
1

Concurrent programming
with functional dataflow

Collected lecture slides from
LINFO1104 and LINFO1131

May 3, 2024

Peter Van Roy

ICTEAM Institute
Université catholique de Louvain

https://webperso.info.ucl.ac.be/~pvr/pldc.html
peter.vanroy@uclouvain.be

1

l1

Concurrent programming
with functional dataflow
l Functional dataflow is a form of pure functional programming with threads

and dataflow synchronization on single-assignment variables
l It has good properties that make it an excellent choice for concurrent programs

l We call it “Concurrency for Dummies”: threads can be added at will without introducing
bugs, all list functions can become efficient concurrent agents with input and output
streams by running them in threads, lazy evaluation is available, etc.

l Its limitation is that it cannot do general (nondeterministic) real-world interaction
l We define an extension, functional dataflow with ports, which is able to interact with the

real world. Ports are a named extension of streams.
l Realistic applications only need nondeterministic real-world interaction in a few places, so

we can use functional dataflow mostly, and functional dataflow with ports for the rest

l This document collects all the course material on functional dataflow in the
courses LINFO1104 and LINFO1131, second and third-year university
programming courses given at the Louvain Engineering School, UCLouvain
l This document extends and completes the material on functional dataflow given in Chapter 4

of Concepts, Techniques, and Models of Computer Programming (MIT Press)
l All code examples can be run in the Mozart 2 system, available at www.mozart2.org

2

l2

https://webperso.info.ucl.ac.be/~pvr/pldc.html
mailto:peter.vanroy@uclouvain.be
http://www.mozart2.org/

2

Table of contents
l LINFO1104 Lecture 9 (slide 5)

l Functional dataflow
l “Concurrency for Dummies”

l LINFO1104 Lecture 10 (slide 95)
l Limitations of functional dataflow (part 1)
l Two extensions of functional dataflow

l LINFO1131 Lectures 2 & 3 (slide 175)
l Lazy evaluation and declarative programming

l LINFO1131 Lecture 4 (slide 259)
l Advanced declarative algorithm design

l LINFO1131 Lecture 5 (slide 311)
l Limitations of declarative programming (part 2)

3

l3

Reference book

l Peter Van Roy and Seif Haridi. Concepts,
Techniques, and Models of Computer
Programming. MIT Press, 2004.

l Chapter 4, “Declarative Concurrency”,
covers functional dataflow

l The course slides extend the presentation
given in the textbook
l The textbook gives a formal semantics and situates

functional dataflow in the context of general
programming with other paradigms

l4

3

LINFO1104: Lecture 9
Functional dataflow

5

l5

The world
is concurrent
l The real world is concurrent

l It is made of activities that progress independently

l The computing world is concurrent too:
l Distributed system: computers linked by a network

l A concurrent activity is called a computing node (computer)
l Each computing node has its own resources (memory, CPU)

l Operating system: management of a single computer
l A concurrent activity is called a process
l Processes share the same computer resources

and have independent memory spaces
l Process: execution of a single program

l A concurrent activity is called a thread
l Threads share the same memory space

6

l6

4

Concurrent
programming
l Concurrency is natural

l Many activities are naturally independent
l Activities that are independent are ipso facto concurrent
l So how can we write a program with many independent activities?
l Concurrency must be supported by the language!

l A concurrent program
l Multiple progressing activities that exist at the same time
l Activities that can communicate and synchronize

l Synchronize: an activity waits for an action of another activity
l Communicate: information passes from one activity to another

7

l7

Concurrency
can be (very) hard

l It introduces many difficulties such as nondeterminism, race conditions,
reentrancy, deadlocks, livelocks, fairness, consistency of shared data
l Java’s synchronized objects (monitors) are tough to program with
l Erlang’s and Scala’s actors are better, but they still have race conditions
l Libraries can hide some of these problems, but they always peek through

l Adding distribution (networked systems) makes it even harder

l Adding partial failure makes it even much harder than that

l The Holy Grail: can we make concurrent programming
as easy as sequential programming?
l Yes, it can be done, if the paradigm is chosen wisely
l In this course we will see functional dataflow, which is a concurrent

paradigm that is a form of functional programming

LINFO2345

LINFO1131

8

l8

5

Functional dataflow
(a.k.a. deterministic dataflow)

9

l9

Concurrency paradigms
l There are three main paradigms of concurrent programming
l Functional dataflow (the simplest and best)

l This paradigm is also called deterministic dataflow
l It supports all the techniques of functional programming
l That is what we will see today

l What are the two other paradigms?
l Message-passing concurrency (e.g., Erlang and Scala actors)

l Activities send messages to each other (like sending letters)
l This works well and is not too hard
l Functional dataflow with ports is a refinement that is often better

l Shared-state concurrency (e.g., Java monitors)
l Activities share the same data and they try to work together

without getting in each other’s way
l Much more complicated than the two previous paradigms
l Unfortunately, many current languages still use this paradigm

We will see Erlang later

LINFO1131

10

l10

6

An unbound variable
l Let us explain dataflow by starting with an

unbound variable
l An unbound variable is created in memory but

not bound to a value
l What happens when you invoke an operation

with an unbound variable?
local X Y in
 Y=X+1
 {Browse Y}
end

l What happens?

11

l11

What to do with an
uninitialized variable?
l Different languages do different things

l In C, the addition continues and X has a “garbage value”
(= content of X’s memory at that moment)

l In Java, the addition continues and X’s value is 0
(if X is an object attribute with type integer)

l In Prolog, execution stops with an error
l In Java, the compiler detects an error

(if X is a local variable)
l In Oz, execution pauses just before the addition and

continues when X is bound (dataflow execution)
l In constraint programming, the equation “Y=X+1”

is added to the set of constraints and execution
continues. An amazing way to compute!

LINFO2365
Constraint
programming

12

l12

7

Continuing
the execution
l The waiting instruction:

declare X
local Y in
 Y=X+1
 {Browse Y}
end

l If someone would bind
X, then execution could
continue

l But who can do it?

13

l13

Continuing
the execution

l Answer: another
concurrent activity!

l If another activity does:
 X=20

l Then the addition will
continue and display 21!

l This is called
dataflow execution

l The waiting instruction:
declare X
local Y in
 Y=X+1
 {Browse Y}
end

l If someone would bind
X, then execution could
continue

l But who can do it?

14

l14

8

Dataflow execution

l Activity A waits patiently at point (1) just before the addition
l When activity B binds X=20 at point (2), then activity A can

continue
l If activity B binds X=20 before activity A reaches point (1),

then activity A does not have to wait

Y=X+1 {Browse Y}
Activity A’s progress

(1)
X=20

Activity B’s progress
(2)

15

l15

Threads

16

l16

9

Threads
l We add a language concept to support concurrent activities

l In a program, an activity is a sequence of executing instructions
l We add this concept to the language and call it a thread

l Each thread is sequential
l Each thread runs independently of the others

l There is no order defined between different threads
l The system executes all threads using interleaving semantics:

it is as if only one thread executes at a time, with execution
switching rapidly from one thread to another

l The system guarantees that each thread receives a fair share
of the computational capacity of the processor

l Two threads can communicate if they share a variable
l For example, the variable corresponding to identifier X in the

example we just saw

17

l17

Thread creation
l Creating a thread in Oz is simple
l Any instruction can be executed in a new thread:

 thread <s> end
l For example:

 declare X
 thread {Browse X+1} end
 thread X=1 end

l What does this small program do?
l Several executions are possible, but they all eventually

arrive at the same result: 2 is displayed!

18

l18

10

A small program (1)
l A small program with several threads:

 declare X0 X1 X2 X3 in
 thread X1=1+X0 end
 thread X3=X1+X2 end
 {Browse [X0 X1 X2 X3]}

l The Browser displays [X0 X1 X2 X3]
l The variables are all unbound
l The Browser also uses dataflow:

when a variable is bound, the display is updated
19

l19

A small program (2)
l A small program with several threads:

 declare X0 X1 X2 X3 in
 thread X1=1+X0 end
 thread X3=X1+X2 end
 {Browse [X0 X1 X2 X3]}

l Two threads will wait:
l X1=1+X0 waits (since X0 is unbound)
l X3=X1+X2 waits (since X1 and X2 are unbound)

20

l20

11

A small program (3)
l A small program with several threads:

 declare X0 X1 X2 X3 in
 thread X1=1+X0 end
 thread X3=X1+X2 end
 {Browse [X0 X1 X2 X3]}

l Let’s bind one variable
l Bind X0=4

21

l21

A small program (4)
l A small program with several threads:

 declare X0 X1 X2 X3 in
 thread X1=1+X0 end
 thread X3=X1+X2 end
 {Browse [X0 X1 X2 X3]}

l Let’s bind one variable
l Bind X0=4

l The first thread executes and binds X1=5
l The Browser displays [4 5 _ _]

22

l22

12

A small program (5)
l A small program with several threads:

 declare X0 X1 X2 X3 in
 thread X1=1+X0 end % terminated
 thread X3=X1+X2 end
 {Browse [X0 X1 X2 X3]}

l The second thread is still waiting
l Because X2 is still unbound

23

l23

A small program (6)
l A small program with several threads:

 declare X0 X1 X2 X3 in
 thread X1=1+X0 end % terminated
 thread X3=X1+X2 end
 {Browse [X0 X1 X2 X3]}

l Let’s do another binding
l Bind X2=7

l The second thread executes and binds X3=12
l The Browser displays [4 5 7 12]

24

l24

13

The Browser is a
dataflow program
l The Browser executes with its own threads
l For each unbound variable that is displayed,

there is a thread in the Browser that waits until
the variable is bound
l When the variable is bound, the display is updated

l This does not work with cells
l The Browser uses the functional dataflow paradigm
l The Browser does not look at the content of cells

25

l25

Streams and agents

26

l26

14

Streams
l A stream is defined as a list that ends in an

unbound variable
l S=a|b|c|d|S2
l A stream can be extended with new elements as

long as necessary
l The stream can be closed by binding the end to nil

l A stream can be used as a communication
channel between two threads
l The first thread adds elements to the stream
l The second thread reads the stream

27

l27

Programming with streams
l This program displays the elements of a

stream as they appear:
proc {Disp S}
 case S of X|S2 then {Browse X} {Disp S2} end
end
declare S
thread {Disp S} end

l We can add elements gradually:
 declare S2 in S=a|b|c|S2
 declare S3 in S2=d|e|f|S3

l Try it yourself!
28

l28

15

Producer/consumer (1)
l A producer generates a stream of data

 fun {Prod N} {Delay 1000} N|{Prod N+1} end
l The {Delay 1000} slows down execution enough to observe it

l A consumer reads the stream and performs
some action (like the Disp procedure)

l A producer/consumer program:
 declare S
 thread S={Prod 1} end
 thread {Disp S} end

29

l29

Producer/consumer (2)

l Each circle is a concurrent activity that reads and
writes streams
l We call this an agent

l Agents P and C communicate through stream S
l The first thread creates the stream, the second reads it

thread S={Prod 1} end thread {Disp S} end

S=1|2|3|4|…

Agent P Agent C

30

l30

16

Pipeline (1)
l We can add more agents between P and C
l Here is a transformer that modifies the stream:

 fun {Trans S}
 case S of X|S2 then X*X|{Trans S2} end
 end

l This program has three agents:
 declare S1 S2
 thread S1={Prod 1} end
 thread S2={Trans S1} end
 thread {Disp S2} end

