol, inspired by protocols presented in [Lam79], manages an en-
tity whose state is replicated on its proxies. It implements the annotation
replicated . It maintains two types of tokens, multiple read tokens and a sin-
gle write token. Holding a read token allows a proxy to read its local copy of
the state of the entity. To perform a write operation, the manager asks proxies
to release their read token, and invalidate their copy of the state. Once all read
tokens have been collected, the write token is used to update the state, then
read tokens are redistributed to proxies with the new state. The proxies delay
read operations until they receive a read token.

In its first formulation, the manager was giving the write token to the proxy
that requested the write operation [Kli05]. The new state was then sent to the
manager, which redistributed it with read tokens. However, that protocol was
sensitive to proxy failures. The author has chosen to simplify its failure modes
by performing all write operations on the protocol manager. This makes the
protocol insensitive to proxy failures. It also improves performances, since the
manager no longer has to send the write token to a proxy.

8.2.2 Protocols for immutables

Those protocols should only offer a read operation. The stationary protocol
is valid for immutable entities, as well as three others, namely the immediate
protocol, and the eager and lazy replication protocols. Their implementation
in the DSS was done by Per Sahlin [Sah04], then slightly extended by the author
to handle partial failures.

The immediate protocol is not really a protocol, since a full representation
of the entity is serialized when a reference is passed between sites. The eager
and lazy replication protocols are pretty simple: each proxy can ask its manager
a copy of the entity’s state. Once the state is installed, all read operations are
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Figure 8.7: Transient protocol: bind and update operations

performed locally. In the eager protocol, a proxy requests the state right after
its creation. In the lazy protocol, the proxy delays the state request until the
first read operation. Both the eager and lazy protocols guarantee a unique copy
of the entity’s state. Indeed, if a reference to the entity is sent to a site, that
site will identify the reference to the entity’s proxy. If the proxy had already
requested the entity state, it will not request it again.

8.2.3 Protocols for transients

This protocol implements single assignment variables, with two operations:
bind and update. The protocol has first been published in [HVB+99]. The
DSS implements this protocol extended with an incremental update operation.
Upon creation, the transient entity is unbound. Its transient state may be
updated as many times as desired, until the entity is bound. The binding
is unique and final; all subsequent updates and bindings will fail. By-need
synchronization in Mozart/DSS is implemented as an update (see Section 8.3.4).

Bind. In order to guarantee the unicity of the binding, the protocol manager
plays the role of an arbiter of binding attempts. The protocol is depicted in
Figure 8.7: proxies send binding requests to their manager; the latter accepts
the first request, and forwards the binding to all proxies. All subsequent binding
and update requests are ignored. When proxies receive the binding, they install
the final state in their entity, and check their former binding attempts to decide
whether they have succeeded.

As the manager broadcasts the binding to all its proxies, they must register
to their manager, unless the coordination network provides a way to reach
them all. The registration is done at proxy creation, when it is deserialized,
via an explicit registration message sent to the manager. If the entity is bound
at the message reception, the manager replies with the entity’s binding. Note
that the registration can be optimized if the entity reference was sent by the
home proxy: the manager may automatically register the destination site. This
autoregistration mechanism saves a registration message, and can improve the
throughput of the protocol in case of stream communication.
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Update. State updates are handled in a similar way, but they do not put an
end to the entity. All updates are serialized by the manager, which forwards
them to all known proxies, so that the updates are applied in the same order on
all proxies (see the right drawing in Figure 8.7). When a proxy registers, the
manager may send back an update that summarizes all former updates. This
guarantees that the proxy does not miss past updates, provided that the entity’s
state can reflect all past updates. This summary update is a contribution of
the author. Its absence creates a race condition between proxy registration and
updates.

The transient remote protocol. This variant of the transient protocol,
chosen by the annotation reply , delegates the arbiter role to a proxy. That
proxy can directly bind the entity, and forward the binding to the manager,
which broadcasts it to the other known proxies. The manager forwards all the
other updates and binding requests to that proxy, which serializes them. The
protocol is optimal if there is only one remote proxy, and that proxy binds the
entity. Indeed, the proxy is autoregistered because the entity reference must
have been sent from the manager’s site, and the only message actually sent is
the forwarded binding.

The manager is responsible for choosing the arbiter proxy. The simplest rule
is to choose the first proxy registered outside the manager’s site. If that proxy
is deleted, it sends a deregistration message to the manager, which reassigns
the arbiter role to its home proxy.

8.2.4 Handling failures

All entities supported by the DSS may fail. Failures have two origins: the envi-
ronment and the programmer, and both kinds must be detected and reflected
to the user. To implement that, each coordination proxy maintains a failure
state for its entity. Each time that state changes, the proxy notifies its corre-
sponding mediator in the Glue layer. The state may be changed by the proxy
itself, or its protocol proxy.

