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Overview
• Designing a platform for robust distributed programming requires

thinking about both language design and distributed algorithms
– Distribution and statedo not mix well(global coherence); the language

should help (weaker forms of state, different levels of coherence)

• We present one example design, the Mozart Programming System
– Mozart implements efficient network-transparent distribution,refining

language semantics with distribution

• We give an overview of the language design and of the distributed
algorithms used in the implementation
– It is thecombination of the twothat makes distributed programming

simple in Mozart

• Conclusions and ongoing work
– Projects starting inhigh availability, security, peer-to-peer
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Mozart at a Glance
• Oz Language

– A concurrent, compositional, object-oriented language that is state-aware and has
dataflow synchronization

– Simple formal semantics and efficient implementation

• Strengths
– Concurrency: ultralightweight threads, dataflow
– Distribution: network transparent, network aware, open
– Inferencing: constraint, logic, and symbolic programming
– Flexibility: dynamic, no limits, first-class compiler

• Mozart System
– Under development since 1991 (distribution since 1995), 10-20 people for 10 years
– Mozart Consortium: Universität des Saarlandes (Germany), Swedish Institute of

Computer Science (Sweden), Université catholique de Louvain (Belgium)
– Releases for many Unix/Windows flavors; free software (X11-style open source

license); maintenance; user group; technical support (http://www.mozart-oz.org)

• Research and applications
– Research in distribution, fault tolerance, resource managements, constraint

programming, language design and implementation
– Applications in multi-agent systems, “symbol crunching”, collaborative work,

discrete optimization (e.g., tournament planning)
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Basic principles

• Refinelanguage semantics with a distributed semantics
– Separatesfunctionalityfrom distribution structure(network

behavior, resource localization)

• Three properties are crucial:
– Transparency

• Language semanticsidenticalindependent of distributed setting

• Controversial, but let’s see how far we can push it,if we can also think
about language issues

– Awareness
• Well-defined distribution behavior for each language entity: simple and

predictable

– Control
• Can give different distribution behaviors for a given language entity

• Example: objects are stationary, cached (mobile), asynchronous, or
invalidation-based, with same language semantics
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Mozart today
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Language design

• Language has alayered structurewith three layers:
– Strict functional core(stateless): exploit the power of lexically-scoped

closures (“call backsdone right”)
– Single-assignment extension(dataflow variables+ concurrency + laziness):

provides the power of concurrency in a simple way (“declarative
concurrency”)

– State extension(mutable pointers / communication channels): provides the
advantages of state for modularity (object-oriented programming, many-to-
one communication and active objects, transactions)

• Dataflow extension is well-integrated with state: to a first approximation,
it can be ignored by the programmer (it is not observable whether a
thread temporarily blocks while waiting for a variable’s value to arrive).

• Layered structure iswell-adapted for distributed programming
– This was a serendipitous discovery that led to the work on distributing Oz

• Layered structure is not new: see, e.g., Smalltalk (blocks), Erlang (active
objects with functional core), pH (Haskell + I-structures + M-structures),
even Java (support for immutable objects)

See book:http://www.info.ucl.ac.be/people/PVR/book.html
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Adding distribution

• Each language entity is implemented with one or more distributed
algorithms. The choice of distributed algorithm allowstuning of
network performance.

• Simple programmer interface: there is justone basic operation, passing
a language reference from one process (called “site”) to another. This
conceptually causes the processes to form one large store.

• How do we pass a language reference? We provide anASCII
representation of language references, which allows passing references
through any medium that accepts ASCII (Web, email, files, phone
conversations, …)

• How do we do fault tolerance? We will see later in the talk…

Object
Cached (mobile) object
Stationary object

Invalidation-based object
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Example: sharing an object (1)

• Define a simple
random number class,
Coder

• Create one instance,C

• Create a ticket for the
instance,T

• The ticket is an ASCII
representation of the
object reference

class Coder
attr seed
meth init(S) seed<-S end
meth get(X)

X=@seed
seed<-(@seed*23+49)mod 1001

end
end

C={New Coder init(100)}

T={Connection.offer C}
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Example: sharing an object (2)

• Let us use the object C on a
second site

• The second site gets the
value of T (through the Web
or a file, etc.)

