
nondeterminism?
Observable

Yes No

No state Stateful
More declarative Less declarative

programming
Active object

Object−capability
programming

publish/subscribe,
E, Oz, Alice,

tuple space (Linda)

Erlang, AKL

+ thread

Multi−agent
programming

Message−passing
concurrent

programming

Oz, Alice

Java, Alice,

Shared−state
concurrent

programming

object−oriented
Concurrent

programming

+ thread

Smalltalk, Oz

Oz, Alice

Dataflow and
message passing

+ log

Software
transactional

memory (STM)

+ cell
(state)

Lazy concurrent

Functional Message passing

Weak state

SQL embeddings

+ by−need
synchronization

Prolog, SQL

+ search

programming
Relational & logic

Deterministic
logic programming

record

(equality)

of Computer Programming" (MIT Press, 2004).

their kernel languages (the small core language in which all
the paradigm’s abstractions can be defined). Kernel languages
are ordered according to the creative extension principle: a new
concept is added when it cannot be encoded with only local
transformations. Two languages that implement the same

programmer, because they make different choices on what
programming techniques and styles to facilitate.

paradigm can nevertheless have very different "flavors" for the

The chart classifies programming paradigms according to

When a language is mentioned under a paradigm, it means that
part of the language is intended (by its designers) to support

does not mean that there is a perfect fit between the language
and the paradigm. It is not enough that libraries have been

kernel language should support the paradigm. When there is a
family of related languages, usually only one member of the

the paradigm without interference from other paradigms. It

written in the language to support the paradigm. The language’s

family is mentioned to avoid clutter. The absence of a language
does not imply any kind of value judgment.

completely orthogonal, since they are part of a program’s
specification. A domain−specific language should be definable
in any paradigm (except when the domain needs a particular
concept).

Axes that are orthogonal to this chart are typing, aspects, and

has some effect on expressiveness. Aspects should be
domain−specificity. Typing is not completely orthogonal: it

Metaprogramming is another way to increase the
expressiveness of a language. The term covers many different
approaches, from higher−order programming, syntactic
extensibility (e.g., macros), to higher−order programming
combined with syntactic support (e.g., meta−object protocols
and generics), to full−fledged tinkering with the kernel
language (introspection and reflection). Syntactic extensibility
and kernel language tinkering in particular are orthogonal to

enough to implement many paradigms in almost native
this chart. Some languages, such as Scheme, are flexible

fashion. This flexibility is not shown in the chart.

Lazy
functional

synchron.
+ by−need

programming

+ thread
+ single assign.

programming
concurrent

Haskell

Monotonic
dataflow

programming

Declarative

Unix pipes

Java, OCaml

Sequential
object−oriented
programming

Stateful
functional

programming

+ closure

constraint

embeddings
+ solver

Constraint (logic)
programming

Concurrent

+ thread

constraint
programming

LIFE, AKL

programming (FRP)

CLP, ILOG Solver

constraints
Logic and

programming

Shared state

Functional reactive

FrTime

+ by−need synchronization + synchronization
on partial termination

+ thread

declarative
Lazy

programming

dataflow
programming

+ single assignment

Lazy

concurrent

+ local cell

This chart is inspired by "Concepts, Techniques, and Models

programming
declarative

XML,
S−expression

Clarifications
The principal programming paradigms

"More is not better (or worse) than less, just different."

+ nondeterministic

FGHC, FCP,

Nonmonotonic

programming
dataflow

Concurrent logic
programming

Oz, Alice, AKL

dataflow
programming

(channel)
+ port

Multi−agent

choice

Oz, Alice, AKL

+ name

ADT
functional

Haskell, ML, E

(unforgeable constant)

programming

ADT
imperative

programming

+ cell

CLU, Oz

Functional
programming

Scheme, ML

v1.03 © 2007 by Peter Van Roy+ procedure

First−order
functional

programming

+ closure

Data structures only

Turing equivalent

+ cell (state) Imperative
programming

Pascal, C

search
Imperative

programming

SNOBOL, Icon, Prolog

+ search

(channel)
+ port

Event−loop
programming

+ continuation

Continuation
programming

Scheme, ML

+ unification

Descriptive

