

LINFO1131
Advanced Programming Language Concepts

Course slides

“Programs should always be declarative
except where they interact with the real world”

December 2023

Peter Van Roy
École Polytechnique de Louvain (Louvain Engineering School)

Université catholique de Louvain
B-1348 Louvain-la-Neuve

Belgium

Lecture Topic Page

1 Introduction and refresher 3

2 & 3 Lazy evaluation and declarative programming 25

4 Advanced declarative algorithm design 67

5 Limitations of declarative programming 93

6 Data abstractions 110

7 Message passing and multi-agent programming 126

Oz program examples for Lecture 7:

Port objects, active objects,
Flavius Josephus problem, lift control system

149

8 Robust multi-agent programming in Erlang 156

9 Shared-state concurrency:
introduction, locks, and tuple spaces 190

 Oz program examples for Lecture 9:
Concurrent queue, locks, tuple space 210

10 Shared-state concurrency: monitors 215

 Oz program examples for Lecture 10:
Monitor implementation, bounded buffer 227

11 Shared-state concurrency: transactions 232

 Oz program examples for Lecture 11:
Transaction manager, example transactions 257

1

LINFO1131
Concurrent programming concepts

Lecture 1:
Introduction and refresher

Peter Van Roy

ICTEAM Institute
Université catholique de Louvain

peter.vanroy@uclouvain.be

l1

Overview
l Course overview

l Course organization
l Course content

l Refresher of the previous course LINFO1104
l Functional programming
l Recursion and invariant programming
l Higher-order programming
l Symbolic programming
l Data abstraction
l Deterministic dataflow
l Nondeterminism

l2

mailto:peter.vanroy@uclouvain.be

2

Course organization
l Organization

l Weekly lectures: presence strongly recommended
l Weekly labs: presence strongly recommended; 1 point bonus if

present during all labs
l Moodle: all slides and announcements will be there

l Grading
l Midterm: optional; around week 7; corresponds to 5 points on

exam
l Project: mandatory; groups of 2 students; last half of

quadrimester; must be done during quadrimester
l Exam: 5 points corresponds to midterm (max of both), 10 points

for rest of course

l3

Software

l Oz language:
l Mozart 2 system
l www.mozart2.org

l Erlang language:
l Erlang/OTP 25 system
l www.erlang.org

l4

3

Three main themes
l Understanding concurrent programming

l This is very hard in general
l We will see how it can be made easy

l Understanding declarative programming
l This is the easiest and best way to program
l We will see how to use it as much as possible

l Understanding nondeclarative programming
l This is quite hard but it is sometimes needed
l We will see how to make it reasonably easy

l5

Declarative programming
Sequential functional

programming

Lazy deterministic
dataflow

Lazy
evaluation

Deterministic
dataflow

Sequential imperative
programming

Shared-state
concurrency

Message-passing
concurrency

Declarative programming

Nondeclarative programming

Functional programming
Higher-order programming
Lazy and concurrent programming
Semantics of declarative concurrency
Advanced declarative algorithm design

Limitations of declarative programming
Minimizing nondeterminism
Multi-agent programming
Fault tolerance and supervisors, Erlang
Locks, monitors, and transactions

l6

4

Approximate course schedule

Advanced declarative programming
l S2-S3: Lazy evaluation and lazy

deterministic dataflow
l S3: Declarative concurrency
l S4-S5: Advanced declarative

algorithm design
l S5: Limits of declarative

programming

Advanced nondeclarative programming
l S6: Data abstraction
l S8: Multi-agent programming
l S9-S10: Robust multi-agent

programming in Erlang
l S11: Shared-state concurrency, locks

and tuple spaces
l S12: Monitors
l S13: Transactions

l S1: Introduction and refresher

SMART week
l S7: Midterm l S14: Course review

l7

Refresher of previous
course (LINFO1104)

l8

5

Refresher

l In the rest of today’s lecture, we recapitulate
the main concepts needed for LINFO1131

l These concepts are taught in the previous
course LINFO1104
l If anything is not clear, please look it up!
l Starting with next week’s lecture, I will assume

that all of this is perfectly understood

l9

Functional
programming

l10

6

Functional programming

l It is the foundation of all programming
l Higher-order programming is the foundation of all data

abstraction
l It is the best paradigm for testing, maintenance, and

proving correctness
l It is more and more being used, e.g., cloud analytics

based on MapReduce and its successors

l In this course we will push it as far as we can
l For concurrency: deterministic dataflow
l For efficiency: advanced algorithm design

l11

Invariant
programming

l12

7

Recursive functions

l In other words, loops!
l Tail recursion = while loop

l Factorial example
 Invariant: n! = i! x a
 where: n is a constant
 i decreases
 a increases
l “Principle of communicating vases”

l We give code in C and Oz…

l13

Factorial example

l C code:
 int fact(int n) {
 int a=1;
 int i=n;
 while (i>0) {
 a=i*a;
 i=i-1;
 }
 return a;
 }
 x=fact(10);

l Oz code:
 fun {Fact A I}
 if (I>0) then
 {Fact I*A I-1}
 else A end
 end
 X={Fact 1 10}

l14

8

Higher-order
programming

l15

Higher-order programming

l A function is a value in the language
l Key concept for defining data abstractions
l Example: (function as output)

 fun {AddN N}
 fun {$ X} X+N end
 end
 Add5={AddN 5}
 Add10={AddN 10}

l What is the order of AddN?

l16

9

Closures

l Synonyms:
l Closure (“fermeture”)
l Lexically scoped closure
l Procedure value

l Closure in memory is code+environment:
 a1 = (proc {$ X R} R=X+N end, {N→n}),
 a2 = (proc ($ X R} R=X+N end, {N→m}),
 n=5,
 m=10

l17

Map function

l Example with function as argument:
 fun {Map L F}
 case L of nil then
 nil
 [] H|T then
 {F H}|{Map T F}
 end
 end

l This function is tail-recursive! Why?

l18

10

More abilities of higher-order

l Higher-order programming can do many
things:
l Genericity
l Instantiation
l Function composition
l Abstracting an accumulator (Fold)
l Encapsulation
l Delayed execution

l19

Symbolic
programming

l20

11

List data structure

l A list is a recursive data structure
 <L> ::= nil | <E> ‘|’ <L>
l Recursive list function follows data definition

l Lists are a ubiquitous data structure
l Languages give them syntactic supporrt
l a|b|c|nil, [a b c], ‘|’(1:a 2:’|’(1:b 2:’|’(1:c 2:nil)

l21

Pattern matching

l case L of H|T then … end
l The case instruction matches a pattern, which is a

shape of the matched structure
l Patterns can match or fail to match

| |

1 |

2 |

3 nil

H T

l22

12

Fold operation

l The fold operation abstracts an accumulator
l It uses higher-order programming to encapsulate

an accumulator inside its definition
l Given a list L=[a0 a1 … an-1]

l Define the following function:
l s = (⋯((u f a0) f a1) ⋅ ⋅ ⋅) f an-1)
l s = fold(l f u)

l What is the Oz definition of fold?

l23

Fold definition

l Recursive function with accumulator:
 fun {FoldL L F U}
 case L of nil then U
 [] H|T then {FoldL T F {F U H}}
 end
 end

l How can we use FoldL to compute the sum
of elements of a list?
l Is FoldL a tail-recursive function?

l24

13

Data abstraction

l25

Data abstraction

l A data abstraction encapsulates part of a
program so that it can only be accessed
through an interface
l The interface can only be used through

predefined rules
l Advantages of data abstraction

l Guarantee that the abstraction will work
l Reduction of complexity
l Developing large programs with teams

l26

14

Defining a data abstraction

l Data abstractions are defined with two
concepts
l Lexical scoping
l Higher-order programming

l There are two main kinds of data abstractions
l Objects
l Abstract data types

l27

A stack as abstract data type
l We define a stack as an ADT: (this is a semantic definition)

local Wrap Unwrap in
{NewWrapper Wrap Unwrap}

fun {NewStack} {Wrap nil} end
fun {Push W X} {Wrap X|{Unwrap W}} end
fun {Pop W X} S={Unwrap W} in X=S.1 {Wrap S.2} end
fun {IsEmpty W} {Unwrap W}==nil end

end

l How does this work?
l Look at the Push function: it first calls {Unwrap W}, which returns

a stack value S, then it builds X|S, and finally it calls {Wrap X|S}
to return a protected result

l Wrap and Unwrap are hidden from the rest of the program
(static scoping)

l28

15

A stack as an object
l We define a stack as an object: (this is a semantic definition)

fun {NewStack}
C={NewCell nil}
proc {Push X} C:=X|@C end
proc {Pop X} S=@C in C:=S.2 X=S.1 end
proc {IsEmpty B} B=(@C==nil) end

in
proc {$ M}

case M of push(X) then {Push X}
[] pop(X) then {Pop X}
[] isEmpty(B) then {IsEmpty B} end

end
end

l How does this work?
l The object is represented by a one-argument procedure that does

procedure dispatching: a case statement chooses the operation to execute
l Encapsulation is enforced by hiding the cell with static scoping

l29

Special syntax for objects
l Most widely used languages

provide a special syntax for
objects
l The semantics is the same

l This syntax guarantees that a
programmer defines the object
in the right way!
l It also makes the program more

readable

l Here is the Oz syntax for the
stack object defined in the
previous slide

class Stack
 attr c
 meth init
 c:=nil
 end
 meth push(X)
 c:=X|@c
 end
 meth pop(X)
 S=@c in X:=S.1 c:=S.2
 end
 meth isEmpty(B)
 B=(@c==nil)
 end
end

S={New Stack init}

l30

16

Deterministic dataflow

l31

Deterministic dataflow

l Concurrency = multiple activities executing
simultaneously

l We provide a language operation to create a
new concurrent activity:
 thread <s> end
l Instruction <s> is executed independently of other

activities

l32

17

Dataflow concurrency

l Functional programming with concurrency
l Unbound variables and threads

l Threads communicate with each other through
shared variables
l One thread binds the variable and one thread reads

the variable
l thread X=1 end

thread Y=X+10 {Browse Y} end
l This program always displays 11! It does not matter

in which order the threads execute. Why not?

l33

Always the same result!

l Activity A waits patiently at point (1) just before the addition
l When activity B binds X=1 at point (2), then activity A can

continue
l If activity B binds X=1 before activity A reaches point (1), then

activity A does not have to wait

Y=X+10 {Browse Y}
Activity A’s progress

(1)
X=1

Activity B’s progress
(2)

© 2022 P. Van Roy. All rights reserved.

l34

18

Concurrent pipeline
l A stream is a list that ends in

an unbound variable, which
can be used as a channel

l An agent is a concurrent
activity that reads and writes
streams

l All list functions can be used
as agents
l Because list functions are tail-

recursive, the agent will have
constant stack size. Why are list
functions tail-recursive?

l All functional programming
techniques can be used in
deterministic dataflow

l Producer:
fun {Prod N}
 N|{Prod N+1}
end

l Consumer:
fun {Cons S}
 case S of H|T then
 {Browse H}
 {Cons T}
 end
end

l Pipeline:
thread S={Prod 1} end
thread {Cons S} end

l35

Nondeterminism and the
semantics of concurrency

l36

19

Semantics of concurrency
l Each thread executes as a sequence of steps:

 T1: e0 → e1 → e2 → ⋯ → ⋯
 T2: e’0 → e’1 → e’2 → ⋯ → ⋯

l All threads are executed on one processor
l The processor is sequential; it executes one instruction sequence

(we assume a single core!)
l Thread executions are interleaved on the processor
l The scheduler chooses which thread to execute
l The scheduler must be fair ; for efficiency and practicality, real

systems also add time slices and priorities

l37

Nondeterminism
l A program is nondeterministic when it executes an

operation that is chosen external to the program
l Scheduler choices are an example of nondeterminism

l Nondeterminism is inherent to any concurrent program
l Threads are independent by definition, so the scheduler must

make its choice outside of the control of the programmer

l Nondeterminism is inherent to any program that interacts
with the real world
l In the general case, real world events can happen at any time

and must be handled when they occur
l To interact with the real world, the program must be

nondeterministic

l38

20

Client/server example

l A client/server is a typical example of a program
that interacts with the real world and therefore
makes choices external to the program

l The nondeterminism is a direct consequence of
the client/server specification:
l When a client makes a request to the server, the

server must respond in a timely fashion that depends
only on the network travel time and computation time
of the request

l Why is this?

l39

Client/server application
l Specification:

l When a client makes a request to the
server, the server must respond in a
timely fashion that depends only on the
network travel time and computation
time of the request

l Therefore the order of the requests
cannot be determined in advance
because it depends on precise timing
of messages and computations
l The order of message arrival at the

server is determined external to the
program!

l The whole client/server application is
therefore nondeterministic, even if all
the other code is purely declarative

Server

Client 1

Client 2

40

l40

21

Living with nondeterminism

l A nondeterministic program is much harder to
develop and debug than a deterministic program
l The program must work correctly for all possible

nondeterministic choices
l In general, there are very many such choices and they

can happen at any time during the execution
l Testing is very hard: we need to simulate all these choices!

l So what can we do?
l This is one of the main themes of the course!
l How to live with nondeterminism

l41

How to live with nondeterminism

l A main theme of the course
l Two solutions:

l Deterministic dataflow: this paradigm solves the
problem for us. Even though the scheduler is doing
nondeterministic choices, the results of the program
are always the same. The nondeterminism is hidden
because of the strong properties of functional
programming.

l Nondeclarative programs: the programmer has to
solve the problem. The way to do this is by defining
the right abstractions. We will see this later!

l42

22

Conclusions

l43

Conclusions
l LINFO1131 continues the story of LINFO1104

l Concurrent programming
l Declarative programming
l Nondeclarative programming

l In today’s lecture we explained the goals and
organization of LINFO1131

l We recalled the most important concepts of LINFO1104
l Please refer back to that course if anything is not clear

l Next week’s lecture will be on lazy evaluation

l44

1

LINFO1131
Concurrent programming concepts

Lectures 2 and 3: Lazy evaluation
and declarative programming

Peter Van Roy

ICTEAM Institute
Université catholique de Louvain

peter.vanroy@uclouvain.be

l1

Overview
l Introduction to lazy evaluation

l Semantics based on dataflow

l Lazy streams
l Producer-consumer in four

paradigms

l Infinite lists

l Hamming problem

l Lazy suspensions
l Graphical representation of

lazy evaluation

l Lazy deterministic dataflow
l Bounded buffer

l Lazy quicksort
l Inventing an incremental

algorithm

l What is declarative
programming?
l Partial termination

l Equivalent stores

l Introduction to first-order logic

l Definition of declarative

programming

l Failure confinement

l Table of declarative paradigms
l Conclusions

l2

mailto:peter.vanroy@uclouvain.be

2

Introduction
to lazy evaluation

l3

Introduction to lazy evaluation
l A lazy program is a functional program that executes

in “by-need” fashion
l Nothing is computed until it is “needed”

l Here is a simple example:
fun lazy {LazyAdd X Y}

X+Y
end
S={LazyAdd 10 20}
{Browse S}

l Nothing is executed until S is needed:
% Displaying the addition S+100 needs S:
{Browse S+100}

l4

3

Semantics
of lazy evaluation

l5

Semantics of LazyAdd
l How does LazyAdd work?

l Semantics of a program is defined by translation into kernel language

l We will define what “needing a value” means

l We translate into kernel language:
proc {LazyAdd X Y R}

thread
{WaitNeeded R} R=X+Y

end
end

l The {WaitNeeded R} waits until another thread needs R to continue
l More precisely, it waits until another thread does {Wait R}

l This is part of dataflow execution…

l6

4

Dataflow semantics
l To understand WaitNeeded,

we first recall how dataflow
execution works

l Given any expression:
S=X+Y

l This is translated as:
local V in

{Wait X}
{Wait Y}
{PrimitiveAdd X Y V}
{Bind S V}

end

l This gives a dataflow execution:

l {Wait X} suspends until X is bound
l {Bind X V} binds X to V

l Programmer-accessible operations

are defined using Wait, Bind, and a

primitive operation:

l Arithmetic, boolean expressions
l Case statements
l Any operation with an input

l Function call {F X} where F must be
bound to a function value

l Dot operation R.name where R must
be bound to a record

l {WaitNeeded X} suspends until

another thread does {Wait X}

l7

Another example
l We use WaitNeeded directly:

declare X in
{WaitNeeded X}
X=100

l This displays an unbound variable:
{Browse X}

l This displays 100 twice (!):
{Browse X+0}

l8

5

General translation scheme
l Given any lazy function:

fun lazy {F X1 … Xn}
<expr>

end

l This is translated into:
proc {F X1 … Xn R}

thread
{WaitNeeded R} R=<expr>

end
end

l This translation gives the semantics, not the implementation!
l A compiler is free to optimize it while respecting the semantics

l9

Producer-consumer
in four paradigms

l10

6

Producer-consumer pipeline
l We give the code of a simple

producer-consumer pipeline
l We will run the code in four

different functional paradigms

l All four paradigms are declarative

and end up with the same result

l But the result appears in four

different ways

l Technically we are just taking
advantage of the Church-Rosser
theorem
l All reduction orders of a lambda

expression give the same result

l Also called confluence

fun {Prod L H}
{Delay 1000} % Wait 1000 ms
if L>H then nil
else L|{Prod L+1 H}
end

end

fun {Cons S Acc}
case S of H|T then

Acc+H|{Cons T Acc+H}
[] nil then nil
end

end

l11

Four functional paradigms
1. Sequential functional programming

l No single assignment
l Traditional functional languages (Lisp, Scheme, ML, OCaml)

2. Sequential FP with single assignment
l Default execution of functions in Oz

3. Deterministic dataflow
l Adds threads and dataflow synchronization
l Multi-agent programming with declarative agents

4. Lazy evaluation (introduced in this lecture!)
l Adds by-need synchronization
l Lazy functional languages (Haskell, Miranda)

As seen

earlier

New!

l12

7

1. Sequential FP
(no single assignment)

l We generate 10 elements
l This is traditional FP with no

single assignment

l Nothing is displayed until

after 10 seconds

l S1 and S2 both displayed at
once after 10 seconds

l Both S1 and S2 are created

as a batch execution

l Why?

declare S1 S2 in
{Browse S1}
{Browse S2}
S1={Prod2 1 10}
S2={Cons S1 0}

% Prod2 uses no unbound variables
fun {Prod2 L H}
 {Delay 1000} % Wait 1000 ms
 if L>H then nil
 else S in
 S={Prod2 L+1 H}
 L|S % Both L and S are bound
 end
end

l13

2. Sequential FP with
single assignment

l We generate 10 elements
l S1 is augmented every second

l S2 is not displayed until after

10 seconds

l S1 is created incrementally

l Why?
l Translate to kernel language!

l S2 is created as a batch

l Why?

declare S1 S2 in
{Browse S1}
{Browse S2}
S1={Prod 1 10}
S2={Cons S1 0}

% Prod uses unbound variables
fun {Prod L H}
 {Delay 1000} % Wait 1000 ms
 if L>H then nil
 else
 % L|S has unbound S
 L|{Prod L+1 H}
 end
end

l14

8

3. Deterministic dataflow
l We execute both calls in their own threads

l This is running deterministic dataflow (eager)
l What is the difference with the previous version?

l Both S1 and S2 are created incrementally
l Each thread is a declarative agent

declare S1 S2 in
{Browse S1}
{Browse S2}
thread S1={Prod 1 10} end
thread S2={Cons S1 0} end

l15

4. Lazy evaluation
fun lazy {Prod L H}

{Delay 1000}
if L>H then nil
else L|{Prod L+1 H}
end

end

fun lazy {Cons S Acc}
case S of H|T then

Acc+H|{Cons T Acc+H}
[] nil then nil
end

end

l We annotate both functions as “lazy”

l We execute it:

declare S1 S2 in
{Browse S1}

{Browse S2}

S1={Prod 1 10}

S2={Cons S1 0}

l What is going on?

l Why is nothing computed?
l How do we run this?
l {Browse S2.2.1} needs the second

element of S2, which will activate its
computation and display it

l16

9

Eager versus lazy streams
l One way to understand the difference between eager

and lazy is to see which agent is driving the execution

l In an eager stream, it is the producer that determines
when elements are sent
l Termination is decided by the producer

l In a lazy stream, it is the consumer that determines
when elements are sent
l Termination is decided by the consumer

l17

Infinite lists

l18

10

Infinite lists
l With lazy evaluation we can compute with infinite loops

l We can write programs with infinite lists
l It works because the execution only computes needed elements
l This is not possible in deterministic dataflow!

l An infinite list of integers starting with N:
fun lazy {Ints N} N|{Ints N+1} end

l Calling {Ints 1} displays an unbound variable:
L={Ints 1} {Browse L}

l We can force a computation by examining the list L:
{Browse L.1}
{Browse L.2.1}

l19

Semantics of infinite lists
l We can see how infinite lists work by translating to

kernel language:
proc {Ints N R}

thread
{WaitNeeded R} R=N|{Ints N+1}

end
end

l When we need R by doing {Browse R.1}, this causes R
to be bound to N|{Ints N+1}
l This causes one element of R to be computed
l The recursive call will immediately suspend again

l20

11

Forcing a computation
l We can force the evaluation of N elements of a list by

traversing the list:
proc {Touch L N}

if N==0 then skip
else {Touch L.2 N-1} end

end

l This strange procedure does nothing by itself, yet it
forces the work to be done:
{Touch L 10}
{Touch L 20}

l21

Hamming problem

l22

12

Hamming problem
l Richard Hamming (1915-1998) was an engineer and mathematician

who worked at Bell Labs and invented many useful things
l Hamming codes, Hamming window, Hamming distance, etc.

l The Art of Doing Science and Engineering: Learning to Learn, by

Richard Hamming, 1997. This book is highly recommended!

l Today we will investigate the Hamming problem, a simple problem
in number sequences
l It is a dynamic problem where we do not know in advance how much

needs to be computed → perfect for lazy evaluation!

l We will use lazy evaluation to design a simple and efficient solution to

this problem

l23

Hamming problem
l Problem statement:

l Given the set of numbers of the form 2
a

3
b

5
c

with integers a,b,c ≥ 0

l It is asked to compute these numbers in increasing order: 1 | 2 | 3 | …

l We do not know in advance how many numbers of this sequence
will be needed
l The program should let us compute them incrementally until we are

satisfied

l The program should be efficient in time and memory!

l24

13

Algorithm idea

l We can program this with lazy lists

H = 1 | 2 | 3 | X |… § Idea: The next number X is 2 times,

3 times, or 5 times one of the

previous numbers in the sequence

§ We need to keep three sequences

derived from H, namely 2H, 3H and

5H, and take the least number not

yet used

§ Numbers 2 and 3 are already taken

§ Next number is either 4, 6, or 5

§ We take the minimum of these

three: the next number is 4

2H = 2 | 4 | 6 | …

3H = 3 | 6 | 9 | …

5H = 5 | 10 | 15 | …

⟹ X = min(4,6,5) = 4

l25

Hamming program operations
l The algorithm needs two operations

l Multiply list elements by an integer
l Merge two ordered lists

l L2={Times L1 N}
l Each element of L2 is N times the element of L1

l L={Merge L1 L2}
l Assume L1 and L2 are in increasing order
l L contains elements of L1 and L2 in increasing order

l26

14

Hamming program
fun lazy {Times S N}

case S of H|T then
N*H|{Times T N}

end
end

fun lazy {Merge S1 S2}
case S1|S2 of (H1|T1)|(H2|T2) then

if H1<H2 then H1|{Merge T1 S2}
elseif H1>H2 then H2|{Merge S1 T2}
else /* H1==H2 */ H1|{Merge T1 T2}
end

end
end

l Main expression:
H=1|{Merge

{Times H 2}
{Merge {Times H 3}

{Times H 5}}}
{Browse H}

l27

Lazy suspensions

l28

15

Lazy suspensions
l We defined lazy evaluation using threads and

WaitNeeded
l This is correct but it does not show the execution

l Let us show the execution of a lazy program with a
graphical approach

l We introduce the concept of lazy suspension:
Executing: L2={Times L1 3}
Creates a suspension: L2 → {Times L1 3}
“A thread is suspended on L2 that contains the body of {Times L1 3}”

l29

Execution of Hamming program

l Running the program creates five lazy suspensions
l The lazy suspension {Merge T2 M2} waits on M1
l Executing M1.1 activates the lazy suspension {Merge T2 M2},

which executes the body of {Merge T2 M2}, which then
activates {Merge T3 T5} and {Times H 2}, and so forth!
l All five lazy suspensions are activated and five new ones are created

l At the end, M1.1 is bound to 2|M1’ with the new variable M1’

H=1|M1

{Merge T2 M2}

{Times H 2}

{Merge T3 T5}

{Times H 3}

{Times H 5}

l30

16

First activation: {Merge T2 M2}
l Request the second element of H:

{Browse M1.1}

l This activates {Merge T2 M2}:
l The body is executed:

case T2|M2 of (H1|T2’) | (H2|M2’) then
…

end
l The case needs the first elements of T2 and M2

l This activates {Times H 2} and {Merge T3 T5}
l The case waits patiently until T2 and M2 are bound

Activate
{Times H 2}

Activate
{Merge T3 T5}

l31

Next activations
l {Times H 2} and {Merge T3 T5} are activated

l The body of {Times H 2} is executed
l This binds T2=2|T2’ and creates a new lazy suspension on T2’:

{Times M1 2}

l The body of {Merge T3 T5} is executed
l This activates {Times H 3} and {Times H 5}

l After executing these two functions, this binds M2=3|M2’ and creates

a new lazy suspension on M2’: {Merge T3’ T5}

l Now the case in {Merge T2 M2}, which was waiting
patiently, can be executed:

l It returns 2|M1’ with M1’={Merge T2’ M2} and creates a new lazy

suspension on M1’

l32

17

Overall execution flow

M1.1

{Merge T2 M2}

case T2|M2 ⋯ then
 ⋯
end

{Times H 2}

{Merge T3 T5}

case T3|T5 ⋯ then
 ⋯
end

{Times H 3}

{Times H 5}

activate

execute

bind M1

activate

bind T2
activate

execute
bind M

2
ac

tiv
ate

bin
d T

3

activate
bind T5

{Browse M1.1}

§ Doing M1.1 starts it all

§ Five lazy suspensions

are activated in a chain

§ Each one executes the

body of a function, which

returns result and creates

a new lazy suspension

§ M1 is bound at the end

so M1.1 can complete

The execution is sequential (follow the flow!)

l33

Lazy deterministic
dataflow

l34

18

Five functional paradigms
l So far we have seen four paradigms of functional programming:

l Sequential functional programming (no single assignment)
l Traditional functional languages do this (Lisp, Scheme, ML, OCaml)

l Sequential functional programming with single assignment
l Allows data structures with “holes”, e.g., list functions are tail-recursive
l This is the default way that Oz executes functions

l Deterministic dataflow
l Adds threads and dataflow synchronization
l Allows concurrent programming with streams (multi-agent programming)

l Lazy evaluation
l Adds by-need synchronization (with WaitNeeded), where functions are

executed only when their results are needed
l Allows programming with infinite data structures
l Lazy functional languages do this (Haskell, Miranda)

l There is a fifth paradigm:

l Lazy deterministic dataflow
l Adds both threads and lazy functions

l35

Lazy deterministic dataflow
l Lazy deterministic dataflow is the most powerful declarative paradigm:

l It has confluence and higher-order: the power of functional programming

l It has concurrency: independent activities which can get out of step

l It has lazy evaluation: by-need computations only done when needed

l What can we do with all this power?
l We give one example of a program that can be written in lazy

deterministic dataflow, but not in any weaker declarative paradigm

l This program is the bounded buffer

l36

19

Bounded buffer

l37

Bounded buffer (1)

l A producer-consumer pipeline has performance problems
l Variations in producer and consumer speeds can cause the

system to perform poorly
l When a producer creates elements too quickly, the consumer

cannot use the elements so the producer idles
l When a consumer needs more elements, the producer may not be

able to produce them so the consumer idles

Producer Consumer

Stream

l38

20

Bounded buffer (2)

l Inserting a bounded buffer can solve these problems
l When the producer creates elements too quickly to be

consumed, they are stored in the bounded buffer
l When the consumer needs more elements than can be

produced, they are taken from the bounded buffer
l This improves performance by smoothing out fluctuations in

producer and consumer speeds

Producer Consumer
Bounded

buffer

l39

Bounded buffer (3)

l A bounded buffer fits in between a lazy producer and a lazy consumer
l The code of the producer and consumer is unchanged

l To the producer, the bounded buffer looks like a consumer

l To the consumer, the bounded buffer looks like a producer

l The bounded buffer “consumes” elements even when the consumer
does not ask for them, and “produces” elements even when the
producer does not make them

Producer

(lazy)

Consumer

(lazy)

Bounded

buffer

l40

21

Defining the bounded buffer
l Assume we have a producer-consumer pipeline:

thread S={Producer …} end
thread {Consumer S} end

l The bounded buffer is inserted in between:
thread S1={Producer …} end
thread {BoundedBuffer S1 S2 10} end
thread {Consumer S2} end

l We define the bounded buffer step-by-step
l We define the procedure {BoundedBuffer S1 S2 N} where S1 is the input

stream, S2 is the output stream, and N is the buffer size

l We build the procedure in four steps, to make it easier to understand

l41

First step: pass elements
l The buffer outputs the same elements as it inputs:

proc {BoundedBuffer S1 S2 N}
fun lazy {Loop S1}

case S1 of H1|T1 then H1|{Loop T1} end
end

in
S2={Loop S1}

end

l42

22

Second step: startup
l The buffer asks for N elements on startup:

proc {BoundedBuffer S1 S2 N}
fun lazy {Loop S1}

case S1 of H1|T1 then H1|{Loop T1} end
end
End

in
End={List.drop S1 N} % Asking must not be lazy!
S2={Loop S1}

end

l {List.drop L N} is a library function that removes the first
N elements from a list L

l43

Third step: staying full
l Whenever the consumer gets an element, the buffer asks for

another element from the producer:

proc {BoundedBuffer S1 S2 N}
fun lazy {Loop S1 End}

case S1 of H1|T1 then H1|{Loop T1 End.2} end
end
End

in
End={List.drop S1 N}
S2={Loop S1 End}

end

l44

23

Fourth step: no blocking
l To avoid blocking the buffer’s main loop, both asks

must be done in their own threads:

proc {BoundedBuffer S1 S2 N}
fun lazy {Loop S1 End}

case S1 of H1|T1 then
H1|{Loop T1 thread End.2 end}

end
end
End

in
thread End={List.drop S1 N} end
S2={Loop S1 End}

end

In declarative programming,
threads are your friends!
They are efficient. They can
be added at will without
adding bugs. They remove
blocking and make the
program more incremental.