31

l31

Pipeline (2)

l We now have three agents
l The producer (agent P) creates stream S1
l The transformer (agent T) reads S1 and creates S2
l The consumer (agent C) reads S2

l The pipeline is a very useful technique!
l For example, it is omnipresent in operating systems since Unix

thread S1={Prod 1} end thread {Disp S2} end

S1=1|2|3|…

Agent P Agent C

thread S2={Trans S1} end

Agent T

S2=1|4|9|…

32

l32

17

Agents
l An agent is a concurrent activity that reads and writes

streams
l The simplest agent is a list function executing in one thread
l Since list functions are tail-recursive, the agent can execute

with a fixed memory size
l This is the deep reason why single assignment is important:

it allows tail-recursive list functions, which makes functional
dataflow a practical paradigm

l All list functions can be used as agents
l All functional programming techniques can be used in

functional dataflow
l Including higher-order programming! Later on we will see more

examples of the power of the model.
33

l33

Thread semantics

34

l34

18

Thread
semantics (1)
l We extend the abstract machine with threads
l Each thread has one semantic stack

l The instruction thread <s> end creates a new stack
l All stacks share the same memory

l There is one sequence of execution states,
and threads take turns executing instructions
l (MST1,σ1) → (MST2,σ2) → (MST3,σ3) → ...
l MST is a multiset of semantic stacks
l Each step “→” executes one step in one thread

l The choice of which thread to execute is made by the scheduler
l The scheduler is part of the abstract machine

l This is called interleaving semantics
35

l35

Thread
semantics (2)

A semantic stack
that is about to
create a thread

lMemory s

(thread <s> end,E)
ST

36

l36

19

Thread
semantics (3)

We now have
two stacks! [(<s>,E)]ST

lMemory s

37

l37

Why interleaving
semantics?
l Interleaving semantics is much easier to reason about than

true concurrency semantics
l True concurrency semantics = more than one thread can

execute in one execution step
l Imagine that all threads execute in parallel, each with its own

processor but all sharing the same memory
l What happens when two threads write simultaneously at the

same memory word?
l With interleaving semantics, one thread will always write before

the other, which makes reasoning simple
l True concurrency semantics also models where threads ”step on

each others’ toes”, but usually this is not needed, since the
hardware is designed so that this does not happen

l For example, in a multicore processor the cache coherence
protocol avoids simultaneous operations on one memory word

38

l38

20

Concurrent
program execution

39

l39

Total order of a
sequential program

l A sequential program is a program with one thread

l In a sequential program, execution states are in a total order
l Total order = there is a defined order between all pairs of states

One execution step

Sequential
execution

40

l40

21

Partial order of a
concurrent program
l A concurrent program is a program with more than one thread
l In a concurrent program, execution states are in a partial order

l Partial order = not all pairs of execution states have a defined order
l For example, c < d (c before d) but b and c have no order

One execution step

Thread T1

Thread T2

Thread T3

Thread
creation

c

b

d

a

41

l41

Partial order of a
concurrent program

Bind a dataflow variable (”X=20”)

Wait for the value of a dataflow variable (”Y=X+1”)

X

Z

X

Thread
creation

One execution step

X=20

Y=X+1

Thread T1

Thread T2

Thread T3

§ Dataflow synchronization adds order
§ For example, e<f because of dataflow

e

f

42

l42

22

The actual execution order
l The processor execution is always one sequence of execution states
l The scheduler chooses the order of these states, which is always

compatible with the partial order (choice = nondeterminism)

Partial order of a
concurrent program as
defined by its threads

Total order of actual
execution on the
processor (one core)

Scheduler choice
(nondeterminism)

43

l43

Nondeterminism
and the scheduler

44

l44

23

Nondeterminism
and the scheduler
l Nondeterminism is the ability of a system to make decisions

(choices) independently of the system’s developer

l The scheduler is the part of the system that decides at each
moment which thread to execute
l This decision is an example of nondeterminism
l Scheduler decisions often vary from one execution to the next; they

depend on external conditions such as processor load, memory
behavior (caching), network behavior, and timing of external events

l Nondeterminism exists in all concurrent systems
l It must be so, since the concurrent activities are independent
l All concurrent programs must manage their nondeterminism!

45

l45

Example of
nondeterminism (1)
l What does the following program do?

 declare X
 thread X=1 end
 thread X=2 end

l The execution order of the two threads is not fixed
l X will be bound to 1 or 2, we don’t know which
l The other thread will have an error (raise an exception)

l A variable cannot be assigned to two values
l This is an example of nondeterminism

l A choice made by the system during execution
l The system is free to choose one or the other

46

l46

24

Example of
nondeterminism (2)
l What does the following program do?

 declare X={NewCell 0}
 thread X:=1 end
 thread X:=2 end

l The execution order of the two threads is not fixed
l Cell X will first be bound to one value, then to the other
l When both threads terminate, X will contain 1 or 2, we

don’t know which
l This time there is no error

l This is also an example of nondeterminism
l A choice made by the system during execution

47

l47

Example of
nondeterminism (3)
l What does the following program do?

 declare X={NewCell 0}
 thread X:=1 end
 thread X:=1 end

l It makes a choice, just like the previous program
l But in this case, the final results are the same (by accident)

l This is still nondeterminism!
l The important point is the choice: the running program still

sees a difference in the threads’ execution order
l The results may be the same by accident (depending on

the computations done), but the choice remains
48

l48

25

Managing
nondeterminism
l Nondeterminism must always be managed

l It should not affect program correctness (this can be very tricky!)
l The most complicated case is threads and cells used together

(like the previous example)
l Unfortunately, this is exactly how many languages handle

concurrency (Java, C++, C#, etc.) ➞ see course LINFO1131

l Functional dataflow has a major advantage
l The result of a program is always the same (if the program has

no error, i.e., raises no exception: errors can change the result)
l The nondeterminism of the scheduler does not affect the result

l There is no observable nondeterminism
l We call this « Concurrency for Dummies »
l It is a consequence of Church-Rosser (functional programming)

49

l49

How the scheduler works (1)
l The choice of which thread to execute and for how long

is made by the scheduler

l Time slices (on modern systems this is often 10ms)
l Each thread executes during a short time period called a time slice
l On multicore processors, some operating systems can allow time

slices on different cores, but there is still interleaving semantics

l Thread states (runnable and suspended)
l A thread is runnable if the instruction on the top of its stack is not waiting

on a dataflow variable. Otherwise, the thread is suspended, in other words
blocked on a variable.

50

l50

26

How the scheduler works (2)
l Fairness

l A scheduler is fair if every runnable thread will eventually
(eventually = in finite time) be executed

l Priority
l Usually, threads are classified according to their priority, and some

additional guarantees are given on the percentage of the processor
time that is given to the threads of the same priority

l Mozart has three priorities, high (≥90%), medium (≥9%), and low (≥1%)
l Reasoning about programs

l If the scheduler is fair, then it is possible to reason about program
execution (since all threads will run to completion)

l If the scheduler is not fair, then a perfectly correct program may not run
correctly
l Certain threads may starve, i.e., receive 0% of the processor time, so they

never execute, and the program just stops
51

l51

“Concurrency for Dummies”

Concurren
cy

52

l52

27

“Concurrency for Dummies”
l The multi-agent programs we saw so far are all deterministic

l Their nondeterminism is not observable (results are always the same)
l The agent Trans with input 1|2|3|_ always outputs 1|4|9|_

l In these programs, concurrency does not change the result
but changes only the order of computations
l In functional dataflow, scheduler choices cannot change the result
l It is possible to add threads at will to a program without changing

the result (we call this Concurrency for Dummies)
l Adding threads can make the program more incremental

(by removing unnecessary blocking)
l This only works in functional dataflow (functional programming)!

l It is a consequence of the Church-Rosser theorem
l It is not true when using cells and threads together:

it does not work in Java, Python, or C++
53

l53

Example (1)
fun {Map Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 {F X} | {Map Xr F}
 end
end

54

l54

28

Example (2)
fun {CMap Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 thread {F X} end | {CMap Xr F}
 end
end

55

l55

Example (3)
fun {CMap Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 thread {F X} end | {CMap Xr F}
 end
end

thread … end
can be used as
an expression

56

l56

29

Example (4)
fun {CMap Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 thread {F X} end | {CMap Xr F}
 end
end

l Compare these two executions: (what do they display?)
 declare F
 {Browse {Map [1 2 3 4] F}}

 declare F
 {Browse {CMap [1 2 3 4] F}} 57

l57

Example (5)
fun {CMap Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 thread {F X} end | {CMap Xr F}
 end
end

l The Browser displays [_ _ _ _]
l CMap calculates a list with unbound variables
l The new threads wait until F is bound

l What would happen if {F X} was not in its own thread?
l Nothing would be displayed! The Map call would block.

declare F
{Browse {CMap [1 2 3 4] F}}

58

l58

30

Example (6)
fun {CMap Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 thread {F X} end | {CMap Xr F}
 end
end

l What happens when we bind F:
 F = fun {$ X} X+1 end

59

l59

Example (7)
fun {CMap Xs F}
 case Xs
 of nil then nil
 [] X|Xr then
 thread {F X} end | {CMap Xr F}
 end
end

l The Browser displays [2 3 4 5]
l With or without the thread creation,

the final result is always [2 3 4 5]
60

l60

31

Concurrency for Dummies!
l Threads can be added at will to a functional program

without changing the result
l Therefore it is very easy to take a functional program

and make it concurrent
l It suffices to insert thread … end in those places that

need concurrency

l Warning: Concurrency for Dummies does not work in a
program with cells (= mutable variables)!
l For example, it does not work in Java
l In Java, concurrency is handled with the concept of a

monitor (= synchronized object), which coordinates how
multiple threads access an object. This is much more
complicated than functional dataflow.

61

l61

Why does
it work? (1)

fun {Fib X}
 if X==0 then 0

 elseif X==1 then 1
 else

 thread {Fib X-1} end + {Fib X-2}
 end

end

62

l62

32

fun {Fib X}
 if X==0 then 0 elseif X==1 then 1
 else F1 F2 in
 F1 = thread {Fib X-1} end

 F2 = {Fib X-2}

F1 + F2
end

end

Dataflow dependency

It works because variables can
only be bound to one value
(single assignment)

Why does
it work? (2)

Translating to kernel language
shows how it works

63

l63

Execution
of {Fib 6}

F6

F5

F4 F2

F3

F2

F1

F2

F3

F2

F1

F4

F1F3

F2

Create a thread

Synchronize
with the result

Running thread

64

l64

33

Observing the
execution of Fib

Oz Compiler Panel (in Oz menu)Total number of threads
created since system startup

Only in Mozart 1

65

l65

Counting threads
C={NewCell 0}
proc {Inc C}
 {Exchange C X Y} Y=X+1
end

fun {Fib X}
 if X==0 then 0

 elseif X==1 then 1
 else

 thread {Inc C} {Fib X-1} end + {Fib X-2}
 end

end

This works also in Mozart 2

C:= @C + 1 is not correct!
It is because the scheduler can put
the thread to sleep after the X=@C+1
and before the C:=X.

