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Abstract

Chord is one of the simplest peer-to-peer systems
that addresses the issue of efficient data location. De-
spite its simplicity, one of its main limitations remains
the asymmetric organization of its routing. This leads
to problems like inability to make in-place notifications
of routing entry changes, and incapacity to support
symmetric applications and to efficiently exploit net-
work proximity. As a solution to this limitation, we
propose S-Chord, an extension to Chord. In S-Chord
the routing is organized in a symmetric manner, and
the circular search space can be walked through bidi-
rectionally. This results, for the worst-case, in an
improvement of lookup efficiency of 25%, compared
to Chord with the same size routing table. Further-
more, on average, assuming a uniform distribution of
queries, S-Chord results in a 10% improvement. To
test our theoretical results we implemented the S-Chord
lookup algorithm and applied it to different networks.
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1. Introduction

With the advent of popular applications like
Gnutella and Napster, it was observed that the con-
tent location and routing through the peer-to-peer
(p2p) system can lead to serious scalability problems
that had to be addressed. So they have been; ex-
amples of “well” structured systems providing such
solutions are: CAN [4], Chord [6], Pastry [5], and
Tapestry [7]. They all increase scalability and improve
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routing through the system by employing a distributed
hash table (DHT).

Chord is one of the simplest p2p system employ-
ing a straightforward routing algorithm. Despite its
simplicity, Chord is limited by its asymmetric orga-
nization of the routing. This results in three main
drawbacks. First, unlike other p2p systems, in Chord
the lookup is asymmetric, making very likely that the
lookups from a node n to another node p take a differ-
ent number of hops than the lookups from p towards
n. Second, the lookup failure rate is quite high dur-
ing node departures. As shown in [2], the asymmetric
routing entries of Chord result in inability to perform
in-place notification of routing entry changes. Third,
as discussed in [1], in Chord the underlying network
proximity is both awkward and costly to exploit.

To overcome these drawbacks, we propose S-Chord,
an extension to the Chord system, providing a sym-
metric p2p lookup protocol. As will be shown in Sec-
tion 3.1, the symmetry in S-Chord is threefold: “rout-
ing entry symmetry”, “routing cost symmetry”, and
“finger table symmetry”. Related to our work is the
research done in Hyperchord [2], where a certain de-
gree of symmetry is introduced in order to improve
the node join and leave mechanism. Their solution is
based on hypercube routing providing routing entry
symmetry and routing cost symmetry. S-Chord has
the same symmetric properties as Hyperchord. In ad-
dition, in S-Chord the fingers are organized symmetri-
cally, and the way the routing is managed results in an
improvement of the lookup efficiency; i.e., with a rout-
ing table of the same size as Chord (and Hyperchord),
S-Chord resolves keys in up to 25% less hops.

We begin our presentation by an overview of the
Chord system. We continue with the introduction
of S-Chord by defining its symmetry, explaining the
mechanism for constructing its finger table, and pre-
senting the lookup protocol. We conclude our work
after presenting some simulation results.



2. Chord overview

In order to describe the way the routing table is
formed in S-Chord, we first recall how Chord is or-
ganized. We describe the finger table and the node
join/leave mechanism.

2.1. Finger table in Chord

In Chord, the search space is organized as a vir-
tual ring within which hashed node and data item key
identifiers are spread by using a consistent hashing.
For a search space of size N = 2F the identifiers can
be situated on a circle of numbers ranging from 0 to
2¥ — 1. A base hash function is used to assign each
node and data item key a k-bit identifier (id). We will
use the term “node” to refer to both the node and its
identifier under the hash function, as the meaning will
be clear from the context.

Each node has a predecessor and a successor rep-
resenting references to the previous and, respectively,
the subsequent node in the search space. A key is
stored at the node succeeding the id of that key on
the circular search space. Thus, the naive lookup pro-
cedure for a certain key reduces to looking for the first
node whose id is greater than, or equal to the id of
that key along the search space, going clockwise.