• We convert T back to an
object reference, C2

• C2 and C are references to
the same object

C2={Connection.take T}

local X in
% invoke the object
{C2 get(X)}
% Do calculation with X
...

end

What distributed algorithm is used to implement the object?
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Example: sharing an object (3)

• C and C2 are thesame object: there is a distributed algorithm
guaranteeing coherence

• Many distributed algorithms are possible, as long as the language
semantics are respected

• By default, Mozart uses acached object: the object state
synchronously moves to the invoking site. This makes the semantics
easy, since all object execution is local (e.g., exceptions raised in local
threads). A cached object is a kind of mobile object.

• Other possibilities are astationary object(behaves like a server), an
invalidation-based object, etc.

Process 1 Process 2

C C2



Copyright © 2002 by P. Van Roy. All rights reserved.

Example: sharing an object (4)

• Cached objects:
– The object state is mobile; to be precise, theright to

update the object stateis mobile, moving
synchronously to the invoking site

– The object class is stateless (a record with method
definitions); it therefore has its own distributed
algorithm: it is copied once to each process referencing
the object

– We will see the protocol of cached objects later in the
talk, together with its fault behavior. The mobility of a
cached object is lightweight (maximum of three
messages for each move).
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Language entities and
their distribution protocols

• Stateless(records, closures, classes, software components)
– Coherence assured bycopying(eager immediate, eager, lazy)

• Single-assignment(dataflow variables)
– Allows to decouple communications from object programming

– To first approximation: can becompletely ignored

– Uses distributed binding algorithm (in between stateless and
stateful!)

• Stateful(objects, communication channels, component
instances)
– Synchronous: stationary, cached (mobile), invalidation protocols

– Asynchronous FIFO: channels, asynchronous object calls
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The path to true distributed
object-oriented programming

• Simplest case
– Stationary object: synchronous, similar to Java RMI but fully transparent, i.e.,

automatic conversion local↔distributed

• Tune distribution behaviorwithout changing language semantics
– Use different distributed algorithms depending on usage patterns, but language

semantics unchanged

– Cached (« mobile ») object: synchronous, moved to requesting site before each
operation→ for shared objects in collaborative applications

– Invalidation-based object: synchronous, requires invalidation phase→ for shared
objects that are mostly read

• Tune distribution behaviorwith possible changes to language semantics
– Sometimes changes are unavoidable, e.g., to overcome large network latencies or to

do replication-based fault tolerance (more than just fault detection)

– Asynchronous stationary object: send messages to it without waiting for reply;
synchronize on reply or remote exception

– Transactional object: set of objects in a « transactional store », allows local
changes without waiting for network (optimistic or pessimistic strategies)
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Stationary object

• Each object invocation sends a
message to the object and waits for a
reply (2 network hops)

• Creation syntax in Mozart:
– Obj = {NewStat Cls Init}

• Concurrent object invocations stay
concurrent at home site

• Exceptions are correctly passed
back to invoking site

• Object references in messages
automatically become remote
references

Object on home site

Remote reference

Remote reference

Remote reference
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Comparison with Java RMI
• Lack of transparency

– Java with RMI is only network transparent when parameters and return
values are stateless objects (i.e., immutable) or remote objects themselves

• otherwise changed semantics

– Consequence
• difficult to take a multi-threaded centralized application and distribute it.

• difficult to take a distributed application and to change the distribution structure.

• Control
– Compile-time decision (to distribute object)

– Overhead on RMI to same machine

– Object always stationary (for certain kinds of application - severe
performance penalty)

• Ongoing work in Java Community
– RMI semantics even on local machine

– To fix other transparency deficiencies in RMI

– Java Enterprise beans within a cluster
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Notation for
the distributed protocols

• We will use agraph notationto describe the
distributed protocols.

• Each language entity (record, closure, dataflow
variable, thread, mutable state pointer, class) is
represented by anode

• Distributed language entities are represented by two
additional nodes,proxyandmanager. The proxy is
the local reference of a remote entity. The manager
coordinates the distributed protocol in a way that
depends on the language entity.