All list functions, including
List.drop, work correctly
when used concurrently

l45

Example execution
l We create a pipeline with

producer, bounded buffer,
and consumer:

declare S1 S2 S3 in
{Browse S1}
{Browse S2}
{Browse S3}
S1={Prod 1 10}
{BoundedBuffer S1 S2 3}
S3={Cons S2 0}

l Note that the producer
immediately produces 3
elements, which are stored in
the buffer

l When we consume one
element, the buffer asks the
producer for one element
l The buffer tries to stay full

l The buffer is eager until it is full,
and then it becomes lazy

l46

24

Lazy quicksort

l47

Lazy quicksort
l Lazy evaluation can make some algorithms incremental, which

can enormously improve their efficiency
l We show this with the quicksort algorithm

l Standard quicksort has an average time complexity of O(n log n)
to sort n elements

l Lazy quicksort has a time complexity of O(n + k log k) to compute
the k smallest elements out of n elements
l This is a very good bound!

l Furthermore, the value of k does not need to be known in advance.

Elements can be computed incrementally until some condition is

satisfied.

l To see how clever this is, try inventing the algorithm from scratch!

l48

25

Quicksort algorithm

l Pick a random
element of L, the
“pivot” X

l Partition into two
sublists

l Recursively sort
the sublists

l Append the results

L

L1 L2

S1 S2

S

< X ≥ X

recursive call recursive call

partition

append

l49

Quicksort example (on board)
l L = [7 3 2 8 6 4 1 9]
l Pivot = 7 (first element of L)
l L1 = [3 2 6 4 1], L2 = [7 8 9]
l …
l S1 = [1 2 3 4 6], S2 = [7 8 9]
l S = [1 2 3 4 6 7 8 9]

l50

26

Partition procedure
proc {Partition L X L1 L2}

case L of H|T then
if H<X then M1 in

L1=H|M1 {Partition T X M1 L2}
else /* H≥X */ M2 in

L2=H|M2 {Partition T X L1 M2}
end

[] nil then L1=nil L2=nil
end

end

l51

Append and quicksort
fun {Append L1 L2}

case L1 of H|T then H|{Append T L2}
[] nil then L2 end

end
fun {Quicksort L}

case L of X|M then L1 L2 S1 S2 in
{Partition L X L1 L2}
S1={Quicksort L1}
S2={Quicksort L2}
{Append S1 S2}

[] nil then nil
end

end

l52

27

Example eager execution
l Let us try to run this:

declare S in
S={Quicksort [4 3 2 5 6 4 3 2]}
{Browse S}

l What happens?
l Something is wrong!

l How do we fix this?
l A general rule when defining recursive functions!

l53

Append and quicksort (fixed)
fun {Append L1 L2}

case L1 of H|T then H|{Append T L2}
[] nil then L2 end

end
fun {Quicksort L}

case L of X|M then L1 L2 S1 S2 in
{Partition M X L1 L2}
S1={Quicksort L1} % L1 is strictly smaller than L
S2={Quicksort L2} % L2 is strictly smaller than L
{Append S1 X|S2}

[] nil then nil
end

end

M is strictly smaller than L

l54

28

Making quicksort lazy
l What has to be made lazy?

l Quicksort function becomes LQuicksort
l Append function becomes LAppend

l Partition is not lazy
l Sorting cannot work unless we look at all the

elements of L

l Partition keeps the same eager definition

l We create the complete sublists L1 and L2

l55

Lazy append and quicksort
fun lazy {LAppend L1 L2}

case L1 of H|T then H|{LAppend T L2}
[] nil then L2 end

end
fun lazy {LQuicksort L}

case L of X|M then L1 L2 S1 S2 in
{Partition M X L1 L2}
S1={LQuicksort L1}
S2={LQuicksort L2}
{LAppend S1 X|S2}

[] nil then nil
end

end

l56

29

Example lazy executions
l Lazy append:

declare S in
S={LAppend [1 2 3] [4 5 6]}
{Browse S}
l What happens when asking for elements?

l Lazy quicksort:
declare S in
S={LQuicksort [4 3 2 5 6 4 3 2]}
{Browse S}
l What happens when asking for the first element?
l How much computation is done? What is the time complexity?

l57

Execution steps…
l S={LQuicksort [2 3 4 1]} % Lazy suspension on S

{Browse S.1}
% S is needed, so execute body of S={LQuicksort [2 3 4 1]}:
{Partition [3 4 1] 2 L1 L2}
S1={LQuicksort [1]} % Lazy suspension on S1
S2={LQuicksort [3 4]} % Lazy suspension on S2
S={LAppend S1 2|S2} % Lazy suspension on S

% S still needed, so execute body of LAppend:
case S1 of H|T then H|{LAppend T 2|S2}
[] nil then 2|S2 end

% S1 is needed, so execute body of S1={LQuicksort [1]}
{Partition nil 1 nil nil}
S1’={LQuicksort nil} % Lazy suspension on S1’
S2’={LQuicksort nil} % Lazy suspension on S2’
S1={LAppend S1’ 1|S2’} % Lazy suspension on S1

% S1 still needed, so execute body of LAppend:
case S1’ of H’|T’ then H’|{LAppend T’ 1|S2’}
[] nil then 1|S2’ end

% S1’ is needed, so execute body of S1’={LQuicksort nil}:
case nil of X’|M’ then (…)
[] nil then nil end
% Now we can do bindings:
S1’=nil

S1=1|S2’
S=1|{LAppend nil 2|S2}

{Browse (1|…).1}
% Displays 1

l Follow carefully what is happening
l When S is needed, it stays needed!
l We focus on the lazy suspensions

l S → {LQuicksort [2 3 4 1]}
S is needed, activates:
l S1 → {LQuicksort [1]}

l S2 → {LQuicksort [3 4]}
l S → {LAppend S1 2|S2}

S still needed, activates:
S1 is needed, activates:

§ S1’→{LQuicksort nil}
§ S2’→{LQuicksort nil}
§ S1→{LAppend S1’ 1|S2}

S1 still needed, activates:
S1’ is needed, activates:
§ S1’=nil

§ S1=1|S2’
l S=1|{LAppend nil 2|S2}

l

l58

30

Complexity of lazy quicksort

l To compute the smallest element, the number of operations is n + n/2 + n/4 + … + 1
= 2n, so the time complexity is O(n)

l To compute the k smallest elements, a full “mini quicksort” is done as soon as the
partitioned list has at least k elements, so the extra time complexity is O(k log k)

l Total time complexity is O(n + k log k)

lPartition [3 4 1]

lPartition [1] lPartition [3 4]

Partition nil Partition nil

l1|…

nil 1|nil

l1|…

n traversal

n/2 traversal

(n/4, n/8, continues to 1)

l59

What is declarative
programming?

l60

31

Declarative programming
l We have seen five functional paradigms

l Sequential functional programming

l Sequential functional programming with single assignment

l Deterministic dataflow (concurrent)

l Lazy evaluation

l Lazy deterministic dataflow (concurrent)

l We claim that they are all declarative
l What does this mean, exactly?

l Let us define it starting from the functional programming paradigm

l We show how to classify declarative paradigms according to their
concepts and expressive power (Section 4.5.2 in the book)

l61

Functional programming
l All functional programs can be encoded as λ expressions
l Church-Rosser theorem:

l If ea reduces to eb (in 0 or more steps) and ea reduces to ec (in 0 or
more steps), then there exists a term ed such that eb and ec can
reduce to ed

l We say the λ calculus is confluent; it has the Church-Rosser property

ea → e2 → e3 → ⋯ → eb

ec → ec1 → ec2 → ⋯ → ed

↓

e2’

↓

e3’

↓

⋮

↓

⋮

↓

⋮

l62

32

Other functional paradigms?
l We see that functional programs are confluent

l The meaning is clear for the first paradigm, namely sequential
functional programming

l But what does it mean for:
l Concurrency? (threads and their scheduler)
l Streams? (programs that never terminate!)
l Single-assignment variables? (variables can be unbound!)

l We give a precise formal definition of “declarative
programming” which covers these concepts
l Confluence: this handles concurrency (why?)
l Partial termination
l Equivalent stores

l63

I: Partial termination

l64

33

Partial termination

l Assume we have a concurrent
agent with an input stream S1
and an output stream S2

l It could execute as follows:
l S1=1|_ S2=2|_
l S1=1|2|_ S2=2|4|_
l S1=1|2|3|_ S2=2|4|6|_

l How is this functional?
l Problems: (1) the program never

terminates and (2) the streams
contain unbound variables

l With the right concepts, we can
see this as functional
execution:
l If S1 does not change, then

S2 reaches a final value

l We call this “partial termination”

l We say the program has

reached a “resting point”

l What about the unbound
variables?
l See next section!

2 x

S1 S2

Agent

l65

II: Equivalent stores

l66

34

Single-assignment variables
l We claim that a functional program that uses single-assignment

variables is still functional
l Let’s see how to make this precise

l Consider the following program:
T1: thread X=foo(Z W) end
T2: thread Y=foo(Z W) end
T3: thread X=Y end
l Assume T1 and T2 execute before T3, then we have the store:

σ={x=foo(z w), y=foo(z w)}

l Assume T1 and T3 execute before T2, then we have the store:

σ’={x=foo(z w), y=x}

l How can we express that stores σ and σ’ are the same?
l We first need to introduce some concepts from formal logic Intro slides

l67

A store is a logical formula
l Assume we have these two stores:

σ={x=foo(z w), y=foo(z w)}
σ’={x=foo(z w), y=x}

l The bindings of x and y are different for σ and σ’ but the possible
values of x and y are the same in both stores
l Let’s see how to make this intuition precise

l A store σ corresponds to a relationship between values
l The store σ tells us that x is a record with label foo and arguments z and

w, and that y is a record with label foo and arguments z and w
l For all values of x, y, z, and w, there are two possibilities: either they can

be part of a store σ or they cannot be part of a store σ

l So the store σ is a logical formula, which can be true or false

l We write σ as a logical formula: σ ≡ x=foo(z w) ∧ y=foo(z w)

l68

35

Equivalent stores
l Now we can define when two stores are equivalent

l Each store represents a logical formula that can be true or false
l Two stores are equivalent when, no matter how we assign values to their

symbols, they are either both true or both false
l I.e., we cannot find values such that one store is true and the other is false

l We state this definition using the model concept
l We introduce the notation α⊨β which means “β is true in all models of α”

l Definition: Two stores σ and σ’ are logically equivalent if
l σ⊨σ’ and σ’⊨σ σ’ is true in all models of σ and σ is true in all models of σ’

l Another way to write this is:
l ⊨ (σ ⇔ σ’) (σ ⇔ σ’) is a tautology, i.e., it is true in all models

l69

Introduction
to first-order logic

l70

36

First-order logic
l To define store equivalence, we introduce first-order logic
l Formal logic is:

l A formal language: a syntactic definition of a set of formulas
l A proof theory: a set of rules to deduce whether a formula is true or

false, given a set of primitive formulas (axioms)
l A model theory: mathematical objects in which the axioms are true

l First-order logic is:
l A formal logic with variables, quantifiers, predicates, and connectors

l Axiom: ∀x.∀z.(grandparent(x,z) ⇔∃y.parent(x,y) ∧ parent(y,z))

l Model: any set of human beings with the parent relation

l Some popular programming languages based on first-order logic
are Prolog, constraint programming, and SQL

l71

Example of first-order logic
l Formulas:

syntactic expressions
(with variables and quantifiers)

∀x. x<x+2

∃x. (x2−3x+2=0)

∀x. (x2−3x+2=0 ⇒ x=1 ∨ x=2)

∀x. ∃y. y=x2

l Models:
integers ℤ
ℤ = {…, -3, -2, -1, 0, 1, 2, 3, …}

reals ℝ
ℝ = {x | x has infinite decimal expansion}

l All formulas on the left are
true in ℤ and ℝ

l72

37

Example of proof and model
l Given a set of formulas F

l Given any formulas α, β ∈ F

l Proof theory
l Given a set of proof rules
l α ⊢ β : β can be deduced from α using the rules

l (∃x.x2=1) ⊢ ∃x.(x=1 ∨ x=-1)

l Model theory
l α ⊨ β : β is true in all models in which α is true

l If (∃x.x2=1) true in ℝ then ∃x.(x=1 ∨ x=-1) true in ℝ

l73

Model of a store σ
l We give a formal definition of a model of a store σ
l First step: An interpretation of a store σ (is true or false)

l An interpretation of a store σ is an assignment to all symbols in σ
l For all variables x in σ, assign a value x to x
l For all record symbols f in σ, assign a function f to f that has the same

number of arguments as the record symbol and that returns a value

l Any interpretation of a store σ is either true or false
l A binding x=f(x1 … xn) is true if the value returned by f(x1 … xn) is equal

to x; otherwise it is false
l A store σ = (x=f(x1 … xn) ∧… ∧ z=f(z1 … zn)) is true if all bindings are

true, otherwise it is false

l Second step: A model of a store σ (is always true)
l A model of σ is an interpretation in which σ is true

l74

38

III: Definition of
declarative

programming

l75

Definition of
declarative programming
l Now we can define precisely what declarative programming means

l A program is declarative if for all possible inputs:
l All executions for those inputs either:

l do not terminate, or

l all reach partial termination and give logically equivalent stores

l Remarks:
l “All executions” means all possible choices of the scheduler

l We say that a declarative program has “no observable nondeterminism”

l All five functional paradigms are declarative

l76

39

IV: Failure
confinement

l77

Fixing a buggy application
l Declarativeness is an extremely powerful property

l How do we write applications to be as declarative as possible?
l This is a major theme of the course! “All programs should be

declarative except where they interact with the real world.”

l How do we fix an application that becomes nondeclarative?
l We can do failure confinement

l Nondeclarative behavior
l We will see later in the course that applications that interact with

the real world can be nondeclarative
l That kind of nondeclarativeness is unavoidable but can be minimized

l Right now, let us see what happens when an application has a
bug that makes it nondeclarative

l78

40

Bugs are unavoidable
l “It is a truth universally acknowledged, that a program of a

certain size must have bugs”
l With apologies to Jane Austen !

l Assume we have the following (simplified!) buggy program:
thread X=1 end
thread Y=2 end
thread X=Y end

l This program will always raise an exception
l Three stores are possible depending on the scheduler choices:

σ1={x=1,y=2}, σ2={x=1,y=1}, σ3={x=2,y=2}

l This is an observable nondeterminism, so it is nondeclarative

l We can fix this by doing failure confinement
l We will hide the nondeterminism from the rest of the program

l That way the program becomes declarative again

l79

Failure confinement
l The program has three parts that can become

inconsistent if there is a bug
l We use exceptions to protect these parts

thread try X1=1 S1=ok catch _ then S1=error end end
thread try Y1=2 S2=ok catch _ then S2=error end end
thread try X1=Y1 S3=ok catch _ then S3=error end end
if S1==error orelse S2==error orelse S3==error then

X=1 Y=1 /* default result when there is an error */
else

X=X1 Y=Y1 /* correct result when there is no error */
end

l80

41

Table of
declarative paradigms

l81

Declarative paradigms

l82

42

Conclusions

l83

Conclusions
l Lazy evaluation

l Functions are evaluated only if their results are needed

l This extends dataflow (Wait & Bind) with the WaitNeeded operation

l Programs can use infinite lists and be made more incremental

l Lazy evaluation can be combined with concurrency

l Declarative programming
l “An application should be declarative except for real-world interaction”

l We define precisely what is declarative programming

l We give a precise definition of declarative programming using the concepts of
confluence, partial termination, and logical equivalence

l Declarativeness is an observational concept: a program can behave

declaratively even if it is written in a nondeclarative paradigm

l Next lecture: Advanced declarative algorithm design
l Declarative algorithms can be as efficient as nondeclarative algorithms

l84

1

LINFO1131
Concurrent programming concepts

Lecture 4:
Advanced declarative algorithm design

Peter Van Roy

ICTEAM Institute
Université catholique de Louvain

peter.vanroy@uclouvain.be

l1

Overview
l Motivation

l Writing efficient algorithms in
declarative paradigms

l Concepts used

l Single assignment and lazy
evaluation

l Amortized and worst-case
l Ephemeral and persistent

l Summary of the algorithms

l Difference list

l A list representation with
efficient ephemeral operations

l Naïve queue

l Amortized constant-time

ephemeral queue

l Worst-case constant-time

ephemeral queue

l A short step to logic
programming

l Amortized constant-time

persistent queue

l Worst-case constant-time

persistent queue

l Conclusions

l2

mailto:peter.vanroy@uclouvain.be

2

Motivation
l Writing declarative applications

l We would like to write as much of the program as
possible in a declarative paradigm

l Writing algorithms in a declarative paradigm
l An important question: is it possible to make efficient

algorithms in declarative paradigms?
l Is mutable state really needed for efficiency? Not always!

l Declarative algorithms can often be efficient
l We give many techniques for doing this

l We use the declarative paradigms we saw before

l3

Recommended book
l Many of the examples in this lecture are taken

from the book
l “Purely Functional Data Structures” by Chris Okasaki

l This book shows how to use lazy evaluation to
define many efficient declarative algorithms
l The book uses the Standard ML language with an

explicit lazy evaluation operation

l4

3

Concepts used

l5

Concepts used
l Today’s lecture is based on the following concepts

l Language concepts
l Single-assignment variables

l Lazy evaluation

l Complexity concepts
l Amortized upper bound

l Worst-case upper bound

l Algorithm concepts
l Ephemeral data structure

l Persistent data structure

We saw these in the previous lecture

l6

4

Amortized and worst-case
l Amortized complexity

l If n operations have a combined complexity of O(f(n)) then we

say each operation has an amortized complexity of O(f(n)/n)

l This is important when individual operations are sometimes

expensive but operations are cheap on average

l For example, individual operations on a queue can have

complexity O(n), but with n operations it is possible for individual

operations to have amortized complexity of O(1)

l Worst-case complexity
l This is the big-O notation that you have seen before

l A good worst-case upper bound is best, but if this is not
possible, an amortized bound may be good enough

l7

Ephemeral and persistent
l An ephemeral data structure can have only one version

exist at the same time
l Given queue Q1, then doing Q2={Insert Q1 a} creates a new

queue Q2 and Q1 can no longer be used

l Stateful data structures (like in Java) are always ephemeral: when

you change the attributes of an object, the old values are forgotten

l A persistent data structure can have many versions exist
at the same time
l Given queue Q1, then doing Q2={Insert Q1 a} creates a new

queue Q2 and Q1 can still be used. Doing Q3={Insert Q1 b} will

create another version, and all versions Q1, Q2, Q3 are still usable

l What are persistent data structures good for?

l8

5

The use of persistence
l Persistent data structures are used for collaborative work

l Two people edit the same text and create their own versions
l Software repositories like github support multiple versions
l Some databases support multiple versions

l In systems with mutable state (like Java), multiple versions can be

simulated by doing explicit “copy” operations, but this is clumsy

l In our declarative code, the versions are handled automatically

l “Merge” operation

l Persistent data structures often have a “merge” operation that allows to
combine two versions
l The merge takes care of possible conflicts between versions

l9

Summary of the
queues

l10

6

Summary of the queues
l We show five ways to implement a queue abstraction

l We first give a naïve algorithm; the others have better properties!

l We use three declarative paradigms for these implementations

l Sequential functional programming
l Naïve queue, insert is O(1) and delete is O(n)

l Amortized ephemeral queue, insert and delete O(1)

l Sequential functional programming with single assignment
l Worst-case ephemeral queue, insert and delete O(1)

l Lazy evaluation
l Amortized persistent queue, insert and delete O(1)

l Worst-case persistent queue, insert and delete O(1)

l11

Summary of the queues

Queue

Ephemeral

Amortized

Persistent

Worst-caseAmortizedWorst-case

Sequential FP Lazy evaluation
Sequential FP

with single assignment

l12

7

Difference list

l13

Difference list
l A difference list is a representation of a list as a pair

of two lists (S,E) such that E is a suffix of S
l The difference list (S,E) represents the list S–E where

we take S and remove the suffix E
l The list 1|2|3|nil can be represented as a difference list:

l As the pair (1|2|3|X,X) where X is an unbound variable
l As the pair (1|2|3|4|Y,4|Y) where Y is an unbound variable
l As the pair (1|2|3|4|5|nil,4|5|nil)
l And so forth, there are an infinite number of possibilities

l What is the advantage of this representation?
l A difference list has efficient ephemeral operations!

l14

8

Adding an element
l Add an element to the start or the end in constant time

l Given the difference list (S,E) where E is an unbound variable

l Adding X to the start gives (S1,E) with the binding S1=X|S

l Adding X to the end gives (S,E1) with the binding E=X|E1

l For example, take the difference list (1|2|3|X,X)
l Adding 4 to the start gives (4|1|2|3|X,X)

l Adding 4 to the end gives (1|2|3|4|Y,Y)

l Bind X=4|Y, then take the first element of the original difference list
together with Y, which gives (1|2|3|4|Y,Y)

l For a standard list, like 1|2|3|nil, it is not possible to add
an element at the end in constant time!

l15

Constant-time append
l We append two difference lists in constant time

l Given (S1,E1) and (S2,E2), then the append is given
by (S1,E2) with the binding E1=S2

l For example, we append (a|b|X,X) and (1|2|Y,Y) by
binding X=1|2|Y and taking the start of the first with
the end of the second (a|b|1|2|Y,Y)

l This can only be done once (it is ephemeral)!
l In many cases, that is all we need
l Let us show an example how it can be used

l16

9

Naïve flatten
l Append function

fun {Append L1 L2}

case L1 of nil then L2

[] H|T then
H|{Append T L2}

end
end

l Append is a tail-recursive

function whose execution time

is proportional to |L1|, i.e., the

length of L1

l Naïve flatten function

fun {Flatten Xs}

case Xs of nil then nil

[] X|Xr andthen
{IsList X} then
{Append {Flatten X}

{Flatten Xr}}

[] X|Xr then
X|{Flatten Xr}

end
end

l {Flatten [[1 2] [3 4] 5]} gives

[1 2 3 4 5]

l17

Flatten with a difference list
l We replace the list result by a difference list

l We add two arguments S and E

l We define it as a procedure to show the arguments

proc {DFlatten Xs S E}

case Xs of nil then
S=E

[] X|Xr andthen {IsList X} then M in
{DFlatten X S M}

{DFlatten Xr M E}

[] X|Xr then M in
S=X|M

{DFlatten Xr M E}

end
end

(S,E) is the append
of (S,M) and (M,E)

This is much more efficient
than the naïve Flatten!

l18

10

Difference lists
versus linked lists
l These two data structures seem quite similar

l Difference list (functional)
l Linked list (stateful, for example in Java)

l What’s the difference?
l Both allow efficiently building chains of elements
l The difference is that difference lists cannot be

broken: they have functional semantics
l Linked lists can always be broken: the chains can

always be modified by assignment

l19

Naïve queue

l20

11

Queue abstraction

l A queue is a sequence that allows insert on one end and
delete on the other end
l Insert 1, 2, …, 8
l First-in first-out (FIFO): delete 1, 2, …, 8

l We first give a naïve queue implementation in sequential
functional programming

l8 l7 l6 l5 l4 l3 l2 l1
insert delete

l21

Naïve queue
l We define a simple queue

abstraction

l Not a true abstraction since the
representation is not protected

l What is its complexity?

l Helper function:

fun {ButLast L X}

case L

of [Y] then X=Y nil

[] Y|L1 then
Y|{ButLast L1 X}

end
end

l Queue operations:

fun {NewQueue} nil end
fun {Insert Q X} X|Q end
fun {Delete Q X}

{ButLast Q X}

end

l Example execution:

declare Q Q1 1 X1 in
Q={Insert {Insert {Insert

{NewQueue} 1} 2} 3}

{Browse Q}

Q1={Delete Q X1}

{Browse X1}

l22

12

Amortized
constant-time

ephemeral queue

l23

Amortized ephemeral queue
l We define an amortized

constant-time ephemeral queue

in functional programming

l The queue is represented as a

tuple q(F R)

l Content is {Append F {Reverse R}}
l Insert is done by updating R
l Delete is done by updating F
l If F is empty, then {Reverse R} is

done to move elements from R to F

fun {NewQueue} q(nil nil) end
fun {Check Q}

case Q of q(nil R) then
q({Reverse R} nil) else Q end

end
fun {Insert Q X}

case Q of q(F R) then
{Check q(F X|R)} end

end
fun {Delete Q X}

case Q of q(F R) then F1 in
F=X|F1 {Check q(F1 R)} end

end

l24

13

Discussion
l Example execution: (exactly as before!)

