
Implementing a Distributed Shortest Path

Propagator with Message Passing

Luis Quesada, Stefano Gualandi, and Peter Van Roy

Universit�e Catholique de Louvain
Place Sainte Barbe, 2, B-1348 Louvain-la-Neuve, Belgium

fluque, stegua, pvrg@info.ucl.ac.be

Abstract. In this article, we present an implementation of a distributed
shortest path propagator. Given a graph and a goal node, this propagator
maintains a �nite domain variable for every node. The variable's lower
bound is the minimal cost of reaching the goal from that node. The
graph on which the propagator is based can be modi�ed by removing
edges, increasing the cost of edges, or by replacing edges by graphs. The
propagator has been implemented using a message passing approach on
top of the multi-paradigm programming language Oz [2]. One of the
advantages of using a message passing approach is that distributing the
propagator comes for free. Di�erent shortest path propagators running
on di�erent machines may be working together on the same graph.

1 Introduction

In this article, we present the implementation of a distributed shortest path
propagator. Given a graph and a goal node, this propagator o�ers the following
services:

{ It maintains, for every node, a Finite Domain (FD) variable. The lower
bound of the variable is the minimal cost of reaching the goal from that
node. The propagator maintains these lower bounds while the graph is dy-
namically modi�ed.

{ It allows the incremental de�nition of the graph on which the propagator
is based. The user may start by providing an abstract graph (i.e., a graph
whose edges are virtual) and then proceed by replacing each edge by its
corresponding graph. The user can execute the propagator in a distributed
way, since he can choose to launch the propagator associated with a virtual
edge on a di�erent machine.

The graph on which the propagator is based can be modi�ed either by increasing
the cost of an edge or by deleting an edge1. It is important to emphasize that we
only consider monotonic changes in the graph (i.e., changes that lead to further

1 The reader may also think of deleting an edge as increasing its cost to 1. However,
mostly for optimization reasons, we prefer to keep the two operations separate.

2 Luis Quesada et al.

constrain the FD variables involved).
In order to maintain the minimal costs (and thus the FD variables) we follow
the asynchronous dynamic algorithm described by [9], which is based on the
principle of optimality.
Let us represent the shortest distance from node i to the goal node as h�(i). The
shortest distance via a neighboring node j is given by f�i (j) = k(i; j) + h�(j),
where k(i; j) is the cost of the link between i and j. If node i is not the goal node,
the path to the goal node must visit one of the neighboring nodes. Therefore,
h�(i) = minjf

�

i (j) holds.
If h� is given for each node, the optimal path can be obtained by repeating the
following procedure. For each neighboring node j of the current node i, compute
f�i (j) = k(i; j) + h�(j). Then move to the j that gives minjf

�

i (j).
Asynchronous dynamic programming computes h� by repeating the local com-
putations at each node. Let us assume the following situation:

1. For each node i, there exists a process corresponding to i.
2. Each process records h(i), which is the estimated value of h�(i). We initialize

h(i) to 1.
3. For the goal node g, h(g) is 0.
4. Each process can refer to the h values of neighboring nodes.

Each process updates h(i) by the following procedure. For each neighboring node
j, compute fi(j) = k(i; j) + h(j), where h(j) is the current estimated distance
from j to the goal node, and k(i; j) is the cost of the link from i to j. Then,
update h(i) as follows: h(i) minjfi(j). The execution order of the processes
is arbitrary.
There are several ways of implementing the algorithm sketched above. We im-
plement it by considering the set of processes as a multi-agent system where
agents interchange synchronous and asynchronous messages and their transition
state functions rely on data
ow and constraint programming primitives.
The organization of the paper is as follows. In Section 2, we introduce the Oz
language and explain how message-passing concurrency can be modeled in it. In
Section 3, we show how to use the propagator and explain the implementation of
it by showing its message passing diagram and its corresponding state transition
system. We conclude in Section 4.

