
Copyright © 2002 by P. Van Roy. All rights reserved.

Robust distributed programming
in the Mozart platform: the importance of

language design and distributed algorithms

La programmation répartie robuste
dans la plate-forme Mozart :

le rôle du langage et de l’algorithmique répartie

Langages et Modèles à Objets (LMO’2002)

Peter Van Roy

Département d’Ingénierie Informatique

Université catholique de Louvain

25 janvier 2002



Copyright © 2002 by P. Van Roy. All rights reserved.

Overview
• Designing a platform for robust distributed programming requires

thinking about both language design and distributed algorithms
– Distribution and statedo not mix well(global coherence); the language

should help (weaker forms of state, different levels of coherence)

• We present one example design, the Mozart Programming System
– Mozart implements efficient network-transparent distribution,refining

language semantics with distribution

• We give an overview of the language design and of the distributed
algorithms used in the implementation
– It is thecombination of the twothat makes distributed programming

simple in Mozart

• Conclusions and ongoing work
– Projects starting inhigh availability, security, peer-to-peer



Copyright © 2002 by P. Van Roy. All rights reserved.

Mozart at a Glance
• Oz Language

– A concurrent, compositional, object-oriented language that is state-aware and has
dataflow synchronization

– Simple formal semantics and efficient implementation

• Strengths
– Concurrency: ultralightweight threads, dataflow
– Distribution: network transparent, network aware, open
– Inferencing: constraint, logic, and symbolic programming
– Flexibility: dynamic, no limits, first-class compiler

• Mozart System
– Under development since 1991 (distribution since 1995), 10-20 people for 10 years
– Mozart Consortium: Universität des Saarlandes (Germany), Swedish Institute of

Computer Science (Sweden), Université catholique de Louvain (Belgium)
– Releases for many Unix/Windows flavors; free software (X11-style open source

license); maintenance; user group; technical support (http://www.mozart-oz.org)

• Research and applications
– Research in distribution, fault tolerance, resource managements, constraint

programming, language design and implementation
– Applications in multi-agent systems, “symbol crunching”, collaborative work,

discrete optimization (e.g., tournament planning)



Copyright © 2002 by P. Van Roy. All rights reserved.

Basic principles

• Refinelanguage semantics with a distributed semantics
– Separatesfunctionalityfrom distribution structure(network

behavior, resource localization)

• Three properties are crucial:
– Transparency

• Language semanticsidenticalindependent of distributed setting

• Controversial, but let’s see how far we can push it,if we can also think
about language issues

– Awareness
• Well-defined distribution behavior for each language entity: simple and

predictable

– Control
• Can give different distribution behaviors for a given language entity

• Example: objects are stationary, cached (mobile), asynchronous, or
invalidation-based, with same language semantics



Copyright © 2002 by P. Van Roy. All rights reserved.

Mozart today

Functionality

Fault tolerance

Distribution Security

Openness

Resource Control

Functionality

Distribution

Openness

Security

Resource
Control

Fault
tolerance

Scalability

Scalability

Good awareness/control
Partial awareness/control



Copyright © 2002 by P. Van Roy. All rights reserved.

Language design

• Language has alayered structurewith three layers:
– Strict functional core(stateless): exploit the power of lexically-scoped

closures (“call backsdone right”)
– Single-assignment extension(dataflow variables+ concurrency + laziness):

provides the power of concurrency in a simple way (“declarative
concurrency”)

– State extension(mutable pointers / communication channels): provides the
advantages of state for modularity (object-oriented programming, many-to-
one communication and active objects, transactions)

• Dataflow extension is well-integrated with state: to a first approximation,
it can be ignored by the programmer (it is not observable whether a
thread temporarily blocks while waiting for a variable’s value to arrive).

• Layered structure iswell-adapted for distributed programming
– This was a serendipitous discovery that led to the work on distributing Oz

• Layered structure is not new: see, e.g., Smalltalk (blocks), Erlang (active
objects with functional core), pH (Haskell + I-structures + M-structures),
even Java (support for immutable objects)

See book:http://www.info.ucl.ac.be/people/PVR/book.html



Copyright © 2002 by P. Van Roy. All rights reserved.