Q={Insert {Insert {Insert {NewQueue} 1} 2} 3}

{Browse Q}

Q1={Delete Q X1}

{Browse X1}

l Questions
l If this queue is used in a persistent manner (with multiple versions)

then the results will be correct. Why?

l However, when used in persistent manner, this queue is no longer

amortized constant-time. Why?

l Hint: find a sequence of n operations that has worse complexity than O(n)

l25

Comparing naïve queue
with amortized queue

ins
1

ins
1

ins
1

ins
1

del
n

del
n-1

del del
1n-2

Naïve queue (single list L)

ins
1

ins
1

ins
1

ins
1

del
n

del

1
del del

11

Amortized constant-time ephemeral queue (two lists F and R)

n n + (n-1) + (n-2) + … + 1 =
n (n+1)

2

n n + (n-1) = 2n - 1

Worst-case O(n)
Amortized O(n)

Worst-case O(n)
Amortized O(1)

l26

14

Worst-case
constant-time

ephemeral queue

l27

Worst-case ephemeral queue
l It is not possible to write a

queue with constant-time insert

and delete in standard

functional programming

l Amortized constant-time is the
best we can do

l But adding single assignment
makes it possible!

l The queue is represented as

the tuple q(S E) where (S,E) is

a difference list with the

content

l Both insert and delete are

always constant-time!

fun {NewQueue} X in q(X X) end
fun {Insert Q X}

case Q of q(S E) then E1 in
E=X|E1 q(S E1)

end
end
fun {Delete Q X}

case Q of q(S E) then S1 in
S=X|S1 q(S1 E)

end
end

l28

15

Knowing how many elements
l The previous definition does

not let us know when the

queue is empty

l To know the number of

elements, we add the queue

size to the representation

l The queue is represented as
q(N S E) where N is the
number of elements and (S,E)
is the same as before

l Test if empty:
fun {IsEmpty Q) Q.1==0 end

l Both insert and delete are still

constant-time!

fun {NewQueue} X in q(0 X X) end
fun {Insert Q X}

case Q of q(N S E) then E1 in
E=X|E1 q(N+1 S E1)

end
end
fun {Delete Q X}

case Q of q(N S E) then S1 in
S=X|S1 q(N-1 S1 E)

end
end

l29

A short step to
logic programming

l30

16

Doing delete before insert
l Try the following execution:
declare Q1 Q2 Q3 X in
Q1={NewQueue}
Q2={Delete Q1 X} % Delete from an empty queue
{Browse X}
Q3={Insert Q2 foo} % Insert an element

l This first displays an unbound variable X
l When foo is inserted, the display is updated to foo

l The delete creates an empty slot that is filled later by insert

l How can this work?

l31

Special power of this queue
l This queue definition has a special power that follows

from the logical equivalence property of stores
l The queue can have a negative number of elements!

l An element can be deleted before it is inserted

l The queue definition guarantees that deleted elements
are equal to inserted elements
l It is because binding done in any order gives the same results

l Binding is a symmetric operation; the general binding operation is
called unification and it follows from the logical equivalence of stores

l We can delete an unbound variable first and insert a value later

l We are doing more than just functional programming
l We are doing logic programming, similar to what Prolog does

l32

17

Delete before insert explained

l We start with an empty queue (S,S)
l Let’s do delete Y and insert X on the empty queue

l This gives two bindings, S=Y|S1 and S=X|E1

l What happens in the store?
l We have the logical formula (s=y|s1 ∧ s=x|e1)

l Simplifying shows us that y=x and s1=e1

(S,S)

S=Y|S1 S=X|E1

Insert X:
add X to the end

Delete Y:
remove Y from the front

Empty queue

l33

Shoutout to Prolog
l The queue is doing logic programming

l Both insert and delete do unification with the same variable
l Because of logical equivalence, this imposes logical equality
l Remember the last lecture’s introduction to first-order logic!

l Logic programming is another declarative paradigm

l Logic programming is more general than functional programming
l Data structures are truths: they can have unbound variables and binding

is bidirectional (both inputs and outputs can be bound)
l Computation is deduction: a running program deduces new truths

l A Prolog program is actually a theorem prover

l If you are curious, check out Prolog and constraint programming

l See programming paradigms and constraint programming courses

l34

18

Amortized
constant-time

persistent queue

l35

Making it persistent
l Persistence is a strong property that is hard to get

l As your program updates its data structures, many versions are

created that exist simultaneously

l Stateful programming, like in Java and Python, is ephemeral by

default. All algorithms using mutable state are ephemeral by

default!

l Stateful algorithms can be made persistent by making explicit

copies, but this is hard because it is managed by the

programmer

l Declarative algorithms can be made persistent by using
lazy evaluation
l This is another amazing property of lazy evaluation

l36

19

Helper function: lazy append
l We define a lazy append like we did before with

quicksort
fun lazy {LAppend Xs Ys}
case Xs of X|Xr then X|{LAppend Xr Ys}
[] nil then Ys end

end
l Example execution:
declare L in
L={LAppend [1 2 3] [4 5 6]}
{Browse L}

l Run this and ask for elements of L, to understand it!
l It gives 1, 2, 3, and then [4 5 6] all at once

l37

Persistent algorithm idea
l We define the queue again, but with yet another representation

l We use a tuple q(LenF F LenR R) where LenF and LenR are

integers giving the length of F and R

l As before, we move elements from R to F when F becomes empty
l But now we do the move with a lazy suspension

l How we get amortized constant-time

l The move does a {Reverse R} which cannot be made incremental
l To make it amortized, we pay for the lazy suspension in advance
l We use the “banker’s method”: we do n operations in advance before

creating the lazy suspension
l It is like saving money: save bit by bit and buy when you have enough

l38

20

Persistent algorithm code
fun {NewQueue} q(0 nil 0 nil) end
fun {Check Q}

case Q of q(LenF F LenR R) then
if LenF<LenR then

q(LenF+LenR {LAppend F {fun lazy {$} {Reverse R} end}} 0 nil)
else Q end

end
end
fun {Insert Q X}

case Q of q(LenF F LenR R) then {Check q(LenF F LenR+1 X|R} end
end
fun {Delete Q X}

case Q of q(LenF F LenR R) then F1 in F=X|F1 {Check q(LenF-1 F1 LenR R)} end
end

Move R to F (lazily)

Increase R

Decrease F

l39

How it works
(example on next slide)
l The trick is to make sure the algorithm creates

a lazy suspension at the right time
l It has to be done when the {Reverse R} is paid for

l Banker’s method: save operations in the bank!
l Assume we are inserting elements

l This causes R to increase

l When R is larger than F, create the lazy suspension

l Activating the lazy suspension makes F bigger and R empty

l Assume we are deleting elements
l We activate a lazy suspension to get an element, and this

triggers the {Reverse R}, but it’s ok since it’s paid for

l40

21

Example
execution

F R
0 0

1 0

1 1

3 0

3 1

3 2

3 3

7 0

7 1

7 2

Ins a

Ins b

Ins c

Ins d

Ins e

Ins f

Ins g

Ins h

Ins i

6 2
Del X

5 2
Del Y

F=nil+rev([a])

Create lazy suspension
(0 1) immediately becomes (1 0)

F=(nil+rev([a]))+rev([c b])

Create lazy suspension
(1 2) immediately becomes (3 0)

Create lazy suspension
(3 4) immediately becomes (7 0)

F=((nil+rev([a]))+rev([c b]))+rev([g f e d])

Lazy
reverse

Lazy
append

Activate lazy suspension

Activate lazy suspension
X=a

Y=b

Pays for append and
reverse (amortized)

Pays for append and
reverse (amortized)

When activated later by a Delete,
F is bound to the result and every
Delete after that will see F! So it is
only executed once. This is why it
is persistent.

6 2
Del A

5 2
Del B

A=a

B=b

Only one of Del A and Del X will
execute the lazy function (the one
that runs first). The other will just
use the result.

Two versions
of the queue

l41

Why {Reverse R} is monolithic
l The {Reverse R} function cannot be made incremental

by lazy evaluation
l We say that it is monolithic

l It is because we cannot know the first element of the
reversed list without traversing the whole list
l Any function where we need to see the whole data structure in

order to create a single output cannot be made incremental by

lazy evaluation (another example: Partition in lazy quicksort)

l We show the code…
l If you try to execute Reverse lazily you will see why this happens:

the recursive calls of Reverse don’t create any results until the

recursion stops at the end

l42

22

Execution of lazy reverse
l Reverse function:
fun lazy {Reverse L A}
case L of X|L2 then

{Reverse L2 X|A}
[] nil then A
end

end
l Traverse list L and build

reverse in accumulator A

l Sample call:

R={Reverse [1 2 3] nil}

l What happens when we ask

for the first element?

{Browse R.1}

l R is needed so the lazy

suspension is activated and

executes the body. This calls:

{Reverse [2 3] 1|A}

l This creates another lazy

suspension that is immediately

activated because it is needed!

l To get the first element, we
keep traversing L to the end

l43

Worst-case
constant-time

persistent queue

l44

23

Achieving worst-case
constant-time
l The reason why the previous example was amortized

constant-time was because of the {Reverse R} call
l Reverse is monolithic: it is executed all at once

l To fix this, we need to execute the reverse step by step
l The old code is {LAppend F {fun lazy {$} {Reverse R} end}}

l This code does both LAppend and Reverse
l The trick is to merge them into a new function AppRev

l Each time LAppend does one iteration, we do one step of Reverse
l The execution of Reverse is “spread out” over n operations

l We show how to merge Append and Reverse

l45

“Spreading out” the Reverse
l Old code: {LAppend F {fun lazy {$} {Reverse R} end}}

l This code will first get elements lazily from F

l When F is completely used up, then it executes {Reverse R}

l It calculates all elements of {Reverse R} in one operation

l New code: {LAppRev F R nil}
l The function LAppRev is like LAppend, but whenever it does

one iteration of Append, it also does one iteration of Reverse

l When the LAppRev is done (because F is completely used up),

then the Reverse is completely executed!

l46

24

Defining LAppRev
l We explain how we combine

Append and Reverse

l Here is the code for Append

and Reverse:

fun lazy {LAppend F B}

case F of X|F2 then
X|{LAppend F2 B}

[] nil then B end
end
fun {Reverse R B}

case R of Y|R2 then
{Reverse R2 Y|B}

[] nil then B end
end

l Here is the code for LAppRev

that does both Append and

Reverse:

fun lazy {LAppRev F R B}

case pair(F R)

of pair(X|F2 Y|R2) then
X|{LAppRev F2 R2 Y|B}

[] pair(nil [Y]) then Y|B

end
end

l Notes:

l Green arguments come from
LAppend, red ones from Reverse

l When F is empty, then R has one
element left (due to F<R condition:
R has grown bigger than F)

l47

Persistent algorithm code
(new version)
fun {NewQueue} q(0 nil 0 nil) end
fun {Check Q}

case Q of q(LenF F LenR R) then
if LenF<LenR then

q(LenF+LenR {LAppRev F R nil} 0 nil)
else Q end

end
end
fun {Insert Q X}

case Q of q(LenF F LenR R) then {Check q(LenF F LenR+1 X|R} end
end
fun {Delete Q X}

case Q of q(LenF F LenR R) then F1 in F=X|F1 {Check q(LenF-1 F1 LenR R)} end
end

Move R to F (lazily)

Increase R

Decrease F

New code replaces old code

l48

25

Conclusions

l49

Conclusions
l We define important algorithm concepts

l Amortized complexity: single operations may be expensive but on
average they are efficient

l Persistence: multiple versions of data structures can be used
l We write efficient algorithms in declarative paradigms

l We take a simple algorithm, a queue, and show four ways how it can be
implemented efficiently

l We use both lazy evaluation and single assignment
l As a bonus, we make a step toward logic programming

l Because of logical equivalence of stores, variable binding is actually a
symmetric operation called unification

l Logic programming is the most powerful form of declarative
programming – check out Prolog and constraint programming

l50

26

Take-away intuitions
l Concepts for efficient declarative algorithms

l Single assignment for fast ephemeral algorithms

l Lazy evaluation for fast persistent algorithms

l Why it works
l Single assignment is a weak form of mutable state that is still

declarative but is strong enough for ephemeral algorithms

because they only do assignment once

l Lazy evaluation lets expensive operations be done in advance

(which improves behavior for multiple versions) and be

decomposed into small steps (which improves behavior for worst-

case)

l51

1

LINFO1131
Concurrent programming concepts

Lecture 5:
Limitations of declarative programming

Peter Van Roy

ICTEAM Institute
Université catholique de Louvain

peter.vanroy@uclouvain.be

l1

Overview

l Limitations of declarative programming
l Declarative paradigms are based on lambda calculus: they are confluent

but they do not interact with the real world during their execution
l We explain how to extend declarative paradigms to interact with the real

world, by adding imperative concepts such as mutable state or
communication channels

l Cells
l A form of mutable state that allows to overcome the limitations of

declarative programming
l This leads to shared-state concurrency

l Ports
l A communication channel that allows to overcome the limitations of

declarative programming
l This leads to message-passing concurrency (multi-agent programming)

l2

mailto:peter.vanroy@uclouvain.be

2

Limitations of
declarative programming

l3

Beyond declarative programming?
l Up to now we have seen only declarative paradigms

l Sequential functional programming
l Deterministic dataflow and lazy deterministic dataflow
l Efficient declarative algorithms
l These are powerful and useful paradigms!

l Ideally, your program should be completely declarative!
l Correctness, testing, and maintenance are much simplified!
l But unfortunately this is impossible
l Why is it impossible? Let us see by looking at lambda calculus!
l Luckily most programs only need a few nondeclarative bits, so

most of the program can still be declarative

l4

3

Declarative execution =
lambda execution
l Declarative execution is equivalent to lambda execution:

 e0 → e1 → e2 → … → en-1 → en

l Execution starts with initial expression e0 and reduces it
in steps, ending with final expression en

l Lambda calculus is Turing complete, it can do all computations
l The power is a consequence of the Church-Rosser theorem

(confluence): final result en is independent of the reduction order
l How does this execution interact with the real world?

l In declarative programming, it does not! All information is
already in the initial expression e0, nothing is added later.

l5

Interacting with the real world
is not declarative
l Practical programs take time to execute

l Each reduction step ei-1 → ei takes time because execution
happens on a computer, a physical artifact in the real world

l Some reduction steps interact with the real world
l They accept inputs (like s0) or they generate outputs (like s1)

 s0 s1
 ↓ ↑
e0 → e1 → e2 → e3 → e4 → … → en-1 → en

l This is not a lambda execution any more!
l Because input s0 affects the value of e2, and because output s1

comes from e4 so it is not a lambda final expression

l6

4

Lambda calculus: confluent
but no real-world interaction
l Confluent reduction of an initial expression to a final result

This has very strong mathematical properties that we can use
l For reasoning, debugging, testing, optimization, and maintenance
l For concurrency, parallelism, and distribution
l There is no efficiency penalty compared to other paradigms!

l But it can’t interact with the real world! Let’s see why:
l During the execution, we would like to accept inputs coming from the

real world and outputs going back to it
l Declarative programming can’t interact with the real world because its

execution is a step-by-step reduction of an initial expression to a final result.
Reduction steps take time, and the inputs will arrive during this time. The
reduction can’t use them unless we could put them in the initial expression.
But we can’t do this, because the inputs are not known in advance.

7

l7

Imperative programming
l To interact with the real world, we need to add

something to the declarative paradigms
l A way to receive inputs and send outputs during execution
l This is usually called imperative programming

l This lets us interact with the real world, but we also have
to give up the goodness of declarative programming

l Can we have our cake and eat it too? Both the good
properties of declarative programming and interaction
with the real world?
l No we can’t! So what can we do…?

8

l8

5

The right way
to design programs
l Write most of the program in a declarative paradigm

l And add small pieces of imperative programming only in
those places that interact with the real world

l Usually there are only a very few such places, so we keep
most of the advantages of declarative programming

l We can use this to improve existing systems too…
l Existing systems are often not designed like this! They do

too much imperative programming. Older systems like
Java are especially bad.

l This gives us a measure to judge how well existing
systems are designed (and a way to improve them: make
them more declarative)

9

l9

Kinds of interactions

l There are many ways that a program can
interact with the real world

l Here are three typical possibilities:
l Hardware clock: Input sk gives the clock time
l Mutable state: output sa writes to a register, later input

sb (with b>a) reads from the register
l Communication channel: output sb sends to a

channel, later input sc receives from the channel
l Executions give different results depending on

the exact timing and order of the reductions

l10

6

Hardware clock

l Here is an example of a hardware clock:
 t0 t1 t2
 ↓read ↓read ↓read
e0 → e1 → e2 → e3 → e4 → e5 → … → en-1 → en

l A read returns the current time from the clock
l Reduction e0→e1 reads time t0
l Reduction e2→e3 reads time t1
l Reduction e4→e5 reads time t2

l Exact time values depend on reduction timing and order
l This is not lambda reduction, since for a lambda reduction the

result is independent of reduction timing and order (confluence)

l11

Mutable state

l Here is an example of a mutable variable:
 x y y
 ↑write ↑write ↓read
e0 → e1 → e2 → e3 → e4 → e5 → … → en-1 → en

l A read returns the value of the most recent write
l Reduction e0→e1 writes x in the register
l Reduction e2→e3 writes y in the register
l Reduction e4→e5 reads y from the register (not x!)

l Result of reads depends on reduction order
l This is not lambda reduction, since for a lambda reduction the

result is independent of the reduction order (confluence)

l12

7

Communication channel

l Here is an example of a FIFO channel:
 x y x y
 ↑send ↑send ↓receive ↓receive

e0 → e1 → e2 → e3 → e4 → e5 → e6 → … → en-1 → en

l The write happens before the read in the reduction order
l Reduction e0→e1 sends x on the channel
l Reduction e2→e3 sends y on the channel
l Reduction e4→e5 receives x from the channel
l Reduction e5→e6 receives y from the channel

l Order of received values depends on reduction order
l Sending of x and y might be reversed if they are concurrent!

Nondeterministic!

l13

Client/server application
l Let’s use the communication channel

to build a client/server application
l To satisfy client liveness, the server

must accept each incoming client
request in a reasonable time that
depends only on the travel time from the
client to the server

l However, the order of the requests
cannot be determined in advance
because it depends on precise client
timing (different timings give different
reduction orders)
l This means that the communication

channel is nondeterministic

l The whole client/server application is
therefore nondeterministic, even if all
the other code is purely declarative

Server

Client 1

Client 2
Receive from
the channel

14

Send to the
channel

Send to the
channel

l14

8

The two most important
nondeclarative operations

l Two most important nondeclarative operations
are mutable state and communication channels
l In the course we will show how to use both of them

l Mutable state: called cells
l Leads to shared-state concurrency (Java)
l Locks, monitors, transactions

l Communication channels: called ports
l Leads to message-passing concurrency (Erlang)
l Multi-agent programming

l15

Two definitions of
declarative programming

l16

9

Two definitions

l You will notice that we have made two
definitions of declarative programming
l “A program is declarative if for all possible inputs, all

executions either do not terminate or they terminate
and give logically equivalent results” (lecture 3)
l This is an observational definition: we observe a program from

the outside, we don’t care how the program is implemented
l “A program is declarative if it is equivalent to an

execution of a program in lambda calculus” (lecture 5)
l This is a structural definition: it is based on how the

program is implemented

l17

Comparing the definitions
l Observational is strictly more general than structural

l All lambda executions are declarative when observed from the outside
l An observational declarative program can be implemented using mutable

state, as long as the state has no observable effect (it is hidden)

l The observational definition is best for designing programs
l It captures the idea that the program must be deterministic even if it is

concurrent, just as with lambda calculus (Church-Rosser theorem)
l We can use mutable state in the implementation, as long as it is hidden

l This is important because mutable state is a fundamental part of today’s
processors, so the low-level parts of the implementation must use it!

l The structural definition gives the theoretical basis
l It shows that declarative programming is possible and practical

l The Church-Rosser theorem is an important and nonobvious result!

l18

10

Cells

l19

A cell
l To overcome the limitations of

declarative programming, we add cells
(mutable variables) to the language

l A cell is a box with identity and content
l The identity is a constant

(the “name” or “address” of the cell)
l The content is a variable

(in the single-assignment store)
l The content can be replaced by

another variable

A=5
B=6
C={NewCell A} % Create a cell
{Browse @C} % Display content
C:=B % Change content
{Browse @C} % Display content

c An unbound variable

c a

c b

Creating a cell with
initial content a (=5)

Replace the content by
another variable b (=6)

cell

cell

l20

11

Adding cells
to the kernel language
l We add cells and their operations

l Cells have three operations
l C={NewCell A}

l Create a new cell with initial content A
l Bind C to the cell’s identity

l C:=B
l Check that C is bound to a cell’s identity
l Replace the cell’s content by B

l Z=@C
l Check that C is bound to a cell’s identity
l Bind Z to the cell’s content

{Exchange C Z B}

l21

Cell examples (1)

l X={NewCell 0}

l X:=5
l Y=X

l Y:=10
l @X==10 % true
l X==Y % true

x 0

x 5

y

x 10

y

l22

12

Cell examples (2)
l X={NewCell 0}
l Y={NewCell 0}

l X==Y % false
l Because X and Y refer to

different cells, with different
identities

l @X==@Y % true
l Because the contents of X

and Y are the same value

x 0

y 0

l23

Cell semantics (1)
l Assume single-assignment store σ1 with variables
l Assume cell store σ2 that contains pairs of variables
l Full store σ = σ1È σ2

l C={NewCell X}, {C→c, X→x}
l Assume variables c, x ∈ σ1 (c is unbound)
l Create fresh name ξ, bind c=ξ, add pair c:x to σ2

l {Exchange C X Y}, {C→c, X→x, Y→y}
l Assume c=ξ, variables x, y, z ∈ σ1 , c:z ∈ σ2

l Bind x=z (get old value), update pair to c:y (update new value)

environment

l24

13

Cell semantics (2)

l {Exchange C X Y} binds x to the cell’s content z and updates the new
cell content to y
l The exchange operation is atomic, which means the scheduler is

guaranteed never to stop in the middle, it happens as one indivisible step
l We assume that environment E={C→c,X→x,Y→y,Z→z}

{Exchange C X Y},E

σ1

σ2

σ1

σ2

c=ξ
x

c:z

c=ξ
x=z

c:y

y

σ = σ1 ∪ σ2 σ = σ1 ∪ σ2

y
z z

l25

Ports

l26

14

A port (named stream)
l To overcome the limitations of declarative programming, we add

ports (named streams) to the language

l Ports have two operations:
 P={NewPort S} % Create port P with stream S
 {Send P X} % Add X to end of port P’s stream

l This lets us do the client/server
l With a million clients C1 to C1000000:

Each client Ci does {Send P Mi} for each message it sends
l The server reads the stream S, which contains all messages from all

clients in some nondeterministic order

l27

Port examples
l We create a port and do sends:

 P={NewPort S}
 {Browse S} % Displays _
 {Send P a} % Displays a|_
 {Send P b} % Displays a|b|_

l What happens if we do:
 thread {Send P c} end
 thread {Send P d} end

l What are the possible results of these two sends for all
choices of the scheduler?

l28

15

Port semantics (1)
l Assume single-assignment store σ1 with variables
l Assume a port store σ3 that contains pairs of variables

l (Remember σ2 is the cell store we introduced before)

l P={NewPort S}, {P→p, S→s}
l Assume unbound variables p, s ∈ σ1

l Create fresh name ξ, bind p=ξ, add pair p:s to σ3

l {Send P X}, {P→p, X→x}
l Assume p=ξ, unbound variable s ∈ σ1 , p:s ∈ σ3

l Create fresh unbound variable s’, bind s=x|s’, update pair to p:s’

environment

l29

Port semantics (2)

l {Send P X} adds x to the end of the port’s stream and updates the
new end of stream
l The send operation is atomic, which means the scheduler is guaranteed

never to stop in the middle, so it happens as if it is one indivisible step
l We assume that environment E={P→p,X→x}

{Send P X},E

σ1

σ3

σ1

σ3

p=ξ s

p:s

p=ξ s=x|s’

p:s’

s’

σ = σ1 ∪ σ3 σ = σ1 ∪ σ3

l30

16

Cell + port semantics summary

l The full store s = s1 È s2 È s3 has two different parts:
l Single-assignment store (contains variables)

s1 = {t, u, v, x=x, y=z, z=10, w=5}
l Multiple-assignment store (contains pairs: cells and ports)

s2 È s3 = {x:t, y:w}

l The multiple assignment store has two kinds of
nondeclarative entities
l Cells: mutable state
l Ports: communication channel

l31

Client/server with ports

l Assume port P={NewPort S}
l Client code: (any number of clients!)

l {Send P M} sends message to server
l Server code:

proc {Server S}
 case S of M|T then
 (handle M)
 {Server T}
 end
end

l32

17

Conclusions

l33

Conclusions
l Declarative paradigms are the best but they cannot always be used

l We investigate their limitations and how to overcome them

l Declarative paradigms are based on lambda calculus, which makes
them confluent but they cannot interact with the real world

l To interact with the real world, we extend declarative paradigms with
imperative concepts, like mutable state or communication channels
l Mutable state (cells) leads to shared-state concurrency (Java)
l Communication channels (ports) lead to message-passing concurrency (Erlang)

l Programs should use declarative paradigms as much as possible
with as few imperative concepts as possible
l The extensions should only be used in special cases, namely where interaction

with the real world is needed

l34

1

LINFO1131
Concurrent programming concepts

Lecture 6: Data abstractions

Peter Van Roy

ICTEAM Institute
Université catholique de Louvain

peter.vanroy@uclouvain.be

l1

Overview
l Data abstractions and how to define them (lecture 6)

l There are two fundamental kinds of data abstractions: objects and
abstract data types

l Furthermore, each of these kinds can either be declarative or
nondeclarative, giving four kinds in all

l We show how to define all these data abstractions using three concepts:
static scope, higher-order programming, and unforgeable keys

l Abstract data types (ADTs)

l An ADT consists of a set of values and a set of operations

l Objects

l A single object represents both a value and a set of operations

l Four kinds of data abstraction

l There are two axes: ADT or object, and stateless or stateful
l This gives four ways to package a data abstraction!