2 Message-passing concurrency in Oz2

2.1 The Oz language and its Execution Model (Declarative Subset)

The declarative part of the Oz execution model consists of a store and a set of
data
ow threads that reference logic variables in the store (see Figure 1). Threads
contain statement sequences Si and communicate through shared references. A
thread is a data
ow thread if it only executes its next statement when all the
values the statement needs are available. Data availability is implemented using

2 This section is a summary of section 2 of [7], and Chap. 5 of [6]

Lecture Notes in Computer Science 3

Fig. 1. The Oz execution model (Declarative Subset).

logic variables. If the statement needs a value that is not yet available, then the
thread automatically blocks until the value is available. There is also a fairness
condition: if all values are available then the thread will eventually execute its
next statement.
The shared store is not physical memory; rather it is an abstract store that only
allows legal operations for the entities involved, i.e., there is no direct way to
inspect their internal representations. The store consists of two compartments,
namely logic variables (with optional bindings) and procedures (named lexically
scoped closures). Variables can reference the names of procedures. The external
references of threads and procedures are variables. When a variable is bound,
it disappears, i.e., all threads that reference it will automatically reference the
binding instead. Variables can be bound to any entity, including other variables.
The variable and procedure stores are monotonic, i.e., information can only be
added to them, not changed or removed. Because of monotonicity, a thread
that is not blocked is guaranteed to stay not blocked until it executes its next
statement.
All Oz execution can be de�ned in terms of a kernel language whose semantics
are outlined in [1], [8] and [6]. We will just describe the declarative part of it.

S ::= S S Sequence
j X = f(l1 : Y1 : : : ln : Yn) j Value
j X =<number> j X =<atom>
j local X1 : : : Xn in S end j X = Y Variable
j proc fX Y1 : : : YngS end j fX Y1 : : : Yng Procedure
j if X then S else S end Conditional
j thread S end Thread

Table 1. The Oz declarative kernel language.

4 Luis Quesada et al.

Table 1 de�nes the abstract syntax of a statement S in the (declarative part
of the) Oz kernel language. Statement sequences are reduced sequentially inside
a thread. All variables are logic variables, declared in an explicit scope de�ned
by the local statement. Values (records, numbers, etc.) are introduced explicitly
and can be equated to variables. Procedures are de�ned at run-time with the
proc statement and referred to by a variable. Procedure applications block un-
til the �rst argument references a procedure name. The if statement de�nes a
conditional that blocks until its condition is true or false in the variable store.
Threads are created explicitly with the thread statement.

In the following section, we are going to be using a bit of syntactic sugar to
make programs easier to read. We will do so by considering that:

{ proc {P V1 V2 ... Vn} <Decl> in <Stmt> end is equivalent to proc {P

V1 V2 ... Vn} local <Decl> in <Stmt> end end , where <Decl> is a
declaration (i.e., a statement declaring a variable) and <Stmt> is any state-
ment.

{ fun {F V1 V2 ... Vn} <Stmt> <Exp> end is equivalent to proc {F V1

V2 ... Vn O} <Decl> in <Stmt> O=<Exp> end , where <Exp> is an ex-
pression representing a value.

{ fun {F V1 V2 ... Vn} <Decl> in <Exp> end is equivalent to fun {F V1

V2 ... Vn} local <Decl> in <Exp> end end .

Procedures are values in Oz. This means that a variable may be bound to a
procedure. In particular, we have that proc {X V1...Vn}... end is equivalent
to X=proc {$ V1...Vn}... end .

2.2 The message-passing concurrent model

The message-passing concurrent model extends the declarative concurrent model
by adding ports. Ports are a kind of communication channel. Ports are no longer
declarative since they allow observable nondeterminism: many threads can send
a message to a port and their order is not determined. However, the part of the
computation that does not use ports is still declarative.

Ports. A port is an Abstract Data Type (ADT) that has two operations:

{NewPort S P} : create a new port P associated with stream S.
{Send P X} : append X to the stream corresponding to the entry point P. Suc-

cessive sends from the same thread appear on the stream in the same order
in which they were executed. This property implies that a port is an asyn-
chronous FIFO communication channel.

For example:

local S P in
{NewPort S P}

Lecture Notes in Computer Science 5

{Send P a}
{Send P b}
{Browse S}

end

This displays the stream a|b|_ . Doing more sends will extend the stream. By
asynchronous we mean that a thread that sends a message does not wait for
reply; it immediately continues.