Failures due to the environment are detected via DSites. We take for
granted that DSites have their own failure detection mechanism, which re-
flects their corresponding site’s fault state. Consider a DSite representing site
b on a site a. Once the DSite changes its fault state, this change is notified to
all coordination and protocol components on site a. Every component checks
whether it affects its entity. If so, it changes its failure state accordingly, and
notifies the mediator of its entity. How an entity is affected depends on the
entity’s coordination architecture and protocol. For instance, the mobile state
protocols will probe the proxies that may hold the entity’s state, in case one of
those proxies is reported as failed.

Failure are not only reported locally, but also to a global scale. A generic
protocol supports this global reporting. Once an entity is diagnosed as perma-
nently failed by a protocol manager, the latter broadcasts a message PERMFAIL
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to all its known proxies. Those proxies will then update their failure state,
and report the change to their own mediator. Note that this generic proto-
col is sometimes adapted to avoid inconsistencies. For instance, the transient
protocol never makes an entity permanently failed after its binding.

Kill. In order to let a program make an entity fail, all protocols support
an operation called kill. The same generic protocol is used to implement that
operation. To perform a kill, a protocol proxy simply sends a message PERMFAIL
to its manager, which propagates the failure globally as we explained in the
former paragraph.

8.2.5 Distributed garbage collection

The garbage collector provided by the DSS maintains a status for each coordi-
nation proxy in the system. The proxies of a given entity have different status,
depending on the references and the entity’s protocol. A given proxy can be in
one out of four states:

• PRIMARY: the entity is kept alive by remote references. The virtual ma-
chine must keep the entity, because other sites depend on it. This status
means that the coordinator of the entity is on the current site.

• WEAK: the entity is kept alive because for protocol needs. This typically
happens when the current site is the only one to hold the entity’s state.
That status is generally not definitive: the DSS can be instructed to move
away from that status.

• LOCALIZE: no remote reference keeps this entity alive. This usually means
that all the proxies of the entity are gone except this one. The entity can
be localized or deleted, depending on whether it is kept alive locally.

• NONE: the liveness of the entity entirely depends on local information. If
the entity is alive, the proxy should be kept. Otherwise, both can be
removed.

Note that proxies are considered alive by the DSS until they are deleted ex-
plicitly by the upper layer. In fact all the components at the interface of the
DSS library must be deleted explicitly. The DSS uses them as roots for its own
internal garbage collector.

Section 8.3.6 on page 123 explains how these states are used by the local
garbage collectors. The distributed garbage collector itself is implemented by
the reference components shown in Figure 8.2 on page 109. Several proto-
cols are available, and they can be combined together. The most important
protocols are a weighted reference counting algorithm, and a time lease al-
gorithm. More details on the algorithms are given in Erik Klintskog’s works
[Kli05, KNBH01].
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8.3 The language interface

The Glue layer implements the language interface to the distribution library.
As the distribution of Oz comes from sharing entities, the most important
component of this layer is the mediator, that interfaces an entity to its proxy,
and vice-versa. Every distributable entity has a mediator, which contains the
entity’s annotations, its fault state, and its memory status. For the sake of
performance, the mediator of a local entity is created lazily, once the entity is
annotated, broken, or serialized for a remote site.

An entity is distributed if and only if it has a proxy in the DSS layer,
otherwise it is purely local to its site. In general, distributed entities have a
pointer to their mediator, while local entities have an indirect access to their
mediator via a table. The mediator itself has pointers to both its entity and
proxy, and the latter has a pointer to the mediator. This provides both efficient
access for distributed entities, and small overhead for purely local entities.

8.3.1 Distributed operations in general

Performing a language operation on a distributed entity involves several com-
ponents in the three layers of Mozart/DSS. Those components are depicted in
Figure 8.8 on the next page, with the horizontal dashed lines separating the
implementation layers. Each one has a specific role during the distributed ex-
ecution of the operation. Note that entity failures are ignored here; they are
explained in the next section.

A language operation on a distributed entity is always delegated to the
Glue layer, which accesses the entity’s mediator, then the corresponding DSS

proxy, and invokes the latter with a generic operation. The proxy forwards the
call to its protocol proxy, which implements the protocol chosen for the entity.
The protocol proxy prescribes to either perform the operation locally, as if the
entity was purely local, or suspend and resume it later. The decision entirely
depends on the protocol.

Let us illustrate the decision taken in the case of the protocol migratory

(mobile state). If the entity’s state is on the site that attempts the operation,
it will be performed locally. This is fine, since the state is stored in the virtual
machine’s representation of the entity. If the entity’s state is not present,
the operation is suspended, and the distributed protocol is used to complete
the operation. Once performed, it is resumed, together with the thread that
attempted it.