l2

mailto:peter.vanroy@uclouvain.be

2

Data abstractions

l3

Definition of
data abstraction
l A data abstraction is a part of a

program that has an inside, an outside,
and an interface in between

l The inside is hidden from the outside
l All operations on the inside must pass

through the interface, i.e., the data
abstraction must use encapsulation

l The interface is a set of operations that
can be used according to certain rules
l Correct use of the rules guarantees that

the results are correct
l The encapsulation must be supported

by the programming language
l We will see how the language can

support encapsulation, that is, how it can
enforce the separation between inside
and outside

Op1 Op2
Op3

Inside

Outside

Interface

l4

3

Building a data abstraction
l Assume your program uses a stack with the

following implementation:
fun {NewStack} nil end
fun {Push S X} X|S end
fun {Pop S X} X=S.1 S.2 end
fun {IsEmpty S} S==nil end

l This implementation is not encapsulated!
l It is implemented using lists that are not protected

l A user can read stack values outside of the implementation
l A user can create stack values outside of the implementation

l There is no way to guarantee that an unencapsulated
stack will work correctly
l The stack must be encapsulated → data abstraction

l5

Two main kinds
of data abstraction
l There are two fundamental kinds of data abstraction,

namely objects and abstract data types
l An object groups together value and operations in a single entity
l An abstract data type keeps values and operations separate

l Some real world examples
l A television set is an object: it can be used directly through its

interface (on/off, channel selection, volume control)
l Coin-operated vending machines are abstract data types: the

coins and products are the values and the operations are the
vending machines

l We will look at both objects and ADTs
l Each has its own advantages and disadvantages

l6

4

Abstract data types
(ADTs)

l7

Abstract data types

l An ADT consists of a set of values and
a set of operations

l A common example: integers
l Values: 1, 2, 3, …
l Operations: +, -, *, div, …

l In most of the popular uses of ADTs,
the values and operations have no state
l The values are constants
l The operations have no internal memory

(they don’t remember anything in between calls)

l8

5

A stack ADT
l We can implement a stack as an ADT:

l Values: all possible stacks and elements
l Operations: NewStack, Push, Pop, IsEmpty

l The operations take (zero or more) stacks and elements
as input and return (zero or more) stacks and elements
as output
l S={NewStack}
l S2={Push S X}
l S2={Pop S X}
l {IsEmpty S}

l For example:
l S={Push {Push {NewStack} a} b} returns the stack S=[b a]
l S2={Pop S X} returns the stack S2=[a] and the top X=b

l9

Unencapsulated
implementation
l The stack we saw before is almost an ADT:

l fun {NewStack} nil end
l fun {Push S X} X|S end
l fun {Pop S X} X=S.1 S.2 end
l fun {IsEmpty S} S==nil end

l Here the stack is represented by a list

l But this is not a data abstraction, since the list is not protected

l How can we protect the list, and make this a true ADT?

l How can we build an abstract data type with encapsulation?
l We need a way to protect values

l10

6

Encapsulation using
a secure wrapper
l To protect the values, we will use a secure wrapper:

l The two functions Wrap and Unwrap will “wrap” and “unwrap” a value
l W={Wrap X} % Given X, returns a protected version W
l X={Unwrap W} % Given W, returns the original value X

l The simplest way to understand this is to consider that Wrap and
Unwrap do encryption and decryption using a shared key that is
only known by them

l We need a new Wrap/Unwrap pair for each ADT that we want to
protect, so we use a procedure that creates them:
l {NewWrapper Wrap Unwrap} creates the functions Wrap and Unwrap
l Each call to NewWrapper creates a pair with a new shared key

l11

Secure encapsulation
l Building a secure encapsulation requires support from

the programming language
l Some languages do not support secure encapsulation (like C,

C++, or Javascript)
l To support secure encapsulation, a necessary (but not

sufficient) condition is that the language supports
unbreakable abstraction boundaries
l For example, in Java it is impossible to “look inside” a primitive

type, to see its machine representation
l To support secure encapsulation for programmer-

defined ADTs, the language must also support a form of
unforgeable key

l12

7

Building a secure wrapper (1)

l To support an unforgeable key, we add two
concepts to the language
l Unforgeable constants (called “names”)

l N={NewName} binds N to a new name value.

Because the name is unforgeable, it cannot be printed

or guessed!

l Secure records (records with only a “.” operation,
but no other operations – no Arity operation)
l C={Chunk.new R} takes a record R and returns a

secure record C (called “chunk” in Oz)

“key”

“lock”

l13

Building a secure wrapper (2)
l With names and chunks, we can define NewWrapper:

proc {NewWrapper Wrap Unwrap}
 Key={NewName} % Generate unique key
in
 fun {Wrap X}
 {Chunk.new w(Key:X)} % Lock X inside secure record
 end
 fun {Unwrap W} % Extract X from secure record
 W.Key
 end
end

l14

8

Building a secure wrapper (3)
l Unwrap needs protection in case of wrong argument:

proc {NewWrapper Wrap Unwrap}
 Key={NewName}
in
 fun {Wrap X}
 {Chunk.new w(Key:X)}
 end
 fun {Unwrap W}
 try W.Key
 catch _ then raise error(unwrap(W)) end end
 end
end

Raise an exception if
W is a wrong argument

l15

Implementing
the stack ADT
l Now we can implement a true stack ADT:

local Wrap Unwrap in
{NewWrapper Wrap Unwrap}

fun {NewStack} {Wrap nil} end
fun {Push W X} {Wrap X|{Unwrap W}} end
fun {Pop W X} S={Unwrap W} in X=S.1 {Wrap S.2} end
fun {IsEmpty W} {Unwrap W}==nil end

end

l How does this work? Look at the Push function: it first calls
{Unwrap W}, which returns a stack value S, then it builds X|S,
and finally it calls {Wrap X|S} to return a protected result

l Wrap and Unwrap are hidden from the rest of the program
(static scoping)

l16

9

Final remarks on ADTs
l ADT languages have a long history

l The language CLU, developed by Barbara Liskov and her
students in 1974, is the first

l This is only a little bit later than the first object-oriented
language Simula 67 in 1967

l Both CLU and Simula 67 strongly influenced later object-
oriented languages up to the present day

l ADT languages support a protection concept similar
to Wrap/Unwrap
l CLU has syntactic support that makes the creation of ADTs

very easy
l Many object-oriented languages also support ADTs

l For example, Java supports ADTs: Java integers are ADTs,
and Java objects have some ADT properties

l17

Objects

l18

10

Objects
l A single object represents both a value and a set of operations

l Example interface of a stack object:

S={NewStack}
{S push(X)}
{S pop(X)}
{S isEmpty(B)}

l The stack value is stored inside the object S

l Example use of a stack object:

S={NewStack}
{S push(a)}
{S push(b)}
local X in {S pop(X)} {Browse X} end

l19

Implementing
the stack object
l Implementation of the stack object:

fun {NewStack}
C={NewCell nil}
proc {Push X} C:=X|@C end
proc {Pop X} S=@C in C:=S.2 X=S.1 end
proc {IsEmpty B} B=(@C==nil) end

in
proc {$ M}

case M of push(X) then {Push X}
[] pop(X) then {Pop X}
[] isEmpty(B) then {IsEmpty B} end

end
end

l Each call to NewStack creates a new stack object
l This represents the object as a one-argument procedure that does

procedure dispatching: a case statement chooses the operation to execute
l Encapsulation is enforced by hiding the cell with static scoping

Procedure dispatching

l20

11

Stack as ADT and
stack as object
l Here is the stack as ADT:

local Wrap Unwrap in
{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap nil} end
fun {Push W X} {Wrap X|{Unwrap W}} end
fun {Pop W X} S={Unwrap W} in X=S.1 {Wrap S.2} end
fun {IsEmpty W} {Unwrap W}==nil end

end

l Here is the stack as object:
l This represents the object as a record that does record dispatching

fun {NewStack}
C={NewCell nil}
proc {Push X} C:=X|@C end
proc {Pop X} S=@C in X=S.1 C:=S.2 end
fun {IsEmpty} @C==nil end

in
stack(push:Push pop:Pop isEmpty:IsEmpty)

end

l Any data abstraction can be implemented as an ADT or as an object

Record dispatching

l21

Final remarks
on objects
l Objects are omnipresent in computing today
l The first major object-oriented language was Simula-67,

introduced in 1967
l It directly influenced Smalltalk (starting in 1971) and C++ (starting

in 1979), and through them, most modern object-oriented
languages (Java, C#, Python, Ruby, and so forth)

l Most modern OO languages are in fact data abstraction
languages: they incorporate both objects and ADTs
l And other data abstraction concepts as well, such as

components and modules
l The Java language has both ADTs (e.g., Integer) and objects

l22

12

Four kinds
of data abstraction

l23

Four kinds of
data abstraction
l We have seen two commonly used data abstractions:

l Abstract data types (without mutable state: declarative)
l Objects (with mutable state: nondeclarative)

l There are two other kinds of data abstractions
l Abstract data types with state (stateful ADTs: nondeclarative)
l Objects without state (functional objects: declarative)

l This gives four kinds in all
l Let’s take a look at the two additional kinds
l And then we’ll conclude this lesson on data abstraction

l24

13

Four kinds of
data abstraction

• Objects (with state) and ADTs (stateless) are in Java
• Functional objects are used in Scala and for big data
• Stateful ADTs are rarely used (so far!)

bundling

state

ObjectADT

Stateless
(no cells)

Stateful
(with cells) Object

ADT Functional object

Stateful ADT
(rare)

Java objects

Java integers Scala and fluents

l25

The two other
data abstractions
l A functional object is possible

l Functional objects are immutable; invoking an object returns
another object with a new value

l Functional objects are becoming more popular

l A stateful ADT is possible
l Stateful ADTs were much used in the C language (although

without enforced encapsulation, since it is impossible in C)
l They are also used in other languages (e.g., classes with static

attributes in Java)

l Let’s take a closer look at how to build them

l26

14

A functional object
l We can implement the stack as a functional object:

local
fun {StackObject S}
fun {Push E} {StackObject E|S} end
fun {Pop S1}
case S of X|T then S1={StackObject T} X end end

fun {IsEmpty} S==nil end
in stack(push:Push pop:Pop isEmpty:IsEmpty) end

in
fun {NewStack} {StackObject nil} end

end

l This uses no cells and no secure wrappers. The simplest of
all data abstractions, it only needs static scope and higher-order
programming (which together guarantee unbreakable encapsulation).

l27

Functional objects
in Scala
l Scala is a hybrid functional-object language: it

supports both the functional and object-oriented
paradigms

l In Scala we can define an immutable object that
returns another immutable object
l For example, a RationalNumber class whose instances

are rational numbers (and therefore immutable)
l Adding two rational numbers returns another rational

number
l Immutable objects are functional objects

l The advantage is that they cannot be changed (the
same advantage of any functional data structure)

l28

15

A stateful ADT
l Finally, let us implement our trusty stack as a stateful ADT:

local Wrap Unwrap
{NewWrapper Wrap Unwrap}
fun {NewStack} {Wrap {NewCell nil}} end
proc {Push S E} C={Unwrap S} in C:=E|@C end
fun {Pop S} C={Unwrap S} in
case @C of X|S1 then C:=S1 X end

end
fun {IsEmpty S} @{Unwrap S}==nil end

in
Stack=stack(new:NewStack push:Push pop:Pop isEmpty:IsEmpty)

end

l This uses both a cell and a secure wrapper. Note that Push, Pop,
and IsEmpty do not need Wrap! They modify the stack state by
updating the cell inside the secure wrapper.

l29

Conclusions

l30

16

Conclusions
l Data abstractions are the key to organizing programs

l A data abstraction has an inside, an outside, and an interface between the two
l The only way to access the inside is by using the interface

l Data abstractions come in four kinds, along two axes:
l First axis: objects versus abstract data types (ADTs)
l Second axis: declarative versus nondeclarative

l Building data abstractions
l We show how to build the four kinds of data abstractions using static scoping and

higher-order programming (which together guarantee unbreakable encapsulation)
l For programmer-defined ADTs, the language must also support unforgeable keys
l Mutable state can be used to build data abstractions that can model time and

change

l31

1

LINFO1131
Concurrent programming concepts

Lecture 7
Message passing

and multi-agent programming

Peter Van Roy

ICTEAM Institute

Université catholique de Louvain

peter.vanroy@uclouvain.be

l1

Overview
l Multi-agent programming with message passing is based on ports, which are a form

of communication channel
l Let us now look at multi-agent programming more closely!

l Port objects and active objects
l A port object has an internal state, a thread, and a port. Sending a message causes the

internal state to be updated according to a transition function.
l An active object combines a port object and a class. This adds the advantages of object-

oriented programming (polymorphism, inheritance) to port objects.
l Message protocols

l Port objects and active objects can be used to define message protocols
l Flavius Josephus problem

l This is a classic problem that we solve using both active objects and deterministic dataflow,
to compare the two paradigms

l Multi-agent programming
l We show how to write big programs using many port objects that talk to each other

l Lift control system
l We give a worked-out example of a realistic multi-agent system

l2

mailto:peter.vanroy@uclouvain.be

2

Port objects

l3

Stateful port objects (Section 5.2)

l A stateful port object, also called stateful agent, has an
internal memory si called its state

l The state is updated with each message received, which
gives a state transition function:

F: State × Msg ↦ State

s1s0 s2
m1 m2 m3

s1=f(s0,m1) s2=f(s1,m2)

l4

3

Creating stateful port objects
l We define a generic function for stateful port objects:

fun {NewPortObject Init F}
proc {Loop S State}

case S of M|T then {Loop T {F State M}} end
end
P

in
thread S in P={NewPort S} {Loop S Init} end
P

end

l5

Structure of Loop
l Does the Loop function ring a bell?

proc {Loop S State}
case S of M|T then {Loop T {F State M}} end

end

l Loop starts from an initial state
l Loop successively applies F to the previous state and a

message, to compute the next state
l The function F is a binary operation
l What is this?

l6

4

Structure of Loop
l Does the Loop function ring a bell?

proc {Loop S State}
case S of M|T then {Loop T {F State M}} end

end

l Loop starts from an initial state
l Loop successively applies F to the previous state and a

message, to compute the next state
l The function F is a binary operation
l Of course! It is a Fold operation!

l7

FoldL operation
l FoldL is an important higher-order operation:

fun {FoldL S F U}

case S

of nil then U

[] H|T then {FoldL T F {F U H}}

end
end

l ((…(((u f a0) f a1) f a2) …) f an-1)

l8

5

Fold is the heart of the agent
l We replace:

thread S in P={NewPort S} {Loop S Init} end
l by:

thread S in P={NewPort S} {FoldL S F Init} end

l Oops! There is a small bug…

l9

Updated NewPortObject
l We define a generic function for stateful port objects:

fun {NewPortObject Init F}
P Out

in
thread S in P={NewPort S} Out={FoldL S F Init} end
P

end

l Out is the final state when the agent terminates
l It never terminates here, but in another definition it might (if the

stream terminates with nil, then the port object terminates too)

Important abstraction
that combines FoldL,
a port, and a thread

l10

6

Message protocols
(refresher)

l11

Message protocols (1)
l A message protocol is a sequence of messages

between two or more parties that can be

understood at a higher level of abstraction than

individual messages

l Using port objects, we can implement some

important message protocols

l We saw these protocols in the previous course

LINFO1104

l Explained in Section 5.3 of the course textbook

l12

7

Message protocols (2)

l We start with a
simple RMI

l We then make it
asynchronous and
add callbacks

l The most
complicated protocol
shown here is
asynchronous RMI
with callback

1. RMI
(2 calls)

5. Asynchronous RMI

3. RMI with callback
(using thread)

Thread states

with callback

4. RMI with callback
(using continuation)

2. Asynchronous RMI
(2 calls)

(using threads)

(2 calls)

C S C S

C S

SC C S

suspended

idle

active

l13

Active objects

l14

8

Active objects (Section 7.8)

l An active object is a port object whose behavior is defined by a class
l Active objects combine the abilities of object-oriented programming

(including polymorphism and inheritance) and message-passing
concurrency

l To explain active objects, we refresh your memory on object-oriented
programming and we introduce classes in Oz

Object-oriented
programming

Port objects
(message passing)

Active objects

l15

Classes and objects in Oz
l We saw objects in the course
l We now complete this explanation

by introducing classes and their
Oz syntax

class Counter
attr i
meth init(X)

i := X
end
meth inc(X)

i := @i + X
end
meth get(X)

X=@i
end

end

l Create an object:

Ctr={New Counter init(0)}

l Call the object:

{Ctr inc(10)}
{Ctr inc(5)}
local X in

{Ctr get(X)}
{Browse X}

end

l16

9

Defining active objects

l Active objects are defined by
combining classes and port
objects
l Because objects have internal

state (attributes), we can replace
Fold by a for loop. Each object call
corresponds to one execution of
the state transition function.

l We return a one-argument
procedure to make them look
like standard Oz objects

fun {NewActive Class Init}
Obj={New Class Init}
P

in
thread S in

{NewPort S P}
for M in S do {Obj M} end

end
proc {$ M} {Send P M} end

end

l17

Passive objects
and active objects
l We make a distinction between passive objects and

active objects
l Standard objects in Oz (and in many other languages,

such as Java and Python) are called passive objects
l This is because they execute in the thread of their caller; they

do not have their own thread

l This is in contrast to active objects, which have their
own thread

l Let us compare passive and active objects!

l18

10

Concurrency comparison

l Passive objects cannot be
safely called from more than
one thread

l The method executions can
overlap, which leads to
concurrency bugs

l Active objects are completely
safe when called from more
than one thread

l The method executions are
executed sequentially in the
active object’s own thread

T1

T2

l{Ctr inc(1)}

l{Ctr inc(1)}

M execution

M execution

lreturn

lreturn

Overlaps!

T1

T2

l{Ctr inc(1)}

l{Ctr inc(1)}

M execution M execution
TCtr

l19

Passive objects are not
concurrency-safe!
l The following code is buggy:

Ctr={New Counter init(0)}
thread {Ctr inc(1)} end
thread {Ctr inc(1)} end
local X in

{Ctr get(X)}
{Browse X}

end

l This can display 1! Why?
l Look at the instruction i := @i +1
l If the scheduler puts T1 to sleep

after @i and before i:=, executes
T2 fully, and then resumes T1

l The following code is correct:

Ctr={NewActive Counter init(0)}
thread {Ctr inc(1)} end
thread {Ctr inc(1)} end
local X in

{Ctr get(X)}
{Browse X}

end

l This will always display 2
l Because the two methods are

executed sequentially by Ctr’s
thread

l20

11

Flavius Josephus
problem

l21

Flavius Josephus problem
(Section 7.8.3)

l Flavius Josephus was a Roman
historian of Jewish origin. During
the Jewish-Roman wars of the 1st
century A.D., he was in a cave with
fellow soldiers.

l Forty men decided to commit
suicide by standing in a ring and
counting off each third man.
Josephus managed to place himself
in the position of the last survivor.

40

2
3

4

5

6

7

1

.
.

.

l22

12

Josephus protocol for N
soldiers and K hops
l Message kill(X S) circulates around the ring, where X

counts live objects traversed and S is the total number of
live objects remaining

l Initially, kill(1 N) is given to the first object
l When an object receives kill(X S) it does the following:

l If it is alive and S=1, then it is the last survivor (termination)

l If it is alive and X mod K = 0, then it becomes dead and sends
kill(X+1 S-1) to the next object

l If it is alive and X mod K ≠ 0, then it sends kill(X+1 S) to the next
object

l If it is dead, then it forwards kill(X S) to the next object

l23

Active objects versus
deterministic dataflow

Active object implementation

l Each soldier is an active object
(a passive object inside a thread)

l Class Victim defines a kill(X S)
method that implements the
Josephus protocol

l Initialization builds a ring with
successor and predecessor pointers

Deterministic dataflow implementation

l Each soldier is a stream object
(a list function in a thread)

l Function Victim reads a stream of
kill(X S) messages and outputs a
new stream

l Initialization builds a ring of stream
objects

Let us compare active objects to deterministic dataflow. How do they
compare in code complexity and efficiency?

l24

13

Short-circuit protocol
Active object

implementation

l We can optimize the active object
version to remove dead victims
from the ring (otherwise, a lot of
time is lost in traversing them)

l We need to update the successor
pointer of the predecessor node,
and the predecessor pointer of the
successor node

l It’s a bit subtle because the
modifications must be completed
before the kill message traverses
the ring
l It depends on the FIFO property of

the Send operation: do you
understand why?

Deterministic dataflow
implementation

l The deterministic dataflow version
already does this optimization. It
removes dead victims by replacing
the recursive call {Victim Xr I} by
Xr.

l Doing the recursive call to Victim
means that the victim is still alive.
Not doing the recursive call means
the victim no longer exists.

l25

Multi-agent
program design

l26

14

Multi-agent program design
(Section 5.4)

l Programming with agents or concurrent components
l The program is a collection of agents with internal state that send each

other messages
l With port objects, we can go beyond deterministic dataflow to design

programs with nondeterministic behavior
l Deterministic dataflow is a form of multi-agent programming that has

deterministic behavior
l Nondeterministic behavior is often needed when programs interact with the real

world, e.g., they may have timing constraints that come from the real world (like
in the client/server example), or else they interact with humans or machines

l We explain the basic principles of multi-agent programming
l It is difficult because it must behave correctly for all possible

interleavings of the agents (they execute concurrently!)
l This means that it is very important to follow a rigorous design approach

l27

Basic operations
l A concurrent component is a procedure with inputs and outputs

l When invoked, the procedure creates a component instance, also known as
an agent. In our examples, the agents will be made of port objects.

l For example, the procedure FullAdder in the digital logic example:
Calling {FullAdder X Y Ci S Co} creates a new full adder with three input
streams X, Y, Ci and two output streams S and Co.

l Four basic operations

l Instantiation: creating an instance of a component
l Composition: building a new component out of other components
l Linking: combining component instances by connecting inputs and outputs

l Different kinds of links: {one-source,many-source} × {one-shot,many-shot}
l Restriction: restricting visibility of inputs or outputs inside a component

l28

15

Kinds of links
l We will use the following links in our examples

l Other kinds of links are possible too and sometimes used in other systems
l One source (one sender)

l One-shot (one message): Dataflow variable (single-assignment variable)
l Many-shot (many messages): Stream (list that can be extended)
l The link is deterministic: only one source can send a message
l Deterministic dataflow only has one-source links

l Many source (many senders)

l Many-shot: Port (named stream)
l The link is nondeterministic: any source can send a message
l Multi-agent programming uses many-source links (e.g., Erlang)
l (Note that one-shot many-source links are not very useful)

l29

Example:
Full Adder component

l The Full Adder from digital logic
illustrates these operations:

proc {FullAdder X Y Z S C}
A B D E F

in
A={AndG X Y}
B={AndG Y Z}
D={AndG X Z}
F={OrG B D}
C={OrG A F}
E={XorG X Y}
S={XorG Z E}

end

Identifiers
denote
streams

x

y

z c

s

lx y z c s

l0 0 0 0 0
l0 0 1 0 1
l0 1 0 0 1
l0 1 1 1 0
l1 0 0 0 1
l1 0 1 1 0
l1 1 0 1 0
l1 1 1 1 1

l A full adder adds three 1-bit
binary numbers x, y, and z
giving a sum bit s and carry
bit c

l An n-bit adder can be built
by connecting n full adders

Deterministic
dataflow:
no ports!

a

b

d

e

f

l30

16

Design methodology

l Designing a multi-agent program is more

difficult than designing a sequential program,

because of all the possible interactions

l That is why it is important to follow a rigorous
methodology!

Informal specification Components Message protocols State diagrams Implement

Verify

Test

Start here

l31

State transition diagrams

l A good way to design an agent is by enumerating the states it can
be in and the messages it can send and receive
l It is important to check that all messages can be handled in all states!

l A state transition diagram defines a finite state automaton. It has a
finite set of states and a set of transitions between the states.
l It evolves by doing transitions: when a message is received and a boolean

condition is true, the state changes

Received message &
Boolean condition

Sent message
& ActionFirst

state state

Second

l32

17

Lift control system

l33

Lift control system (Section 5.5)

l We show the design and implementation of a lift control system
l Similar to actual lift control systems in hotels and apartment buildings
l We will follow our methodology

l We start with the informal specification
l Overview of system and its embedding in the real world
l We identify the components and message protocols

l We design the state diagrams
l Three components: controller, floor, lift
l Make sure that all possible messages can be handled

l We implement the program (write the code)
l Simple translation of the state diagram
l We test the program in various concurrent scenarios
l We verify the program by reasoning about invariants

l34

18

Lift control system
Lift shaft 1 Lift shaft 2 Lift shaft 3

Floor N

Floor 2

Floor 1 Lift 3

Lift 1

Lift 2

User B

User A User C

...