66

l66

34

Multi-agent
programming

67

l67

Multi-agent
programming
l Earlier in the course we saw some simple

examples of multi-agent programs
l Producer/consumer
l Producer/transformer/consumer (pipeline)

l Let’s see two more sophisticated examples
l Sieve of Eratosthenes: dynamically building a

pipeline during its execution
l Digital logic simulation: using higher-order

programming together with concurrency

68

l68

35

The Sieve of
Eratosthenes

l The Sieve of Eratosthenes is an algorithm for calculating a
sequence of prime numbers

l Each agent in the pipeline removes multiples of an integer
l Starting with a sequence containing all integers, we end up

with a sequence of primes

-2k -3k -5k
2|3|4|5|6|7|8|…

3|5|7|9|11|13|15|… 5|7|11|13|17|19|…

7|11|13|17|19|…

…

69

l69

A filter agent
l A list function that removes multiples of K:

fun {Filter Xs K}
 case Xs of X|Xr then
 if X mod K \= 0 then X|{Filter Xr K}
 else {Filter Xr K} end
 else nil
 end
end

l We make an agent by putting it in a thread:
thread Ys={Filter Xs K} end

70

l70

36

The Sieve program
l Sieve builds the pipeline during execution:

fun {Sieve Xs}
 case Xs
 of nil then nil
 [] X|Xr then X|{Sieve thread {Filter Xr X} end}
 end
end
declare Xs Ys in
thread Xs={Prod 2} end
thread Ys={Sieve Xs} end
{Browse Ys}

Concurrent deployment
Building the infrastructure of
a concurrent program during
its execution (execution will

just wait if a part that it
needs is not built yet)

71

l71

An optimization
l Otherwise too many do-nothing agents are created!

fun {Sieve2 Xs M}
 case Xs
 of nil then nil
 [] X|Xr then
 if X=<M then
 X|{Sieve2 thread {Filter Xr X} end M}
 else Xs end
 end
end

l We call {Sieve2 Xs 316} to generate a list of primes
up to 100000 (why?)

72

l72

37

Digital logic
simulation

73

l73

Digital logic
simulation
l The functional dataflow paradigm makes it

easy to model digital logic circuits

l We show how to model combinational logic
circuits (no memory) and sequential logic
circuits (with memory)

l Signals in time are represented as streams;
logic gates are represented as agents

74

l74

38

Modeling
digital circuits
l Real digital circuits consist of active circuit elements

called gates which are interconnected using wires that
carry digital signals

l A digital signal is a voltage in function of time
l Digital signals are meant to carry two possible values, called

0 and 1, but they may have noise, glitches, ringing, and other
undesirable effects

l A digital gate has input and output signals
l The output signal is slightly delayed with respect to the input

l We will model gates as agents and signals as streams
l This assumes perfectly clean signals and zero gate delay
l We will later add a delay gate in order to model gate delay

75

l75

Digital signals
as streams
l A signal is modeled by a stream that

contains elements with values 0 or 1

S=a0|a1|a2|...|ai|...

l Time instants are numbered from when
the circuit starts running
l This models a clocked circuit

l At instant i, the signal’s value ai∈{0,1}
76

l76

39

Digital logic gates

l Some typical logic gates with their standard pictorial
symbols and the boolean functions that define them

l But gates are not just boolean functions!

00
0

0
1

1
1

1
x

x
y

y

x
y

z

z

z

x Not

Or

And

Xorz

x Not And Or Xor
z

1

0

0 1 1
0 0 1 1

1 1 0

0 0 0

y

1

77

l77

Digital gates
as agents
l A gate is much more than a boolean function; it is an active entity

that takes input streams and calculates an output stream

fun {And A B} if A==1 andthen B==1 then 1 else 0 end end
fun {Loop S1 S2}

case S1#S2 of (A|T1)#(B|T2) then {And A B}|{Loop T1 T2} end
end
thread Sc={Loop Sa Sb} end

l Example execution:

Sx=0|1|0|Tx % input signal x
Sy=1|1|0|Ty % input signal y
Sz=0|1|0|Tz % output signal z

x

y
z

And gate

78

l78

40

Creating
many gates
l Let us define an abstraction for building all the different

kinds of logic gates we need
l We define the function GateMaker that takes a two-argument

boolean function Fun, where {GateMaker Fun} returns a function
FunG that creates gates

l Each call to FunG creates a running gate based on Fun
l This gives three levels of abstraction that we can

compare with object-oriented programming:
l GateMaker is analogous to a generic class or metaclass
l FunG is analogous to a class
l A running gate is analogous to an object

79

l79

GateMaker
implementation
l Calling {GateMaker F} creates a gate maker:

fun {GateMaker F}
fun {$ Xs Ys}

fun {GateLoop Xs Ys}
case Xs#Ys of (X|Xr)#(Y|Yr) then

{F X Y}|{GateLoop Xr Yr}
end

end
in

thread {GateLoop Xs Ys} end
end

end

80

l80

41

Making gates
l Each of these functions can make gates:

AndG={GateMaker fun {$ X Y} X*Y end}
OrG={GateMaker fun {$ X Y} X+Y-X*Y end}
NandG={GateMaker fun {$ X Y} 1-X*Y end}
NorG={GateMaker fun {$ X Y} 1-X-Y+X*Y end}
XorG={GateMaker fun {$ X Y} X+Y-2*X*Y end}

81

l81

Combinational logic

82

l82

42

Combinational logic
l Combinational logic has no memory: all

calculation is done at the same time instant
l A gate is a simple combinational function:

zi = xi And yi

l Therefore, any number of interconnected
gates also defines a combinational function

l We define a useful circuit called a full adder

x

y
z

83

l83

Full adder
specification

l A full adder adds three 1-bit binary numbers x, y, and z
giving a sum bit s and carry bit c

l An n-bit adder can be built by connecting n full adders

x

y

z c

s

lx y z c s

l0 0 0 0 0
l0 0 1 0 1
l0 1 0 0 1
l0 1 1 1 0
l1 0 0 0 1
l1 0 1 1 0
l1 1 0 1 0
l1 1 1 1 1

a

b

d

e

f

84

l84

43

Full adder
implementation
l Full adder creation as five-argument component:

proc {FullAdder X Y Z C S}
A B D E F

in
A={AndG X Y}
B={AndG Y Z}
D={AndG X Z}
F={OrG B D}
C={OrG A F}
E={XorG X Y}
S={XorG Z E}

end

85

l85

Sequential logic

86

l86

44

Sequential logic
l Sequential logic has memory: past values

of a signal influence the present values
l We add a way for the past to influence the

present: a Delay gate

S=a0|a1|a2|...|ai|...
T=b0|b1|b2|...|bi|...

bi=ai-1 ⇒ T=0|S

s t

Delay

fun {DelayG S} 0|S end

(if i>0)
87

l87

Latch
specification

l A latch is a simple circuit with memory; it has two stable states and
can memorize its input

l Output do follows input di and freezes when c is 1

Delay

id

do

c
f a

be

88

l88

45

Latch
implementation
l Latch creation as a three-argument component:

proc {Latch C Di Do}
A B E F

in
F={DelayG Do}
A={AndG C F}
E={NotG C}
B={AndG E Di}
Do={OrG A B}

end

89

l89

Summary and history

l90

46

Functional dataflow summary
l We have introduced a simple and expressive

paradigm for concurrent programming
l We can build multi-agent programs using streams (lists with

unbound tail) and agents (list functions running in a thread)
l It is based on two simple ideas

l Single-assignment variables that synchronize on binding
l Threads that define a sequence of executing instructions

l By design, it has no observable nondeterminism
(no race conditions)
l Functional dataflow is a form of functional programming
l « Concurrency for Dummies » is the best concurrent paradigm

l91

The future:
making concurrency simple
l Parallel programming has finally arrived (a surprise to old timers like me!)

l Multicore processors: quadcore, octocore, 24 cores today, a hundred
in a decade, many apps take advantage of it

l Distributed computing: bigdata analytics with tens of nodes today (NoSQL,
MapReduce), hundreds and thousands tomorrow, most apps will do it

l Programs are getting more and more concurrent
l Sequential programming can’t be the default (it’s a bottleneck)
l Libraries cannot hide the issue (interface complexity, distribution structure)

l Concurrency is getting easier
l “Concurrency for Dummies” is the best paradigm (functional dataflow)!
l It can be used easily on multicore and distributed systems

l High performance becomes easy
l Network transparency (program code is the same for different numbers of cores)
l Modular fault tolerance is easy

l92

47

But is determinism
the right default? Yes!

l Functional dataflow has strong limitations!
l A program that needs nondeterminism can’t be written
l Even a simple client/server can’t be written

l But determinism has enormous advantages, so it is the correct default
l Race conditions are impossible
l With determinism as default, we reduce the need for nondeterminism (in the

client/server, it’s needed only at the point where the server accepts requests)
l Any functional program can be made concurrent without changing the result

Client 1

Client 2

Server
A client/server can’t be

written in functional dataflow!
It’s because the server must
accept requests from clients

nondeterministically

Can be solved!
Just add nondeterminism
exactly where it is needed

Some programs cannot be written in functional dataflow

l93

History of functional dataflow
l Deterministic concurrency has a long history that starts in 1974

l Gilles Kahn. The semantics of a simple language for parallel programming. In IFIP
Congress, pp. 471-475, 1974. Deterministic concurrency.

l Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. In IFIP
Congress, pp. 993-998, 1977. Lazy deterministic concurrency.

l Why was it forgotten for so long?
l Message passing and monitors arrived at about the same time:

l Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR formalism
for artificial intelligence. In 3rd International Joint Conference on Artificial Intelligence
(IJCAI), pp. 235-245, Aug. 1973.

l Charles Antony Richard Hoare. Monitors: An operating system structuring concept.
Communications of the ACM, 17(10):549-557, Oct. 1974.

l Actors and monitors express nondeterminism, so they are better. Right? Wrong!

l Dataflow computing also has a long history that starts in 1974
l Jack B. Dennis. First version of a data flow procedure language. Springer Lecture Notes in

Computer Science, vol. 19, pp. 362-376, 1974.
l Dataflow remained a fringe subject since it was always focused on parallel programming,

which only became mainstream with the arrival of multicore processors in mainstream
computing (e.g., IBM POWER4, the first dual-core processor, in 2001).

l94

48

LINFO1104: Lecture 10
Limitations of

functional dataflow

95

l95

Overview of lecture 10
l Limitations of functional dataflow

l Some applications cannot be written in functional dataflow!
We explain why not.

l Two extensions of functional dataflow
l We overcome the limitation by adding one new concept, ports,

to the kernel language of functional dataflow.
l We define a new paradigm, message-passing concurrency. This

paradigm uses port objects and active objects, which are both
agents defined with ports.

l We define a second paradigm, functional dataflow with ports.
This paradigm does not use agents but uses functional dataflow
as much as possible (like we did in the previous lecture) and
adds ports only when they are necessary.

96

l96

49

Limitations of
functional dataflow

(part 1)

97

l97

Limitations of
functional dataflow
l In lectures 9 we saw functional dataflow, which makes

concurrent programming very easy
l It allows “Concurrency for Dummies”: threads can be added to a

program at will without changing the result

l But unfortunately it cannot be used all the time!
l It has a strong limitation: it cannot be used to write programs

when the nondeterminism must be visible
l But why must nondeterminism sometimes be visible? Let’s see

an example: a client/server application.