Suspension and resumption. If the operation has to be suspended, the
Glue creates an object that represents the suspended operation. That object
must be able to resume the operation whenever the protocol says so. Resump-
tion may be done in two ways: either
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Figure 8.8: The components involved into the distributed exe-
cution of a language operation

• the protocol installs a copy of the entity’s state in the local entity, and
the operation is performed locally, or

• the operation has been performed remotely, and the operation resumes
by delivering the results.

The suspended operation typically suspends the thread that attempted the
operation on a control variable. Once the operation completes, the thread is
woken up by binding the variable. The control variable also permits to raise
an exception in the thread, or resume the operation with another statement.
The suspended operation can also deliver an output from a remote execution
through a result variable.

When an operation is performed on a remote site, the entity’s protocol
proxy on that site invokes the corresponding mediator in order to perform a
virtual machine operation.

Passing values. Protocol messages may include Oz values. Those values can
be the input or output of an operation that is performed remotely, or a value
that represents the entity’s state. They are encapsulated in a Glue component
that takes care of their (de)serialization. The DSS library defines an interface
for a suspendable marshaler. It means that values are generally not serialized
as a whole, but the serialization is done until a buffer is almost full. This
technique generally results in a smaller memory footprint.
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8.3.2 Distributed immutables

The role of an immutable entity’s proxy is to either provide a copy of the entity’s
contents (protocols immediate , eager , and lazy ), or to provide remote access
to the entity (protocol stationary ). We call the first kind of entities copiable,
because their distribution protocol consists in copying their contents between
sites.

Copiable entities do not always require to query the Glue layer to perform
an operation. Indeed, once the contents of the entity is available on a given
site, all operations on that site will be performed locally. The overhead of
distribution can be reduced to nothing if the virtual machine performs this
optimization.

Another aspect of copiable entities is that they can survive the execution of
a program: they can be stored in a file, and reused later, possibly by another
program. This can be an issue if the entity’s identity is provided by its coor-
dination network, because the latter is no longer functional once the program
stops. For this reason, we provided the entity with a global identifier that does
not refer to a live DSS component. As a consequence, it is possible to remove
the entity’s proxy once it has been copied. This can be done for instance by
the garbage collector.

8.3.3 Remote invocations and thread migration

Stationary objects and procedures are never copied between sites, only their
reference is transmitted between sites. The operation they have in common is
the call (also called invocation in the case of objects). For this operation, an
object can be seen as a special case of a procedure. Therefore the discussion
will only mention procedures, and calls to stationary procedures.

Assume that a thread on a site a attempts to execute the call statement
{ p x1 . . . xn} , where p is a stationary procedure on a site b. If the protocol
proxy of p has to perform the call remotely, it asks the Glue layer to transmit
arguments for the remote operation, i.e., in our case x1, . . . , xn. The Glue
layer on site b then simply calls p again with the given arguments on a new
thread, which will execute p because it is now on its site. As the procedure call
may exit with an exception, site b creates a variable z, and pushes the following
statement on the thread:

z = try { p x1 . . . xn} unit

catch E then {FailedValue E} end

The variable z is returned to site a, which replaces the original call to p by
{Wait z} . This automatically synchronizes the thread, and transmits an ex-
ception if needed. This is illustrated in Figure 8.9 on the facing page, for a
procedure P with two arguments.

This simple solution works in most cases, but it has a subtle issue: the
calling thread, and the one that actually executes the procedure have different
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Figure 8.9: A remote procedure call

thread identifiers. This is a problem if these threads lock critical sections with
reentrant locks. Those locks allow a thread to enter many times in a critical
section, and use the thread identifier to distinguish between threads. For the
remote procedure call to be really transparent, both threads should have the
same identifier, just like if the thread has migrated between sites. Otherwise,
a deadlock may occur. In the example of Figure 8.9, we should have t1 = t2.

To realize this, the identifier t of the caller thread is sent together with the
procedure’s arguments. On site b, the procedure is executed on a thread with
identifier t. If no such thread exists on b, one is created. If such a thread exists,
then by design it must be suspended on another remote procedure call; the
topmost statement must be a call to Wait as above. Pushing a new statement
on that thread is safe, because after that statement is reduced, the thread will
re-suspend thanks to the Wait statement.

8.3.4 Unification and by-need synchronization

While the unification operation belongs to the virtual machine, its implemen-
tation deserves a special attention. The reason is that a single unification may
involve several concurrent distributed variable bindings. Performing those dis-
tributed bindings sequentially may have a significant impact on the operation’s
performance. This impact may be reduced to a minimum if those bindings are
truly performed in parallel. The author has modified the existing implementa-
tion of the unification in Mozart, which was interrupted by every distributed
binding it had to perform.