Controller 1 Controller 2 Controller 3

l35

Lift components and their
protocols

Controller signals successful move

arrive(Ack)

call(F)

at(F)

step(D)

UserUser

call call(F)

Controller CLift L
Ack=unit

Floor F

arrive(Ack)
Ack=unit
step(D)
at(F)

call(F)
call User presses button to call a lift

Floor F calls a lift to itself
User presses button to go to floor F
Lift signals its arrival at the floor
Floor tells lift it can leave now
Lift asks controller to move one floor

l36

19

Controller state diagram

F\=Dest

stopped running

Lid
FF

step(Dest)
F==Dest

Lid

stoptimer / ’at’(F) to Lid

starttimer(5000 Cid) to Tid
New F: if F<Dest then F+1 else F−1

step(Dest)

l37

Floor state diagram

stoptimer /

notcalled called

doorsopen
(Ack) arrive(Ack) /starttimer(5000 Fid) to Tid

arrive(Ack) /

call / call(F) to random Lid
call / −

arrive(A) / A=Ack
call / −

starttimer(5000 Fid) to Tid

Ack=unit

l38

20

Lift state diagram

Sched\=nil

Pos

Moving=true

Wait

doors
for

N/=Pos
Sched=nil

Moving=false

Pos

Wait

doors
for

New Sched: {ScheduleLast Sched N}

call(N) & N==Pos

arrive(Ack) to Pos
at(NPos) & NPos==Sched.1

New Pos: NPos

call(N) & New Sched: [N]
step(N) to Cid

call(N)

arrive(Ack) to Sched.1

New Sched: nil
{Wait Ack} & Sched.2==nil

New Pos: NPos
New Sched: Sched.2

step(Sched.2.1) to Cid

step(Sched.1) to Cid

{Wait Ack} / −

{Wait Ack} & Sched.2\=nil

at(NPos) & NPos\=Sched.1

New Pos: NPos

l39

Implementation (see the code!)
l When all state diagrams are defined, we write the code by

translating them into port objects

l In the lift control system we have three components:

Fid={Floor Num Init Lifts}: creates floor Fid with number Num,
initial state Init, and lifts Lifts (a tuple)

Lid={Lift Num Init Cid Floors}: creates lift Lid with number Num,
initial state Init, controller Cid, and floors Floors (a tuple)

Cid={Controller Init}: creates a controller Cid with initial state Init

l40

21

Improvements
l Procedure to create a building

l Create all controller, lift, and floor agents

l Smarter scheduler
l What happens if lift is at floor 1 and is called to

floor 30, and during the movement there is
another call to floor 15?

l Rotating disk storage uses the smart scheduler

l41

Testing and verification
l Both testing and verification are important!

l Testing: run the system with many possible scenarios
l Verification: reason about the system to prove invariants

l If a problem is found, then you go back to an earlier stage
l Maybe all the way back to Informal Specification!
l Follow the methodology again and fix the problem
l Then do testing and verification again

l Example verifications (how would you prove them?)
l Prove the following property: “The lift will always eventually stop at a

floor that is part of the lift’s schedule”.
l Prove the following property: “If a call(F) is sent to a lift, then the lift will

eventually arrive at floor F”.

l42

22

Three pillars of software
development

l Design: our design methodology helps to ensure sound system structure
l Test: run the code on many different scenarios including corner cases
l Verify: prove properties of the system by reasoning on the state diagrams

l Leaving out any of the three is dangerous!

Design Test Verify

l43

Conclusions

l44

23

Conclusions
l We add ports (named streams) to overcome the limitations of deterministic

dataflow
l Ports allow nondeterministic many-to-one communication, which is not possible in

deterministic dataflow
l With ports we can write multi-agent programs, which are programs made of

concurrent agents that send messages to each other
l An agent is implemented as a port object or an active object. Both have a port

and a thread and an internal state that is updated when messages arrive. The
port object’s behavior is defined by a state transition function. The active object’s
behavior is defined by a class.

l We compare active objects and deterministic dataflow by programming the
classic Flavius Josephus problem in both
l You can see how the same protocol is implemented in both paradigms

l We explain how to build large multi-agent systems and we give an example
of one such system, namely a lift control system

l45

% LINFO1131
% Advanced Programming Language Concepts

% Lecture 8 (Nov. 22, 2023)

% Message-passing concurrency and multi-agent programming

% - Port objects and active objects
% - Flavius Josephus problem: comparing active objects
% and deterministic dataflow
% - Lift control system: example of a realistic
% multi-agent system

%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%

% 1. Port objects and active objects

% 1.1. Port object with internal state
declare
fun {NewPortObject Init Fun}
 P
in
 thread Sin Sout in
 {NewPort Sin P}
 {FoldL Sin Fun Init Sout}
 end
 P
end

% 1.2. Port object without internal state
declare
fun {NewPortObject2 Proc}
 P
in
 thread Sin in
 {NewPort Sin P}
 for Msg in Sin do {Proc Msg} end
 end
 P
end

% 1.3. Active object (port object with a class)
declare
fun {NewActive Class Init}
 Obj={New Class Init}
 P
in
 thread S in
 {NewPort S P}
 for M in S do {Obj M} end
 end
 proc {$ M} {Send P M} end
end

%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%

% 2. Flavius Josephus problem

% We define two versions of this problem:
% - Active object version with a class definition
% - Deterministic dataflow version with streams

% We can make a dataflow version because the
% Flavius Josephus problem is deterministic.
% Compare the two! Which is longest, which is shortest!

% 2.1 Active object version of Flavius Josephus
declare
class Victim
 attr ident alive step last succ
 meth init(I K L)
 alive:=true step:=K last:=L ident:=I
 end
 meth setSucc(S) succ:=S end
 meth kill(X S)
 if @alive then

 if S==1 then
 @last=@ident
 elseif X mod @step ==0 then
 alive:=false
 {@succ kill(X+1 S-1)}
 else
 {@succ kill(X+1 S)}
 end

 else
 {@succ kill(X S)}

 end
 end
end

declare
fun {Josephus N K}
 A={NewArray 1 N null}
 Last
in
 % N objects
 for I in 1..N do
 A.I:={NewActive Victim init(I K Last)}
 end
 % Connect them into a ring
 for I in 1..(N-1) do
 {A.I setSucc(A.(I+1))}
 end
 {A.N setSucc(A.1)}
 {A.1 kill(1 N)}
 Last
end

{Browse {Josephus 5 2}}

{Browse {Josephus 40 3}}

{Browse {Josephus 1000 100}}

%%%%%%%%%%%%%%%%%%%

% 2.2 Optimized active object version that removes dead victims from ring
% Also known as "short-circuit" version

declare
class Victim2
 attr ident alive step last succ pred
 meth init(I K L)
 alive:=true step:=K last:=L ident:=I
 end
 meth setSucc(S) succ:=S end

 meth setPred(P) pred:=P end
 meth kill(X S)
 if @alive then

 if S==1 then
 @last=@ident
 elseif X mod @step ==0 then
 alive:=false
 {@pred setSucc(@succ)} % The order of messages is critical
 {@succ setPred(@pred)} % Kill must encounter a correct ring
 {@succ kill(X+1 S-1)} % This works because of FIFO property
 else
 {@succ kill(X+1 S)}
 end

 else
 {@succ kill(X S)}

 end
 end
end

declare
fun {Josephus2 N K}
 A={NewArray 1 N null}
 Last
in
 % N objects
 for I in 1..N do
 A.I:={NewActive Victim2 init(I K Last)}
 end
 % Connect them into a ring
 for I in 1..(N-1) do
 {A.I setSucc(A.(I+1))}
 end
 {A.N setSucc(A.1)}
 % Correctly set the predecessors
 for I in 2..N do
 {A.I setPred(A.(I-1))}
 end
 {A.1 setPred(A.N)}
 {A.1 kill(1 N)}
 Last
end

{Browse {Josephus2 5 2}}
{Browse {Josephus2 1000 100}}

%%%%%%%%%%%%%%%%%%%

% 2.3 Deterministic dataflow version of Flavius Josephus
% Code is very compact: streams compacter than explicit message passing
% Only possible because Flavius Josephus is a deterministic algorithm
% This version does the short-circuit optimization

% Exercise: try to make each line of versions 2.2 and 2.3 correspond.

declare
fun {Pipe Xs L H F}
 if L>H then Xs else {Pipe {F Xs L} L+1 H F} end
end

declare
fun {Josephus3 N K}
 fun {Victim Xs I}
 case Xs of kill(X S)|Xr then

 if S==1 then Last=I nil

 elseif X mod K == 0 then
 kill(X+1 S-1)|Xr
 else
 kill(X+1 S)|{Victim Xr I}
 end

 [] nil then nil end
 end
 Last Zs
in
 Zs={Pipe kill(1 N)|Zs 1 N
 fun {$ Is I} thread {Victim Is I} end end}
 Last
end

{Browse {Josephus3 5 2}}
{Browse {Josephus3 40 3}}
{Browse {Josephus3 1000 100}}

%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%

% 3. Lift control system

% This is an example of a realistic multi-agent system.

% Each kind of port object is first defined by drawing a complete state
% diagram. Then the state diagram is translated into code. The hard
% part is defining the state diagram. Translating into code is easy!
% The code has two nested case statements, one case statement for the
% current state and a second case for the message that arrives. The
% result is the new state.

% 1.1. Port object with internal state
declare
fun {NewPortObject Init Fun}
 P
in
 thread Sin Sout in
 {NewPort Sin P}
 {FoldL Sin Fun Init Sout}
 end
 P
end

% 1.2. Port object without internal state
declare
fun {NewPortObject2 Proc}
 P
in
 thread Sin in
 {NewPort Sin P}
 for Msg in Sin do {Proc Msg} end
 end
 P
end

% Send starttimer(T Pid) message, return message sent after T milliseconds
declare
fun {Timer}
 {NewPortObject2
 proc {$ Msg}
 case Msg of starttimer(T Pid) then

 thread {Delay T} {Send Pid stoptimer} end
 end

 end}
end

% 3.1 Controller agent
declare
fun {Controller Init}
 Tid = {Timer}
 Cid = {NewPortObject Init

 fun {$ state(Motor F Lid) Msg}
 case Motor
 of running then

case Msg
of stoptimer then
 {Send Lid 'at'(F) }
 state(stopped F Lid)
end

 [] stopped then
case Msg
of step(Dest) then
 if F==Dest then
 state(stopped F Lid)
 elseif F < Dest then
 {Send Tid starttimer(1000 Cid)}
 state(running F+1 Lid)
 else
 {Send Tid starttimer(1000 Cid)}
 state(running F-1 Lid)
 end
end

 end
 end}

in Cid end

% 3.2 Floor agent
declare
fun {Floor Num Init Lifts}
 Tid= {Timer}
 Fid= {NewPortObject Init

 fun {$ state(Called) Msg}
 case Called
 of notcalled then Lran in
 case Msg
 of arrive(Ack) then

 {Browse 'Lift at floor '#Num#': open doors'}
 {Send Tid starttimer(2000 Fid)}
 state(doorsopen(Ack))

 [] call then
 {Browse 'Floor '#Num#' calls a lift!'}
 Lran=Lifts.(1+{OS.rand} mod {Width Lifts})
 {Send Lran call(Num)}
 state(called)

 end
 [] called then
 case Msg

 of arrive(Ack) then
 {Browse 'Lift at floor'#Num#': open doors'}
 {Send Tid starttimer(2000 Fid)}
 state(doorsopen(Ack))
 [] call then
 state(called)
 end

 [] doorsopen(Ack) then
 case Msg
 of stoptimer then

 {Browse 'Lift at floor '#Num#': close doors'}
 Ack=unit
 state(notcalled)
 [] arrive(A) then
 A = Ack
 state(doorsopen(Ack))
 [] call then
 state(doorsopen(Ack))
 end

 end
 end}

in Fid end

% 3.3 Lift agent (with schedule function)
declare
fun {ScheduleLast L N}
 if L\=nil andthen {List.last L} == N then L
 else {Append L [N]} end
end

fun {Lift Num Init Cid Floors}
 {NewPortObject Init
 fun {$ state(Pos Sched Moving) Msg}
 case Msg
 of call(N) then

 {Browse 'Lift '#Num#' needed at floor '#N}
 if N==Pos andthen {Not Moving} then
 {Browse 'At '#N#' floor!'}
 {Wait {Send Floors.Pos arrive($)}}
 state(Pos Sched false)
 else Sched2 in
 Sched2={ScheduleLast Sched N}
 if {Not Moving} then

{Send Cid step(N)} end
 state(Pos Sched2 true)
 end

 [] 'at'(NewPos) then
 {Browse 'Lift '#Num#' at floor '#NewPos}
 case Sched
 of S|Sched2 then
 if NewPos==S then

{Wait {Send Floors.S arrive($)}}
if Sched2==nil then
 state(NewPos nil false)
else
 {Send Cid step(Sched2.1)}
 state(NewPos Sched2 true)
end

 else
{Send Cid step(S)}
state(NewPos Sched Moving)

 end
 end

 end
 end}
 end

% 3.4 Building with FN floors and LN lifts
declare
proc {Building FN LN ?Floors ?Lifts}
 Lifts={MakeTuple lifts LN}
 for I in 1..LN do Cid in
 Cid= {Controller state(stopped 1 Lifts.I)}
 Lifts.I={Lift I state(1 nil false) Cid Floors}

 end
 Floors={MakeTuple floors FN}
 for I in 1..FN do
 Floors.I={Floor I state(notcalled) Lifts}
 end
end

/*

% Exercise: run the lift control system with various messages
declare F L in
{Building 10 2 F L}

{Send F.9 call}

{Delay 300}
{Send F.5 call}
{Send L.1 call(4)}
{Send L.2 call(1)}
%{Delay 5000}
%{Send L.1 call(3)}
%{Send L.2 call(3)}

*/

%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%

1

LINFO1131
Concurrent programming concepts

Lecture 8
Robust multi-agent programming in Erlang

Peter Van Roy

ICTEAM Institute
Université catholique de Louvain

peter.vanroy@uclouvain.be

l1

Overview
l Introduction

l Erlang performance graphs for concurrency and message passing
l Part I: primitive concepts

l Pure functional core
l Spawning and message passing
l Process linking
l Dynamic code update

l Part II: building robust systems
l Erlang philosophy
l Behaviors, stable storage, and testing
l Building a generic server

l Avoiding race conditions, synchronous and asynchronous calls

l Building a generic supervisor
l Conclusions

l2

mailto:peter.vanroy@uclouvain.be

2

Erlang overview
l Erlang was developed by Ericsson for telecommunications in 1986 (Java is

from 1991)
l It is released as OTP (Open Telecom Platform) with a full set of libraries
l It is supported by Ericsson, the Erlang Ecosystem Foundation, and a user

community (www.erlang.org)
l Erlang programs consist of lightweight “processes”, which are port objects

that communicate using asynchronous FIFO message passing
l Erlang processes share nothing: all data is copied between them
l Erlang processes receive messages through a mailbox that is accessed by

pattern matching. Messages can be received out of order if they match.
l Erlang supports building reliable long-lived distributed systems

l Erlang language and Erlang/OTP platform provide all the primitives and
techniques to support the “let it crash” philosophy, e.g., using failure linking and
supervisor trees

l Ericsson AXD 301 ATM switch with 1.7 million lines of Erlang claims
99.9999999% availability (one may doubt the number of 9’s, but the system is
extremely available!)

l3

Bibliography
l Joe Armstrong, Concurrency Oriented Programming in Erlang, Talk slides, Nov.

2002.
l Joe Armstrong, Making Reliable Distributed Systems in the Presence of Software

Errors, Ph.D. dissertation, KTH, Dec. 2003.
l Joe Armstrong, Programming Erlang: Software for a Concurrent World, The

Pragmatic Bookshelf, 2007.
l Staffan Blau and Jan Rooth. AXD 301–A New Generation ATM Switching System,

Ericsson Review No. 1, 1998.
l Francesco Cesarini and Steve Vinoski. Designing for Scalability with Erlang/OTP,

O’Reilly, 2016.
l Ericsson AB. Erlang (Condensed), Talk slides.
l Ericsson AB. Erlang/OTP System Documentation Version 10.7, March 2020.
l Fred Hébert. Learn You Some Erlang for Great Good, learnyousomeerlang.com,

2020.
l Ulf Wiger. Four-fold Increase in Productivity and Quality, March 2001.

l4

http://www.erlang.org/

3

Erlang performance
for concurrency and

message passing

l5

Erlang process creation times

l We compare
process creation
times for Erlang,
Java, and C#

l These numbers
were measured in
2002; relative
times should be
similar today

Joe Armstrong COP

Process creation times

Distributed Systems Laboratory 3

From Joe Armstrong, Concurrency Oriented Programming in Erlang, Nov. 2002.

l6

4

Erlang message sending times

l We compare
message sending
times for Erlang,
Java, and C#

l These numbers
were measured in
2002; relative times
should be similar
today

Joe Armstrong COP

Message passing times

Distributed Systems Laboratory 4

From Joe Armstrong, Concurrency Oriented Programming in Erlang, Nov. 2002.

l7

Use case: web server

l Throughput versus number of
processes for Web servers
l Red = yaws (Yet Another Web

Server, in Erlang on NFS)
l Green = apache (local disk)
l Blue = apache (NFS)

l Yaws: 800 KB/s up to 80,000
processes

l Apache: crashes at around
4,000 processes

Joe Armstrong COP

Web Server

Red = yaws (Yet another web server, in Erlang, on NFS)
Green = apache (local disk)
Blue = Apache (NFS)
Yaws throughput = 800 KBytes/sec up to 80,000 disturbing
processes)
Apache misbehaves and crashes at about 4000 processes
Details: http://yaws.hyber.org
http://www.sics.se/˜joe/apachevsyaws.html

Distributed Systems Laboratory 6

From Joe Armstrong, Concurrency Oriented Programming in Erlang, Nov. 2002.

lThroughput (KB/s)

lProcesses

l8

5

Use case: AXD301 Erlang-
based ATM switch

l The AXD 301 is a general-
purpose high-performance ATM
switch from Ericsson
l The AXD 301 is built using

Erlang OTP supplemented with
C and Java

l Throughput drops linearly when
overloaded

l 95% throughput at 150% load,
descending to 40% throughput at
1000% sustained load

l AXD 301 release 3.2 has
1MLOC Erlang, 900KLOC

C/C++, 13KLOC Java
l In addition, Erlang/OTP at that

time had 240KLOC Erlang,
460KLOC C/C++, 15KLOC Java

lFrom Ulf Wiger, Four-fold Increase in Productivity and Quality, 2001.

l9

Part I:
Primitive concepts

l10

6

Pure functional core

l Within a process, Erlang runs as a pure functional language
l All variables are single assignment (bound when they are declared)
l Functions are values with lexically scoped higher-order programming
l Pattern matching used in case and if statements (and receive)

l All data structures are symbolic values
l Integers (arbitrary precision), floats, atoms (symbolic constants)
l Lists [george,paul,john,ringo] and tuples {Key,Val,L,R}
l Strings are lists of ASCII codes (integers)
l Binary vectors (used for protocol computations)

l11

Dynamic typing versus static
typing
l Erlang is a strongly typed language: types enforced by the language

l Many languages are strongly typed, such as Java, Scheme, Haskell, and Prolog
l Weakly typed languages, e.g., C and C++, allow access to a type’s internal

representation

l Strongly typed languages can be dynamically or statically typed
l Erlang is a dynamically typed language because variables can be bound to

entities of any type
l In a statically typed language, variable types are known at compile time

l Static typing allows catching some program errors at compile time
l However, this does not mean that statically typed programs are more resilient

l Static typing allows catching many “surface errors” but does not help with “deep errors”

l Well-written Erlang programs are among the most resilient software artifacts ever
built, because Erlang provides adequate mechanisms for deep errors

l12

7

An Erlang module

l The source code of an Erlang program is
organized in modules:

-module(math).
-export([areas/1]).
-import(lists, [map/2]).

areas(L) -> lists:sum(map(fun(I) -> area(I) end, L)).

area({square,X}) -> X*X;
area({rectangle,X,Y}) -> X*Y.

l Modules import and export, giving a
dependency graph of modules

l13

Message passing

l14

8

Creating processes and
sending messages
l Any process can create another by calling spawn

l Pid = spawn(Fun) : function Fun defines behavior, Pid is process name
l Fun may be anonymous or named

l fun(args) -> expr end
l fun name/arity

l Process name Pid is a unique constant that identifies the process

l Messages can be sent to the process using the process name
l Pid ! Message
l Messages are sent asynchronously and all data in messages is copied
l Messages can be received by the receive statement

l15

Receiving messages
l Each process has a mailbox that contains an ordered list

of messages received by the process

l Messages are extracted from the mailbox using the

receive statement

l The receive uses pattern matching to remove the first message
that matches

l receive
pattern1 when guard1 -> expr1;
pattern2 when guard2 -> expr2;
…
patternN when guardN -> exprN

end

l16

9

Send and receive
Pid ! Message,
…

receive
Message1 ->
Actions1;

Message2 ->
Actions2;

…
after Time ->
TimeOutActions

end

l17

Receive mailbox semantics

l When a process executes receive:
l If the mailbox is empty, receive blocks and waits for a message
l If the mailbox is not empty, it takes the first message and tries patterns in

order starting from the first, if it finds a matching pattern it executes the
corresponding code

l If no pattern matches, the receive blocks and waits for the next message
l Unmatched messages remain in the mailbox to be removed by future receive
l This allows different parts of a process to treat different kinds of messages
l Messages can be removed out-of-order (in a different order from their arrival)
l Take care that messages do not stay in the mailbox forever (memory leak)

l Patterns are symbolic data structures containing variable
identifiers and guards are simple built-in tests

l18

10

Process registering
l A process Pid can be registered with a name, which is an

atom, to make the process globally available
l This is important to keep interfaces unchanged, even as

processes crash and are restarted
l register(Atom, Pid) : give Pid the global name Atom
l unregister(Atom) : remove the registration for Atom
l whereis(Atom) -> Pid | undefined : returns the Pid of a

registered process, or undefined if no such process exists
l registered() -> [Atom :: atom()] : returns a list of all

registered processes

l19

Process linking

l20

11

Process linking
l Process linking is a primitive operation important for fault tolerance
l Two processes can be linked together

l Process Pid1 calls link(Pid2) or conversely; linking is bidirectional

l Process termination: send exit signal
l A process terminates with an exit reason, sent as a signal to all linked processes
l When a process terminates normally, the exit reason is the atom normal,

otherwise when there is a run-time error, the exit reason is {Reason,Stack}

l Propagating process termination: transitive by default (“link set”)
l The default behavior when a process receives an exit signal with reason other

than normal is to terminate and to send exit signals with the same reason to its
linked processes

l A process can be set to trap exit signals by calling process_flag(trap_exit,true)
l A received exit signal is then transformed into the message {‘EXIT’, FromPid, Reason},

which is put into the mailbox of the process

l21

Using process linking
l If a process throws an

exception that is not caught at
the top level, then the process
terminates and broadcasts its
exit signal to all linked
processes

l A few additional operations are
defined to manage this:
l exit(Pid,Why): send an exit

signal to Pid without terminating
l exit(Pid,kill): send an

unstoppable exit to process Pid

start() -> spawn(fun go/0).

go() ->
process_flag(trap_exit, true),
loop().

loop() ->
receive

{‘EXIT’,Pid,Why} -> …
end.

l22

12

Process monitoring
l Process monitor is an asymmetric version of linking

l No resemblance to monitor concept in shared-state concurrency!
l For example, in a client/server, if the server crashes we

want to kill the clients, but if a client crashes we do not want
to kill the server

l If process Pid1 executes:

Ref = erlang:monitor(process, Pid2)

l Then if Pid2 dies with exit reason Why, then Pid1 will be
sent a message {‘DOWN’,Ref,process,B,Why}

l23

Distributed Erlang
l A distributed Erlang system consists of a number of Erlang runtime

systems, called nodes, communicating with each other
l Message passing between processes at different nodes, as well as

links and monitors, is transparent when using Pids
l Nodes can spawn processes on other nodes using

spawn(Node,M,F,A)
l Registered names are local to each node: both node and name

must be specified when sending messages using registered names
l The first time the name of a node is used, a connection attempt is

made to the node; connections are made transitively giving a fully
connected mesh by default (recent versions of Erlang allow more
scalable connection topologies)

l24

13

Dynamic code update

l25

Dynamic code update
l In a real-time system, we would like to change the code

without stopping the system

l Some systems are never supposed to be stopped, e.g., the
X2000 satellite control system developed by NASA

l Hot code changing is difficult in a monolithic programming
system, however, Erlang makes it possible because processes
are independent (no sharing)

l Erlang allows each module to have two versions of code

l All new processes will be dynamically linked to the latest version
l If the code is changed, then processes can choose to continue

with the old code or to use the new code
l The choice is determined by how the code is called

l26

14

Dynamic code update example

l Call the new version (if
available)

-module(m).

loop(Data, F) ->
receive
{From,Q} ->

{Reply,Data1}=F(Q,Data),
m:loop(Data1, F)

end.

l This call is only used by libraries that
manage upgrading of application
releases

l Keep calling the old
version:

-module(m).

loop(Data, F) ->
receive
{From,Q} ->

{Reply,Data1}=F(Q,Data),
loop(Data1, F)

end.

l This call is used for all the normal
execution in one version

Use new version

Use old version

l27

Fine-grained code update

server(Fun, Data) ->
receive

{new_fun,Fun1} ->
server(Fun1,Data);

{rpc,From,ReplyAs,Q} ->
{Reply,Data1} =

Fun(Q,Data),
From!{ReplyAs,Reply},
server(Fun, Data1)

end.

rpc(A,B) ->
Tag=new_ref(),
A!{rpc,self(),Tag,B},
receive

{Tag,Val} -> Val
end.

§ There is a second way to do code update using only higher-
order functions

§ This does not require any system support since it is based on
passing functions as arguments

§ This approach can be used for individual processes inside a
module; note that the module code is not updated!