98

l98

50

Client/server application (1)
l A client/server application consists of a set of clients all

communicating to one server
l The clients and the server are concurrent agents
l Each client sends messages to the server and receives replies

l Client/server applications are ubiquitous on the Internet
l For example, all Web stores are client/servers: the users are

clients and the store is the server
l When shopping at Amazon, your Web browser sends messages

and receives replies from the Amazon server

l Client/server cannot be written in functional dataflow!
l Why not? Let’s try and see what goes wrong! Try it yourself!

99

l99

Client/server application (2)

l Each client has a link to the server and can send messages to the
server at any time

l The server receives each message, does a local computation, and
then replies immediately

lClient 1

lClient 2

lClient n

lServer
…

100

l100

51

Client/server: first attempt
l Let’s try to write a client/server in functional dataflow

l Assume that there are two clients, each with an output stream,
and the server receives both

l Here is the server code:

proc {Server S1 S2}
 case S1|S2 of (M1|T1)|S2 then
 (handle M1) {Server T1 S2}
 [] S1|(M2|T2) then
 (handle M2) {Server S1 T2}
 end
end

This doesn’t work!
Why not?

101

l101

Client/server: second attempt
l The first attempt does not work if Client 2 sends a message and

Client 1 sends nothing
l We can try doing it the other way around:

proc {Server S1 S2}
 case S1|S2 of S1|(M2|T2) then
 (handle M1) {Server S1 T2}
 [] (M1|T1)|S2 then
 (handle M2) {Server T1 S2}
 end
end

l This doesn’t work if Client 1 sends a message and Client 2 does not!

102

l102

52

Client/server: third attempt
l Maybe the server has to receive from both clients:

proc {Server S1 S2}
 case S1|S2 of (M1|T1)|(M2|T2) then
 (handle M1)
 (handle M2)
 {Server T1 T2}
 end
end

l This does not work either! (Why not?)

103

l103

What is the problem?
l The case statement waits on a single pattern

l This is because of determinism: with the same input,
the case statement must give the same result

l But the server must wait on two patterns
l Either M1 from Client 1 or M2 from Client 2
l Either pattern is possible, it depends on when each

client sends the message and on how long the
message takes to reach the server
l The decision is made outside the program

l This means exactly that execution is nondeterministic!

104

l104

53

Understanding
nondeterminism
l Nondeterminism means that a choice is made outside of

the program’s control
l This is exactly what is happening here: the choice is the arrival

order of the client messages, which depends on the human
clients and on the message travel time

l The nondeterminism is inherently part of the client/server
execution, it cannot be avoided
l The nondeterminism is a consequence of the initial requirement:

“The server receives each message, does a local computation,
and then replies immediately”

l This means that the reply cannot be delayed while the server
waits for another message

105

l105

Overcoming
the limitations

106

l106

54

Overcoming the limitations
l Functional dataflow cannot express an

application that requires nondeterminism
l To do this, we need to extend the kernel

language with a new concept
l The new concept must be able to wait on

several events nondeterministically
l The new language is no longer deterministic!

l We will show two possible solutions

107

l107

Solution 1: WaitTwo
l We introduce the function:

 {WaitTwo X Y}
with the following semantics:
l {WaitTwo X Y} can return 1 if X is bound
l {WaitTwo X Y} can return 2 if Y is bound
l If either X or Y is bound, {WaitTwo X Y} returns

l If both X and Y are unbound, it just waits
l If both X and Y are bound, it can return either 1 or 2,

both are possible (nondeterminism!)

108

l108

55

Client/Server with WaitTwo
l Here is the client/server with WaitTwo:

proc {Server S1 S2}
 C={WaitTwo S1 S2}
in
 case C|S1|S2 of 1|(M1|T1)|S2 then
 (handle M1) {Server T1 S2}
 [] 2|S1|(M2|T2) then
 (handle M2) {Server S1 T2}
 end
end

l If Client 1 sends a message, C=1 and it is handled
l If Client 2 sends a message, C=2 and it is handled
l What happens if both Client 1 and Client 2 send messages?

109

l109

WaitTwo is not scalable
l What happens if we have millions of clients?

l WaitTwo solves the problem for two clients
l How can we wait on millions of clients?

l One possibility is to “merge” all client streams into a single stream:
fun {Merge S1 S2}
 C={WaitTwo S1 S2}
in
 case C|S1|S2 of 1|(M1|T1)|S2 then M1|{Merge T1 S2}
 [] 2|S1|(M2|T2) then M2|{Merge S1 T2}
 end
end

l With Merge we build a huge tree of stream mergers. It must expand
and contract if new clients arrive or old clients leave. Not nice!

110

l110

56

Solution 2: Ports
l A better solution is to add ports (named streams)

l Ports have two operations:
 P={NewPort S} % Create port P with stream S
 {Send P X} % Add X to end of port P’s stream

l How does this solve our problem?
l With a million clients C1 to C1000000:

Each client Ci does {Send P Mi } for each message it sends
l The server reads the stream S, which contains all messages

from all clients in some nondeterministic order (n-to-1 channel)

111

l111

Port example operations
l We create a port and do sends:

P={NewPort S}
{Browse S} % Displays _
{Send P a} % Displays a|_
{Send P b} % Displays a|b|_

l What happens if we do:
thread {Send P c} end
thread {Send P d} end

l What are the possible results of these two sends for all
choices of the scheduler?

112

l112

57

Port semantics (1)
l Assume single-assignment store σ1 with variables
l Assume a port store σ3 that contains pairs of variables

l (Remember σ2 was the cell store we introduced before)

l P={NewPort S}, {P→p, S→s}
l Assume unbound variables p, s ∈ σ1

l Create fresh name ξ, bind p=ξ, add pair p:s to σ3

l {Send P X}, {P→p, X→x}
l Assume p=ξ, unbound variable s ∈ σ1 , p:s ∈ σ3

l Create fresh unbound variable s’, bind s=x|s’, update pair to p:s’

environment

113

l113

Port semantics (2)

l {Send P X} adds x to the end of the port’s stream and updates the
new end of stream
l The send operation is atomic, which means the scheduler is guaranteed

never to stop in the middle, so it happens as if it is one indivisible step
l We assume that environment E={P→p,X→x}

{Send P X},E

σ1

σ3

σ1

σ3

p=ξ s

p:s

p=ξ s=x|s’

p:s’

s’

σ = σ1 ∪ σ3 σ = σ1 ∪ σ3

x x

114

l114

58

Client/server with ports
l Assume port P={NewPort S}
l Client code: (any number of clients!)

l Each client does {Send P M} to send M to server
l Server code:

proc {Server S}
 case S of M|T then
 (handle M)
 {Server T}
 end
end

115

l115

Message-passing
concurrency

116

l116

59

Message-passing concurrency
l Message-passing concurrency is a new paradigm for

concurrent programming
l It uses ports to define agents that can receive messages
l It is also called multi-agent actor programming

l We show how to write concurrent programs in this way
l We define port objects and active objects
l We show how to do message protocols

l We then define another paradigm, functional dataflow
with ports, which is the best all-round paradigm for
concurrent programming (as far as we know)

117

l117

Stateless port objects
(stateless agents)

118

l118

60

Stateless port objects
l A stateless port object is a combination of a

port, a thread, and a recursive list function
l We also call it a stateless agent

l Each agent is defined in terms of how it
replies to messages

l Each agent has its own thread, so there are
no problems with concurrency

l Agents are a very useful concept!

119

l119

A math agent
l Here is a simple procedure to do arithmetic:

proc {Math M}
 case M
 of add(N1 N2 A) then A=N1+N2
 [] mul(N1 N2 A) then A=N1*N2
 …
 end
end

120

l120

61

Making it a port object
l We add a port, a thread, and a recursive procedure:

MP={NewPort S}
proc {MathProcess Ms}
 case Ms of M|Mr then
 {Math M} {MathProcess Mr}
 end
end
thread {MathProcess S} end

121

l121

Using ForAll
l We replace MathProcess by ForAll:

proc {ForAll Xs P}
 case Xs of nil then skip
 [] X|Xr then {P X} {ForAll Xr P}
 end
end

l Using ForAll, we get:

proc {MathProcess Ms} {ForAll Ms Math} end

122

l122

62

Defining new port objects (1)
l A generic way to build stateless port objects:

fun {NewPortObject0 Process}
 Port Stream
in
 Port={NewPort Stream}
 thread {ForAll Stream Process} end
 Port
end

123

l123

Defining new port objects (2)
l A generic way to build stateless port objects:

fun {NewPortObject0 Process}
 Port Stream
in
 Port={NewPort Stream}
 thread for M in Stream do {Process M} end end
 Port
end Using syntax

of for loops

124

l124

63

Stateful port objects
(stateful agents)

125

l125

Stateful port objects (Section 5.2)

l A stateful port object, also called stateful agent, has an
internal memory si called its state

l The state is updated with each message received, which
gives a state transition function:
 F: State × Msg ↦ State

s1s0 s2
f f f

s1=f(s0,m1) s2=f(s1,m2)

…

126

l126

64

Creating stateful port objects
l We define a generic function for stateful port objects:

fun {NewPortObject Init F}
 proc {Loop S State}
 case S of M|T then {Loop T {F State M}} end
 end
 P
in
 thread S in P={NewPort S} {Loop S Init} end
 P
end

127

l127

Structure of Loop
l Does the Loop function ring a bell?

proc {Loop S State}
 case S of M|T then {Loop T {F State M}} end
end

l Loop starts from an initial state
l Loop successively applies F to the previous state and a

message
l The function F is a binary operation
l …

128

l128

65

Structure of Loop
l Does the Loop function ring a bell?

proc {Loop S State}
 case S of M|T then {Loop T {F State M}} end
end

l Loop starts from an initial state
l Loop successively applies F to the previous state and a

message
l The function F is a binary operation
l Of course! It is a Fold operation!

129

l129

FoldL operation
l FoldL is an important higher-order operation:

fun {FoldL S F U}
 case S
 of nil then U
 [] H|T then {FoldL T F {F U H}}
 end
end

130

l130

66

Fold is the heart of the agent
l We replace:

thread S in P={NewPort S} {Loop S Init} end
l by:

thread S in P={NewPort S} {FoldL S F Init} end

l Oops! There is a small bug…

131

l131

Updated NewPortObject
l We define a generic function for stateful port objects:

fun {NewPortObject Init F}
 P Out
in
 thread S in P={NewPort S} Out={FoldL S F Init} end
 P
end

l Out is the final state when the agent terminates
l It never terminates here, but in another definition it might

132

l132

67

Example Cell agent
l This transition function behaves like a cell!

fun {CellProcess State M}
 case M
 of assign(New) then New
 [] access(Old) then Old=State State
 end
end

l Cells and ports are equivalent in expressiveness
l Even though they look very different

133

l133

Uniform interfaces (1)
l We can create and use a cell agent:

declare Cell
Cell={NewPortObject CellProcess 0}
{Send Cell assign(1)}
local X in {Send Cell access(X)} {Browse X} end

l Let’s say we want the same interface as objects:

{Cell assign(1)}
local X in {Cell access(X)} {Browse X} end

134

l134

68

Uniform interfaces (2)
l We change the output to be a procedure:

fun {NewPortObject Init F}
 P Out
in
 thread S in P={NewPort S} Out={FoldL S F Init} end
 proc {$ M} {Send P M} end
end

l P is hidden inside the procedure by lexical scoping
l This makes it easier to use either port objects or

standard objects as we saw before
135

l135

Play ball example

136

l136

69

Play ball example

l This is a simple multi-agent program using stateful port objects
l Three players stand in a circle. There is one ball. A player who receives the ball

will send it to one of the other two, chosen randomly.
l Each player counts the number of times it has received the ball, and it responds

to a query asking for this count

l See the live lecture for the code!