To speed up the lookup process, each node main-
tains supplementary references (called fingers) about
some other nodes inside a finger table. Given a search
space of size N = 2* besides the references to its pre-
decessor and successor, each node in the Chord system
stores k fingers. There is a distinction between fin-
ger_start and finger_node. The finger_start represents
the value a finger should have, whereas the correspond-
ing finger node represents the value the finger actually
has. R

We denote the i*" finger_start by f[i] and the ** fin-
ger_node by f[i]. Now we can define the i** finger start
at node n in Chord as n.f[i] := n & 2°—1 (if not stated
otherwise, the modulo arithmetics are positive and
computed with respect to the search space size N).
Further, the i** finger_node at node n is the first node
succeeding n by at least 2¢~! going clockwise. That
is, n.f[i] := successor(n ® 2¢71), where successor(u) is
a function that returns the first present node that fol-
lows u along the circular search space. At lookup, a
node forwards the query to the closest finger to that
key, making the distance to the node storing the key be
at least halved at each hop. Thus, Chord guarantees
key resolution in a maximum logs N hops.

In Figure 1 we illustrate an example finger ta-
ble in a Chord system with 11 nodes chosen from a
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Figure 1: The fingers at node 1 in a poorly populated
Chord network of size 64.

search space of size N = 64. We want to determine
the routing information that node 1 stores. The first
finger_ node points to 3, as node 3 is the first node
that succeeds finger start 1 ® 29 = 2. The second fin-
ger_node also points to 3, as node 3 is the first node
that, going clockwise, succeeds node 1 with at least
2! = 2. The remaining finger nodes are 7, 13, 18,
and respectively 40. Note that, at a node, it is the
finger_nodes that actually constitute the finger table.

2.2. Node join and leave in Chord

When joining the system, a node n has to deter-
mine its successor and predecessor, and to populate its
fingers. In order to guarantee a successful join, each
node runs periodically a so called “stabilization pro-
tocol”. The departure of a node is treated in Chord
in the same way as a node failure. By periodically
running the stabilization protocol, and looking up the
fingers at each node, the system correctness is ensured.
Note that node departures in Chord can lead to tem-
porary finger table inconsistency (i.e., finger references
to dead nodes) allowing lookup failures to happen.

3. The base S-Chord protocol

The S-Chord lookup protocol is based on the Chord
protocol. It mainly differs from Chord by the symmet-
ric organization of its routing table, and its routing
policy. In this section we present the symmetry of
S-Chord and show how its symmetric organization of
the routing improves the lookup efficiency.



3.1. Symmetry in S-Chord

In S-Chord the symmetry is threefold. We have
“routing entry symmetry”, “routing cost symmetry”,
and “finger table symmetry”.

Routing entry symmetry is that for any two differ-
ent nodes, n and p, if p has a finger to n, then n has a
finger to p. This symmetry provides a node with the
ability to announce its arrival and departure to the in-
terested nodes; i.e., the nodes that should refer to it.
In a poorly populated network the routing entry sym-
metry is not achieved per se. However, as described
in [3], when doing in-place notifications this problem
can be taken into account and solved. Furthermore,
note that unlike Chord where the virtual ring can be
walked through in only one direction (i.e., clockwise),
the routing entry symmetry of S-Chord provides the
ability to walk through the virtual ring in both direc-
tions.

The routing entry symmetry and the associated
lookup protocol provide the S-Chord system with an-
other characteristic that we call: the “routing cost
symmetry”. That is, it is very likely that the lookup
path lengths between any two nodes in the system are
equal (see Figure 6), thus supporting symmetric appli-
cations. Nevertheless, the two paths may differ; i.e.,
we don’t support “routing symmetry”?!.

In S-Chord, the routing entries in the finger table of
any node n are organized symmetrically with respect
to the axis between n and n & & (i.e., half the search
space of node n). This symmetry that we call “finger
table symmetry” provides a fast access to the whole
search space.

3.2. Finger table in S-Chord

As described in Section 2, in Chord, for a given
search space of size N, the size of the finger table at
each node is [logoNT. In S-Chord we keep the same
size of the finger table as in Chord.