Loop code

l28

15

Part II:
Building robust systems

l29

Erlang philosophy
l How can we make robust software?

l Popular languages (e.g., Java and Python) are inadequate
l Principles of robust software (from Joe Armstrong’s

Ph.D. thesis)

l Errors cannot be fully eliminated, therefore they must be handled
(both hardware and software errors)

l Software components are the units of failure: errors occurring in
one will not affect others (“strong isolation”)

l Software should be fail-fast: function correctly or stop quickly
l Failure should be detectable by remote components
l Software components share no state, but send messages

l30

16

Erlang “slogans”
l “Let it crash”, “If you can’t do your job, crash”

l Instead of trying to fix things when errors happen, which leads to a large number
of complicated states, instead map everything to one simple state, namely
“crashed”

l “Let some other process do error recovery”
l Both hardware and software errors can occur and trying to solve them in the

process makes things complicated. It is better to detect and handle any error,
either in hardware or software, elsewhere.

l “Do not program defensively”
l Defensive programming means to add checks in the program. This is not

productive since it makes the program complicated (in particular, what do you do
when a check fails?) and it will not remove all errors. Errors will still occur and
still need to be handled. The best way is to map all errors no matter how bizarre
to a single fault state, namely “crashed”.

l31

Erlang/OTP systems

l Erlang/OTP supports a hierarchy of systems:
l Release: Contains all the information necessary to build and run a

system, including a software archive and a set of procedures for
installation (including upgrading without stopping)

l Application: Contains all the software necessary to run a single
application, not the entire system. Releases are often composed of
multiple applications that are largely independent of one another, or that
are hierarchically dependent.

l Behavior: A set of processes that together implement a concurrency
pattern
l A notable behavior is supervisor: a tree of processes whose purpose is to

monitor behaviors and each other and restart them when necessary
l Worker: A process that is an instance of a behavior, usually instances of

gen_server, gen_event or gen_fsm

l32

17

Using behaviors to abstract
concurrency and fault tolerance

l Program code can be divided into “hard” and “easy” modules
l The hard modules should be few and written by expert programmers
l The easy modules should be many and written by regular programmers

l Concurrency and fault tolerance are hard to implement
l Behaviors are generic components that hide concurrency and fault tolerance
l Behaviors are “hard modules” that are part of the Erlang/OTP platform

l The Erlang/OTP platform provides library support for many
important behaviors
l See Erlang/OTP System Documentation, Ericsson, Version 10.7, March 15, 2020

l33

Standard Erlang/OTP
behaviors

l The Erlang/OTP platform provides the following five standard behaviors:
l Generic server (gen_server): to build client/server architectures with registration,

start/stop, timeouts, state management, synchronous/asynchronous calls, error handling

l Generic event handler/manager (get_event): event handlers, such as loggers, to respond

to a stream of events, handling them and sending notifications

l Generic finite state machine (gen_fsm): applications (e.g., protocol stacks) can be

modeled as finite state machines, which provides a set of rules State × Event ➝ Actions

× State

l Application: a component that can be started and stopped as a unit, and can be reused in

other systems

l Supervisor: the generic toolkit for implementing fault tolerance with supervisor hierarchies

l These behaviors hide most of the complexity of each concept, in particular both
concurrency and fault tolerance are vastly simplified using behaviors
l All non-supervisor behaviors are designed to be pluggable into a supervisor hierarchy

l34

18

Erlang stable storage
l Resilient systems need stable storage to survive crashes

l When a process is restarted by a supervisor, it uses the stable storage
to start in a consistent state

l Stable storage and supervisor trees are the two pillars of Erlang’s
resilience

l Erlang provides three levels of stable storage
l ETS (Erlang Term Storage): Efficient in-memory storage for arbitrary

Erlang terms, with limited size and concurrency abilities
l DETS (Disk-based ETS): Same abilities as ETS, but stored on disk

l ETS and DETS are limited to single nodes (single Erlang virtual machine)
l Mnesia: A transactional database that is built on top of ETS and DETS

and allows making a balance between ETS efficiency and DETS
persistence
l Mnesia supports distribution and replication on multiple nodes

l35

Testing

l It’s not enough to design for resilience, testing is essential
l Erlang provides a spectrum of practical and powerful testing tools

l EUnit: Unit testing framework, including test generators (using
higher-order programming to generate new tests) and fixtures
(scaffolding around tests)
l Supports test-driven development (TDD)
l Good for testing modules and libraries

l Common Test: Full-featured system testing framework
l Test groups: allows running tests in parallel or in random order, for race

conditions
l Test suites: for handling dependencies between applications when testing
l Test specifications including simulating abnormal termination (fault

injection)
l Dialyzer: Dynamic type checker based on success types

l Will not make a proof of correctness, but any type error it finds is a real
error

l36

19

Building
a generic server

l37

Constructing a behavior

l An Erlang behavior is like a design pattern for a
concurrent multi-agent system

l OTP encapsulates the most commonly used
patterns in a set of generic library modules
called OTP behaviors

l Behaviors abstract away all the tricky aspects
and borderline conditions, through a solid well-
tested reusable code base

l Let’s see how this works for the gen_server!

l38

20

Erlang process loop

l A typical Erlang server loop looks like this:
start(Args) -> spawn(server, init, [Args]).

init(Args) ->
State=initialize_state(Args),
loop(State).

loop(State) ->
receive

{handle, Msg} ->
NewState=handle(Msg,State),
loop(NewState);

stop -> terminate(State)
end.

terminate(State) -> clean_up(State).

We will split this loop
into a generic part
and a specific part

l39

Towards a generic
client/server
l Generic part

l Spawning the server
l Storing the loop data
l Sending requests to the

server
l Sending replies to the client
l Receiving server replies
l Stopping the server
l Much more not shown here:

fault tolerance (supervised),
redundancy, dynamic code
update, statistics, logging,
…

l Specific part

l Server data:
l Initialization
l Handling
l Cleanup

l Format of client requests and
replies

l Basically, anything that is
specific to a particular server

l40

21

Callback modules
l The code is split up into two modules

l Behavior module for the generic pattern
l Callback module for the specific code

l The two modules agree on the function names and

types in the callback API

l Advantages

l Standardized programming style
l Code reuse
l Fewer bugs
l Standardized abilities, such as logs, tracing, and statistics

l41

Frequency server example

l Frequency allocator for cell

phones

l When a phone connects a
call, it needs a frequency,
which it asks from the
frequency allocator

l The client holds the
frequency until the call is
terminated, and then
deallocates the frequency

l Clients and server are

Erlang processes

l42

22

Frequency server API
l Functional interface:

allocate() -> {ok,Frequency} | {error, no_frequency}
deallocate(Frequency) -> ok

l Start and termination:

start() -> true
stop() -> ok

l Frequency server has an internal set of frequencies,

stored as a pair, free and allocated

l Initially: free:{10,11,12,13,14,15}, alloc:{}
l After allocating one frequency: free:{11,12,13,14,15}, alloc:{10}

l43

Example execution
1> frequency:start().
true
2> frequency:allocate(), frequency:allocate(),

frequency:allocate(), frequency:allocate(),
frequency:allocate(), frequency:allocate().

{ok,15}
3> frequency:allocate().
{error,no_frequency}
4> frequency:deallocate(11).
ok
5> frequency:allocate().
{ok,11}
6> frequency:stop().
ok

Example server calls done from
the Erlang interactive interface
The server has six available
frequencies {10,11,12,13,14,15}
and each allocate call will return
one of them. The seventh call
returns an error.

l44

23

Frequency module
-module(frequency).
% External interface:
-export([start/0, stop/0,

allocate/0, deallocate/1]).
% Callback interface:
-export([init/1, terminate/1 ,

handle/2]).

start() ->
server:start(frequency, []).

stop() ->
server:stop(frequency).

allocate() ->
server:call(frequency,

{allocate, self()}).
deallocate(Freq) ->

server:call(frequency,
{deallocate, Freq}).

init(_Args) ->
{[10,11,12,13,14,15], []}.

terminate(_Freqs) -> ok.

handle({allocate,Pid}, Freqs) ->
allocate(Freqs, Pid);

handle({deallocate, Freq}, Freqs) ->
{deallocate(Freqs, Freq), ok}.

allocate({[], Allocd}, _Pid) ->
{{[],Allocd}, {error,no_freq}};

allocate({[Freq|Free], Allocd, Pid) ->
{{Free, [{Freq,Pid}|Allocd]},
{ok,Freq}}.

deallocate({Free,Allocd}, Freq) ->
NewAllocd=

lists:keydelete(Freq,1,Allocd),
{[Freq|Free], NewAllocd}.

l45

Generic server module
-module(server).
% Server interface:
-export([start/2, stop/1, call/2]).
-export([init/2]).

start(Name, Args) ->
register(Name,

spawn(server,init,[Name,Args])).

call(Name, Msg)à
Name!{request,self(),Msg},
receive

{reply, Reply} -> Reply
end.

stop(Name) ->
Name!{stop,self()},
receive

{reply,Reply} -> Reply
end.

init(Mod, Args) ->
State=Mod:init(Args),
loop(Mod, State).

loop(Mod, State) ->
receive

{request, From, Msg} ->
{NewState,Reply}=

Mod:handle(Msg, State),
reply(From, Reply),
loop(Mod, NewState);

{stop, From} ->
Reply=Mod:terminate(State),
reply(From, Reply)

end.

reply(To, Reply) ->
To!{reply,Reply}.

l46

24

Architecture of generic server

Specific
module
freq

Generic
module
server

server:start
server:stop
server:call

freq:init
freq:handle
freq:terminate

start
stop
allocate
deallocate

Callback interface

Server interface
External interface

Programmer
only writes this

Part of
the system

l47

Avoiding race
conditions

l48

25

More on message passing

l Message passing has some hidden difficulties

l We show one of these difficulties and we
explain how the gen_server handles it internally
l The developer who uses gen_server does not have

to handle these cases, they are done automatically

l49

Race condition
l Assume we implement call/2 as follows:

call(Name, Message) ->
Name ! {request, self(), Message},
receive

{reply, Reply} -> Reply
end.

reply(Pid, Reply) -> Pid ! {reply, Reply}.

l How can we be confident that the reply is actually coming from the server
and not from some other process?
l With this implementation, we can’t! But the solution to this problem is easy and

can be done inside the gen_server.

l50

26

Race condition solution
l To eliminate the race condition, we use a unique reference created by

make_ref()
l This ensures that the response is actually the reply to our message
l This is very similar to the unique names in Oz returned by {NewName}

l The new call/2 is as follows:

call(Name, Msg) ->
Ref=make_ref(),
Name ! {request, {Ref, self()}, Msg},
receive {reply, Ref, Reply} -> Reply end.

reply({Ref, To}, Reply) ->
To ! {reply, ref, Reply}.

l This works because the receive statement removes the first message that
matches the pattern (receive can remove messages in a different order than
they arrived)

This is why receive can remove out of order

l51

Synchronous and
asynchronous calls

l52

27

Synchronous calls

l A synchronous call waits for a reply
l This is what the server:call function does:

allocate() ->
server:call(frequency, {allocate, self()}).

% Callback (in the client)
handle_call({allocate,Pid}, _From, Freqs) ->

{NewFreqs, Reply} = allocate(Freqs, Pid),
{reply, Reply, NewFreqs}.

l53

Asynchronous calls
l Sometimes the client sends a message to the server but

does not expect a reply

l The server:cast function handles that case

l The deallocate function in our frequency server example

could use a cast, because it does not return any reply

deallocate(Freq) ->
server:cast(frequency, {deallocate,Freq}).

% Callback (in the client)
handle_cast({deallocate,Freq}, Freqs) ->

NewFreqs = deallocate(Freqs, Freq),
{noreply, NewFreqs}.

l54

28

Building
a generic supervisor

l55

Supervisor trees introduction
l In practical concurrent and distributed systems, it is observed that

most faults and errors are transient
l For example: network problems, timing problems, concurrent startup
l Simple retrying is a surprisingly successful strategy

l Supervisor trees are designed to favor this strategy
l Process sets are “supervised” (observed for failure) by supervisor

processes
l Supervisors have authority to stop and restart supervised processes
l Supervisors are themselves observed, in case they fail

l Supervisor trees are carefully implemented to avoid races
l Starting of a supervisor tree is synchronous to correctly initialize state

l56

29

Supervisor structure and
principles

l Supervisor tree is a hierarchy with a root
l A supervisor tree consists of a set of supervisor nodes, organized as a

hierarchy with a root node and internal nodes (the root is a very
important process!)

l A supervisor node is responsible for starting, stopping, and monitoring its
child processes

l All Erlang behaviors are designed to work together with supervisors

l Restart principles
l Restart strategy: one_for_one, one_for_all, rest_for_one,

simple_one_for_one
l Restart frequency: the number of restarts is limited per time interval

l If the limit is exceeded, the supervisor terminates and the next higher level
supervisor takes some action

l The intention is to prevent a situation where a process dies repeatedly for the
same reason and is always restarted

l57

Supervision hierarchies

l A supervisor (☐) is a process whose sole purpose is to start, monitor,
and possibly restart workers

l A worker (○) is an instance of any behavior and it is managed by the
supervisor

12 (28)

ETX/D/XPS-01:001 Uen Ulf Wiger, Ericsson Telecom AB 01-03-30
 “Four-fold Increase in Productivity and Quality” Rev C

4.3.3 Supervisor processes

The ability of an Erlang process to monitor other processes is also used to implement a
special “supervisor” function. A supervisor is a process whose sole purpose it is to start,
supervise, and possibly restart other erlang processes. For each supervisor, it is possible
to specify the strategy to use when restarting processes (one-for-all, one-for-one, etc) and
a limit on the number of times a process can be restarted.

Picture 5: A supervision tree

In Picture 5, a supervision tree is illustrated. Square boxes indicate supervisor processer,
while circles indicate worker processes. An ‘a’ stands for “one-for-all” supervision, while
a ‘1’ stands for “one-for-one” supervision.

Picture 6: One-for-one and one-for all supervision

Abbreviations:
a One-for-all supervision
1 One-for-one supervision

1

1

a 1

a

1

P1 PnP2 ...

One for one supervision:
If any child dies
it is restarted

a

P1 PnP2 ...

One for all supervision:
If any child dies, all children
are terminated and all are
restarted

l58

30

One-for-one and one-for-all
supervision

l There are different forms of supervision depending on how the children processes work

together:

l One_for_one: if the children are independent (each manages one connection)
l One_for_all: if the children are collaborating, then if one crashes they all have to be restarted, even the

correct ones
l Rest_for_one: all children started after the crashed process are terminated and restarted
l Simple_one_for_one: all children are dynamic, started and stopped during application execution

12 (28)

ETX/D/XPS-01:001 Uen Ulf Wiger, Ericsson Telecom AB 01-03-30
 “Four-fold Increase in Productivity and Quality” Rev C

4.3.3 Supervisor processes

The ability of an Erlang process to monitor other processes is also used to implement a
special “supervisor” function. A supervisor is a process whose sole purpose it is to start,
supervise, and possibly restart other erlang processes. For each supervisor, it is possible
to specify the strategy to use when restarting processes (one-for-all, one-for-one, etc) and
a limit on the number of times a process can be restarted.

Picture 5: A supervision tree

In Picture 5, a supervision tree is illustrated. Square boxes indicate supervisor processer,
while circles indicate worker processes. An ‘a’ stands for “one-for-all” supervision, while
a ‘1’ stands for “one-for-one” supervision.

Picture 6: One-for-one and one-for all supervision

Abbreviations:
a One-for-all supervision
1 One-for-one supervision

1

1

a 1

a

1

P1 PnP2 ...

One for one supervision:
If any child dies
it is restarted

a

P1 PnP2 ...

One for all supervision:
If any child dies, all children
are terminated and all are
restarted

l59

A simple supervisor
l We show the code of a simple supervisor

l If a child terminates abnormally, it is restarted
l If a child terminates normally, it is removed from the supervision tree

with no further action
l Stopping the supervisor causes all the children to be terminated

unconditionally
l This assumes that nothing abnormal happens when the supervisor starts

the children! If a supervisor cannot start up normally, it aborts the startup
procedure.

l We start each child by calling apply(Module,Function,Args) inside a list
comprehension

l When the supervisor terminates, all linked processes receive an EXIT signal
l This example is taken from the excellent book Designing for Scalability with

Erlang/OTP by Francesco Cesarini and Steve Vinoski

l60

31

Simple supervisor code
-module(my_supervisor).
-export([start/2, init/1, stop/1]).

start(Name, ChildSpecList) ->
register(Name,
Pid=spawn(?MODULE, init,

[ChildSpecList])),
{ok,Pid}.

init(ChildSL) ->
process_flag(trap_exit,true),
loop(start_children(ChildSL)).

stop(Name) -> Name ! stop.

% Note list comprehension
start_children(ChildSpecList) ->

[{element(2,apply(M,F,A)),{M,F,A}}
|| {M,F,A} <- ChildSpecList].

loop(ChildList) ->
receive

{‘EXIT’, Pid, normal} ->
loop(lists:keydelete(Pid,

1,ChildList));
{‘EXIT’, Pid, _Reason} ->

NewChildList =
restart_child(Pid,ChildList),

loop(NewChildList);
stop ->

terminate(ChildList)
end.

restart_child(Pid, ChildList) ->
{Pid,{M,F,A}} =

lists:keyfind(Pid,1,ChildList),
{ok,NewPid} = apply(M,F,A),
lists:keyreplace(Pid,1,

ChildList,{NewPid,{M,F,A}}).

terminate(ChildList) ->
lists:foreach(fun({Pid,_}) ->

exit(Pid,kill) end, ChildList).

l61

Some explanations
l ?MODULE is a macro whose value is the name of the

current module

l The list comprehension loops over all tuples in

ChildSpecList and creates the list ChildList

l apply(M,F,A) calls the function F in module M with arguments A
and returns the tuple {ok, Pid}

l element(2,apply(M,F,A)) returns Pid, second element of the tuple
l We assume that the function F spawns the child processes and

links them to the parent
l The supervisor loops with a list of tuples ChildList

l Each tuple is {Pid, {Module, Function, Argument}}
l The second element of the tuple allows to restart the child

l62

32

Towards a generic supervisor

l Generic part
l Spawning the

supervisor

l Starting the children

l Monitoring the children

l Restarting the children

l Stopping the

supervisor

l Cleaning up

l Specific part
l What children to start

l Specific child handling:

l Start, restart
l Child dependencies

l Supervisor name

l Supervisor behaviors

l63

ETS tables for
consistent restarting
l ETS tables are a stable storage, to allow restarting

children in a consistent state

l ETS is in-memory storage that is outside of the Erlang
processes; when processes crash, ETS is unaffected

l An ETS table is linked to the process that creates it

l If that process terminates, normally or abnormally, the ETS table
is deleted

l With a supervisor tree, the ETS table is placed in a

supervisor, not in a child process!

l Pick the supervisor that monitors the processes using the table

l64

33

Comparison with conventional
approach
l The Erlang approach lets supervisors handle errors

l When a child process has an error, it is designed to immediately crash,
and the supervisor does the rest. The child does not handle its own
errors!

l All error conditions are mapped to one simple action: crash
l How does this compare to the conventional approach of defensive

programming (lots of error checks in the children)?
l Several studies were done to compare the approaches

l Heriot-Watt University made a study comparing Motorola’s Data Mobility system
(two-way radio communication streams) in C++ and Erlang

l The Erlang implementation has 85% less code size. 27% of the C++ code
consisted of error handling and defensive programming, versus only 1% of the
Erlang code for the analogous operations.

l Other studies give similar results. Ericsson has compared the MD110 corporate
switch written in PLEX and in Erlang. They saw a tenfold decrease in code size.

l65

Conclusions

l66

34

Conclusions
l The Erlang language and OTP system are based on message passing

between independent concurrent processes
l We give a short refresher on Erlang’s basic data types and message passing
l We explain the primitives that Erlang uses to implement behaviors

l Erlang/OTP has support for behaviors, which are generic patterns for
concurrent fault-tolerant systems
l Generic server, finite state machine, event handler
l Supervisor trees for fault tolerance (“Let it crash”)
l Stable storage (ETS, DETS, Mnesia) for consistent restart

l Erlang/OTP provides the primitives necessary to build highly resilient
concurrent and distributed systems
l Commercial applications prove the effectiveness of the Erlang approach

l67

1

LINFO1131
Concurrent programming concepts

Lecture 9
Shared-state concurrency:

introduction, locks, and tuple spaces

Peter Van Roy

ICTEAM Institute
Université catholique de Louvain

peter.vanroy@uclouvain.be

l1

Overview
l Quick refresher on cells

l Large atomic actions

l Why shared-state concurrency is difficult
l The solution is to use large atomic actions

l Locks

l The basic primitive for making a large atomic action
l Implementing locks

l Simple locks and reentrant locks
l Tuple spaces

l Another basic primitive: a multiset of tuples with send and receive
l Conclusions

l2

mailto:peter.vanroy@uclouvain.be

2

Shared-state concurrency

l We have seen three good paradigms for concurrent programs
l Deterministic dataflow: all the goodness of functional programming !
l Multi-agent programming: port objects and active objects, Erlang "
l Deterministic dataflow with ports: the best all-round paradigm #

l Now we will see a fourth paradigm, the worst of all!
l Shared-state concurrency: using threads and cells together $
l Three important concepts: locks, monitors, and transactions
l Locks are important for accessing concurrent data structures
l Transactions are important for database applications
l Monitors, however, are deprecated and only recommended for

legacy code
l We will study them because they are still widely used (e.g., in Java)

Good
Better
Best!

l3

Quick refresher
on cells

l4

3

Cells (mutable variables)
(Section 6.3)
l Shared-state concurrency is based on the concept of mutable state,

corresponding to “variables that can be assigned multiple times” in
imperative programming languages such as Java and Python

l We this a cell to avoid confusion with the word “variable”
l In mathematics, a variable in an expression is a placeholder for a value
l In computing, a variable is an identifier, a variable in memory, or a cell

l A cell is a box with an identity and a content
l The identity is a constant, called the “name” or “address” of the cell
l The content is a variable in the single-assignment store

l5

Cell operations
l We add three cell operations to the kernel language

l C={NewCell A}

l Create a new cell with initial content A
l Bind C to the cell’s name

l C:=B (assign or write operation)

l Replace the cell’s content by B
l Z=@C (read or access operation)

l Bind Z to the cell’s content, without changing the content

l6

4

Examples of using cells

l X={NewCell 0}

l X:=5
l Y=X

l Y:=10
l @X==10 % true
l X==Y % true

x 0

x 5

y

x 10

y

l7

Cell semantics
l We extend the kernel language with three cell operations
l We extend the abstract machine to have two stores:

l Variable store σ1 (contains variables and their bindings)
l Cell store σ2 (contains cells, which are pairs of two variables)

l For example:
l σ1 = {x=ξ, y=ζ, z, t=10, u=5, v, w}
l σ2 = {x:t, y:w}

l In σ2 there are two cells, x and y
l The name of x is the constant ξ, the name of y is ζ
l The content of x is t, the content of y is w

l Assuming an environment {X➝x ,Y➝y,Z➝z}:
l The operation X:=Z changes x:t into x:z
l The operation @Y returns the variable w

l8

5

Exchange operation for
concurrency
l The cell has a fourth operation called Exchange:

l {Exchange C X Y}
is the same as the two operations

l X=@C C:=Y
done atomically (i.e., it behaves as a single indivisible action)

l Exchange does a read and a write atomically
l We will see that Exchange is very important for concurrent programs
l For example, Exchange is essential to implement reentrant locks efficiently
l Locks can be implemented without Exchange (it is possible with only atomic read

and atomic write), but it is much, much more complicated (Dekker’s algorithm)

l All processor architectures provide an instruction like Exchange
l Many variations like “Test and Swap”, “Test and Set”, “Compare and Swap”, but it

always does atomic read and write

l9

Large atomic actions

l10

6

Shared-state concurrency
(Chapter 8)
l Shared-state concurrency is defined as a programming

paradigm where threads and cells are used together

l It is a widely used paradigm in industry today, and major

languages (such as Java and C++) use this paradigm for

concurrent programming

l Despite this popularity, it is the most difficult paradigm

for concurrent programming

l We explain the reason for this difficulty and we give the

main techniques for overcoming it

l11

Why it is difficult (1)

l Consider two threads T1 and T2 that reference the cell C.
Both threads do read and write operations on C.

l Assume that each thread does n operations on C. The
scheduler can choose (2n) possible interleavings, which is
equal to (2n)!/(n!)2

l There are 2n operation instants in all, T1 picks n of these, and T2 gets
what’s left

l Using Stirling’s formula n! ≈ (n/e)n √2πn we get 22n/√πn, which is
exponential in n

la0 la1 la2la3 la6la5la4 la7 la8la9

lb0lb1 lb3lb4 lb6lb5 lb7lb2 lb8

lT1

lT2

n

l12

7

Why it is difficult (2)

l The number of possible interleavings is an exponential
function of the number of operations
l If the program is correct, then all interleavings must be correct
l Even a very small number of incorrect interleavings will quickly

break the system, given the high speed of computers
l Scheduler timing cannot be relied upon to improve things,

because of the program’s execution environment
l Testing can only check a small fraction of the interleavings
l Verification (manual by proofs, or automatic by model checking)

is also strongly limited because it requires massive computation,
so it is limited to verifying only part of a large program

l Therefore, the only way to write correct concurrent
programs is to make them correct by design

Testing and
verification are
still essential!
It’s just that
they are not
enough by
themselves.

l13

Designing correct concurrent
programs

l Designing correct concurrent programs means to manage the
interleavings
l We use a technique that reduces the number of interleavings to a much

smaller number, which can be checked

l There are three ways to do this
l Deterministic dataflow with ports: restrict the paradigm so that all interleavings

give the same result, except for a small number of ports for which all
interleavings must be checked
l Use deterministic dataflow most of the time, add a small number of ports only where

they are really needed (typically: interaction with the real world)
l Message passing between port objects: internally, each port object executes in

a single thread, so that we can reason about interleavings between method
executions and not between single operations
l Used successfully by Erlang and other multi-agent languages

l Atomic actions on shared cells: we group thread operations together into large
atomic actions, so that the number of interleavings is much reduced

This
lecture

l14

8

Programming with atomic
actions

l The main technique for building correct shared-state concurrent
programs is to build large atomic actions

l The basic concept is the lock, which makes a group of operations atomic
l This concept has two important refinements, the monitor and the

transaction

Lock Transaction

enter

exit
commit abort

Monitor

wait

wait

l15

Hierarchy of atomic actions

l The atomic actions can be put in a hierarchy.

Monitors and transactions are locks with added

functionality.

Reentrant lock

(can be aborted)

(ACID properties)

... ...