P1

P3

P2

ball

137

l137

Active objects

138

l138

70

Active objects (Section 7.8)

l An active object is a port object whose behavior is defined by a class
l Active objects combine the abilities of object-oriented programming

(including polymorphism and inheritance) and message-passing
concurrency

l To explain active objects, we refresh your memory on object-oriented
programming and we introduce classes in Oz

Object-oriented
programming

Port objects
(message passing)

Active objects

139

l139

Classes and objects in Oz
l We saw objects in the course
l We now complete this explanation

by introducing classes and their
Oz syntax

class Counter
 attr i
 meth init(X)
 i := X
 end
 meth inc(X)
 i := @i + X
 end
 meth get(X)
 X=@i
 end
end

l Create an object:

Ctr={New Counter init(0)}

l Call the object:

{Ctr inc(10)}
{Ctr inc(5)}
local X in
 {Ctr get(X)}
 {Browse X}
end

140

l140

71

Defining active objects

l Active objects are defined
by combining classes and
port objects

l We use the uniform
interface to make them
look like standard Oz
objects

fun {NewActive Class Init}
 Obj={New Class Init}
 P
in
 thread S in
 {NewPort S P}
 for M in S do {Obj M} end
 end
 proc {$ M} {Send P M} end
end

141

l141

Passive objects
and active objects
l We make a distinction between passive objects and

active objects
l Standard objects in Oz (and many other languages, such

as Java and Python) are now called passive objects
l This is because they execute in the caller’s thread; they do not

have their own thread
l This is in contrast to active objects, which each has its

own thread
l Let us compare passive and active objects!

142

l142

72

Concurrency comparison

l Passive objects cannot be
safely called from more than
one thread

l The method executions can
overlap, which leads to
concurrency bugs

l Active objects are completely
safe when called from more
than one thread

l The method executions are
executed sequentially in the
active object’s own thread

T1

T2

l{Ctr inc(1)}

l{Ctr inc(1)}

M execution

M execution

lreturn

lreturn

Overlaps!

T1

T2

l{Ctr inc(1)}

l{Ctr inc(1)}

M execution M execution
TCtr

143

l143

Passive objects are not
concurrency-safe!
l The following code is buggy:

Ctr={New Counter init(0)}
thread {Ctr inc(1)} end
thread {Ctr inc(1)} end
local X in
 {Ctr get(X)}
 {Browse X}
end

l This can display 1! Why?
l Look at the instruction i := @i +1
l If the scheduler puts T1 to sleep

after @i and before i:=, executes
T2 fully, and then resumes T1

l The following code is correct:

Ctr={NewActive Counter init(0)}
thread {Ctr inc(1)} end
thread {Ctr inc(1)} end
local X in
 {Ctr get(X)}
 {Browse X}
end

l This will always display 2
l Because the two methods are

executed sequentially by Ctr’s
thread

144

l144

73

Message protocols

145

l145

Message protocols (1)
l A message protocol is a sequence of messages

between two or more parties that can be
understood at a higher level of abstraction than
individual messages

l Using port objects, let us investigate some
important message protocols

l We will see the protocols using examples that
are coded live
l Explained in Section 5.3 of the course textbook

146

l146

74

Message protocols (2)

l We start with a
simple RMI

l We then make it
asynchronous and
add callbacks

l The most
complicated protocol
is asynchronous
RMI with callback

1. RMI
(2 calls)

5. Asynchronous RMI

3. RMI with callback
(using thread)

Thread states

with callback

4. RMI with callback
(using continuation)

2. Asynchronous RMI
(2 calls)

(using threads)

(2 calls)

C S C S

C S

SC C S

suspended

idle

active

147

l147

Functional dataflow
with ports

148

l148

75

The best way (as far as I know)
l Writing general concurrent programs is difficult!

l But functional dataflow is easy (“Concurrency for Dummies”)
l Can functional dataflow offer help for general programs? Yes!

l This leads to the best way to write concurrent programs
l Start with functional dataflow as the default
l Add ports where they are needed, but as few as possible
l This differs from message passing (multi-agent actors) in that we

don’t use port objects or active objects directly
l We give some example designs using this approach

l Concurrent composition (static and dynamic)
l Eliminating sequential dependencies

149

l149

Concurrent composition
(fixed number of threads)

150

l150

76

Concurrent composition
(Section 4.4.3)
l The thread statement creates a thread that executes

independently of the original thread
 thread <s>1 end
 thread <s>2 end
 % Two new threads with <s>1 and <s>2, original thread continues

l Sometimes the new threads have to be subordinate to
the original
l The original thread waits until the new threads have terminated

l This operation is called concurrent composition
 (<s>1 || <s>2) % Create two threads and wait until both are terminated
 <s>3 % Executes only after both are done

151

l151

Implementation
l We implement (<s>1 || <s>2) using dataflow variables

l We use the constant unit when the value does not matter

 local X1 X2 in
 thread <s>1 X1=unit end
 thread <s>2 X2=unit end
 {Wait X1}
 {Wait X2}
 end

l It does not matter in what order we wait

152

l152

77

Higher-order abstraction
l Using higher-order programming, we implement the general form:

(<s>1 || <s>2 || … || <s>n)
l The instruction <s>1 is written as proc {$} <s>1 end
l We define the procedure {Barrier Ps} with list of statements Ps:

 proc {Barrier Ps}
 Xs={Map Ps fun {$ P} X in thread {P} X=unit end X end}
 in
 for X in Xs do {Wait X} end
 end

l Note that Barrier can be defined using functional dataflow only
l No ports needed; we will add one port later when we make it dynamic

153

l153

Example
l What does the following code print:

 {Barrier
 [proc {$} {Delay 500}
 {Barrier
 [proc {$} {Delay 200} {Browse c} end
 proc {$} {Delay 400} {Browse d} end]}
 {Browse e}
 end
 proc {$} {Delay 600} {Browse e} end]}

l Remember the precise meaning of {Delay N}: “The current thread is
suspended for at least N milliseconds”
l It cannot be “exactly N milliseconds” because the scheduler cannot

guarantee when the thread will be chosen to run again

154

l154

78

Linguistic abstraction
l If your language allows defining new syntax, you can

define a linguistic abstraction for concurrent composition:

 conc <s>1 || <s>2 || … || <s>n end

l This translates into:

 {Barrier [proc {$} <s>1 end
 proc {$} <s>2 end
 …
 proc {$} <s>n end]}

155

l155

Concurrent composition
(variable number of threads)

156

l156

79

Dynamic concurrent
composition (Section 5.6.3)

l Concurrent composition (barrier synchronization) requires that the
number of threads be known in advance

l What can we do when the number of threads is not known?
l Assume we do a computation that can create new threads dynamically
l We need to synchronize on the termination of all the created threads
l This is hard because new threads can themselves create new threads!

l In the new thread created by thread <s> end, the <s> can also create threads

l This abstraction cannot be written in functional dataflow
l Because it is nondeterministic: the order of thread creation is not known
l We will define it using one port!

l It is an interesting fact that only one port is needed, unlike message passing in which each
port object has a port. Here, the abstraction is mostly functional dataflow, with just one
added port for doing one specific nondeterministic thing. 157

l157

Specifying the abstraction
l The main thread waits until all subordinate threads are terminated
l We can define this abstraction as follows:

 {NewThread proc {$} <s> end SubThread}
 {SubThread proc {$} <s> end}

l NewThread creates a new computation with <s> in the main thread
and outputs the procedure SubThread
l NewThread terminates only after all subordinate threads are terminated

l SubThread creates a subordinate thread with <s>
l Both <s> are allowed to call SubThread, and so on recursively, so the

tree of threads can be arbitrarily deep

158

l158

80

l We use a port to count the number of active threads
l Each new thread sends +1 to the port when it is created and -1 to

the port when it terminates
l This is trickier than it seems: send +1 just before creation and -1 inside the

thread just before termination (we need to make a proof)
l When the running total on the stream is 0 then all threads are terminated

159

+1

-1

+1

+1 +1
-1

-1
-1

{NewThread P ST}

1 2 1 2 1 2 1 0
Keep a running tally of active threads Termination

Algorithm

l159

Implementation
l The implementation can look something like this:

 proc {NewThread P SubThread} % SubThread is an output
 S Pt={NewPort S}
 in
 proc {SubThread P}
 {Send Pt 1}
 thread
 {P} {Send Pt ~1} % Minus sign in Oz is tilde
 end
 end
 {SubThread P} % Main computation
 {ZeroExit 0 S} % Keep running sum on S and stop when 0
 end

160

l160

81

Proof of correctness:
this program is subtle!
l What about this implementation?

 proc {NewThread P SubThread} % SubThread is an output
 S Pt={NewPort S}
 in
 proc {SubThread P}
 thread
 {Send Pt 1} {P} {Send Pt ~1}
 end
 end
 {SubThread P} % Main computation
 {ZeroExit 0 S} % Keep running sum on S and stop when 0
 end

Done inside the new thread

161

l161

Proof of correctness:
buggy version!
l What about this implementation? It is buggy! Do you see why?

 proc {NewThread P SubThread}
 S Pt={NewPort S}
 in
 proc {SubThread P}
 thread
 {Send Pt 1} {P} {Send Pt ~1}
 end
 end
 {SubThread P} % Main computation
 {ZeroExit 0 S} % Keep running sum on S and stop when 0
 end

lWe need a proof!

162

l162

82

Proof of correctness:
invariant assertion
l We can prove correctness by using an invariant assertion
l Consider the following assertion:

l (the sum of the elements on S) ≥ (the number of active threads)
l When the sum is zero, it implies the number of active threads is zero

l We use induction on execution steps to show that this is always true
l Base case: True at the call to NewThread since both numbers are zero
l Inductive case: there are four relevant actions (see next slide!)

l The invariant assertion is just a safety property, what about
liveness?
l The first call to SubThread sends 1 to S, so we have to wait until the first

created thread terminates

163

l163

Inductive case
l During any execution, there are four possible execution

steps that can change the truth of the assertion:
l Sending 1 : clearly keeps the assertion true
l Starting a thread : keeps the assertion true since it follows a send

of 1, and the assertion was true just before the send
l Sending ~1 : we can assume without loss of generality that

thread termination occurs just before sending ~1, since the
thread no longer does any work after the send

l Terminating a thread : clearly keeps the assertion true
l You see why the {Send Pt 1} must be done outside of

the new thread!
l {Send Pt 1} must be done before creating the new thread

164

l164

83

ZeroExit procedure
l The procedure {ZeroExit N S} keeps a running

sum of elements from S and exits when the sum
equals 0

 proc {ZeroExit N S}
 case S of X|S2 then
 if N+X==0 then skip
 else {ZeroExit N+X S2} end
 end
 end

lAlways read at least one element

165

l165

Eliminating sequential
dependencies

166

l166

84

Eliminating sequential
dependencies (Section 5.6.4)
l A sequential program orders all instructions

l This is a sequential dependency, by definition!
l But sometimes these dependencies are useless and

may cause the program to block unnecessary
l Can we get rid of these dependencies?

l The solution is to add threads to remove useless
dependencies, but without changing the result
l In functional dataflow, we can add threads wherever we want, if

the computation in the thread is purely functional
l In our example, we will need one port to collect the elements

computed in each thread: this adds nondeterminism only in one
place, so we can easily check that it is ok

167

l167

Example: Filter function
l The function {Filter L F} takes a list L and a one-argument boolean

function F and outputs the list of elements where the function is true:
 fun {Filter L F}
 case L of nil then nil
 [] X|L2 then
 if {F X} then X|{Filter L2 F} else {Filter L2 F} end
 end
 end

l This is efficient, but it introduces sequential dependencies! The call:
 {Filter [A 5 1 B 4 0 6] fun {$ X} X>2 end}
blocks right away on A, even though we know that 5, 4, and 6 will
eventually be in the output. Waiting for A stops everything!