Adding distribution

• Each language entity is implemented with one or more distributed
algorithms. The choice of distributed algorithm allowstuning of
network performance.

• Simple programmer interface: there is justone basic operation, passing
a language reference from one process (called “site”) to another. This
conceptually causes the processes to form one large store.

• How do we pass a language reference? We provide anASCII
representation of language references, which allows passing references
through any medium that accepts ASCII (Web, email, files, phone
conversations, …)

• How do we do fault tolerance? We will see later in the talk…

Object
Cached (mobile) object
Stationary object

Invalidation-based object



Copyright © 2002 by P. Van Roy. All rights reserved.

Example: sharing an object (1)

• Define a simple
random number class,
Coder

• Create one instance,C

• Create a ticket for the
instance,T

• The ticket is an ASCII
representation of the
object reference

class Coder
attr seed
meth init(S) seed<-S end
meth get(X)

X=@seed
seed<-(@seed*23+49)mod 1001

end
end

C={New Coder init(100)}

T={Connection.offer C}



Copyright © 2002 by P. Van Roy. All rights reserved.

Example: sharing an object (2)

• Let us use the object C on a
second site

• The second site gets the
value of T (through the Web
or a file, etc.)

• We convert T back to an
object reference, C2

• C2 and C are references to
the same object

C2={Connection.take T}

local X in
% invoke the object
{C2 get(X)}
% Do calculation with X
...

end

What distributed algorithm is used to implement the object?



Copyright © 2002 by P. Van Roy. All rights reserved.

Example: sharing an object (3)

• C and C2 are thesame object: there is a distributed algorithm
guaranteeing coherence

• Many distributed algorithms are possible, as long as the language
semantics are respected

• By default, Mozart uses acached object: the object state
synchronously moves to the invoking site. This makes the semantics
easy, since all object execution is local (e.g., exceptions raised in local
threads). A cached object is a kind of mobile object.

• Other possibilities are astationary object(behaves like a server), an
invalidation-based object, etc.

Process 1 Process 2

C C2



Copyright © 2002 by P. Van Roy. All rights reserved.

Example: sharing an object (4)

• Cached objects:
– The object state is mobile; to be precise, theright to

update the object stateis mobile, moving
synchronously to the invoking site

– The object class is stateless (a record with method
definitions); it therefore has its own distributed
algorithm: it is copied once to each process referencing
the object

– We will see the protocol of cached objects later in the
talk, together with its fault behavior. The mobility of a
cached object is lightweight (maximum of three
messages for each move).



Copyright © 2002 by P. Van Roy. All rights reserved.

Language entities and
their distribution protocols

• Stateless(records, closures, classes, software components)
– Coherence assured bycopying(eager immediate, eager, lazy)

• Single-assignment(dataflow variables)
– Allows to decouple communications from object programming

– To first approximation: can becompletely ignored

– Uses distributed binding algorithm (in between stateless and
stateful!)

• Stateful(objects, communication channels, component
instances)
– Synchronous: stationary, cached (mobile), invalidation protocols

– Asynchronous FIFO: channels, asynchronous object calls



Copyright © 2002 by P. Van Roy. All rights reserved.

The path to true distributed
object-oriented programming

• Simplest case
– Stationary object: synchronous, similar to Java RMI but fully transparent, i.e.,

automatic conversion local↔distributed

• Tune distribution behaviorwithout changing language semantics
– Use different distributed algorithms depending on usage patterns, but language

semantics unchanged

– Cached (« mobile ») object: synchronous, moved to requesting site before each
operation→ for shared objects in collaborative applications

– Invalidation-based object: synchronous, requires invalidation phase→ for shared
objects that are mostly read

• Tune distribution behaviorwith possible changes to language semantics
– Sometimes changes are unavoidable, e.g., to overcome large network latencies or to

do replication-based fault tolerance (more than just fault detection)

– Asynchronous stationary object: send messages to it without waiting for reply;
synchronize on reply or remote exception

– Transactional object: set of objects in a « transactional store », allows local
changes without waiting for network (optimistic or pessimistic strategies)



Copyright © 2002 by P. Van Roy. All rights reserved.