The unification of two terms basically traverses two directed graphs, and
binds the encountered variable nodes in order to make both graphs equivalent.
If a variable is local to a site, its binding is done immediately. But a dis-
tributed variable may require to invoke its protocol. In that case, the binding
is suspended until the protocol terminates the operation, and returns its result.
Suspending the whole unification at that point is correct but inefficient, since
all involved distributed bindings will be performed in sequence.

To make a better implementation of the unification’s semantics, the original
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algorithm is modified as follows. When a variable binding suspends, it is put
aside in a “suspended set”. Note that bindings of read-only variables are also
put in that set. The bindings in the suspended set are considered valid until
the algorithm terminates. If the algorithm terminates without failing, and the
suspended set is nonempty, say {x1=v1, . . . , xn=vn} with n > 0, the unification
resumes as unifying two tuples with the remaining bindings, i.e.,

x1# . . . #xn = v1# . . . #vn.

Moreover, the current thread is suspended on the variables x1, . . . , xn. The
thread will be woken up as soon as one of those variables is bound (possibly by a
distributed binding), and the unification will make progress. If all the variables
xi are distributed, then all the bindings xi=vi will proceed concurrently.

Unifying distributed variables. The unification of two distributed vari-
ables requires a tiebreaker to decide which variable is bound to the other. This
is necessary for avoiding “binding cycles” in the system. Indeed, if two sites
attempt to perform x=y and decide differently, x may be bound to y and vice-
versa. This is problematic, since both transients are bound, and can therefore
no longer be bound to anything else: the variables are unbound forever. The
tiebreaker is borrowed from the DSS, which provides an arbitrary total order
between all its distributed entities. The order is guaranteed to be the same on
all sites.

By-need synchronization. As we have seen in Chapter 7, the semantics
of by-need evaluation simply requires to propagate the need of a variable on
all sites. The operation update provided by the transient protocols perfectly
fulfills the job. Once a variable is made needed, an update operation is per-
formed, which will make all representatives of that variable needed. Note that
making a variable needed never blocks, since that update can be considered
asynchronous.

8.3.5 Fault stream and annotations

The mediator of a language entity manages most aspects of to the distribution
of that entity. Some of those aspects, like the entity’s fault stream, are visible
as language entities. Others, like the entity’s annotations, are stored directly in
the mediator. Figure 8.10 on the facing page shows the extra language entities
used by an entity’s mediator.

Fault stream and blocking threads. First, the mediator keeps track of the
entity’s fault state. It is updated whenever a new fault state is reported by the
entity’s proxy, or enforced by the user (localFail ). The mediator manages
the entity’s fault stream by keeping a reference to its tail, a read-only variable.
The stream is extended each time the fault state changes. The mediator also
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Figure 8.10: The entities managed by an entity’s mediator

manages a control variable. If a thread attempts an operation on the entity
while its fault state is not ok , the thread suspends on that variable. When-
ever the fault state becomes ok , that control variable is bound to unit ; this
automatically wakes up all blocked threads, which will retry their operation.

Note that the memory footprint of the entity pretty small in practice. Both
the fault stream and the control variable are created lazily, once the program
needs them. Another optimization comes from the fact that the control vari-
able is only effective with the fault state tempFail . Indeed, a thread blocking
because of the fault states localFail and permFail will never resume. There-
fore the control variable does not need to be kept alive by the mediator in that
case, since it will never be bound.

Annotations and proxy. The entity’s annotations are also stored in the
mediator. They are used to create a DSS proxy for the entity. The creation and
removal of the proxy are both managed by the mediator. The proxy creation
(called entity globalization) is triggered when the entity is serialized, while its
removal (called entity localization) is prescribed by the garbage collector when
the entity is no longer referenced outside its original site.

8.3.6 Garbage collection

The memory management of Mozart/DSS involves both the virtual machine’s
garbage collector and the DSS’s distributed garbage collector. We will call them
the local and DSS garbage collectors, respectively. The latter has already been
described in Section 8.2.5 on page 117. This section focuses on the cooperation
between the implementation layers.

The basic principle is that a live entity keeps its mediator alive, and a live
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mediator keeps all its entities (the entity, its fault stream and control variable)
alive. We combine that principle with the information coming from both the
virtual machine and the DSS. When the Glue layer decides to remove or localize
a distributed entity, it deletes the entity’s proxy. The following paragraph
explains how the decision is taken.

Putting it all together. The cooperation between the garbage collectors is
quite generic. First, both the virtual machine and the DSS should provide cor-
rect information about what must be kept in memory. Second, some decisions,
like the correct handling of the WEAK state above, depend on whether an entity
is kept alive by local computations only. Because some of those entities have to
be kept anyway, the process requires two passes of the local garbage collector.
The main steps of the garbage collection process are the following.

1. Distributed entities in state PRIMARY are taken as roots for the local
garbage collector.

2. The local garbage collector is run, which recursively marks entities from
the roots. We can now determine which entities are marked by local
computations.

