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A programming system is said to be network transparent if program source text executed over 
several nodes gives the same result as if it were executed on a single node, provided network 
delays are ignored and no failure occurs.  The system is said to be network aware if programs 
can predict and control their physical distribution and network behavior.  Formal definitions of 
both properties are given in [2].  Both of these properties together aim to simplify distributed 
programming by separating a program's functionality, in which distribution can be ignored, 
from its distribution behavior, which includes network performance, partial failure, and 
security.  We have implemented a system called Mozart [9] that combines network transparency 
and network awareness so that partial failure may be handled in the following way.  First, when 
there are no failures (reliable ordered communication and correct process execution) then the 
system combines both properties almost perfectly.  To be precise, network transparency is 
perfect (language semantics are independent of distribution) and network awareness is almost 
perfect (simple cases have the same number of messages and hops as hand coding and complex 
cases are occasionally more complex than hand coding).  Second, when failures can occur 
(assuming a crash-stop process model and ordered message delivery with arbitrary message 
delay or loss), then the system does the following: (1) the program performs no incorrect 
operation but individual program threads may suspend if they cannot continue correctly, and (2) 
the program provides a modular failure detection mechanism called fault streams that allows a 
second program to perform the appropriate tasks to handle the failures at the application level.  
Therefore, the source text of the original program needs no modification in the case of partial 
failure: it can be written assuming perfect network transparency and a second program text 
adjoined to it to handle failures.

We implement network transparency by combining both language and algorithm design.  Our 
implementation is based on a language, Oz, that makes a clear distinction between three kinds 
of entities: stateless, single assignment, and stateful.  The language has annotations to choose 
the distributed algorithm used to implement each language entity.  The resulting language, 
Distributed Oz, is implemented by a set of distributed algorithms according to each kind of 
entity [5].  Objects are implemented by a mobile state protocol, which allows their state pointer 
(the right to update the object state) to move atomically between nodes [11].  Ports (FIFO 
communication channels) are implemented by an asynchronous message passing protocol.  
Values (constants) such as records, lists, procedures, and classes, are implemented by eager 
and lazy copying protocols.  Single assignment values (which combined with the functional 
subset of Oz define a declarative dataflow sublanguage) are implemented with a distributed 
rational tree unification algorithm [6].  In the current implementation, language entities have no 
special support for fault tolerance.  Both the language and distributed algorithms are designed 
for network awareness.  For example, a simple client/server is implemented by a combination 
of ports and dataflow values.  The client sends a query containing an unbound dataflow value 



to a port located at the server node.  The server replies by binding the dataflow value.  The 
whole operation consists of a single round trip: one sent message (to the port) and one return 
message (distributed unification binding the client's dataflow value).  The distributed unification 
algorithm is designed to make the simple cases as efficient as hand coding and the complex 
cases correct.  In the current implementation, the complex cases occasionally need more 
messages than hand coding.

Distributed Oz as described above is fully implemented in the Mozart system and maintains 
perfect network transparency when there are no failures.  Let us now motivate the system's 
behavior when there are partial failures.  Partial failure clearly breaks network transparency 
because it cannot be hidden in general (given our fault model, this is a consequence of the CAP 
theorem [3]).  For example, an object located on a given node will simply disappear if the node 
crashes.  If we cannot maintain transparency, what is the best we can do?  Many systems allow 
the new failure modes to show up at the points where they affect execution.  For example, an 
RMI in Java will cause an exception to be raised at the caller if the callee's node fails.  This 
seems to be a straightforward way to handle the problem: simply catch the exception and 
perform the necessary cleanup.  However, this solution is not modular.  If we distribute a 
program, then new behavior (e.g., new possible exceptions) will arise depending on how the 
program is physically distributed.  The program will have to be modified to catch these 
exceptions and do the appropriate fixes.  If the system is network transparent, then all possible 
distribution structures must be handled, so all potential distribution points have to be recognized 
and handled a priori.  This greatly complicates the program.  One way to solve the problem is to 
limit the possible distribution structures.  For example, in Java the distribution structure is 
typically fixed at the time of program development.  This limits how the program can later be 
evolved to changing requirements or changing system structures.

We propose a different way to handle partial failure in a network-transparent language.  Our 
approach does not require changing any existing code, but just the addition of new code to 
handle failures.  This modular approach is called fault streams and it is implemented in Mozart 
1.4.0 [2,9].  The approach is simple: every language entity has an associated fault stream, which 
gives the entity's successive fault states.  We define a stream as a list value with a single 
assignment tail, which allows it to be extended monotonically.  There is a language operation to 
make visible the fault stream of any language entity; if the fault stream is not visible then it has 
no overhead.  Any operation that cannot be completed because of a partial failure will simply 
suspend (i.e., wait until the problem goes away), and a failure notification will appear on the 
fault stream.  Another program module is then free to read the fault stream and act accordingly.

In the Mozart 1.4.0 implementation with the fault model given above, three fault states are 
recognized: ok (no fault), tempFail (temporary failure), and permFail (permanent failure).  This 
combines a perfect failure detector (permFail) and an eventually perfect failure detector 
(tempFail corresponds to suspect and ok corresponds to resume) [4].  Permanent failures are 
difficult to implement; currently they are only detected between processes on single machines 
and on local area networks in certain circumstances. We therefore allow the perfect failure 
detector to be omitted at any given node, but the eventually perfect failure detector must always 
be implemented.  We note that temporary failures take the place of time outs.  A temporary 
failure is supposed to be detected quickly, unlike a time out which approximates infinity.  This 
allows the application to make the appropriate decision in a timely manner.  Fault streams can 



be seen as a generalization of Erlang's linked processes [6].  In Erlang, any two processes can 
be linked so that if one process dies, the second receives a message reporting the failure.  Our 
fault streams generalize this in three ways: (1) we handle an ordered sequence of fault states, 
(2) we handle temporary failures, and (3) we handle failures at the level of language entities and 
not at the level of processes.  Note that Erlang processes are fine-grained; they contain just a 
single thread executing a recursive function and a mailbox to handle incoming messages.

We are extending this work by investigating how to program large-scale systems in Distributed 
Oz.  We have implemented a transactional peer-to-peer storage system, Beernet, in Distributed 
Oz [8].  This system uses a uniform consensus algorithm to implement atomic commit.  Our 
experience with this system has exposed another difficulty for network transparency, namely 
resource management in the face of failure, which shows up in all long-lived distributed 
systems subject to partial failure.  A large-scale system that lives long will have resource leaks 
because of partial failure.  We are currently investigating formalizations of software 
rejuvenation to solve this problem [7].  This can be seen as an application of the ideas of 
Recovery Oriented Computing to distributed programming language design and semantics [10].  
The ultimate goal is to build efficient large-scale distributed systems in the most network-
transparent way possible.
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