• For the protocols we will show, we have proven that
the distributed protocol correctly implements the
language semantics (see publications)
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« Active » object

• Variant of stationary object where
the home object always executes in
one thread

• Concurrent object invocations are
sequentialized

• Use is transparent: instead of
creating withNewStat, create with
NewActive:

– Obj = {NewActiveSync Cls Init}

– Obj = {NewActiveAsync Cls Init}

• Execution can be synchronous or
asynchronous

– In asynchronous case, any
exception is swallowed; see later
for correct error handling

Object on home site

Remote reference

Remote reference

Remote reference

FIFO channel
+ thread
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Cached (« mobile ») object (1)

• For collaborative applications, e.g., graphical editor,
stationary objects are not good enough.

• Performance suffers with the obligatory round-trip
message latency

• A cached object moves to each site that uses it
– A simple distributed algorithm (token passing) implements the

atomic moves of the object state

– The object class is copied on a site when object is first used;
does not need to be copied subsequently
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Cached (« mobile ») object (2)

• Heart of object mobility
is the mobility of the
object’sstate

• Each site has a state
proxy

• Object state moves
atomically to each site
that requests it

• Let’s see how the state
moves

State proxy
State proxy

State proxy

Object state

State proxy

Manager

State is here
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Cached (« mobile ») object (3)

• Another site requests
the state

• It sends a message to
the manager, which
serializes all such
requests

• The manager sends a
forwarding request
to the site that
currently has the
state

State proxy
State proxy

State proxy

Object state

State proxy

Manager

Requests state
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Cached (« mobile ») object (4)

• Finally, the
requestor receives
the object state

• All subsequent
execution is local on
that site (no more
network operations)

• Concurrent requests
for the state are sent
to the manager, etc.,
which sequentializes
them

State proxy
State proxy

State proxy

Object state

State proxy

Manager

Requests state
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Cached (« mobile ») object (5)

• Let’s look at the complete
object

• The complete object has a
class as well as an internal
state

• A class is avalue
– To be precise,each object

has a closure that
references both the class
code and the state proxy

• Classes do not move; they
are copied to each site upon
first use of the object there

Class

ClassClass

State proxy
State proxy

State proxy

Class

Object state

State proxy

Manager
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Invalidation-based object (1)

• An invalidation-based object is
optimized for the case when
object reads are needed
everywhere and object writes
are rare (e.g., virtual world
updates)

• A state update operation is
done in two phases:

– Send an update to all sites

– Receive acknowledgement
from all sites

• Object invocation latency is 2
network hops, but depends on
the slowest site

State proxy

State proxy

State proxy

State proxy
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Invalidation-based object (2)

• A new site that wants to
broadcast has first to
invalidate the previous
broadcaster

• If several sites want to
broadcast concurrently,
then there will be long
waits for some of them

State proxy

State proxy

State proxy

State proxy
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Asynchronous FIFO
stationary object

• Synchronous object invocations arelimited in performance
by the network latency
– Each object invocation has to wait for at least a round-trip before

the next invocation

• To improve performance, it would be nice to be able to
invoke an objectasynchronously, i.e., without waiting for
the result
– Invocations from the same thread are done in same order (FIFO)
– But this will still change the way we program with objects

• How can we make thisas transparent as possible, i.e.,
change as little as possible how we program with objects?
– Requires new language concept:dataflow variable
– In many cases, performance can be improved with none or minor

changes to an existing program
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Dataflow variables (1)

• A dataflow variable is asingle-assignment variablethat can be in
one of two states,unbound(the initial state) orbound(it has its
value)

• Dataflow variables can be created and passed around (e.g., in object
messages) before being bound

• Use of a dataflow variable is transparent: it can be usedas if it were
the value!
– If the value is not yet available when it is needed, then the thread that

needs it will simply suspend until the value arrives
– This is transparent to the programmer
– Example:

thread X=100 end Y=X+100
(binds X) (uses X)

• A distributed protocolis used to implement this behavior in a
distributed setting
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Dataflow variables (2)

• Each dataflow variable has a
distributed structure with proxy
nodes and a manager node

• Each site that references the
variable has a proxy to the
manager

• The manager accepts the first
bind request and forwards the
result to the other sites

• Dataflow variables passed to
other sites are automatically
registered with the manager

• Execution isorder-
independent: same result
whether bind or need comes
first

Proxy
Proxy

Proxy

Proxy

Manager

Bind request:
X=100

Needs variable:
Y=X+100
(suspends)
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Dataflow variables (3)