3. The distributed entities in state WEAK are checked. For each such entity,
if it has not been marked yet, mark it and instruct its proxy to move
away from that state.

4. Local garbage collection is performed again. Now all entities that must
be kept in memory are marked.

5. The distributed entities in state NONE are kept only if they are marked
locally; otherwise they are deleted together with their mediator and proxy.
The distributed entities in state LOCALIZE are localized (their proxy is
removed) if they are marked locally; otherwise they are deleted together
with their mediator and proxy.

6. The DSS performs its own internal garbage collection. This has no effect
at all on the virtual machine’s memory heap.

These steps give the broad idea for collecting the entities that must be
kept in memory. However some important details are missing, in particular at
step 1. The rest of the section identifies the missing roots for the local garbage
collection, with a detailed explanation for each. We analyze (in order) the
cases of distributed variables, fault streams, threads blocked on a failure, and
the components involved in a distributed operation.

Distributed variables. The process described above does the right thing
for most distributed entities. However, let us analyze what happens to threads
that suspend on distributed variables. Recall that when a variable is alive, its
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suspensions are kept alive. If no live entity refers to any of them, the variable
and its suspensions are considered dead. The following situation, depicted in
Figure 8.11, might be problematic: a thread suspends on a distributed variable,
on a site that does not hold the variable’s coordinator. If nothing else keeps
that variable alive, it might be considered dead, together with its associated
suspended threads. Should the Glue layer keep this variable alive?

Our answer is: yes, distributed variables with local suspensions should be
considered as roots for the local garbage collector. The reason is pretty simple.
Suspending on a distributed variable is a common idiom, where one site waits
for the result of a computation performed on another site. The programmer
rarely considers the blocked thread as possibly dead. On the contrary: that
thread is often used to keep the continuation of a local computation alive.
Silently removing the variable and its suspensions would be an error.

Note, however, that the garbage collector is unable to find out whether
there exists a thread in the system that can bind the variable. If no thread
binds the variable, all suspensions are dead. The suspensions can also be
considered dead if the variable is permanently failed, locally (localFail ) or
globally (permFail ). If the program is able to detect a dead variable, it can
help the local garbage collectors by making the variable fail. We extend the
step 1 above with:

1.1. Distributed variables with local suspensions are taken as roots for the
local garbage collector, unless they are permanently failed.
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Fault streams. While an entity is alive, its fault stream is alive. This is a
consequence of the basic rule we mentioned above: the entity keeps its me-
diator alive, which itself keeps the entity’s fault stream alive. Now consider
the situation depicted in Figure 8.12 on the previous page. The site has no
reference to the entity, but it still monitors it, with a thread suspended on the
entity’s fault stream.

The garbage collection process must implement the policy given in Sec-
tion 4.4 on page 54. First, the entity may be removed from memory, since it
is not referred to. Second, if the entity is removed, its fault stream must be
closed with its tail bound to nil . Binding the stream tail should wake up the
monitoring threads suspended on it. In order to be effective, it requires both
the stream tail and its suspensions to be alive. Therefore, the fault stream
of an entity must be kept alive until it is closed. The implementation is very
simple, we add the step:

1.2. The fault streams of entities are taken as roots for the local garbage
collector.

Blocked threads. We are now interested in the threads that block on a
failed entity. Technically those threads are suspended on the control variable
used by the entity’s mediator to resume from temporary failures. The situation
is illustrated in Figure 8.13. Let us recall the principle stated in Section 4.4 on
page 54. If the failure is temporary, those threads must be kept alive, otherwise
they would not resume. If the failure is permanent, they are not kept alive by
the entity itself. We can easily ensure the liveness of those threads by adding
the following step:

1.3. The control variables used by the mediators of temporary failed entities
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are taken as roots for the local garbage collector.

Distributed operations. Those operations require to handle two extra data
structures: components representing suspended operations and terms being
serialized (see Figure 8.8 on page 119). Both are freed explicitly by the DSS;
meanwhile, they must maintain their associated virtual machine entities alive.
In other words, both suspended operations and terms being serialized, can be
considered as roots for the local garbage collector. So we add the step:

1.4. Entities referred to by suspended operations and serialized terms are
taken as roots for the local garbage collector.
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9
Evaluation

This chapter gives an evaluation of our work. Both the language definition and
its implementation are evaluated.

9.1 Ease of programming

In Chapter 5 we have shown a few abstractions built with our distribution
model. From these examples, we can already say that both the customization
of a distributed application and their handling of partial failure are not difficult.
The examples show that nontrivial abstractions are coded relatively easily, and
without too much code.