Stationary object

• Each object invocation sends a
message to the object and waits for a
reply (2 network hops)

• Creation syntax in Mozart:
– Obj = {NewStat Cls Init}

• Concurrent object invocations stay
concurrent at home site

• Exceptions are correctly passed
back to invoking site

• Object references in messages
automatically become remote
references

Object on home site

Remote reference

Remote reference

Remote reference



Copyright © 2002 by P. Van Roy. All rights reserved.

Comparison with Java RMI
• Lack of transparency

– Java with RMI is only network transparent when parameters and return
values are stateless objects (i.e., immutable) or remote objects themselves

• otherwise changed semantics

– Consequence
• difficult to take a multi-threaded centralized application and distribute it.

• difficult to take a distributed application and to change the distribution structure.

• Control
– Compile-time decision (to distribute object)

– Overhead on RMI to same machine

– Object always stationary (for certain kinds of application - severe
performance penalty)

• Ongoing work in Java Community
– RMI semantics even on local machine

– To fix other transparency deficiencies in RMI

– Java Enterprise beans within a cluster



Copyright © 2002 by P. Van Roy. All rights reserved.

Notation for
the distributed protocols

• We will use agraph notationto describe the
distributed protocols.

• Each language entity (record, closure, dataflow
variable, thread, mutable state pointer, class) is
represented by anode

• Distributed language entities are represented by two
additional nodes,proxyandmanager. The proxy is
the local reference of a remote entity. The manager
coordinates the distributed protocol in a way that
depends on the language entity.

• For the protocols we will show, we have proven that
the distributed protocol correctly implements the
language semantics (see publications)



Copyright © 2002 by P. Van Roy. All rights reserved.

« Active » object

• Variant of stationary object where
the home object always executes in
one thread

• Concurrent object invocations are
sequentialized

• Use is transparent: instead of
creating withNewStat, create with
NewActive:

– Obj = {NewActiveSync Cls Init}

– Obj = {NewActiveAsync Cls Init}

• Execution can be synchronous or
asynchronous

– In asynchronous case, any
exception is swallowed; see later
for correct error handling

Object on home site

Remote reference

Remote reference

Remote reference

FIFO channel
+ thread



Copyright © 2002 by P. Van Roy. All rights reserved.

Cached (« mobile ») object (1)

• For collaborative applications, e.g., graphical editor,
stationary objects are not good enough.

• Performance suffers with the obligatory round-trip
message latency

• A cached object moves to each site that uses it
– A simple distributed algorithm (token passing) implements the

atomic moves of the object state

– The object class is copied on a site when object is first used;
does not need to be copied subsequently



Copyright © 2002 by P. Van Roy. All rights reserved.

Cached (« mobile ») object (2)

• Heart of object mobility
is the mobility of the
object’sstate

• Each site has a state
proxy

• Object state moves
atomically to each site
that requests it

• Let’s see how the state
moves

State proxy
State proxy

State proxy

Object state

State proxy

Manager

State is here



Copyright © 2002 by P. Van Roy. All rights reserved.

Cached (« mobile ») object (3)

• Another site requests
the state

• It sends a message to
the manager, which
serializes all such
requests

• The manager sends a
forwarding request
to the site that
currently has the
state

State proxy
State proxy

State proxy

Object state

State proxy

Manager

Requests state



Copyright © 2002 by P. Van Roy. All rights reserved.

Cached (« mobile ») object (4)

• Finally, the
requestor receives
the object state

• All subsequent
execution is local on
that site (no more
network operations)

• Concurrent requests
for the state are sent
to the manager, etc.,
which sequentializes
them

State proxy
State proxy

State proxy

Object state

State proxy

Manager

Requests state



Copyright © 2002 by P. Van Roy. All rights reserved.