To support symmetry, we organize the finger ta-
ble in two symmetric sides. Thus, each node main-
tains a finger table with at most 2 % m entries, where
m = [logsN'] (hereinafter we use m to denote [logs N1,
with N representing the search space size). We refer
to the set of the fingers in the interval [1,m] as the
right side of the finger table. Similarly, we refer to the
the set of fingers in the interval [m + 1,2m] as the left
side of the finger table. Equation 1 defines the fin-
ger_starts at node n in S-Chord, for both sides of the

1'We use the term “routing symmetry” as defined in the net-
working literature, meaning that the paths (in both directions)
between two nodes in the network are exactly the same.

Figure 2: The fingers and their responsibilities at
node 1 in a poorly populated S-Chord network of
size 64.

finger table. They are located at positive and negative
distances of powers of four from n in both directions.

sa [ nedTt die[l,m]
n-fli '_{ ne 4™t iem+1,2m] (1)

Equation 2 defines the finger node at node n. For
i found in the right side of the finger table, the it"
finger node at node n will contain the id of the first
node succeeding n by at least 4i~! going clockwise (i.e.,
successor™). For i found in the left side, the i fin-
ger_node at node n will contain the id of the first node
succeeding n by at least 42~ going counterclockwise
(i.e., successor™). Note that n.f[1] is the same as the
successor of n, whereas n.f[2m] is the same as the
predecessor of n.
. successort(n @ 4¢~1 i €[l,m
n-fli] = { successor™ En S 42m_)i) xS %m +]1,2m] (2)
In Figure 2 we illustrate an example of an S-Chord
system with 11 nodes chosen from a search space of
size N = 64 (i.e., m = 3). We want to determine the
routing information that node 1 stores. The first fin-
ger_node points to 3, as node 3 is the first node that
succeeds finger_start 1 @ 4° = 2. Furthermore, the sec-
ond and the third finger nodes are 7 and 18, respec-
tively. The fourth finger node points to 40, as node
40 is the first node that, going counterclockwise, suc-
ceeds finger_start 1 © 42 = 49. The fifth and the sixth
finger_nodes point to 60 and 0, respectively.
Two main reasons motivated us to choose the fin-
gers in the left side of the finger table using the opera-
tion successor™ rather than the operation successort.



First, since a finger is not situated in the middle of the
search space partition it is responsible for (as will be
described Section 3.3), it is better to locate the finger
going along the longer branch of its responsibility in-
stead of going along the smaller one. This is because,
if the finger_start is not present, it is more likely that
the corresponding finger node be well positioned to
address the corresponding responsibility. Second, by
using the operation successor™, the routing entry sym-
metry is better supported. That is, if the finger i of a
node p points to a node n, then the finger 2m — (i — 1)
of node n will point to node p, or very close to it.

As in Chord, at any node there may be situations
where the it* finger gets close, and sometimes even
equal to the i+ 1%" finger. For instance, such a scenario
would appear at node 1 in Figure 2 if node 3 were not
present; thus the first finger at node 1 would be 7
instead of 3 (i.e., f[1] = f[2]).

Since the finger nodes of a node are chosen with
respect to Equation 2, there are chances that fingers
from the right side and the left side of the finger table
of a node overlap. This situation happens for any two
fingers ¢ € [1,m] and j € [m + 1,2m] of the same
node with the condition that there are no nodes in the
interval [ flil = f [3]] . An example of two fingers from

different sides of the finger table getting close to each
other would appear in the system in Figure 2 if node
40 were not present; thus the fourth finger at node 1
would be 21 instead of 40.

Nevertheless, as will be described in the next sec-
tion, by well choosing the finger responsibilities of a
node, the finger overlapping does not affect the lookup
efficiency or the lookup algorithm.

3.3. Finger responsibility in S-Chord

Each finger of a node n has a well determined re-
sponsibility. The node responsibility has the form of
an interval and defines the range of keys expected to
be found in a minimum number of hops via that finger,
going from node n.

Since the search space at node n is split among its
fingers, the finger responsibilities are used when rout-
ing. Thus, the request for a key k is sent to the finger
whose responsibility includes .