Lightweight transaction

Full transaction

(gating mechanism)

Monitor

Simple lock

l16

9

Reasoning with atomic actions
l Consider a program that uses atomic actions throughout

l Well-chosen atomic actions will often coincide with abstraction
boundaries, so that correctness proof of the concurrent execution is very
similar to the correctness proof of the abstractions themselves.

l Proving correctness then consists of two parts:
l Proving that each atomic action is correct by itself (safety): assume that

there is an invariant assertion and show that the invariant assertion is
preserved by each atomic action.

l Proving that the sequence of atomic actions makes progress (liveness):
this means to show that the program using the atomic actions makes
progress toward its goal. This requires an assertion that measures
progress.
l For example, in the lift control system: that the lift will always eventually go to

the lift that is first in the schedule and correctly update the schedule

l17

Locks

l18

10

Locks (Section 8.3)
l A lock is a language concept

that guarantees that only one
thread will be running in a
specific part of the program.
l This part of the program is

called a critical section

l If another thread tries to enter
the critical section, it will wait
at the boundary until there
are no threads inside

l A critical section guarded by lock L does
not have to be contiguous, for example:

…
…
…
…
…
…
…
…
…
…
…
…

L

L

Lock L protects a critical
section that consists of
two different parts of the
program code

l19

Lock abstraction
l We define a lock abstraction with the following operations:

l L={NewLock}: returns a new lock L
l {IsLock L}: returns true if and only if L is a lock, otherwise false
l lock L then <stmt> end: guards a statement with lock L

l If no thread is in any statement guarded by a lock, then any thread
can enter. A thread waits (suspends) if it attempts to enter a
guarded statement while there is another thread inside.

l If a thread is currently executing a guarded statement, then the
same thread can enter again (the lock statement can be nested).
This property is called reentrancy.

l The lock statement can be called in different parts of the program
with the same lock. The lock will ensure that at most one thread is
inside any of the parts that it guards.

l20

11

Concurrent queue abstraction

l Let us define a concurrent queue abstraction using cells and locks

l A queue is a sequence of elements with insert and delete operations
l {Insert X} adds X to the back of the queue
l {Delete X} removes an element from the front of the queue and binds it to X

l{Insert d}

Q Q

c b ad l{Delete X}

Q

c bd

X=a

c b a

lback lfront

l21

Queue internal data
representation

l We implement the queue as a 3-tuple q(N F B) where N is the
number of elements and F is a difference list with tail B
l For example, q(3 F B) with F=a|b|c|B
l Insertion is done by binding B
l Deletion is done by traversing F

l The queue is stored in a cell so we can update it
l The tail must always be directly accessible
l We use a lock so that we can do both a read and write of the cell

lQ=q(3 a|b|c|B B) {Insert d} lQ=q(4 a|b|c|d|B2 B2) {Delete X} lQ=q(3 b|c|d|B2 B2)
lX=a

l22

12

Queue code with locks
fun {NewQueue}

X C={NewCell q(0 X X)}
L={NewLock}
proc {Insert X}

…
end
proc {Delete X}

…
end

in
q(insert:Insert delete:Delete)

end

proc {Insert X}
N F B2 in

lock L then
q(N F X|B2)=@C
C:=q(N+1 F B2)

end
end

proc {Delete X}
N F2 B in

lock L then
q(N X|F2 B)=@C
C:=q(N-1 F2 B)

end
end

l23

Why we need reentrancy
l Let’s extend our queue abstraction with a new operation to insert two

elements together (with nothing in between):
proc {Insert2 X Y}

{Insert X}
{Insert Y}

end

l How can we guarantee that no other thread will come in between?
proc {Insert2 X Y}

lock L then
{Insert X}
{Insert Y}

end
end

When we call {Insert X} the thread is already
inside the lock. This means the lock has to be
reentrant!

l24

13

The advantage of single
assignment
l Our queue implementation has the very nice property that it is possible

to delete elements before they are inserted!
l If the queue is empty, then {Delete X} will return unbound X and the queue

has -1 elements (!)
l Doing {Insert aaa} after that will bind X to aaa and the queue will have 0

elements
l You can verify this by running {Delete X} on an empty queue and

seeing what happens to F and B
l It works because the variable store contains logical formulas (variable

bindings are actually logical equalities)
l Variable binding is adding logical information to the store; the system is

doing logic programming
l If you want the queue to block when trying to delete from an empty

queue, then you have to call Wait explicitly:
l {Delete X} {Wait X}

l25

Queue code with Exchange
l We can implement the queue using the

cell Exchange operation:
{Exchange C X Y}

is the same as:
X=@C C:=Y % Atomic

fun {NewQueue}
X C={NewCell q(0 X X)}
proc {Insert X}

…
end
proc {Delete X}

…
end

in
queue(insert:Insert delete:Delete)

end

proc {Insert X}
N F B2 M in

{Exchange C q(N F X|B2) q(M F B2)}
M=N+1

end

proc{Delete X}
N F2 B M in

{Exchange C q(N X|F2 B) q(M F2 B)}
M=N-1

end

We still need locks if we do more
than one read and one write
operation (for example, Insert2 still
needs a lock)!

l26

14

Implementing locks

l27

Implementing locks
l We will implement locks using cells and Exchange
l We will do it in three steps:

l A simple lock (non-reentrant version)
l A simple lock with exception handling
l A reentrant lock with exception handling

l We use a technique called token passing
l To enter a critical section, a thread needs to possess a token
l There is only one token in the system, so only one thread can be inside
l If a thread tries to get in without a token, then it waits for the token
l When a thread leaves the critical section, it forwards the token to the

next thread

Token passing is a
powerful technique
that is used often in
concurrent and
distributed
programming

l28

15

Simple lock
l The simple lock does only token passing:

fun {SimpleLock}
Token={NewCell unit}
proc {Lock P}
Old New in

{Exchange Token Old New}
{Wait Old} % Enter the critical section (get the token)
{P}
New=unit % Leave the critical section (forward the token)

end
in

‘lock’(‘lock’:Lock)
end

This uses higher-order programming: P is
a zero-argument procedure that contains
a statement: P = proc {$} <stmt> end

l29

Simple lock with exception
handling

l What happens if the <stmt> raises an exception?
We still need to pass the token!

fun {SimpleLock}
Token={NewCell unit}
proc {Lock P}
Old New in

{Exchange Token Old New}
{Wait Old}
try {P} finally New=unit end

end
in

‘lock’(‘lock’:Lock)
end

This passes the token to the next
thread even if {P} raises an exception

l30

16

Reentrant lock
l A reentrant lock needs to know

which thread is inside the lock
l It needs a new concept:

the thread’s identity, which in Oz
is returned by {Thread.this}

l fun {NewLock}
Token={NewCell unit}
CurThr={NewCell unit}
proc {Lock P}

…
end

in
‘lock’(‘lock’:Lock)

end

proc {Lock P}
if {Thread.this} == @CurThr then

{P}
else Old New in

{Exchange Token Old New}
{Wait Old}
CurThr:={Thread.this}
try {P} finally

CurThr:=unit
New=unit

end
end

end
What can go
wrong if these
two statements
are switched?

l31

Debugging the lock
implementation
l What can go wrong if these instructions are switched?

{Wait Old}
CurThr:={Thread.this}

l What can go wrong if these instructions are switched?
CurThr:=unit
New=unit

l Hint:
{Wait Old}
CurThr:={Thread.this}
{P}
CurThr:=unit
New=unit

Enter critical section

Exit critical section

Imagine what can happen if
CurThr is changed outside
of the critical section

Critical
section

l32

17

Tuple spaces:
a concept in between

sharing and messages

l33

Tuple spaces
l A tuple space TS is a multiset of tuples with three operations:

l {TS write(T)} : add the tuple T to TS
l {TS read(L T)} : wait until the tuple space contains at least one tuple with

label L, then remove one such tuple and bind it to T
l {TS readnonblock(L T B)} : same as read, but returns immediately. Binds

B=false if the tuple space contains no tuple with label L. Otherwise binds
B=true, removes one such tuple and binds it to T.

l (The original tuple space concept invented by David Gelernter in 1985,
called Linda, had a more general read operation that does pattern
matching.)

l The tuple space abstraction is sometimes called a coordination model
l A language with a tuple space is called a coordination language
l Modern publish/subscribe systems are examples of coordination models

l34

18

Combining shared state and
message passing
l The tuple space concept is a combination of shared state and

message passing
l Like shared state because the tuple space is shared between

threads
l It is easier to program than shared state because the write and read

operations are like large atomic actions, i.e., they add a large chunk of
information to the tuple space

l Like message passing because tuples are sent and received:
l Writing a tuple is like a send and reading a tuple is like a receive
l The difference with message passing is the sender’s knowledge of the

receiver: with message passing, the sender knows the receiver, whereas
with tuple spaces, the sender does not know the receiver

l35

Queue code with tuple spaces
l A concurrent queue can easily be implemented using tuple spaces

l The tuple space implementation uses one read and one write for a
queue operation, but it does not need a lock because tuples are
unique entities, like tokens. Reading a tuple behaves like entering a
critical section: the first thread can do it immediately, the others wait.

l It is interesting to compare the three implementations:
l Queue with lock: insert with three operations (lock, read, write)
l Queue with Exchange: insert with one operation, no locks needed
l Queue with tuple space: insert with two operations, no locks needed

l36

19

Queue code with tuple spaces
l fun {NewQueue}

X TS={New TupleSpace init}
proc {Insert X}

…
end
proc {Delete X}

…
end

in
{TS write(q(0 X X))}
queue(insert:Insert

delete:Delete)
end

proc {Insert X}

N F B2 in
{TS read(q q(N F X|B2))}

{TS write(q(N+1 F B2))}

end

proc {Delete X}

N F2 B in
{TS read(q q(N X|F2 B))}

{TS write(q(N-1 F2 B))}

end

l37

Implementing tuple spaces

l We implement the tuple space abstraction with a
lock, a dictionary, and a concurrent queue
l Note that that the inverse is also possible: a concurrent

queue can also be implemented with a tuple space
l A dictionary is a form of dynamic hash table:

l A dictionary is a dynamic set of key/value pairs, where
pairs can be added, removed, and tested for presence, in
constant time

l In the tuple space, the keys are tuple labels and the
values are queues (for each label, there is a queue of
tuples of that label)

l The tuple operations will insert and delete elements
in the queue stored at the label’s position in the
dictionary

k0
k1
k2

kn-1

q0

q1

q2

qn-1

key value

ldictionary
queues

l.
l.
l.

l38

20

Conclusions

l39

Conclusions
l Shared-state concurrency is a programming paradigm that

combines threads and cells (mutable state)
l It is difficult because the number of interleavings is exponential in the

number of operations on shared data

l Concurrent programs are designed by building large atomic actions
to reduce the number of interleavings
l Three main kinds of atomic actions are locks, monitors, and transactions
l Tuple spaces are a combination of message passing and shared state

l Today we showed how to use locks and how to implement them

l In the next lectures we will focus on monitors and transactions

l40

% LINFO1131
% Advanced Programming Language Concepts

% Lecture 9 (Nov. 29, 2023)

% Introduction to shared-state concurrency
% - Concurrent queue, locks
% - Tuple spaces

%%%%%%%%%%%%%%%%%%%%%%%

% 1. Mutable state (cells)

declare
C={NewCell 0}1

{Browse @C}

{Browse C}

C := @C + 1

{Browse @C}

declare
D=C

{Browse @D}

declare
E={NewCell 100}

{Browse @E}

{Browse C==D}

{Browse C==E}

%%%%%%%%%%%%%%%%%%%%%%%

% 2. Concurrent queue
% Example of a concurrent abstraction defined with locks
declare
fun {NewQueue}
 X C={NewCell q(0 X X)}
 L={NewLock}
 proc {Insert X}
 N F B2
 in
 lock L then

 q(N F X|B2)=@C
 C:=q(N+1 F B2)

 end
 end

 proc {Delete X}
 N F2 B
 in
 lock L then

 q(N X|F2 B)=@C
 C:=q(N-1 F2 B)

 end
 end
in
 q(insert:Insert delete:Delete)
end

declare
Q={NewQueue}

{Q.insert a}

local X in {Q.delete X} {Browse X} end

%%%%%%%%%%%%%%%%%%%%%%%

% 3. Implementation of simple lock
% Simple locks use token passing to enforce mutual exclusion.
% See the slides to see how this is extended to reentrant locks.
declare
fun {SimpleLock}
 Token={NewCell unit}
 proc {Lock P}
 Old New
 in
 {Exchange Token Old New} % Get a place in line
 {Wait Old} % Wait until previous thread gives me token
 {P} % Inside of the critical section
 New=unit % Give the token to the next thread
 end
in
 'lock'('lock':Lock)
end

% Create a lock and use it
declare D L in
D={NewCell 10}
L={SimpleLock}.'lock'
thread {L proc {$} D:= @D +1 end} end % Two operations!
thread {L proc {$} D:= @D +1 end} end
% With no locks, this code is buggy!
% Scheduler might stop just after @D operations, so final
% result is 11 and not 12 (with no locks)
% With lock, result will always be 12.

{Browse @D}

%%%%%%%%%%%%%%%%%%%%%%%

% 3bis. Reentrant lock
% This definition returns the lock directly in the argument L.
% This definition also works correctly if {P} raises an exception.
declare
proc {ReentrantLock L}
 Token={NewCell ok}
 CurThr={NewCell none}
in
 proc {L P}
 if {Thread.this}==@CurThr then

 {P}
 else

 Xold Xnew
 in

 {Exchange Token Xold Xnew}
 {Wait Xold}
 CurThr:={Thread.this}
 try
 {P}
 finally
 CurThr:=none
 Xnew=ok
 end

 end
 end
end

%%%%%%%%%%%%%%%%%%%%%%%

% 4. Tuple spaces

% 4.1 Queue abstraction for tuple space
% This is the queue used to implement tuple spaces

declare
fun {NewQueue}
 X in
 q(0 X X)
end

fun {Insert q(N S E) X}
 E1 in
 E=X|E1 q(N+1 S E1)
end

fun {Delete q(N S E) X}
 S1 in
 S=X|S1 q(N-1 S1 E)
end

fun {DeleteNonBlock q(N S E) X}
 if N>0 then H S1 in
 X=[H] S=H|S1 q(N-1 S1 E)
 else

 X=nil q(N S E)
 end
end

fun {DeleteAll q(_ S E) L}
 X in1
 L=S E=nil
 q(0 X X)
end

fun {Size q(N _ _)} N end

%%%%%%%%

% 4.2 Tuple space implementation

declare
class TupleSpace
 prop locking
 attr tupledict

 meth init tupledict:={NewDictionary} end

 meth EnsurePresent(L)
 if {Not {Dictionary.member @tupledict L}}
 then @tupledict.L:={NewQueue} end
 end

 meth Cleanup(Q L)
 @tupledict.L:=Q
 if {Size Q}==0
 then {Dictionary.remove @tupledict L} end
 end

 meth write(Tuple)
 lock L={Label Tuple} in

 {self EnsurePresent(L)}
 @tupledict.L:={Insert @tupledict.L Tuple}

 end
 end

 meth read(L Tuple) X in
 lock Q in

 {self EnsurePresent(L)}
 Q={Delete @tupledict.L X}
 {self Cleanup(Q L)}

 end
 {Wait X} X=Tuple
 end

 meth readnonblock(L Tuple ?B)
 lock U Q in

 {self EnsurePresent(L)}
 Q={DeleteNonBlock @tupledict.L U}

 case U of [X] then
 {self Cleanup(Q L)} B=true X=Tuple
 else B=false end

 end
 end
end

%%%%%%%%

% 4.3 Tuple space examples

declare
TS={New TupleSpace init}

{TS write(foo(1))}
{TS write(foo(1 2))}
{TS write(bar(2))}

% Waits until a tuple with label 'foo' is in TS
local X in {TS read(foo X)} {Browse X} end

local X in {TS read(bar X)} {Browse X} end
{TS write(car(5))}
{TS write(car(6))}

{TS write(foo(a))}

%%%%%%%%%%%%%%%%%%%%%%%

1

LINFO1131
Concurrent programming concepts

Lecture 10
Shared-state concurrency: monitors

Peter Van Roy

ICTEAM Institute

Université catholique de Louvain

peter.vanroy@uclouvain.be

l1

Overview

l Monitor definition
l Intuition: why do we need monitors?
l Semantics: wait, notify, notifyAll

l Bounded buffer
l Definition
l Implementation, how to use monitor
l Buggy version: why is it buggy?

l Programming pattern

l To guarantee bug-free use of monitors
l Implementation

l Get-release lock
l Queue
l Code for wait, notify, notifyAll

l2

mailto:peter.vanroy@uclouvain.be

2

Monitor definition

l3

Monitors (Section 8.4)

l Monitors are an extension of locks for coordinating threads when
they interact with data abstractions

l Locks alone are not sufficient
l Consider a bounded buffer. It is not enough to protect the buffer with a

lock. What happens if a thread wants to put an element in the buffer, and
the buffer is full? What happens if a thread wants to remove an element
from the buffer, and the buffer is empty? We need a way for the thread
to wait until the buffer is nonfull or nonempty. This cannot be done with
just locks.

l Monitors were introduced by Per Brinch Hansen in 1972 and
developed by C. A. R. (Tony) Hoare in 1974
l They are still widely used today, for example, synchronized objects in

Java are a form of monitors

l4

3

Monitor intuition

l A monitor adds two operations, wait and notify, and a
wait set
l The wait set consists of a set of suspended threads

l Wait and notify are used to manage how threads enter and exit
the wait set

l Wait and notify are only possible when inside the lock

l Wait operation: when a thread calls wait, it suspends, is
put in the wait set, and the monitor lock is released

l Notify operation: when a thread calls notify, it wakes one
thread in the wait set. The woken thread tries to get the
monitor lock again, at the place where it was suspended
(i.e., the wait operation continues)

l5

Monitor semantics

l We give the Java semantics, because it is simple and popular
l In Java, a monitor is an object extended with an internal lock and a wait set
l There are three operations, wait, notify, and notifyAll

l Wait operation is defined as follows:
l Suspend the current thread; place the thread in the wait set; release the lock
l When the wait returns, the thread tries to get the lock again

l Notify operation is defined as follows:
l If the wait set is nonempty, remove an arbitrary thread T
l Resume execution of T at the point it was suspended (i.e., at its call to wait).
l T proceeds to get the lock like any other thread. (Note that T always suspends

again briefly, until the notifying thread releases the lock.)

l6

4

NotifyAll operation

l The notify operation resumes an arbitrary thread
l This can be a problem if there are multiple threads in the wait set: how does

notify know which one to resume?

l The notifyAll operation does notify for all threads in the wait set
l All threads are resumed; all threads try to get the lock
l The wait set is emptied

l One thread will get the lock and execute the monitor. If it is the wrong
thread, it will do a wait and be put back into the wait set. If it is the right
thread, it will do the desired operation.
l This can lead to contention if there are many threads. If this is a problem, there

are ways to avoid it, for example by using multiple wait sets.

l7

Bounded buffer

l8

5

Bounded buffer

l We define a concurrent bounded buffer using a monitor
l A bounded buffer is a concurrent queue data abstraction with fixed

maximum size. It has three operations:
l B={New Buffer init(N)} : create a new buffer of size N
l {B put(X)} : put element X in the buffer. If the buffer is full, wait until it has room.
l {B get(X)} : remove an element from the buffer and bind it to X. If the buffer is

empty, wait until it contains at least one element

f e d c b a

l{B get(X)} will bind X=al{B put(g)} will put g

lSize N=10

l9

Bounded buffer
implementation

l The bounded buffer can be
efficiently implemented as an
array of size n organized as a
ring (with wraparound)
l Elements are removed by

incrementing first
l Elements are inserted by

incrementing last
l If an index is outside [0,n-1], it is

replaced by the index modulo n
l If the number of elements last–first

would become <0 or >n-1, the
operation is blocked

last

first

d
c

ba

+1 (insert)

+1 (delete)

0 1
2
3

…

n-1

l10

6

Bounded buffer code
without monitor

class Buffer
attr buf first last n i
meth init(N)

buf:={NewArray 0 N-1 null}
first:=0 last:=0 n:=N i:=0

end
meth put(X)

…
end
meth get(X)

…
end

end

meth put(X)
… % wait until i<n
% now add an element:
@buf.@last:=X
last:=(@last+1) mod @n
i:=@i+1

end

meth get(X)
… % wait until i>0
% now remove an element:
X=@buf.@first
first:=(@first+1) mod @n
i:=@i-1

end

l11

Monitor abstraction

l We define the monitor abstraction as follows:

l M={NewMonitor}: create a new monitor as a record:

M=monitor(‘lock’:LockM
wait:WaitM notify:NotifyM notifyAll:NotifyAllM)

l With the following four operations:
l {M.’lock’ proc {$} <stmt> end}: reentrant lock
l {M.wait}: wait operation
l {M.notify}: notify operation
l {M.notifyAll}: notifyAll operation

l12

7

Bounded buffer code complete
class Buffer

attr m buf first last n i
meth init(N)

m:={NewMonitor}
buf:={NewArray 0 N-1 null}
first:=0 last:=0 n:=N i:=0

end
meth put(X)

…
end
meth get(X)

…
end

end

meth put(X)
{@m. ‘lock’ proc {$}

if @i>=@n then % if full, wait
{@m.wait}
{self put(X)} % try again!

else
@buf.@last:=X
last:=(@last+1) mod @n
i:=@i+1
{@m.notifyAll} % tell others!

end
end}

end

l13

Bounded buffer code
buggy version!
class Buffer

attr m buf first last n i
meth init(N)

m:={NewMonitor}
buf:={NewArray 0 N-1 null}
first:=0 last:=0 n:=N i:=0

end
meth put(X)

…
end
meth get(X)

…
end

end

meth put(X)
{@m. ‘lock’ proc {$}

if @i>=@n then % if full, wait
{@m.wait}

end
@buf.@last:=X
last:=(@last+1) mod @n
i:=@i+1
{@m.notifyAll}

end}
end

lThis version is buggy!
lFind a scheduler scenario that makes it go wrong.

l14

8

Monitor
programming pattern

l15

Monitor programming pattern
l The technique used in the bounded buffer can

be used elsewhere

l We define a general programming pattern for
monitors:

meth methHead
lock

while not <expr> do wait;
<stmt>
notifyAll;

end
end

l When the wait returns it always asks for the
lock again, just like it was going in the critical
section the first time

l We can use tail recursion instead:
l They have the same semantics!

l Oz does not have while loops (strangely!)

meth methHead
lock

if not <expr> then
wait; {self methHead}

else
<stmt>
notifyAll;

end
end

end

l16

9

Implementing
monitors

l17

Implementing monitors

l We will implement monitors as an extension of reentrant locks

l Compared to the reentrant lock implementation we need to make
two changes:
l We modify the lock to be a get-release lock, so that entering and exiting

the critical section are separate operations, called get and release
l We add a queue to implement the wait set. Implementing it as a queue

gives good behavior because it ensures fairness: it’s not possible for a
thread to stay forever in the queue while other threads are leaving the
queue.
l The queue has three extra operations: DeleteAll, Size, and DeleteNonBlock

(which returns [X] if the queue is nonempty and nil if it is empty)

l18

10

Get-release lock
fun {NewGRLock}

Token1={NewCell unit}
Token2={NewCell unit}
CurThr={NewCell unit}

fun {GetLock}
…

end
proc {ReleaseLock}

CurThr:=unit
unit=@Token2 % Pass the token

end
in

‘lock’(get:GetLock
release:ReleaseLock)

end

fun {GetLock}
if {Thread.this}\=@CurThr then

Old New
in

{Exchange Token1 Old New}
{Wait Old}
Token2:=New % Prepare release
CurThr:={Thread.this}
true

else
false

end
end

l19

Extended queue
l This extends the queue we did before with a

cell and a lock

fun {NewQueue}
X C={NewCell q(0 X X)}
L={NewLock}
proc {Insert X}

… % As before
end

proc {Delete X}
… % As before

end

fun {Size}
lock L then @C.1 end

end

fun {DeleteAll}
lock L then X S E in

q(_ S E)=@C
C:=q(0 X X) % Make empty
E=nil S % Return all

end
end
fun {DeleteNonBlock}

lock L then
if {Size}>0 then [{Delete}]
else nil end

end
end

in
queue(insert:Insert delete:Delete size:Size

deleteall:DeleteAll
deleteNonBlock:DeleteNonBlock)

end

l20

11

Monitor code
fun {NewMonitor}

Q={NewQueue}
L={NewGRLock}

proc {LockM P}
if {L.get} then

try {P} finally {L.release} end
else {P} end

end

proc {WaitM}
X in

{Q.insert X} {L.release}
{Wait X} if {L.get} then skip end

end

proc {NotifyM}
U={Q.deleteNonBlock} in

case U of [X] then X=unit
else skip end

end

proc {NotifyAllM}
L={Q.deleteAll} in

for X in L do X=unit end
end

in
monitor(‘lock’:LockM wait:WaitM

notify:NotifyM
notifyAll:NotifyAllM)

end

l21

Conclusions

l22

12

Conclusions

l Monitors extend locks with the ability to suspend and resume
threads depending on conditions specific to the data abstraction
l Wait set: set (or queue) of suspended threads
l Wait and notify operations: add/remove one thread in the wait set
l NotifyAll operation: removing all threads, almost always the correct

operation

l Monitors are difficult to program with, unless you use a pattern
l We have shown a general pattern for programming with monitors
l Monitors are widely used in legacy code, but we do not recommend

them for new code! They should be deprecated everywhere!

l In the next lecture we will see another major extension of locks,
namely transactions, which are key operations for large databases

l23

% LINFO1131
% Advanced Programming Language Concepts

% Lecture 10 (Dec. 6, 2023)

% Monitor implementation

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Queue data structure
% Used to implement wait set

declare
fun {NewQueue}
 X in
 q(0 X X)
end

fun {Insert q(N S E) X}
 E1 in
 E=X|E1 q(N+1 S E1)
end

fun {Delete q(N S E) X}
 S1 in
 S=X|S1 q(N-1 S1 E)
end

fun {DeleteNonBlock q(N S E) X}
 if N>0 then H S1 in
 X=[H] S=H|S1 q(N-1 S1 E)
 else
 X=nil q(N S E)
 end
end

fun {DeleteAll q(_ S E) L}
 X in
 L=S E=nil
 q(0 X X)
end

fun {Size q(N _ _)} N end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Correct implementation of monitors
% Combination of reentrant lock and queue
% Reentrant lock is split into two operations: get and release
% Queue is used as wait set for threads: a thread waits
% by means of a dataflow variable

% Book version may be incorrect (correct in 4th & later printings)!
% Code below includes bug fix (see book Errata page)

declare
proc {NewMonitor ?LockM ?WaitM ?NotifyM ?NotifyAllM}
 Q={NewCell {NewQueue}}
 Token1={NewCell unit}
 Token2={NewCell unit}
 CurThr={NewCell unit}

 % Returns true if got the lock, false if not (already inside)
 fun {GetLock}
 if {Thread.this}\=@CurThr then Old New in

 {Exchange Token1 Old New}
 {Wait Old}
 Token2:=New
 CurThr:={Thread.this}
 true

 else false end
 end

 proc {ReleaseLock}
 CurThr:=unit
 unit=@Token2
 end
in
 proc {LockM P}
 if {GetLock} then

 try {P} finally {ReleaseLock} end
 else {P} end
 end

 proc {WaitM}
 X in
 Q:={Insert @Q X}
 {ReleaseLock} {Wait X}
 if {GetLock} then skip end
 end

 proc {NotifyM}
 X in
 Q:={DeleteNonBlock @Q X}
 case X of [U] then U=unit else skip end
 end

 proc {NotifyAllM}
 L in
 Q:={DeleteAll @Q L}
 {ForAll L proc {$ X} X=unit end}
 end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% LINFO1131
% Advanced Programming Language Concepts

% Lecture 10 (Dec. 6, 2023)

% Shared-state concurrency
% - Bounded buffer with monitors

%%%%%%%%%%%%%%%%%%%

% 1. Bounded buffer (Buggy version)
declare
class Buffer
 attr
 buf first last n i
 lockm waitm notifym notifyallm

 meth init(N)
 buf:={NewArray 0 N-1 null}
 first:=0 last:=0 n:=N i:=0
 {NewMonitor @lockm @waitm @notifym @notifyallm}
 end

 meth put(X)
 {@lockm
 proc {$}
 % Wait until buffer is not full (@i<@n)

 % BUGGY because other thread can slip in
 if @i==@n then {@waitm} end

 % Now add one element:
 @buf.@last:=X
 last:=(@last+1) mod @n
 i:=@i+1
 {@notifyallm}

 end}
 end

 meth get(X)
 {@lockm
 proc {$}
 % Wait until buffer is not empty (@i>0)

 if @i==0 then {@waitm} end
 % Now remove one element:
 X=@buf.@first
 first:=(@first+1) mod @n
 i:=@i-1
 {@notifyallm}

 end}
 end
end

%%%%%%%%%%%%%%%%%%%

% 2. Bounded buffer (correct version)

declare
class Buffer
 attr
 buf first last n i
 lockm waitm notifym notifyallm

 meth init(N)
 buf:={NewArray 0 N-1 null}
 first:=0 last:=0 n:=N i:=0
 {NewMonitor @lockm @waitm @notifym @notifyallm}
 end

 meth put(X) /* correct version */
 {@lockm
 proc {$}
 % Wait until buffer is not full (@i<@n)

 if @i==@n then
 {@waitm}
 /* condition might become false here */
 {self put(X)} /* test cond. again */
 else

 % Now add one element:
 @buf.@last:=X
 last:=(@last+1) mod @n
 i:=@i+1
 {@notifyallm}
 end

 end}
 end

 meth get(X)
 {@lockm
 proc {$}
 % Wait until buffer is not empty (@i>0)

 if @i==0 then
 {@waitm}
 /* condition might become false here */
 {self get(X)} /* test condition again */
 else
 % Now remove one element:
 X=@buf.@first
 first:=(@first+1) mod @n
 i:=@i-1
 {@notifyallm}
 end

 end}
 end
end

%%%%%%%%%%%%%%%%%%%

% 3. Example execution of bounded buffer

declare

BB={New Buffer init(3)}

{BB put(a)}

local X in {BB get(X)} {Browse X} end

{BB put(a)}
{BB put(b)}
{BB put(c)}
{Browse 'try fourth'}
{BB put(d)}
{Browse 'end fourth'}

local X in {BB get(X)} {Browse X} end

local X in {BB get(X)} {Browse X} end
{Browse 'after get'}

local X in {BB get(X)} {Browse X} end
{Browse 'after get'}

{BB put(f)}

%%%%%%%%%%%%%%%%%%%

1

LINFO1131
Concurrent programming concepts

Lecture 11
Shared-state concurrency:

transactions

Peter Van Roy

ICTEAM Institute
Université catholique de Louvain

peter.vanroy@uclouvain.be

l1

Overview

l Concurrency control definition
l Safety and liveness
l Concurrency control concepts

l Locks for safety
l Timestamps for liveness
l Optimism versus pessimism

l A simple transaction system
l A naïve transaction manager
l Deadlocks
l A correct transaction manager

l Implementation of the transaction system
l Conclusions

l2

mailto:peter.vanroy@uclouvain.be

2

Transactions (Section 8.5)

l Transactions were introduced as a basic concept for management of
large databases that must sustain a high rate of concurrent updates
while keeping data coherent and surviving system crashes

l Large databases are the core of many companies (banks, industries,
services) and must have the following three properties:
l Resilience: The information they store is critical to the companies. If the

information becomes corrupt or crashes, it can be fatal to the company.
l High performance: It must be possible to sustain a large rate of concurrent

updates while maintaining coherence
l Scalability: The resilience and performance must be scalable to extremely

large quantities of information
l How can we achieve these properties?

l We will explain the basic principles of how to do it in this lecture

l3

Motivating example (1)

l Consider a database represented as a large array of cells
l Many clients wish to update the database concurrently
l A naïve implementation uses one lock to protect the whole array

l This makes it slow: only one client can modify the database at a time

C0 C1 C2 C998 C999

L

l4

3

Motivating example (2)

l A smarter implementation would use one lock per cell
l But what happens if there are two updates that conflict?

l Each cell stores the amount in one bank account
l First update T1 modifies C1 and C2 to transfer money from C1 to C2

l Second update T2 modifies C2 and C3 to transfer money from C3 to C2

l The updates might overlap:
l T1 reads C1, T2 reads C3 & writes C2, T1 writes C2

l This means the value in C2 is incorrect!
lUpdates must be atomic
land isolated!