168

l168

85

Filter without sequential
dependencies

l Let us write a new version of Filter that avoids these dependencies
l It will construct its output incrementally, as input information arrives

l We can write ConcFilter using two building blocks:
l Concurrent composition (as seen before): {Barrier Ps}
l Asynchronous channel (port with a Close operation)

l ConcFilter removes dependencies but is nondeterministic:
 {ConcFilter [A 5 1 B 4 0 6] fun {$ X} X>2 end}
l This returns right away with 5|4|6|… and will eliminate 1 and 0
l But it can return the elements in any order, 6|5|4|… for example

l We have traded off dependencies for nondeterminism

169

l169

Ports with a Close operation
l We need a port that can be closed (ending the stream with nil)
l We define {NewPortClose S Send Close}

l S is the port’s stream
l {Send M} sends message M to the port
l {Close} closes the port, i.e., binds the tail to nil and no more send is allowed

l Definition: (defined with a cell!)
 proc {NewPortClose S Send Close}
 PC={NewCell S}
 in
 proc {Send M} S in {Exchange PC M|S S} end
 proc {Close} nil=@PC end
 end

l The cell PC is like an object attribute: it allows reading and writing
l The Exchange operation does both read and write atomically
l Exchange is needed to make the Send concurrency-safe (see passive objects!)

170

l170

86

ConcFilter idea

l The original {Filter L F} computes all {F X} in the same thread
l The new {ConcFilter L F} computes each {F X} in a separate thread

l If {F X} returns true, then send X to the port
l The port’s stream is the function’s output

l When all threads terminate, the port is closed
l This makes the stream into a list
l We use {Barrier Ps} to detect when all threads terminate

l Creating the procedure arguments to Barrier
l For each X in L, we need to execute if {F X} then {Send X} end
l So we create the procedure proc {$} if {F X} then {Send X} end end

171

l171

Defining ConcFilter
l ConcFilter uses Map to build the arguments to Barrier:

 proc {ConcFilter L F L2}
 Send Close
 in
 {NewPortClose L2 Send Close}
 {Barrier
 {Map L % For each X of the input list, build procedure
 fun {$ X}
 proc {$} if {F X} then {Send X} end end
 end}}
 {Close}
 end Procedure input to Barrier

172

l172

87

Conclusion

173

l173

Conclusion: how to build
concurrent programs
l We have seen three good paradigms for concurrent programs
l Functional dataflow (including lazy): best paradigm, with limitations

l Cannot express programs that need nondeterminism, like client/server
l Is widely used in cloud analytics tools (e.g., Apache Flink, Spark)

l Message passing (multi-agent actor): less good, but without limitations
l Stateful agents that communicate with asynchronous messages
l Erlang is a successful industrial example of this approach

l Functional dataflow with ports: best paradigm without limitations
l Write most of the program as functional dataflow
l Add ports only where they are needed; usually very few are needed
l This is a novel approach that will likely appear more in the future

We will see Erlang next week! 174

l174

88

LINFO1131: Lectures 2 & 3
Lazy evaluation and

declarative programming

175

l175

Overview
l Introduction to lazy evaluation

l Semantics based on dataflow
l Lazy streams

l Producer-consumer in four
paradigms

l Infinite lists
l Hamming problem

l Lazy suspensions
l Graphical representation of

lazy evaluation
l Lazy functional dataflow

l Bounded buffer

l Lazy quicksort
l Inventing an incremental

algorithm
l What is declarative

programming?
l Partial termination
l Equivalent stores
l Introduction to first-order logic
l Definition of declarative

programming
l Failure confinement

l Table of declarative paradigms
l Conclusions

176

l176

89

Introduction
to lazy evaluation

177

l177

Introduction to lazy evaluation
l A lazy program is a functional program that executes

in “by-need” fashion
l Nothing is computed until it is “needed”

l Here is a simple example:
fun lazy {LazyAdd X Y}
 X+Y
end
S={LazyAdd 10 20}
{Browse S}

l Nothing is executed until S is needed:
% Displaying the addition S+100 needs S:
{Browse S+100}

178

l178

90

Semantics
of lazy evaluation

179

l179

Semantics of LazyAdd
l How does LazyAdd work?

l Semantics of a program is defined by translation into kernel language
l We will define what “needing a value” means

l We translate into kernel language:
proc {LazyAdd X Y R}
 thread
 {WaitNeeded R} R=X+Y
 end
end

l The {WaitNeeded R} waits until another thread needs R to continue
l More precisely, it waits until another thread does {Wait R}
l This is part of dataflow execution…

180

l180

91

Dataflow semantics
l To understand WaitNeeded,

we first recall how dataflow
execution works

l Given any expression:
S=X+Y

l This is translated as:
local V in
 {Wait X}
 {Wait Y}
 {PrimitiveAdd X Y V}
 {Bind S V}
end

l This gives a dataflow execution:
l {Wait X} suspends until X is bound
l {Bind X V} binds X to V

l Programmer-accessible operations
are defined using Wait, Bind, and a
primitive operation:
l Arithmetic, boolean expressions
l Case statements
l Any operation with an input

l Function call {F X} where F must be
bound to a function value

l Dot operation R.name where R must
be bound to a record

l {WaitNeeded X} suspends until
another thread does {Wait X}

181

l181

Another example
l We use WaitNeeded directly:

declare X in
{WaitNeeded X}
X=100

l This displays an unbound variable:
{Browse X}

l This displays 100 twice (!):
{Browse X+0}

182

l182

92

General translation scheme
l Given any lazy function:

fun lazy {F X1 … Xn}
 <expr>
end

l This is translated into:
proc {F X1 … Xn R}
 thread
 {WaitNeeded R} R=<expr>
 end
end

l This translation gives the semantics, not the implementation!
l A compiler is free to optimize it while respecting the semantics

183

l183

Producer-consumer
in four paradigms

184

l184

93

Producer-consumer pipeline
l We give the code of a simple

producer-consumer pipeline
l We will run the code in four

different functional paradigms
l All four paradigms are declarative

and end up with the same result
l But the result appears in four

different ways
l Technically we are just taking

advantage of the Church-Rosser
theorem
l All reduction orders of a lambda

expression give the same result
l Also called confluence

fun {Prod L H}
 {Delay 1000} % Wait 1000 ms
 if L>H then nil
 else L|{Prod L+1 H}
 end
end

fun {Cons S Acc}
 case S of H|T then
 Acc+H|{Cons T Acc+H}
 [] nil then nil
 end
end

185

l185

Four functional paradigms
1. Sequential functional programming

l No single assignment
l Traditional functional languages (Lisp, Scheme, ML, OCaml)

2. Sequential FP with single assignment
l Default execution of functions in Oz

3. Eager functional dataflow
l Adds threads and dataflow synchronization
l Multi-agent programming with declarative agents

4. Lazy evaluation (introduced in this lecture!)
l Adds by-need synchronization
l Lazy functional languages (Haskell, Miranda)

As seen
earlier

New!

186

l186

94

1. Sequential FP
(no single assignment)

l We generate 10 elements
l This is traditional FP with no

single assignment
l Nothing is displayed until

after 10 seconds
l S1 and S2 both displayed at

once after 10 seconds
l Both S1 and S2 are created

as a batch execution
l Why?

declare S1 S2 in
{Browse S1}
{Browse S2}
S1={Prod2 1 10}
S2={Cons S1 0}

% Prod2 uses no unbound variables
fun {Prod2 L H}
 {Delay 1000} % Wait 1000 ms
 if L>H then nil
 else S in
 S={Prod2 L+1 H}
 L|S % Both L and S are bound
 end
end

187

l187

2. Sequential FP with
single assignment

l We generate 10 elements
l S1 is augmented every second
l S2 is not displayed until after

10 seconds
l S1 is created incrementally

l Why?
l Translate to kernel language!

l S2 is created as a batch
l Why?

declare S1 S2 in
{Browse S1}
{Browse S2}
S1={Prod 1 10}
S2={Cons S1 0}

% Prod uses unbound variables
fun {Prod L H}
 {Delay 1000} % Wait 1000 ms
 if L>H then nil
 else
 % L|S has unbound S
 L|{Prod L+1 H}
 end
end

188

l188

95

3. Eager functional dataflow
l We execute both calls in their own threads

l This is running functional dataflow (eager)
l What is the difference with the previous version?

l Both S1 and S2 are created incrementally
l Each thread is a declarative agent

declare S1 S2 in
{Browse S1}
{Browse S2}
thread S1={Prod 1 10} end
thread S2={Cons S1 0} end

189

l189

4. Lazy evaluation
fun lazy {Prod L H}
 {Delay 1000}
 if L>H then nil
 else L|{Prod L+1 H}
 end
end

fun lazy {Cons S Acc}
 case S of H|T then
 Acc+H|{Cons T Acc+H}
 [] nil then nil
 end
end

l We annotate both functions as “lazy”
l We execute it:

declare S1 S2 in
{Browse S1}
{Browse S2}
S1={Prod 1 10}
S2={Cons S1 0}

l What is going on?
l Why is nothing computed?
l How do we run this?
l {Browse S2.2.1} needs the second

element of S2, which will activate its
computation and display it

190

l190

96

Eager versus lazy streams
l One way to understand the difference between eager

and lazy is to see which agent is driving the execution

l In an eager stream, it is the producer that determines
when elements are sent
l Termination is decided by the producer

l In a lazy stream, it is the consumer that determines
when elements are sent
l Termination is decided by the consumer

191

l191

Infinite lists

192

l192

97

Infinite lists
l With lazy evaluation we can compute with infinite loops

l We can write programs with infinite lists
l It works because the execution only computes needed elements
l This is not possible in eager functional dataflow!

l An infinite list of integers starting with N:
fun lazy {Ints N} N|{Ints N+1} end

l Calling {Ints 1} displays an unbound variable:
L={Ints 1} {Browse L}

l We can force a computation by examining the list L:
{Browse L.1}
{Browse L.2.1}

193

l193

Semantics of infinite lists
l We can see how infinite lists work by translating to

kernel language:
proc {Ints N R}
 thread
 {WaitNeeded R} R=N|{Ints N+1}
 end
end

l When we need R by doing {Browse R.1}, this causes R
to be bound to N|{Ints N+1}
l This causes one element of R to be computed
l The recursive call will immediately suspend again

194

l194

98

Forcing a computation
l We can force the evaluation of N elements of a list by

traversing the list:
proc {Touch L N}
 if N==0 then skip
 else {Touch L.2 N-1} end
end

l This strange procedure does nothing by itself, yet it
forces the work to be done:
{Touch L 10}
{Touch L 20}

195

l195

Hamming problem

196

l196

99

Hamming problem
l Richard Hamming (1915-1998) was an engineer and mathematician

who worked at Bell Labs and invented many useful things
l Hamming codes, Hamming window, Hamming distance, etc.
l Richard Hamming. The Art of Doing Science and Engineering: Learning

to Learn. 1997. This book is highly recommended!

l Today we will investigate the Hamming problem, a simple problem
in number sequences
l It is a dynamic problem where we do not know in advance how much

needs to be computed → perfect for lazy evaluation!
l We will use lazy evaluation to design a simple and efficient solution to

this problem

197

l197

Hamming problem
l Problem statement:

l Given the set of numbers of the form 2a 3b 5c with integers a,b,c ≥ 0
l It is asked to compute these numbers in increasing order: 1 | 2 | 3 | …

l We do not know in advance how many numbers of this sequence
will be needed
l The program should compute them incrementally until we are satisfied
l The program should be efficient in time and memory!