Cached (« mobile ») object (5)

• Let’s look at the complete
object

• The complete object has a
class as well as an internal
state

• A class is avalue
– To be precise,each object

has a closure that
references both the class
code and the state proxy

• Classes do not move; they
are copied to each site upon
first use of the object there

Class

ClassClass

State proxy
State proxy

State proxy

Class

Object state

State proxy

Manager



Copyright © 2002 by P. Van Roy. All rights reserved.

Invalidation-based object (1)

• An invalidation-based object is
optimized for the case when
object reads are needed
everywhere and object writes
are rare (e.g., virtual world
updates)

• A state update operation is
done in two phases:

– Send an update to all sites

– Receive acknowledgement
from all sites

• Object invocation latency is 2
network hops, but depends on
the slowest site

State proxy

State proxy

State proxy

State proxy



Copyright © 2002 by P. Van Roy. All rights reserved.

Invalidation-based object (2)

• A new site that wants to
broadcast has first to
invalidate the previous
broadcaster

• If several sites want to
broadcast concurrently,
then there will be long
waits for some of them

State proxy

State proxy

State proxy

State proxy



Copyright © 2002 by P. Van Roy. All rights reserved.

Asynchronous FIFO
stationary object

• Synchronous object invocations arelimited in performance
by the network latency
– Each object invocation has to wait for at least a round-trip before

the next invocation

• To improve performance, it would be nice to be able to
invoke an objectasynchronously, i.e., without waiting for
the result
– Invocations from the same thread are done in same order (FIFO)
– But this will still change the way we program with objects

• How can we make thisas transparent as possible, i.e.,
change as little as possible how we program with objects?
– Requires new language concept:dataflow variable
– In many cases, performance can be improved with none or minor

changes to an existing program



Copyright © 2002 by P. Van Roy. All rights reserved.

Dataflow variables (1)

• A dataflow variable is asingle-assignment variablethat can be in
one of two states,unbound(the initial state) orbound(it has its
value)

• Dataflow variables can be created and passed around (e.g., in object
messages) before being bound

• Use of a dataflow variable is transparent: it can be usedas if it were
the value!
– If the value is not yet available when it is needed, then the thread that

needs it will simply suspend until the value arrives
– This is transparent to the programmer
– Example:

thread X=100 end Y=X+100
(binds X) (uses X)

• A distributed protocolis used to implement this behavior in a
distributed setting



Copyright © 2002 by P. Van Roy. All rights reserved.

Dataflow variables (2)

• Each dataflow variable has a
distributed structure with proxy
nodes and a manager node

• Each site that references the
variable has a proxy to the
manager

• The manager accepts the first
bind request and forwards the
result to the other sites

• Dataflow variables passed to
other sites are automatically
registered with the manager

• Execution isorder-
independent: same result
whether bind or need comes
first

Proxy
Proxy

Proxy

Proxy

Manager

Bind request:
X=100

Needs variable:
Y=X+100
(suspends)



Copyright © 2002 by P. Van Roy. All rights reserved.

Dataflow variables (3)

• When a site receives
the binding, it wakes
up any suspended
threads

• If the binding arrives
before the thread needs
it, then there is no
suspension

Proxy
Proxy

Proxy

Proxy

Manager

Bind request:
X=100

Needs variable:
Y=X+100
(suspends)



Copyright © 2002 by P. Van Roy. All rights reserved.

Dataflow variables (4)

• The real protocol is slightly more complex than this (but
not much more)
– What happens when there are two binding attempts: if second

attempt is erroneous (conflicting bindings), exception is raised on
guilty site

– What happens with value-value binding and variable-variable
binding: bindings are done correctly (operation is called
« unification »)

• Optimization for stream communication
– If bound value itself contains variables, they are registered before

being sent

– This allows asynchronous stream communication (no waiting for
registration messages)



Copyright © 2002 by P. Van Roy. All rights reserved.