C0 C1 C2 C998 C999

L0 L1 L2 L998 L999

l5

The need for transactions

l The updates can do many reads and writes: large atomic actions
l Each update must not see the intermediate states of other updates

l The system can crash at any time: actions can commit or abort
l The database is stored permanently on disk
l How can we ensure that the disk is not corrupted?
l Each update stores all its effects in one place on disk
l When the update is complete, it writes one word to disk to switch the

content from the old to the new value (“one word write” must be atomic)
l If there is a crash during the operation, the old value is restored

l The system must be fast: actions can execute in parallel
l We allow multiple updates to execute in parallel
l We keep temporary copies of the updates in fast memory

l6

4

ACID properties

l The properties of transactions are codified in the acronym “ACID”

l A is Atomic: the transaction updates the database as if it were a single
operation, either all changes are performed or none are performed
(commit or abort)
l For example, a disk crash should cause an abort with no data corruption

l C is Consistency: the update respects the invariants of the database
l For example, total money in a bank should not change upon money transfers

l I is Isolation: two concurrent updates do not interfere, it is as if the two
transactions execute in a sequential order (also called Serializability)

l D is Durability: once a transaction is committed, it survives system
crashes (also called Persistence)

l7

Lightweight transactions (ACI)

l An important variation is to use transactions as a
programming abstraction, when durability
(persistence) is not needed
l A transaction is simply an abortable atomic action.

When it aborts, all state is restored to the initial value.
l It can abort due to internal causes (some program

invariant is not satisfied) or external causes (failure
outside of the program, like a file disappearing)

l Lightweight transactions are general program
abstractions that can be used to replace locks
when there is a chance of abort
l Compared to exceptions, the advantage is that all the

variables are restored to their initial values
l This is often called STM (Software Transactional

Memory)

Critical
section

Commit Abort

l8

5

Concurrency control
definition

l9

Concurrency control definition

l The techniques used to build concurrent systems with transactional
properties are called concurrency control
l Concurrency control is a big and complex area with many techniques

used to give many different desired properties
l We give an introduction to the basic concepts of concurrency control

l We give one practical algorithm for implementing ACI transactions:
l “Optimistic concurrency control with strict two-phase locking

and deadlock avoidance”
l We will explain all the highlighted parts in this phrase

l The textbook gives a full implementation in two pages of Oz code
l It is the most complicated algorithm in the book!

l10

6

Concurrency control basic
concepts

l Axes of variation:
l Optimism versus pessimism: how to give locks depending on the

cost of failure
l Lock management: how to give locks to guarantee serializability
l Deadlock management: how to give locks to avoid circular

dependencies
l Two kinds of properties:

l Safety: never do anything wrong (e.g., system invariant)
l Liveness: make progress (e.g., no starvation)

l Primitive building blocks:
l Locks: control access to entities (important for safety)
l Timestamps: give priorities to operations (important for liveness)

l11

Safety and liveness

l12

7

Safety and liveness properties

l Correctness of a system always expressed in terms of
l safety and liveness

l Intuitively:
l Safety properties

l Properties that state that “something bad never happens”

l Liveness properties
l Properties that state that “something good eventually happens”

l13

Safety & liveness are sufficient

l A property P(E) is a function of an execution E that
returns true or false
l Execution E = (ST0,σ0)➝(ST1,σ1)➝ ... ➝(STi,σi)➝…
l An execution potentially has an infinite number of execution

states (STi,σi)

l It can be proved mathematically that
l “Any [property] can be expressed as the conjunction of a

safety property and a liveness property”
(Alpern & Schneider, Inf. Proc. Letters 1985)

l14

8

Prefixes and extensions

l To define safety and liveness precisely, we introduce the concepts of
prefix and extension

l A prefix of execution E is the first k (for some k>0) execution states
l I.e., cut off the tail of E, finite beginning of E

l An extension of a prefix is any execution that starts with the prefix
l The extension continues P

(ST0,σ0)➝(ST1,σ1)➝ ... ➝(STk-1,σk-1)➝ (STk,σk)➝ …

(ST0,σ0)➝(ST1,σ1)➝ ... ➝(STk-1,σk-1)

(ST0,σ0)➝(ST1,σ1)➝ ... ➝(STk-1,σk-1)➝ (ST’k,σ’k)➝ (ST’k+1,σ’k+1)➝ …

Execution

Prefix

Extension

l15

Safety formally defined

l Informally, property P(E) is a safety property if
l Every execution E violating P “goes bad”, i.e., it has a bad event

such that every execution starting like E and behaving like E up
to the bad event (including), will violate P regardless of what it
does afterwards

l When an execution “goes bad”, it “stays bad”!

l Formally, a property P is a safety property if
l Given an execution E such that P(E)=false
l Then there exists a prefix of E such that every extension of that

prefix gives an execution F with P(F)=false
l The system “breaks” in the prefix and can’t be fixed!

l16

9

Safety example

l Message communication between agents on an
unreliable network
l Safety property:

l A message sent is delivered at most once

l Take an execution where a message is delivered
more than once
l Cut off the tail after the second delivery
l Any extension will give an execution which also violates the property

l17

Liveness formally defined

l A property P(E) is a liveness property if
l Given any execution E such that P(E)=true,
l Then for every prefix F of E, there exists an extension of F

such that P(F)=true

l “As long as there is life there is hope”

l18

10

Liveness example

l Message communication between agents on an
unreliable network
l Liveness property P:

l A message sent is delivered at least once

l Take the prefix of any execution
l If prefix contains delivery, any extension satisfies P
l If prefix doesn’t contain the delivery, extend it so that it contains a

delivery, then the prefix + extended part will satisfy P

l19

Formal definitions visually

l Safety is false for an execution E
then there exists a prefix such that
all extensions are false (system is
broken)

l If safety is false, then this can
always be shown in finite time

l Liveness is true for an execution
E then for all prefixes there exists
an extension that is true (system
can progress)

l If liveness is false, then this can
only be shown in infinite time

∃ prefix

false

∀ extensions

∀ prefixes
true

∃ extension

Execution E

Execution E

l20

11

More on safety

l Safety can only be
l satisfied in infinite time (you’re never safe)
l violated in finite time (when the bad happens)

l Often involves the word “never”, “at most”,
“cannot”,…

l Sometimes called “partial correctness”

l21

More on liveness

l Liveness can only be
l satisfied in finite time (when the good happens)
l violated in infinite time (there’s always hope)

l Often involves the words “eventually”,
“must”, “at least”
l Eventually means at some (often unknown) point

in “future”

l Liveness is often just “termination”

l22

12

Questions on safety and
liveness

l Why not define safety to be a predicate true in every execution state?
l Assume we have an execution E = e0➝e1➝…➝ei➝…, where ei=(STi,σi)
l We defined safety as a property of the whole execution: P(E)
l Why not define safety for execution states, like this: ∀i.P(ei) ?
l (you tell me!)

l Is every property really either liveness or safety?
l For example, consider: “every message should be delivered exactly 1 time”
l Is this safety or liveness?
l (you tell me!)

l23

Concurrency control
concepts

l24

13

Transaction system
architecture

l Each transaction Ti runs in one thread and communicates with TM
l Concurrency control is implemented in the transaction manager TM

l When a transaction Ti needs a lock, it asks the TM
l The TM can give the lock, delay giving it, or refuse to give it (say no)
l When a transaction Ti no longer needs a lock, it tells the TM

T1 T2 Tn
l…

TM

l25

Concurrency control basic
concepts

l Axes of variation:
1. Optimism versus pessimism: how to give locks depending on

the cost of failure
2. Lock management: how to give locks to guarantee serializability
3. Deadlock management: how to give locks to avoid circular

dependencies
l Properties:

l Safety: never do anything wrong (e.g., system invariant)
l Liveness: make progress (e.g., no starvation)

l Primitive building blocks:
l Locks: control access to entities (important for safety)
l Timestamps: give priorities to operations (important for liveness)

l26

14

1. Optimism versus pessimism

l When a transaction starts, it asks for locks on the items it updates
l The transaction manager has a choice to give the lock or not

l If aborts are extremely undesirable, it will be pessimistic
l If more transactions mean more profits, it will be optimistic

l Airline booking is an example of optimistic scheduling
l A passenger booking a seat is a transaction
l Airlines overbook flights, i.e., sell more tickets than seats on the plan, to

increase the average number of filled seats on a flight
l Railway track allocation is an example of pessimistic scheduling

l A train reserving a track segment is a transaction
l Signaling mechanisms wait until it is absolutely sure that there is no

other train on the same segment

l27

L1

L2

L2L1

2. Lock management:
naïve solution

l Transaction T1 transfers money between two of my accounts C1 to C2: it locks L1

and decreases C1 and then locks L2 and increases C2.

l Transaction T2 calculates the total money I have in both my accounts C1 and C2:
it locks L1 and L2

l Surprise! I am missing some money. Where is it?

lget

release

lget

release

ltime

lT1

lT2
lget L1

lget L2

release L2
T1 is not before T2 and
T2 is not before T1, so
T1 & T2 not serializable

release L1

l28

15

Lock management:
two-phase locking

l How can we make lock management serializable?
l When we execute transactions concurrently, they must see the data

as if they were executed sequentially in some order
l We can guarantee this by using two-phase locking:

l A transaction has two phases, a growing phase in which it only asks
for locks, and a shrinking phase in which it only releases locks

lT1

lT2

L1

L2

lget L1

lget L2

release L2

release L1

L1

L2

lget L1

lget L2

release L2

release L1

l29

Problem of cascading abort

l Assume three dependent transactions T1, T2, T3:
l T2 takes L1 from T1 and then completes
l T3 takes L2 from T2 and then completes
l T1 keeps going and eventually aborts!

l This makes the system complicated

release L1

get L1

release L2

get L2

lT1

lT2

lT3

labort!

The value of C1 is restored.
So T2 and T3 must abort as well!
This is complicated!

l30

16

Lock management:
strict two-phase locking

l Cascading abort can happen when transactions have dependencies
l Two-phase locking is still correct in this case, but hard to implement!
l To avoid cascading abort, we do strict two-phase locking

l All locks are released at once in the shrinking phase

lT1

lT2

lT3

l31

A simple transaction
system

l32

17

A naïve transaction manager

l Let us design a simple transaction system that does optimistic
concurrency control with strict two-phase locking

l We start with a naïve algorithm for the transaction manager:
l When a transaction requests a lock of an unlocked cell, it gets it
l If the cell is already locked, the transaction waits until it is unlocked
l When a transaction commits or aborts, it releases all its locks

l The naïve algorithm does strict two-phase locking
l It is optimistic because it assumes that getting the lock will not lead to

problems later on
l But it has a big problem: the naïve algorithm suffers from deadlock!

l33

Deadlock example

l The naïve algorithm suffers from deadlocks
l Consider transactions T1 and T2 where each one uses both C1 and C2

l T1 uses C1 first and then C2

l T2 uses C2 first and then C1

l It can happen that T1 has C1’s lock and T2 has C2’s lock
l How can this happen? Exercise!

l Then T1 waits until T2 releases C2 and T2 waits until T1 releases C1
l They will both wait forever!

l How can we solve this problem?
l Let us first understand exactly what is going on
l Then we will fix the naïve algorithm

l34

18

Deadlock definition

l Deadlock can happen in any system
where active entities (like transactions)
need resources (like cells)
l A deadlock is a cycle in the wait-for graph

l Wait-for graph
l Transaction nodes and cell nodes
l Arrows from cells to transactions that lock it
l Arrows from transactions to cells that they

wait for

T1

C2

T2

C1

waits for

waits for locked by

locked by

Cycle with two
transactions

(it is possible to have
cycles with three, four,
or more transactions)

l35

Deadlock discussion

l Deadlocks can happen in the real world
l For example, cars at an intersection, where the active entity is a car

and the resource is a square on the intersection
l In big transaction systems, deadlocks can exist for a long time

without anyone becoming aware of it
l Assume for a big bank that there are hundreds of transactions per

second
l If four transactions are in deadlock, it does not stop the others
l But the deadlock means that part of the system is not working

l How do we solve this problem?
l Like for diseases, there are two possibilities, namely prevention or

cure, which are called deadlock avoidance and deadlock detection

l36

19

A correct transaction manager

l We will modify the naïve algorithm to do deadlock avoidance

l We will use transaction priorities
l Earlier transactions willl have higher priority than later transactions
l When a transaction tries to get a lock, and the lock is already taken:

l We compare priorities of the two transactions
l If a lower priority has the lock, it is restarted and the lock is given to the higher
l If a higher priority has the lock, the lower priority waits

l We can prove by induction that no deadlocks will occur
l The first transaction has highest priority and will always continue
l When it terminates, the next transaction has highest priority

l37

A correct algorithm

l A new transaction is given lower priority than all active
transactions

l When a transaction tries to get a lock:
l If the cell is unlocked, give the lock immediately
l If the cell is locked by a transaction with higher priority, then just wait
l If the cell is locked by a transaction with lower priority:
l Restart the low priority transaction (forcibly abort and start again with

same priority)
l The high priority transaction then gets the lock and continues

l When a transaction commits, it releases its locks and dequeues
one waiting transaction per lock

l When a transaction aborts, it restores all states and releases its
locks, and dequeues one waiting transaction per lock

l38

20

State diagram

l This state diagram shows one incarnation of the algorithm
l Transactions may go through several incarnations until they

commit or abort
l A restart is the start state of the next incarnation

RunningStart Commit
or abort

Waiting Restart

done

ask & get lock

ask for lock
already taken get lock

high-prio needs
one of my locks

high-prio needs
one of my locks

l39

An improved algorithm

l The correct algorithm has a nasty implementation problem
l It terminates running transactions at an arbitrary point during their

execution
l If done poorly can lead to inconsistencies in the run-time data structures

l It is better to terminate the transaction at a well-defined point
l For example, when the transaction asks the manager for a lock

l We refine the algorithm to restart transactions at well-defined points
l Instead of restarting a low-priority transaction immediately, we mark it
l Later, when it tries to get a lock, if it is marked then it restarts

l40

21

Improved algorithm

l A transaction in “probation” state is not allowed to get locks
l If it tries to get a lock, it restarts

high-prio needs
one of my locks

Probation

done

ask for lock

RunningStart Commit
or abort

Waiting Restart

done

ask & get lock

ask for lock
already taken get lock

high-prio needs
one of my locks

l41

Implementation of the
transaction system

l42

22

Transaction abstraction
(Section 8.5)

l We define an abstraction for doing ACI transactions on cells
l {NewTrans Trans NewCellT} : creates a new transaction manager

and returns two operation, namely Trans for creating transactions
and NewCellT for creating new cells

l {NewCellT X C} : creates a new cell C with initial value X
l {Trans fun {$ T} <expr> end B} :

l Execute <expr> as a transaction, when it is done then B is bound to
commit or abort

l Four cell operations can be performed inside <expr>:
l T.access, T.assign, T.exchange do the standard three cell operations
l T.abort is a zero-argument procedure that aborts immediately

l There are only two ways a transaction can abort: raise an exception or
call T.abort

lLive example of transaction manager execution

l43

Implementation

l The transaction system is implemented with active objects
l Each transaction runs in one thread and has one active object
l The transaction manager is implemented as one active object

l Each transaction sends messages to the manager
l getlock(T C ?Sync) : asks for lock on C, returns Sync=ok or Sync=halt
l savestate(T C ?Sync) : saves state of C, returns Sync=ok
l commit(T) : unlocks all T’s cells and keeps their state
l abort(T) : unlocks all T’s cells and restores their state

l The transaction manager has three roles:
l Managing the cell locks: giving or refusing them (refusal causes restart)
l Managing the cell states: saving and restoring them
l Managing the transactions: handling commit, abort, restart

l44

23

Transaction system message
protocol

l Each transaction sends messages to the transaction
manager
l Possible messages: ask for lock, save cell state, commit, abort

l The transaction manager keeps track of the cell locks,
the cell states, and the transaction states

T1 T2 Tn
l…

TM

getlock(T C ?Sync)

Sync=ok
Sync=halt

savestate(T C ?Sync)

Sync=ok

commit(T)
abort(T)

l45

Transaction record

l Each transaction has a record containing all its local data:

T=trans(stamp:TS save:D body:P state:{NewCell running} result:R)

l stamp : timestamp (integer priority, lower value is higher priority)
l save : dictionary containing saved cell states where each key is a

cell name and the value is the record save(cell:C state:S)
l body : one-argument function transaction body
l state : element of the set {running, waiting_on(C), probation}

l46

24

Cell record

l Each cell has a record containing all its local data:

C=cell(name:N owner:{NewCell unit} queue:Q
state:{NewCell X})

l name : unique constant giving the cell’s name
l owner : transaction that is currently locking the cell
l queue : priority queue of transactions waiting for cell’s lock
l state : cell’s current state

l47

Priority queue

l A priority queue is a queue whose entries are always ordered
according to their priorities
l Q={NewPrioQueue} : creates an empty priority queue Q
l {Q.enqueue X P} : insert X with integer priority P
l X={Q.dequeue} : remove and return the entry with the smallest value of P
l X={Q.delete P} : remove and return an entry with priority P (it must exist)
l B={Q.isEmpty} : return true or false depending on whether Q is empty

l Each locked cell has a priority queue of waiting transactions
l The highest priority waiting transaction will get the lock when it is released

l48

25

Conclusions

l49

Conclusions

l Transactions are large atomic actions that can commit or abort
l This makes them useful for building fault-tolerant systems
l Transactions are defined by the ACID properties

l Transactions are widely used to manage large databases
l Most companies use transactional databases to manage critical data

l Transaction systems have strong implementation constraints :
l Safety and liveness properties
l Resilience, performance, scalability (which safety and which liveness?)
l Concurrency control = techniques for building transaction systems

l We show a transaction system that does optimistic concurrency
control with strict two-phase locking and deadlock avoidance
l The most complicated algorithm in the textbook!

l50

% LINFO1131
% Advanced Programming Language Concepts

% Lecture 11 (Dec. 20, 2023)

% Transaction manager

%%%%%%%%%%%%%%%%%%%

%%%%%% Active objects
declare
fun {NewActive Class Init}
 Obj={New Class Init}
 P
in
 thread S in
 {NewPort S P}
 {ForAll S proc {$ M} {Obj M} end}
 end
 proc {$ M} {Send P M} end
end

%%%%%%%%%%%%%%%%%%%

%%%%%% Priority queue
declare
fun {NewPrioQueue}
 Q={NewCell nil}
 proc {Enqueue X Prio}
 fun {InsertLoop L}
 case L of pair(Y P)|L2 then
 if Prio<P then pair(X Prio)|L
 else pair(Y P)|{InsertLoop L2} end
 [] nil then [pair(X Prio)] end
 end
 in Q:={InsertLoop @Q} end

 fun {Dequeue}
 pair(Y _)|L2=@Q
 in
 Q:=L2 Y
 end

 fun {Delete Prio}
 fun {DeleteLoop L}
 case L of pair(Y P)|L2 then
 if P==Prio then X=Y L2
 else pair(Y P)|{DeleteLoop L2} end
 [] nil then nil end
 end X
 in Q:={DeleteLoop @Q} X end

 fun {IsEmpty} @Q==nil end
in

 queue(enqueue:Enqueue dequeue:Dequeue
 delete:Delete isEmpty:IsEmpty)
end

%%%%%%%%%%%%%%%%%%%

%%%%%% Transaction manager
declare
class TMClass
 attr timestamp tm
 meth init(TM) timestamp:=0 tm:=TM end

 meth Unlockall(T RestoreFlag)
 for save(cell:C state:S) in {Dictionary.items T.save} do
 (C.owner):=unit
 if RestoreFlag then (C.state):=S end
 if {Not {C.queue.isEmpty}} then
 Sync2#T2={C.queue.dequeue} in
 (T2.state):=running
 (C.owner):=T2 Sync2=ok
 end
 end
 end

 meth Trans(P ?R TS)
 Halt={NewName}
 T=trans(stamp:TS save:{NewDictionary} body:P
 state:{NewCell running} result:R)
 proc {ExcT C X Y} S1 S2 in
 {@tm getlock(T C S1)}
 if S1==halt then raise Halt end end
 {@tm savestate(T C S2)} {Wait S2}
 {Exchange C.state X Y}
 end
 proc {AccT C ?X} {ExcT C X X} end
 proc {AssT C X} {ExcT C _ X} end
 proc {AboT} {@tm abort(T)} R=abort raise Halt end end
 in
 thread try Res={T.body t(access:AccT assign:AssT
 exchange:ExcT abort:AboT)}
 in {@tm commit(T)} R=commit(Res)
 catch E then
 if E\=Halt then {@tm abort(T)} R=abort(E) end
 end end
 end

 meth getlock(T C ?Sync)
 if @(T.state)==probation then
 {self Unlockall(T true)}
 {self Trans(T.body T.result T.stamp)} Sync=halt
 elseif @(C.owner)==unit then
 (C.owner):=T Sync=ok
 elseif T.stamp==@(C.owner).stamp then
 Sync=ok

 else /* T.stamp\=@(C.owner).stamp */ T2=@(C.owner) in
 {C.queue.enqueue Sync#T T.stamp}
 (T.state):=waiting_on(C)
 if T.stamp<T2.stamp then
 case @(T2.state) of waiting_on(C2) then
 Sync2#_={C2.queue.delete T2.stamp} in
 {self Unlockall(T2 true)}
 {self Trans(T2.body T2.result T2.stamp)}
 Sync2=halt
 [] running then
 (T2.state):=probation
 [] probation then skip end
 end
 end
 end

 meth newtrans(P ?R)
 timestamp:=@timestamp+1 {self Trans(P R @timestamp)}
 end
 meth savestate(T C ?Sync)
 if {Not {Dictionary.member T.save C.name}} then
 (T.save).(C.name):=save(cell:C state:@(C.state))
 end Sync=ok
 end
 meth commit(T) {self Unlockall(T false)} end
 meth abort(T) {self Unlockall(T true)} end
end

proc {NewTrans ?Trans ?NewCellT}
TM={NewActive TMClass init(TM)} in
 fun {Trans P ?B} R in
 {TM newtrans(P R)}
 case R of abort then B=abort unit
 [] abort(Exc) then B=abort raise Exc end
 [] commit(Res) then B=commit Res end
 end
 fun {NewCellT X}
 cell(name:{NewName} owner:{NewCell unit}
 queue:{NewPrioQueue} state:{NewCell X})
 end
end

%%%%%%%%%%%%%%%%%%%

% LINFO1131
% Advanced Programming Language Concepts

% Lecture 11 (Dec. 20, 2023)

% Examples of transactions

%%%%%%%%%%%%%%%%%%%

% Create transaction manager
declare Trans NewCellT in
{NewTrans Trans NewCellT}

% Create a small database
declare
D={MakeTuple db 1000}
for I in 1..1000 do D.I={NewCellT I} end

% Define transaction that mixes up numbers in database
% Sum of database entries is invariant
declare
fun {Rand} {OS.rand} mod 1000 + 1 end
proc {Mix} {Trans

proc {$ T _}
 I={Rand} J={Rand} K={Rand}
 A={T.access D.I}
 B={T.access D.J} C={T.access D.K}
in
 {T.assign D.I A+B-C}
 {T.assign D.J A-B+C}
 if I==J orelse I==K orelse J==K then

 {T.abort} end
 {T.assign D.K ~A+B+C}
end _ _}

end

% Define transaction that sums all entries in database
declare
S={NewCellT 0}
fun {Sum}
 {Trans

fun {$ T} {T.assign S 0}
 for I in 1..1000 do

 {T.assign S {T.access S}+{T.access D.I}}
 end
 {T.access S}
end _}

end

{Browse {Sum}} % Displays 500500 (sum of all entries)

% Mix up the database entries with 1000 concurrent mix transactions
for I in 1..1000 do thread {Mix} end end

{Browse {Sum}} % Still displays 500500 (sum is invariant)

% Display first 10 entries of the database
{Trans proc {$ T _}

 for I in 1..10 do
 {Browse {T.access D.I}}
 end
end _ _}

%%%%%%%%%%%%%%%%%%%