198

l198

100

Algorithm idea

l We can program this with lazy lists

H = 1 | 2 | 3 | X |… § Idea: The next number X is 2 times,
3 times, or 5 times one of the
previous numbers in the sequence

§ We need to keep three sequences
derived from H, namely 2H, 3H and
5H, and take the least number not
yet used

§ Numbers 2 and 3 are already taken
§ Next number is either 4, 6, or 5
§ We take the minimum of these

three: the next number is 4

2H = 2 | 4 | 6 | …

3H = 3 | 6 | 9 | …

5H = 5 | 10 | 15 | …

⟹ X = min(4,6,5) = 4

199

l199

Hamming program operations
l The algorithm needs two operations

l Multiply list elements by an integer
l Merge two ordered lists

l L2={Times L1 N}
l Each element of L2 is N times the element of L1

l L={Merge L1 L2}
l Assume L1 and L2 are in increasing order
l L contains elements of L1 and L2 in increasing order

200

l200

101

Hamming program
fun lazy {Times S N}
 case S of H|T then
 N*H|{Times T N}
 end
end

fun lazy {Merge S1 S2}
 case S1|S2 of (H1|T1)|(H2|T2) then
 if H1<H2 then H1|{Merge T1 S2}
 elseif H1>H2 then H2|{Merge S1 T2}
 else /* H1==H2 */ H1|{Merge T1 T2}
 end
 end
end

l Main expression:
H=1|{Merge
 {Times H 2}
 {Merge {Times H 3}
 {Times H 5}}}
{Browse H}

201

l201

Lazy suspensions

202

l202

102

Lazy suspensions
l We defined lazy evaluation using threads and

WaitNeeded
l This is correct but it does not show the execution

l Let us show the execution of a lazy program with a
graphical approach

l We introduce the concept of lazy suspension:
Executing: L2={Times L1 3}
Creates a suspension: L2 → {Times L1 3}
“A thread is suspended on L2 that contains the body of {Times L1 3}”

203

l203

Execution of Hamming program

l Running the program creates five lazy suspensions
l The lazy suspension {Merge T2 M2} waits on M1
l Executing M1.1 activates the lazy suspension {Merge T2 M2},

which executes the body of {Merge T2 M2}, which then
activates {Merge T3 T5} and {Times H 2}, and so forth!
l All five lazy suspensions are activated and five new ones are created
l At the end, M1.1 is bound to 2|M1’ with the new variable M1’

H=1|M1
{Merge T2 M2}

{Times H 2}

{Merge T3 T5}

{Times H 3}

{Times H 5}

204

l204

103

First activation: {Merge T2 M2}
l Request the second element of H:

{Browse M1.1}

l This activates {Merge T2 M2}:
l The body is executed:

case T2|M2 of (H1|T2’) | (H2|M2’) then
 …
end

l The case needs the first elements of T2 and M2
l This activates {Times H 2} and {Merge T3 T5}
l The case waits patiently until T2 and M2 are bound

Activate
{Times H 2}

Activate
{Merge T3 T5}

205

l205

Next activations
l {Times H 2} and {Merge T3 T5} are activated

l The body of {Times H 2} is executed
l This binds T2=2|T2’ and creates a new lazy suspension on T2’:

{Times M1 2}
l The body of {Merge T3 T5} is executed

l This activates {Times H 3} and {Times H 5}
l After executing these two functions, this binds M2=3|M2’ and creates

a new lazy suspension on M2’: {Merge T3’ T5}

l Now the case in {Merge T2 M2}, which was waiting
patiently, can be executed:

l It returns 2|M1’ with M1’={Merge T2’ M2} and creates a new lazy
suspension on M1’

206

l206

104

Overall execution flow

M1.1

{Merge T2 M2}

case T2|M2 ⋯ then
 ⋯
end

{Times H 2}

{Merge T3 T5}

case T3|T5 ⋯ then
 ⋯
end

{Times H 3}

{Times H 5}

activate

execute

bind M1

activate

bind T2
activate

execute
bind M

2
ac

tiv
ate

bin
d T

3

activate
bind T5

{Browse M1.1}

§ Doing M1.1 starts it all
§ Five lazy suspensions

are activated in a chain
§ Each one executes the

body of a function, which
returns result and creates
a new lazy suspension

§ M1 is bound at the end
so M1.1 can complete

The execution is sequential (follow the arrows!)

207

l207

Lazy functional dataflow

208

l208

105

Five functional paradigms
l So far we have seen four paradigms of functional programming:

l Sequential functional programming (no single assignment)
l Traditional functional languages do this (Lisp, Scheme, ML, OCaml)

l Sequential functional programming with single assignment
l Allows data structures with “holes”, e.g., list functions are tail-recursive
l This is the default way that Oz executes functions

l Eager functional dataflow
l Adds threads and dataflow synchronization
l Allows concurrent programming with streams (multi-agent programming)

l Lazy evaluation
l Adds by-need synchronization (with WaitNeeded), where functions are

executed only when their results are needed
l Allows programming with infinite data structures
l Lazy functional languages do this (Haskell, Miranda)

l There is a fifth paradigm:
l Lazy functional dataflow

l Adds both threads and lazy functions
209

l209

Lazy functional dataflow
l Lazy functional dataflow is the most powerful declarative paradigm:

l It has confluence and higher-order: the power of functional programming
l It has concurrency: independent activities which can get out of step
l It has lazy evaluation: by-need computations only done when needed

l What can we do with all this power?
l We give one example of a program that can be written in lazy functional

dataflow, but not in any weaker declarative paradigm
l This program is the bounded buffer

210

l210

106

Bounded buffer

211

l211

Bounded buffer (1)

l A producer-consumer pipeline has performance problems
l Variations in producer and consumer speeds can cause the

system to perform poorly
l When a producer creates elements too quickly, the consumer

cannot use the elements so the producer idles
l When a consumer needs more elements, the producer may not be

able to produce them so the consumer idles

Producer Consumer
Stream

212

l212

107

Bounded buffer (2)

l Inserting a bounded buffer can solve these problems
l When the producer creates elements too quickly to be

consumed, they are stored in the bounded buffer
l When the consumer needs more elements than can be

produced, they are taken from the bounded buffer
l This improves performance by smoothing out fluctuations in

producer and consumer speeds

Producer ConsumerBounded
buffer

213

l213

Bounded buffer (3)

l A bounded buffer fits in between a lazy producer and a lazy consumer
l The code of the producer and consumer is unchanged

l To the producer, the bounded buffer looks like a consumer
l To the consumer, the bounded buffer looks like a producer

l The bounded buffer “consumes” elements even when the consumer
does not ask for them, and “produces” elements even when the
producer does not make them

Producer
(lazy)

Consumer
(lazy)

Bounded
buffer

214

l214

108

Defining the bounded buffer
l Assume we have a producer-consumer pipeline:

thread S={Producer …} end
thread {Consumer S} end

l The bounded buffer is inserted in between:
thread S1={Producer …} end
thread {BoundedBuffer S1 S2 10} end
thread {Consumer S2} end

l We define the bounded buffer step-by-step
l We define the procedure {BoundedBuffer S1 S2 N} where S1 is the input

stream, S2 is the output stream, and N is the buffer size
l We build the procedure in four steps, to make it easier to understand

215

l215

First step: pass elements
l The buffer outputs the same elements as it inputs:

proc {BoundedBuffer S1 S2 N}
 fun lazy {Loop S1}
 case S1 of H1|T1 then H1|{Loop T1} end
 end
in
 S2={Loop S1}
end

216

l216

109

Second step: startup
l The buffer asks for N elements on startup:

proc {BoundedBuffer S1 S2 N}
 fun lazy {Loop S1}
 case S1 of H1|T1 then H1|{Loop T1} end
 end
 End
in
 End={List.drop S1 N} % Asking must not be lazy!
 S2={Loop S1}
end

l {List.drop L N} is a library function that removes the first
N elements from a list L

217

l217

Third step: staying full
l Whenever the consumer gets an element, the buffer asks for

another element from the producer:

proc {BoundedBuffer S1 S2 N}
 fun lazy {Loop S1 End}
 case S1 of H1|T1 then H1|{Loop T1 End.2} end
 end
 End
in
 End={List.drop S1 N}
 S2={Loop S1 End}
end

218

l218

110

Fourth step: no blocking
l To avoid blocking the buffer’s main loop, both asks

must be done in their own threads:

proc {BoundedBuffer S1 S2 N}
 fun lazy {Loop S1 End}
 case S1 of H1|T1 then
 H1|{Loop T1 thread End.2 end}
 end
 end
 End
in
 thread End={List.drop S1 N} end
 S2={Loop S1 End}
end

In functional dataflow,
threads are your friends!
They are efficient. They can
be added at will without
adding bugs. They remove
blocking and make the
program more incremental.

All list functions, including
List.drop, work correctly
when used concurrently

219

l219

Example execution
l We create a pipeline with

producer, bounded buffer,
and consumer:

declare S1 S2 S3 in
{Browse S1}
{Browse S2}
{Browse S3}
S1={Prod 1 10}
{BoundedBuffer S1 S2 3}
S3={Cons S2 0}

l Note that the producer
immediately produces 3
elements, which are stored in
the buffer

l When we consume one
element, the buffer asks the
producer for one element
l The buffer tries to stay full

l The buffer is eager until it is full,
and then it becomes lazy

220

l220

111

Lazy quicksort

221

l221

Lazy quicksort
l Lazy evaluation can make some algorithms incremental, which

can enormously improve their efficiency
l We show this with the quicksort algorithm

l Standard quicksort has an average time complexity of O(n log n)
to sort n elements

l Lazy quicksort has a time complexity of O(n + k log k) to compute
the k smallest elements out of n elements
l This is a very good bound!
l Furthermore, the value of k does not need to be known in advance.

Elements can be computed incrementally until some condition is
satisfied.

l To see how clever this is, try inventing the algorithm from scratch!