Dataflow variable and
object invocation (1)

• Similar to an active object
– Return values are passed with

dataflow variables:

C={NewAsync Cls Init}
(local)

{C get(X1)}
{C get(X2)}
{C get(X3)}
(remote)

• Can synchronize on error
– Exception raised by object:

{C get(X1) E}
(synchronize on E)

– Error due to system fault
(crash or network problem):

• Attempt to use return
variable (X1 or E) will
signal error (lazy detection)

• Eager detection also
possible



Copyright © 2002 by P. Van Roy. All rights reserved.

Dataflow variable and
object invocation (2)

Need values

Use values

Need values

Use values

Use values

Need values

Call synchronously
when needed

Call asynchronously
when needed

Call asynchronously
beforeneeded



Copyright © 2002 by P. Van Roy. All rights reserved.

Transactional object

• Only makes sense for aset of objects(call it a
« transactional store»), not for a single object

• Does both latency tolerance and fault tolerance
– Separates distribution & fault tolerance concerns: the programmer

sees a single set of objects with a transactional interface

• Transactions are atomic actions on sets of objects. They
can commit or abort.
– Possibility of abort requires handlingspeculative execution, i.e.,

care is needed to interface between a transactional store and its
environment

• In Mozart, the GlobalStore library provides such a
transactional store



Copyright © 2002 by P. Van Roy. All rights reserved.

Fault tolerance

• Reflectivefault detection
– Reflected into the language, at level of single language entities

– For now:permanent process failureandtemporary network failure

– Both synchronous and asynchronous detection
• Synchronous: exception when attempting language operation

• Asynchronous: language operation blocks; user-defined operation
started in new thread

• Our experience:asynchronous is betterfor building abstractions

• Fault tolerance
– Build abstractions using reflective fault detection

– Example:transactional store
• Set of objects, replicated and accessed by transactions

• Provides both fault tolerance and network delay compensation

• Lightweight: no persistence, no dependence on file system



Copyright © 2002 by P. Van Roy. All rights reserved.

Distributed garbage collection

• The centralized system provides automatic memory management with
a garbage collector (dual-space copying algorithm)

• This is extended for the distributed setting:
– First extension:weighted reference counting. Provides fast and scalable

garbage collection if there are no failures.

– Second extension:time-lease mechanism. Ensures that garbage will
eventually be collected even if there are failures.

• These algorithmsdo not collect distributed stateful cycles, i.e.,
reference cycles that contain at least two stateful entities on different
processes
– Algorithms for collecting these are complex

– So far, we find that programmer assistance is sufficient (e.g., dropping
references from a server to a no-longer-connected client). This may
change in the future as we write more extensive distributed applications.



Copyright © 2002 by P. Van Roy. All rights reserved.

Implementation status

• All described protocols are fully implemented and
publicly released in the Mozart system
– Including stationary, cached mobile, asynchronous, and

transactional object

– Except for the invalidation-based object, which is not
yet implemented



Copyright © 2002 by P. Van Roy. All rights reserved.

Conclusion and ongoing work

• With proper language semantics,network transparency becomes practical
– Separation of functionality, distribution, and fault tolerance

– More fault tolerance abstractions are being developed (better separation of concerns)

– Study fundamental limits of network-transparent distributed computing

• Ongoing work:simplifying building distributed applications
– Hook distribution and fault tolerance into theuser interfacewith distributed widgets

– Just a few lines of code for many fault-tolerant distributed applications

• Ongoing work:improved network layer
– Visualization tool for observing all network behavior at high level of abstraction

(« Distribution Panel » in Mozart 1.2.0)

– Fine-grained multi-channel transport protocol

• Ongoing work:security
– Capability security at the language level, supported cryptographically by

implementation

– Related to work on E language and system (Mark Miller et al)

• Projects starting in high availability, security, and peer-to-peer computing
– We are looking for good people to join our team