Port objects. A port object is a thread reading messages from port streams.
This allows two things. First, many-to-one communication is possible: many
threads can reference a given port object and send to it independently. Second,
port objects can be embedded inside data structures (including messages).
Here is an example of a port object with one port that displays all the messages
it receives:

local S P in
{NewPort S P}
thread {ForAll S proc {$ M} {Browse M} end } end

end

In this example, ForAll is a procedure that, given a list L and a procedure
P, applies P to each element of L. Doing {Send P hello} will eventually display
hello .

The NewPortObject abstraction. We can de�ne an abstraction to make
it easier to program with port objects. Let us de�ne an abstraction for the
case that the port object has just one port. To de�ne the port object, we give
the initial state Init and the state transition function Fun, which is of type
State�Msg ! State.

proc {NewPortObject Fun Init ?P}
proc {MsgLoop S1 State}

case S1 of Msg|S2 then
{MsgLoop S2 {Fun Msg State}}

[] nil then skip end
end
Sin

in
thread {MsgLoop Sin Init} end
{NewPort Sin P}

end

3 The Shortest Path Propagator

3.1 Interface of the Propagator

As shown in Figure 2, we need to specify the graph on which the propagator
is based and the node in the graph that is the goal. The representation of the

6 Luis Quesada et al.

graph is an adjacency list. The function Create_Propagator returns a record
representing the interface of the propagator.
The propagator has the following interface:

Fig. 2. Description of the propagator.

fdVars exports a tuple T of FD variables. T.i is the FD variable associated
with node i . This FD variable corresponds to the cost of going from that
node to the goal.

removeEdge exports a 1-argument procedure:
proc {$ Edge} ... end . The parameter Edge is the edge to be removed.

increaseEdge exports a 2-argument procedure:
proc {$ Edge NewCost} ... end . The parameter Edge is the edge whose
cost is to be increased to NewCost 3.

defineEdge exports a 5-argument function:
fun {$ Edge Graph Source Destination Host} ... end . Edge is the
edge to be replaced. Graph is the graph by which the edge is to be re-
placed. Source is the node in Graph with which the origin of Edge is to be
associated. Destination is the node in Graph with which the destination
of Edge is to be associated. Host is the url address of the host on which the
propagator of Graph is going to be executed. If Host is nil, the propagator
will be executed on the same machine.

In Oz, we use the following notation to represent FD variables: VariableName-
fLowerBound#UpperBoundg. In the implementation, the upper bounds of the

3 The implementation assumes that the new cost is always greater than the current
cost.

Lecture Notes in Computer Science 7

Fig. 3. Updating the FD variables of each node.

propagator's FD variables are set to a constant Max. This constant could be
the sum of the edges' costs. As shown in Figure 3, after the creation of the
propagator, the lower bound of the FD variable of each node is set to the minimal
cost of reaching the destination. Internally, the propagator always keeps the
shortest path to the destination for every node. In Figure 3, we show how the
shortest path from node 1 to the goal node (node 8) is updated after removing
edges 2#6 and 1#3 . In this Figure, you can also observe how the FD variables
are updated with respect to the changes in the graph4.

3.2 Implementing the propagator

The propagator is implemented as a set of port objects interchanging asyn-
chronous and synchronous messages. The implementation makes use of the New-
PortObject abstraction described in the previous section. In this section, we will
describe the messages that our objects interchange, the attributes that these port
objects have and their corresponding state transition functions. Even though Fig-
ure 4 shows three types of concurrent processes, only nodes are modeled as port
objects since neither the environment nor the monitors receive messages. In the
following, we will focus on the implementation of the nodes.

Attributes of the Nodes. As shown in Figure 4 each node has the following
attributes:

OutNodes : the tuple of outgoing nodes5.

4 An edge is represented as a tuple of two elements. The edge Ind1#Ind2 has Ind1
as origin and Ind2 as destination.

5 Y is an outgoing/incoming node of X if Y is the destination/origin of one of X's
outgoing/incoming edges.

8 Luis Quesada et al.

Fig. 4. Message Diagram and State of a Node.

OutCost : the tuple of costs of reaching the outgoing nodes.
InNodes : the tuple of incoming nodes.
MinCost : the minimum cost of reaching the destination.
UsedNode: the outgoing node that is being used to reach the destination.
H: the priority queue that keeps the outgoing nodes that are not being used.