Whereas in Chord a finger is situated at the begin-
ning of the search space partition it is responsible for,
in S-Chord, in order to support symmetry, a finger is
located inside it.

Equations 3 and 4 define the responsibility intervals
at node n, R, (i) and R,(j), of fingers ¢ € [1,m] and
J € [m+1, 2m], respectively. For simplicity and clarity,

we consider that n. f[0] = n.f[2m+1] = n for any node
n €]0, N[. Similarly, for n = 0 we consider n.f[0] =0
and n.f[2m + 1] = N.

o sli — 1] |22t | g | st i
) (3
|nflie |mopli=| 5 flj + 1] o | 2edlitlfonfli ]
(4)

Note that for computing the lower and the upper
bounds of the responsibility interval we considered the
floor of the ratios. The reason is that this results in a
smaller number of hops. Indeed, the number of hops
to reach the item found at equal distance between two
successive fingers ¢ and 7 + 1 of the same node will be
lesser if finger ¢ is chosen, instead of finger ¢ 4+ 1, since
via finger ¢ + 1 the query will do an additional hop.

Here is an example of setting the finger responsi-
bilities of node 1 in the network shown in Figure 2.
One can see that, for instance, the finger respon-
sibility for fingers 1, 2, and 4 are R;(1) =]2 — 4],
R;1(2) =]4 — 12], and R;(4) =]29 — 55], respectively.

The finger responsibility as defined in FEqua-
tions 3 and 4 can be applied correctly only to mono-
tonically increasing values of the fingers modulo the
network size. Since there are chances that fingers of
the same node overlap, the fingers of any node have
to be ordered before computing their responsibilities.
Thus, at a node n, the fingers have to be ordered by
the distance between themselves and the node n, go-
ing clockwise. Once the fingers ordered, changing the
value of a finger ¢ at a node n will only engage the
change of its responsibility and those of the neighbor-
ing fingers ¢ — 1 and ¢ + 1 of node n. Furthermore,
since the finger responsibility is computed with respect
to the finger nodes, finger overlapping does not affect
the lookup efficiency, considering that the fingers of a
node are ordered before computing their responsibili-
ties.

It is interesting to mention that the Equa-
tions 3 and 4 represent a refined definition of the finger
responsibility described in [3]. The latter does not en-
sure good lookup performances for particular scenarios
of poorly populated networks. Indeed by taking into
account the fact that there is no node between a fin-
ger_node and its finger_start, Equations 3 and 4 define
a smarter responsibility interval.

3.4. Lookup in S-Chord
In the S-Chord system, a key is stored at the first

node equal to, or greater than the id of that key on the
circular search space. Thus, like in Chord, the lookup



n.find_successort (k) n.closest_node(k)

if k €]n, successor] then for i = 1 upto 2m
if k € Ry (%) then

return n. f[i];

return successor;

elseif k €]predecessor,n] then
return n; fi

else return n;
n' = closest_node(k);
return n’.find_successort (k);

fi

Figure 3: Key lookup using the finger table and finger
responsibilities in S-Chord.

for a certain key reduces to looking for the first node
whose id is greater than, or equal to the id of that key.

In Figure 3, the pseudo-code 2 for the operations
find_successort and the closest_node are presented. The
operation find_successor™ is executed at node n to look
for the successor of k in the circular search space go-
ing clockwise. Firstly, it is checked whether the key
falls in the range between n and its successor, or its
predecessor. In both cases the direct responsible node
is returned. Otherwise, if the key is found farther in
the ring, look for the closest node to k (i.e., n') and
forward the request to it.

Given a key k at node n, the operation closest_node
returns the closest node to k. At node n, when looking
for the closest node to a certain key k, the responsi-
bility of the fingers of n is checked. Hence, the closest
node known by n is to be the node referred by the
finger of n whose responsibility includes k.

In [3] we prove the correctness of the lookup algo-
rithm of S-Chord, and that the maximum number of
hops necessary to reach the responsible node of a given
key is [2logN1. That is 25% smaller than logoN in
Chord and Hyperchord). The intuition behind is that
at each suite of three hops the distance to the node
storing the key is divided by 16, instead of 8 in Chord.