• When a site receives
the binding, it wakes
up any suspended
threads

• If the binding arrives
before the thread needs
it, then there is no
suspension

Proxy
Proxy

Proxy

Proxy

Manager

Bind request:
X=100

Needs variable:
Y=X+100
(suspends)
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Dataflow variables (4)

• The real protocol is slightly more complex than this (but
not much more)
– What happens when there are two binding attempts: if second

attempt is erroneous (conflicting bindings), exception is raised on
guilty site

– What happens with value-value binding and variable-variable
binding: bindings are done correctly (operation is called
« unification »)

• Optimization for stream communication
– If bound value itself contains variables, they are registered before

being sent

– This allows asynchronous stream communication (no waiting for
registration messages)
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Dataflow variable and
object invocation (1)

• Similar to an active object
– Return values are passed with

dataflow variables:

C={NewAsync Cls Init}
(local)

{C get(X1)}
{C get(X2)}
{C get(X3)}
(remote)

• Can synchronize on error
– Exception raised by object:

{C get(X1) E}
(synchronize on E)

– Error due to system fault
(crash or network problem):

• Attempt to use return
variable (X1 or E) will
signal error (lazy detection)

• Eager detection also
possible
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Dataflow variable and
object invocation (2)

Need values

Use values

Need values

Use values

Use values

Need values

Call synchronously
when needed

Call asynchronously
when needed

Call asynchronously
beforeneeded
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Transactional object

• Only makes sense for aset of objects(call it a
« transactional store»), not for a single object

• Does both latency tolerance and fault tolerance
– Separates distribution & fault tolerance concerns: the programmer

sees a single set of objects with a transactional interface

• Transactions are atomic actions on sets of objects. They
can commit or abort.
– Possibility of abort requires handlingspeculative execution, i.e.,

care is needed to interface between a transactional store and its
environment

• In Mozart, the GlobalStore library provides such a
transactional store
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Fault tolerance

• Reflectivefault detection
– Reflected into the language, at level of single language entities

– For now:permanent process failureandtemporary network failure

– Both synchronous and asynchronous detection
• Synchronous: exception when attempting language operation

• Asynchronous: language operation blocks; user-defined operation
started in new thread

• Our experience:asynchronous is betterfor building abstractions

• Fault tolerance
– Build abstractions using reflective fault detection

– Example:transactional store
• Set of objects, replicated and accessed by transactions

• Provides both fault tolerance and network delay compensation

• Lightweight: no persistence, no dependence on file system
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Distributed garbage collection

• The centralized system provides automatic memory management with
a garbage collector (dual-space copying algorithm)

• This is extended for the distributed setting:
– First extension:weighted reference counting. Provides fast and scalable

garbage collection if there are no failures.

– Second extension:time-lease mechanism. Ensures that garbage will
eventually be collected even if there are failures.

• These algorithmsdo not collect distributed stateful cycles, i.e.,
reference cycles that contain at least two stateful entities on different
processes
– Algorithms for collecting these are complex

– So far, we find that programmer assistance is sufficient (e.g., dropping
references from a server to a no-longer-connected client). This may
change in the future as we write more extensive distributed applications.
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Implementation status

• All described protocols are fully implemented and
publicly released in the Mozart system
– Including stationary, cached mobile, asynchronous, and

transactional object

– Except for the invalidation-based object, which is not
yet implemented
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Conclusion and ongoing work

• With proper language semantics,network transparency becomes practical
– Separation of functionality, distribution, and fault tolerance

– More fault tolerance abstractions are being developed (better separation of concerns)

– Study fundamental limits of network-transparent distributed computing

• Ongoing work:simplifying building distributed applications
– Hook distribution and fault tolerance into theuser interfacewith distributed widgets

– Just a few lines of code for many fault-tolerant distributed applications

• Ongoing work:improved network layer
– Visualization tool for observing all network behavior at high level of abstraction

(« Distribution Panel » in Mozart 1.2.0)

– Fine-grained multi-channel transport protocol

• Ongoing work:security
– Capability security at the language level, supported cryptographically by

implementation

– Related to work on E language and system (Mark Miller et al)

• Projects starting in high availability, security, and peer-to-peer computing
– We are looking for good people to join our team