9.2 Performance

In this section we compare the performances of Mozart/DSS and Mozart. We
will see that their performances are similar, with Mozart/DSS being a bit slower
than Mozart. But the new protocols made available by Mozart/DSS permit to
take better advantage of the distribution of Oz than Mozart. These perfor-
mance comparisons complete the experiments done by Erik Klintskog on an
early version of Mozart/DSS in [KBBH03]. These experiments showed that the
Distribution Subsystem (DSS) incurred around 12% overhead on the total time
for a client to perform a given number of requests to a server, when compared
to Mozart. The same experiment also showed that Mozart/DSS was about
twice as slow as an equivalent C++ program, optimized for the experiment,
and using raw sockets for communication.

Issues. The execution of the performance tests was considerably delayed by
bugs we discovered in the implementation. Not all those bugs could be fixed.

129
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proc {Server N Len}
S ServerPort={NewPort S}

in
{Offer ServerPort ...} % make ServerPort available
for I in 1..N get(X) in S do

L={List.number I+1 I+Len 1} % list of Len integers
in

X=L
end

end

proc {Client N}
ServerPort={Take ...} % connect to the server’s port

in
for I in 1..N do X in

{Send ServerPort get(X)}
{Wait X}

end
end

Snippet 9.1: Mozart/DSS vs. Mozart: server and client

Some of them were found in code that we did not write ourselves, notably in
the DSS, which made the debugging task quite difficult. So the experiments
we show here are the ones that could be run without triggering the remaining
bugs.

9.2.1 Mozart/DSS vs. Mozart

This section compares the performance of the distribution layers in both plat-
forms Mozart and Mozart/DSS. We consider a simple client-server program,
and compute the CPU time spent in the distribution layer. Note that we do
not measure network delays in this case. The client sends N=100000 requests
of the form get(X) to the server, and the server replies by binding X to a list of
Len elements. The number N of requests has been chosen large enough in order
to trigger the garbage collector, so that all the components of the distribution
layer are involved in the test. We made experiments for Len=10 and Len=1000

to compare between small and big messages.

Snippet 9.1 above gives the code for the server and client. The server offers
a port for the client to communicate. The procedure Offer creates a ticket,
and makes it available (in a file, or on a web site). The procedure Take retrieves
the ticket, and connects to it. The client sends N requests, and waits for the
reply, so that requests are sequential. For the sake of simplicity, we made the
server wait for N requests, then exit.
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Mozart Mozart/DSS

Len=10 centralized 0.260 0.292
distributed 25.500 29.304
difference 25.240 29.012 (+16%)

Len=1000 centralized 6.354 6.378
distributed 53.080 80.910
difference 46.726 74.532 (+60%)

Table 9.1: Comparison of total CPU times between platforms
(network delays not included in measurements)

Results. Table 9.1 gives the results of our experiments. The numbers are
the total CPU times spent by client and server in different situations. Network
delays are not taken into account. Times are measures in seconds, and averaged
over 5 executions. The programs were run on a computer with an Intel Core
Duo 2 GHz processor. The centralized case corresponds to the client and server
being run on a single site. In the distributed case, they are created on distinct
sites, and their CPU time are added. The difference between the two reflects
the global overhead in time of the distribution for that program.

The obvious observation is that Mozart/DSS is slower than Mozart, but the
ratio between the two is reasonable. The slower performance of Mozart/DSS

can be partly explained by its higher degree of flexibility, which requires a few
more indirections when performing an entity operation. Another observation is
that the size of shared data also has an impact on the relative performance of
both platforms: the marshaling process is a bit more involved in Mozart/DSS,
because the existing Mozart marshaler is wrapped to comply to the generic API

defined by the DSS.

9.2.2 Comparing protocols

We show how we can dramatically change the network behavior of a simple
program by changing how a distributed entity is annotated. The program used
in the experiment is a simplistic chat application: peers join a group, and
broadcast messages within that group. Each peer provides a port on which
other peers send messages. The group itself is handled by a small server, which
provides a cell with the list of ports. Message broadcast is done by sending the
message to all the ports in the list. A peer joins the group by connecting to
the server, and adding its port to the list in the cell.

Note that the distributed cell is not fault-tolerant. The purpose of the
program is only to show performance variations within a program, just by
changing distribution parameters. In this case, we will compare two protocols
for distributing the cell.

Snippet 9.2 on page 133 gives the code for the group server and the group
peers. The server is instantiated with a particular protocol for the cell. A peer
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protocol total time
migratory 63.906
replicated 11.775
no distribution (all peers on one site) 10.754

Table 9.2: Comparison of total time to complete (network de-
lays included)

is created with a nickname. It first subscribes to the group. It then waits for
one message to arrive on its port, then sends 1000 messages, with a pause of
10 milliseconds between two messages, unsubscribes and exits. Waiting for a
message permits to synchronize peers, so they all start sending messages at
the same time. Typically the last connected peer starts the process by calling
{Broadcast start} .