Two examples of lookup paths starting node 1, for
keys 14 and 58, are illustrated in Figure 4. First, con-
sider the lookup for key 14. Since, at node 1, 14 is
included in the responsibility of f[3], the request is
forwarded to node 18. From node 18, the request is
forwarded to node 15, since 14 is included in the re-
sponsibility of f[5] of node 18. Note that the query
was forwarded counterclockwise in the circular search
space. Finally, node 13 finds out that its successor,
node 15, is directly responsible for key 14, and thus
returns 15 to node 1. Consider now the lookup for

2The remote calls and variables are preceded by the remote
node 4d, while the local procedure calls and variables omit it.

Lookup path for key 14

Lookup path for key 58

50

Figure 4: Queries for keys 14 and 58, starting at node
1, in a poorly populated S-Chord network of size 64.

key 58. Since, at node 1, 58 is included in the respon-
sibility of f[5], the request is forwarded to node 60.
Node 60 finds out that it is directly responsible of key
58, and thus returns 60 to node 1.

3.5. Node join and leave in S-Chord

As in Hyperchord [2], in S-Chord, due to the rout-
ing entry symmetry, we can introduce in-place notifi-
cation of routing entry changes. That is, a node join-
ing the system is able to announce its arrival to nodes
in the system interested in pointing to it by their fin-
gers. Similarly, a node leaving the system is able to
announce its departure to nodes in the system point-
ing to it, thus dramatically reducing the time period
during which a finger table remains inconsistent. In [3]
we provide the algorithms for node join and leave.

4. Simulation results

We implemented the Chord and S-Chord lookup
algorithms, and simulated lookup scenarios in different
networks. For our simulations we considered the query
distribution to be uniform over the search space.

For the first test suite we focused on the lookup
path length. We measured the maximum and the av-
erage path length for both systems, for fully populated
networks of sizes ranging from 2° to 2'¢. The measure-
ments (see Figure 5) confirmed our expectations. That
is, in the worst case, the number of hops a lookup can
take in S-Chord is 25% less than in Chord. We ob-
served that on average lookups take around 10% less
hops in S-Chord than they do in Chord.

The second test suite analyses the routing cost sym-
metry for both systems. We measured the percentage
P(z) of any pair of two nodes n and p such that the ab-
solute difference between the distance (n, p), in num-
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Figure 5: Worst case and average path length function
the network size for Chord and S-Chord fully popu-
lated networks.

ber of hops, and the distance (p, n), equals z:
|path_len(n — p) — path_len(p — n)| =z .

For this test, we considered two networks (of sizes 2!2,
and 22°) partially populated (1024 nodes randomly
chosen). As illustrated in Figure 6, in S-Chord, for
60% of pairs the difference was 0, and for 90% it was
less than or equal to 1. In contrast, in Chord there
were only 20% of pairs with difference 0, and 50%
with difference less than or equal to 1. This shows
us that, whereas in Chord we have pairs characterized
by a strong asymmetry of the routing cost, in S-Chord
the routing cost is highly symmetric.

5. Conclusions and further work

In this paper we have introduced S-Chord, with
its threefold symmetry, as a candidate solution to the
asymmetry drawbacks of Chord. S-Chord is based on
Chord and provides the same correctness guarantees.
In addition, for steady scenarios (low rate of nodes
joining /leaving) it improves lookup efficiency up to
25%. Moreover, since S-Chord is also using notifica-
tions for the node leave procedure, we are confident
that for dynamic scenarios the average hop length in
S-Chord is lower than the one in Chord and compara-
ble with the one in Hyperchord.

We have promising ongoing research focused on the
generalization of S-Chord. We also investigate what
we believe to be an open question; i.e., achieve “rout-
ing symmetry” through proximity neighbor selection,
and exploit the underlying network proximity by using
the system’s symmetry.
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Figure 6: Distance variation between pairs of nodes
in Chord and S-Chord, for two poorly populated net-
works (sizes 212, 220).
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