Each one of these nodes is associated with a key that represents the cost
of going to the destination through that node.The priority queue is imple-
mented with a heap.

FDVar : the FD variable maintains the cost of reaching the destination. One of
the invariants of our system is that the lower bound of the FD variable is
equal to the minimal cost of reaching the destination.

NCProc : the procedure to be executed whenever MinCost is updated. As we
will see in Section 3.4, the implementation of virtual edges makes use of this
attribute.

Message Diagram. Figure 4 shows the Message Diagram of the Shortest Path
propagator. There are three kinds of entities: (i) nodes, (ii) FD variable monitors
and (iii) environment. A node may receive messages from another node, from
its FD variable monitor and from the environment. By environment, we mean
all those entities independent to the propagator that may interact with it.

The messages that the environment may send to a particular node are:

increaseOutEdge(Ind NewCost) . It increases the cost of edge self #Ind to
NewCost and updates the state of the node accordinly.

Lecture Notes in Computer Science 9

removeOutEdge(Ind) . It removes the edge self #Ind and updates the state of
the node accordinly.

A set of propagators in a Constraint Satisfaction Problem communicate with
each other through shared FD variables. The FD variables associated with each
node may be updated by other propagators working concurrently with the Short-
est Path Propagator. So, as the changes in the FD variables depend not only on
the Shortest Path Propagator, a concurrent process (namely the FD Variable
Monitor) is responsible for detecting those changes and updating the minimal
cost of the corresponding node. The messages that a FD variable monitor may
send to its node are:

updateMinCost(NewCost Ack). It updates the minimal cost of the node and
binds Ack once the cost has been updated. The Ack parameter is for the
sender to wait until the execution of the message has �nished. As we are
using port objects, messages are asynchronous by default, so this mechanism
is a way of modeling synchronous messages.

publish(Cost) . It communicates the new cost to the corresponding incoming
nodes.

The messages that a node may send to another node are:

newSP(Node Cost) . It updates the state of the node according to the fact that
node Node has a new minimal cost Cost .

askMinCost(Cost) . It binds Cost to the current minimal cost of the node.
increaseOutEdge(Ind NewCost) . It increases the cost of edge self #Ind to

NewCost and updates the state of the node accordingly.
removeInEdge(Ind) . It removes edge self #Ind and updates the state of the

node accordingly.
updateNCProc(P) . It updates NCProc .

3.3 State Transition

As we are using port objects, our algorithm is reduced to specifying how the
state of our port objects evolve when receiving a particular message. We will
consider two cases:

removeOutEdge(Ind) . As shown in Figure 5, there are two possibilities for
the node when receiving this message depending on whether the edge to be
removed is the one being used. If it is the used edge, another outgoing node
is chosen from the priority queue, the FD variable and the minimum cost are
updated and the procedure NCProc is executed. If it is not the edge used,
the information of the edge is simply removed.

newSP(Node Cost) . As shown in Figure 6, the state transition for this message
involves more cases. If Node is not the used node, the heap is updated with
the new key for Node. If Node is the one used, there are two cases. One case is
when self only has one outgoing node. If this is the case, there is no option

10 Luis Quesada et al.

Fig. 5. State Transition for the message removeOutEdge.

but to keep using the same node. So, the FD variable and the minimal cost
are updated according to Cost and the NCProc is executed. The other case
is when self has more than one outgoing node. In this case there are two
sub-cases. One sub-case is when the best option (to go to the destination)
o�ered by the nodes in the heap is worse than the new option o�ered by
the used node. In this sub-case, we simply update the FD variable and the
minimal cost according to Cost and execute NCProc . Otherwise, we have to
update the heap by extracting the node o�ering the best cost and inserting
the current used node. We also have to update the FD variable, the minimal
cost, the used node, and execute NCProc .

3.4 Dealing with virtual edges

The shortest path propagator allows the user to de�ne the graph on which the
propagator is based incrementally. It does so by letting the user associate graphs
to edges. Thanks to the approach chosen to implement the propagator, the im-
plementation of this facility is straightforward :

fun {DefineEdge Edge Graph Source Destination Host}
if Host == nil then

Ind1#Ind2=Edge
SPP={Create_Propagator Graph Destination}
proc {NCProc}

thread {IncreaseEdge Ind1#Ind2 {SPP.askMinCost Source}} end
end

in
{SPP.updateNCProc Source NCProc}
SPP

else ... end
end

Lecture Notes in Computer Science 11

Fig. 6. State Transition for the message newSP.