The code to pay attention to is the procedure Broadcast . Each call to
Broadcast reads the contents of the cell Group , and the procedure is called
many times. Therefore the efficiency of the peer is largely influenced by how
fast it can read Group .

Results. Table 9.2 gives the results of our experiments. The experiment
consists in n peers broadcasting messages, with one of them also playing the
role of the group server. The value n = 3 was sufficient to emphasize differences
between protocols. The last connected peer broadcasts a dummy message to
synchronize all peers. We measured the total time for one of the peers to run
completely, i.e., the elapsed time between its startup and termination. In this
case, we do measure network delays.

The experiment was run on Monday 5th November 2007, between 16:00
and 16:30. The times are measured in seconds and averaged over 5 runs. The
peers were located on three machines: calc6.info.ucl.ac.be (everlab cluster
at UCL), planet8.cs.huji.ac.il (everlab cluster at the Hebrew University
of Jerusalem, Israel), and my own laptop Apple MacBook Pro connected at
the UCL network. The server was located together with the peer on the first
machine. The times were measured on the peer on the second machine.

As one can see, the migratory protocol, which is the default for distribut-
ing cells, is not efficient for that application. On the contrary, the replicated
protocol, where each site has a copy of the current state of the cell, is almost
as efficient as if all peers were on the same site. The reason is that the cell is
read more often than it is updated, and the replicated protocol requires few
network communication in that case. The choice of protocol has a noticeable
impact on the performance of that example.
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proc {Server Protocol}
Group={NewCell nil}

in
{Annotate Group Protocol} % annotate cell
{Offer Group ...} % make Group available

end

proc {Peer NickName}
Group={Take ...} % connect to the cell Group
proc {Subscribe P} % add P to the group

T in T=Group:=P|T
end
proc {Unsubscribe P} % remove P from the group

L T in
L=Group:=T
T={List.subtract L P}

end
proc {Broadcast M} % send M to all ports in the group

for P in @Group do
{Send P M}

end
end
S P={NewPort S} % this peer’s port

in
thread

for X in S do {Show X} end % show all messages
end

{Subscribe P}
{Wait S} % wait for start signal
for I in 1..1000 do

{Broadcast NickName#I}
{Delay 10}

end
{Unsubscribe P}

end

Snippet 9.2: Comparing protocols: server and peer
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10
Conclusion

10.1 Achievements

This work extends former studies on network transparency in distributed pro-
gramming languages, by showing that this approach to distribution is practical
regarding both efficiency and failure handling. We have given a few guidelines
on how to structure a distributed program, and how to reason about its net-
work behavior. We have extended the language Oz with annotations, that make
the programmer able to customize the distribution of a program by choosing
between distribution protocols for entities. The resulting program is a valid
centralized program, and all distributed executions of the program are valid in
a centralized setting.

We have also redesigned failure handling in Oz, made it simpler and more
modular. Failure handling is based exclusively on asynchronous failure detec-
tion. We have introduced the concept of a fault stream to monitor an entity,
and showed that this concept is sufficient to implement complex failure han-
dling algorithms. The design of the fault stream also provides an effective
post-mortem finalization mechanism, which was missing in the language. We
have introduced new language operations to make entities fail. Those opera-
tions give the programmer more control to handle partial failures, for example
by propagating the failure to a group of related entities.

On the implementation side, we have completed Erik Klintskog’s work by
making all protocols of the Distribution Subsystem (DSS) handle partial fail-
ure. Finally we have reimplemented the distribution of the platform Mozart
on top of the DSS. The new implementation, Mozart/DSS, implements our dis-
tribution model for the language. We have been able to test it, and validate
its effectiveness. However, the implementation is a prototype, and still suffers
from quite a few bugs.
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10.2 Future directions

Decentralized applications. This work should be a solid foundation to
make applications fully decentralized. Some existing work, using structured
overlay networks, have proved to be useful in this domain. Boris Mej́ıas and
Donatien Grolaux have already started to reimplement the library P2PS, which
implements a structured overlay network in Oz [MCV05]. The new distribution
model seems to be promising for that implementation.

A better virtual machine. The implementation of the virtual machine of
Mozart is far from being simple. It is written in the language C++, but does
not make use of object polymorphism, for instance. It is therefore difficult to
maintain and to extend. It lacks modularity.

This lack of modularity is visible in the Glue layer: every language opera-
tion must be explicitly mapped to a DSS operation. For instance, the Oz cell
has two write operations: Exchange and Assign . For each one, we had to
provide a mapping to a DSS write operation, together with specific callbacks
to perform those operations remotely or resume them. A better option would
be to define only one write operation on cells, and both Exchange and Assign

could be expressed in terms of that operation. All write operations in the vir-
tual machine could be given the same distribution support, and polymorphism
would allow to use the entity’s write operation as a callback directly.