An independent shortest path propagator is created for Graph . The port object
associated with Source is set so that it sends an increaseEdge message to the
origin of Edge whenever the corresponding MinCost of Source is updated. Here,
we only show how to implement the case where all the concurrent processes are
created on the same machine. Readers interested in seeing how this approach
could be extended to manage the case where the processes are created on di�erent
machines may read Chap. 11 of [6].

4 Conclusion

We have presented the Shortest Path Propagator. Given a graph and a desti-
nation node, this propagator maintains, for every node, a �nite domain variable
whose lower bound is the minimal cost of reaching the destination from that
node. Even though this is a problem already investigated (see for instance [5]6

and [9]), the value of our work lies in the fact that the algorithm is implemented
using a message-passing approach on top of data
ow and constraint program-
ming primitives. The use of this sophisticated approach allows, for instance, the

6 The propagator can also be used as an incremental algorithm for the single source
shortest path problem. However, our incremental algorithm (besides only supporting
monotonic changes in the graph) is not as eÆcient as the algorithm presented in
[5]. We can only update MinCost monotonically (i.e., the value to which MinCost
is updated must always be greater than the current one) because this variable is
associated with the lower bound of a FD variable. [5] can perform better by allowing
MinCost to be updated non monotonically (e.g., by temporarily setting a�ected
nodes' cost to be too high) even though the changes to the graph are monotonic.

12 Luis Quesada et al.

easy extension of the propagator to deal with the incremental de�nition of the
graph on which the propagator is based. Another extension that comes for free
is the promotion of the propagator to a distributed status. Di�erent shortest
path propagators running on di�erent machines may be working together on the
same graph.
We identify, at least, two scenarios where the presented propagator may be of
great utility. One is for solving TSP derived problems using a hierarchical ap-
proach. [4], for instance, considers cases where the graph on which the problem
is based is explored by demand. The other scenario has to do with the imple-
mentation of propagators for the same kind of problem which duty is to prune
non-viable edges. If the cost of the nodes represent time, those nodes may be
associated with time windows (i.e., the node can only be visited within some
time periods). [3] suggests, for instance, the use of shortest path propagators for
inferring nodes that have to be visited before others (due to the presence of time
windows), thus avoiding failures during the search phase.

5 Acknowledgments

Special thanks are due to Kevin Glynn, who helped us to improve the quality of
our paper with his valuable comments. We would also like to thank the Mozart
Research group (at UCL) for their comments on the design of the shortest path
propagator.

References

1. S. Haridi and N. Franzen. Tutorial of Oz. December 1999. Available at
http://www.mozart-oz.org/.

2. Mozart Consortium. The Mozart Programming System Version 1.2.5. December
2002. Available at http://www.mozart-oz.org/.

3. G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau. An exact constraint logic pro-
gramming algorithm for the travelling salesman with time windows. Transportation
Science, 32:12{29, 1998.

4. L. Quesada and P. Van Roy. A concurrent constraint programming approach for
trajectory determination of autonomous vehicles. In CP 2002 Proceedings, 2002.

5. G. Ramalingam and T.W. Reps. An incremental algorithm for a generalization of
the shortest-path problem. J. Algorithms, 21(2):267{305, 1996.

6. P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Computer Pro-

gramming. 2003. To be published by MIT Press. Expected publishing date 2004.
7. P. Van Roy, S. Haridi, P. Brand, M. Mehl, R. Scheidhauerand, and G. Smolka. EÆ-

cient logic variables for distributed computing. ACM Transactions on Programming

Languages and Systems, 21(3):569{626, May 1999.
8. P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl, and R. Scheidhauer. Mo-

bile objects in distributed oz. ACM Transactions on Programming Languages and

Systems, 19(5):804{851, September 1997.
9. G. Weiss, editor. Multiagent Systems: A Modern Approach to Distributed Arti�cial

Intelligence. MIT Press, Cambridge, MA, 1999.