The DSS roughly defines five entity operations: read, write, send, bind, and
update. Every language operations in Oz can be expressed as an instance of one
of these operations. A mapping of the five generic operations would provide
distribution support for all language operations. Of course this support has to
be carefully designed, in order to avoid bad performance of elementary language
operations, such as the sum operation.

Protocols written in Oz. In the DSS library, all entity protocols are writ-
ten in C++. The existing protocols have limitations, for instance they have
no recovery mechanism in case of failure. An Oz programmer cannot define its
own protocol for objects, unless it modifies the underlying library and recom-
piles the platform. The recommended strategy is to define an Oz abstraction
that encapsulates the recovery mechanism, and has its own protocol defined
with ports and variables. This reduces the overall usefulness of the underlying
library, since few protocols are really crucial.

Together with my colleague Yves Jaradin, we have sketched the design of
a virtual machine that can be extended in the language itself. The idea is to
give the possibility for an entity to delegate an operation to another entity,
for instance a port. A distributed cell could be implemented by coordinating
a group of cells on different sites, such that they give the illusion of being a
unique cell. For each cell in the group, basic operations are delegated to a
local agent, which can send messages (Oz values) to the other sites. The global
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identity of the cell can be provided by an Oz name. The virtual machine should
support serialization, and the possibility to send values to other sites.

The design has several advantages. First, it provides a framework to exper-
iment with complex entity protocols at the language level. The latter protocol
could use a user-defined overlay network to implement the communication be-
tween the sites that coordinate for an entity. Second, it gives the possibility to
dynamically upgrade a protocol. Indeed, the code of the protocol is defined in
the language as a value (a procedure, a class, or a functor), which can be send
to a network of sites. A new protocol for cells can implemented and deployed
without recompiling the virtual machine platform.

Security. Oz is relatively close to the language E, as we can easily encapsulate
values and restrict their access via lexical scope. We can define capabilities in Oz
in a quite reliable way. However, the implementation is more permissive than
the language, in particular when distribution is in the game. The author has the
impression that, with a reasonable effort, the distribution layer of Mozart/DSS

can be made more secure. Some work was already done by Zacharias El-Banna
and Erik Klintskog to make the DSS more secure [EKB05].

Besides that, Mozart/DSS also provides some tools at the language level.
One can force all mutable entities to be stationary by default, for instance.
This prevents a third-party site from screwing up an entity by cheating with
its protocol.
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A
Summary of the model

This chapter summarizes the distribution model, and all the language exten-
sions introduced in this thesis.

A.1 Program structure

A program is distributed by letting several sites share language entities. The
latter are stateless or stateful data. The basic operations on those entities
behave as in the centralized case, modulo some network latency.

The program is deployed over the network by connecting several centralized
programs with shared entities. A reference to an entity X can be converted from
and to an atom T with the following functions. The atom is sent between sites
by other means (e-mail, web site, etc.)

{Connection.offer E} returns an atom T.

{Connection.take T} returns the entity E from which the atom T was created
with the former function.

Annotations. Entities can be annotated with protocol descriptions. The
annotation states which kind of protocol should be used to distributed the
entity. An entity’s annotation cannot be modified.

{Annotate E A} annotates entity E with value A. Raises an exception if the
value A is not valid for E.

Possible values for A are:

• access architecture: access(stationary) , access(migratory)

• entity protocols: stationary , migratory , pilgrim , replicated ,
variable , reply , immediate , eager , lazy
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• garbage collection: persistent , refcount , lease

A.2 Failure handling

Entity failures. An entity fails by crashing: it stops being functional (for-
ever). It can also fail locally on a given site: the entity is crashed on that site,
but it can be correct on other sites. Operations on failed entities simply block.

Entity fault states and fault stream. The language provides failure de-
tectors for entities. Those detectors define the following local fault states for
the entity:

• ok : no failure detected

• tempFail : entity suspected of having failed, may go back to ok . Lan-
guage operations block on the entity, and resume if the fault state goes
back to ok .

• localFail : entity has failed locally

• permFail : entity has failed globally

Those states are notified in the fault stream of the entity. This stream reflects
the sequence of fault states of the entity. It is accessed with the following
function.

{GetFaultStream E} returns the fault stream of entity E.

The fault streams of two variables are merged when those variables are unified.
The tail of the fault stream is bound to nil once the entity is no longer in
memory. This can be used to program post-mortem finalization.

Making entities fail. Two operations are provided:

{Kill E} makes E fail globally. The operation is asynchronous, and is not
guaranteed to succeed.

{Break E} makes E fail locally. The fault state of E becomes localFail im-
mediately (unless it was already failed).
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memory layer for cooperative work applications. In 22nd Annual
Conference on Computer Networks, LCN’97, pages 72–78, Min-
neapolis, USA, November 1997. IEEE Computer Society and TC
Computer Communications.
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