222

l222

112

Quicksort algorithm

l Pick a random
element of L, the
“pivot” X

l Partition into two
sublists

l Recursively sort
the sublists

l Append the results

L

L1 L2

S1 S2

S

< X ≥ X

recursive call recursive call

partition

append

223

l223

Quicksort example (on board)
l L = [7 3 2 8 6 4 1 9]
l Pivot = 7 (first element of L)
l L1 = [3 2 6 4 1], L2 = [7 8 9]
l …
l S1 = [1 2 3 4 6], S2 = [7 8 9]
l S = [1 2 3 4 6 7 8 9]

224

l224

113

Partition procedure
proc {Partition L X L1 L2}
 case L of H|T then
 if H<X then M1 in
 L1=H|M1 {Partition T X M1 L2}
 else /* H≥X */ M2 in
 L2=H|M2 {Partition T X L1 M2}
 end
 [] nil then L1=nil L2=nil
 end
end

225

l225

Append and quicksort
fun {Append L1 L2}
 case L1 of H|T then H|{Append T L2}
 [] nil then L2 end
end
fun {Quicksort L}
 case L of X|M then L1 L2 S1 S2 in
 {Partition L X L1 L2}
 S1={Quicksort L1}
 S2={Quicksort L2}
 {Append S1 S2}
 [] nil then nil
 end
end

226

l226

114

Example eager execution
l Let us try to run this:

declare S in
S={Quicksort [4 3 2 5 6 4 3 2]}
{Browse S}

l What happens?
l Something is wrong!

l How do we fix this?
l A general rule when defining recursive functions!

227

l227

Append and quicksort (fixed)
fun {Append L1 L2}
 case L1 of H|T then H|{Append T L2}
 [] nil then L2 end
end
fun {Quicksort L}
 case L of X|M then L1 L2 S1 S2 in
 {Partition M X L1 L2}
 S1={Quicksort L1} % L1 is strictly smaller than L
 S2={Quicksort L2} % L2 is strictly smaller than L
 {Append S1 X|S2}
 [] nil then nil
 end
end

M is strictly smaller than L

228

l228

115

Making quicksort lazy
l What has to be made lazy?

l Quicksort function becomes LQuicksort
l Append function becomes LAppend

l Partition is not lazy
l Sorting cannot work unless we look at all the

elements of L
l Partition keeps the same eager definition
l We create the complete sublists L1 and L2

229

l229

Lazy append and quicksort
fun lazy {LAppend L1 L2}
 case L1 of H|T then H|{LAppend T L2}
 [] nil then L2 end
end
fun lazy {LQuicksort L}
 case L of X|M then L1 L2 S1 S2 in
 {Partition M X L1 L2}
 S1={LQuicksort L1}
 S2={LQuicksort L2}
 {LAppend S1 X|S2}
 [] nil then nil
 end
end

230

l230

116

Example lazy executions
l Lazy append:

declare S in
S={LAppend [1 2 3] [4 5 6]}
{Browse S}
l What happens when asking for elements?

l Lazy quicksort:
declare S in
S={LQuicksort [4 3 2 5 6 4 3 2]}
{Browse S}
l What happens when asking for the first element?
l How much computation is done? What is the time complexity?

231

l231

Execution steps…
l S={LQuicksort [2 3 4 1]} % Lazy suspension on S

{Browse S.1}
 % S is needed, so execute body of S={LQuicksort [2 3 4 1]}:
 {Partition [3 4 1] 2 L1 L2}
 S1={LQuicksort [1]} % Lazy suspension on S1
 S2={LQuicksort [3 4]} % Lazy suspension on S2
 S={LAppend S1 2|S2} % Lazy suspension on S
 % S still needed, so execute body of LAppend:
 case S1 of H|T then H|{LAppend T 2|S2}
 [] nil then 2|S2 end
 % S1 is needed, so execute body of S1={LQuicksort [1]}
 {Partition nil 1 nil nil}
 S1’={LQuicksort nil} % Lazy suspension on S1’
 S2’={LQuicksort nil} % Lazy suspension on S2’
 S1={LAppend S1’ 1|S2’} % Lazy suspension on S1
 % S1 still needed, so execute body of LAppend:
 case S1’ of H’|T’ then H’|{LAppend T’ 1|S2’}
 [] nil then 1|S2’ end
 % S1’ is needed, so execute body of S1’={LQuicksort nil}:
 case nil of X’|M’ then (…)
 [] nil then nil end
 % Now we can do bindings:
 S1’=nil
 S1=1|S2’
 S=1|{LAppend nil 2|S2}
{Browse (1|…).1}
% Displays 1

l Follow carefully what is happening
l When S is needed, it stays needed!
l We focus on the lazy suspensions

l S → {LQuicksort [2 3 4 1]}
S is needed, activates:
l S1 → {LQuicksort [1]}
l S2 → {LQuicksort [3 4]}
l S → {LAppend S1 2|S2}

S still needed, activates:
S1 is needed, activates:

§ S1’→{LQuicksort nil}
§ S2’→{LQuicksort nil}
§ S1→{LAppend S1’ 1|S2}

S1 still needed, activates:
S1’ is needed, activates:
§ S1’=nil

§ S1=1|S2’
l S=1|{LAppend nil 2|S2}

l

232

l232

117

Complexity of lazy quicksort

l To compute the smallest element, the number of operations is n + n/2 + n/4 + … + 1
= 2n, so the time complexity is O(n)

l To compute the k smallest elements, a full “mini quicksort” is done as soon as the
partitioned list has at least k elements, so the extra time complexity is O(k log k)

l Total time complexity is O(n + k log k)

lPartition [3 4 1]

lPartition [1] lPartition [3 4]

Partition nil Partition nil

l1|…

nil 1|nil

l1|…

n traversal

n/2 traversal
(n/4, n/8, continues to 1)

233

l233

What is declarative
programming?

234

l234

118

Declarative programming
l We have seen five functional paradigms

l Sequential functional programming
l Sequential functional programming with single assignment
l Functional dataflow (concurrent)
l Lazy evaluation
l Lazy functional dataflow (concurrent)

l We claim that they are all declarative
l What does this mean, exactly?
l Let us define it starting from the functional programming paradigm

l We show how to classify declarative paradigms according to their
concepts and expressive power (Section 4.5.2 in the book)

235

l235

Functional programming
l All functional programs can be encoded as λ expressions
l Church-Rosser theorem:

l If ea reduces to eb (in 0 or more steps) and ea reduces to ec (in 0 or
more steps), then there exists a term ed such that eb and ec can
reduce to ed

l We say the λ calculus is confluent; it has the Church-Rosser property

ea → e2 → e3 → ⋯ → eb

ec → ec1 → ec2 → ⋯ → ed

↓
e2’
↓
e3’
↓
⋮

↓

⋮

↓
⋮

236

l236

119

Other functional paradigms?
l We see that functional programs are confluent

l The meaning is clear for the first paradigm, namely sequential
functional programming

l But what does it mean for:
l Concurrency? (threads and their scheduler)
l Streams? (programs that never terminate!)
l Single-assignment variables? (variables can be unbound!)

l We give a precise formal definition of “declarative
programming” which covers these concepts
l Confluence: this handles concurrency (why?)
l Partial termination
l Equivalent stores

237

l237

I: Partial termination

238

l238

120

Partial termination

l Assume we have a concurrent
agent with an input stream S1
and an output stream S2

l It could execute as follows:
l S1=1|_ S2=2|_
l S1=1|2|_ S2=2|4|_
l S1=1|2|3|_ S2=2|4|6|_

l How is this functional?
l Problems: (1) the program never

terminates and (2) the streams
contain unbound variables

l With the right concepts, we can
see this as functional
execution:
l If S1 does not change, then

S2 reaches a final value
l We call this “partial termination”
l We say the program has

reached a “resting point”
l What about the unbound

variables?
l See next section!

2 x
S1 S2

Agent

239

l239

II: Equivalent stores

240

l240

121

Single-assignment variables
l We claim that a functional program that uses single-assignment

variables is still functional
l Let’s see how to make this precise

l Consider the following program:
T1: thread X=foo(Z W) end
T2: thread Y=foo(Z W) end
T3: thread X=Y end
l Assume T1 and T2 execute before T3, then we have the store:

σ={x=foo(z w), y=foo(z w)}
l Assume T1 and T3 execute before T2, then we have the store:

σ’={x=foo(z w), y=x}

l How can we express that stores σ and σ’ are the same?
l We first need to introduce some concepts from formal logic Intro slides241

l241

A store is a logical formula
l Assume we have these two stores:

 σ={x=foo(z w), y=foo(z w)}
 σ’={x=foo(z w), y=x}

l The bindings of x and y are different for σ and σ’ but the possible
values of x and y are the same in both stores
l Let’s see how to make this intuition precise

l A store σ corresponds to a relationship between values
l The store σ tells us that x is a record with label foo and arguments z and

w, and that y is a record with label foo and arguments z and w
l For all values of x, y, z, and w, there are two possibilities: either they can

be part of a store σ or they cannot be part of a store σ
l So the store σ is a logical formula, which can be true or false
l We write σ as a logical formula: σ ≡ x=foo(z w) ∧ y=foo(z w)

242

l242

122

Equivalent stores
l Now we can define when two stores are equivalent

l Each store represents a logical formula that can be true or false
l Two stores are equivalent when, no matter how we assign values to their

symbols, they are either both true or both false
l I.e., we cannot find values such that one store is true and the other is false

l We state this definition using the model concept
l We introduce the notation α⊨β which means “β is true in all models of α”

l Definition: Two stores σ and σ’ are logically equivalent if
l σ⊨σ’ and σ’⊨σ σ’ is true in all models of σ and σ is true in all models of σ’

l Another way to write this is:
l ⊨ (σ ⇔ σ’) (σ ⇔ σ’) is a tautology, i.e., it is true in all models

243

l243

Introduction
to first-order logic

244

l244

123

First-order logic
l To define store equivalence, we introduce first-order logic
l Formal logic is:

l A formal language: a syntactic definition of a set of formulas
l A proof theory: a set of rules to deduce whether a formula is true or

false, given a set of primitive formulas (axioms)
l A model theory: mathematical objects in which the axioms are true

l First-order logic is:
l A formal logic with variables, quantifiers, predicates, and connectors

l Axiom: ∀x.∀z.(grandparent(x,z) ⇔ ∃y.parent(x,y) ∧ parent(y,z))
l Model: any set of human beings with the parent relation

l Some popular programming languages based on first-order logic
are Prolog, constraint programming, and SQL

245

l245

Example of first-order logic
l Formulas:

syntactic expressions
(with variables and quantifiers)

∀x. x<x+2

∃x. (x2−3x+2=0)

∀x. (x2−3x+2=0 ⇒ x=1 ∨ x=2)

∀x. ∃y. y=x2

l Models:
integers ℤ
ℤ = {…, -3, -2, -1, 0, 1, 2, 3, …}

reals ℝ
ℝ = {x | x has infinite decimal expansion}

l All formulas on the left are
true in ℤ and ℝ

246

l246

124

Example of proof and model
l Given a set of formulas F

l Given any formulas α, β ∈ F
l Proof theory

l Given a set of proof rules
l α ⊢ β : β can be deduced from α using the rules
l (∃x.x2=1) ⊢ ∃x.(x=1 ∨ x=-1)

l Model theory
l α ⊨ β : β is true in all models in which α is true
l If (∃x.x2=1) true in ℝ then ∃x.(x=1 ∨ x=-1) true in ℝ

247

l247

Model of a store σ
l We give a formal definition of a model of a store σ
l First step: An interpretation of a store σ (is true or false)

l An interpretation of a store σ is an assignment to all symbols in σ
l For all variables x in σ, assign a value x to x
l For all record symbols f in σ, assign a function f to f that has the same

number of arguments as the record symbol and that returns a value
l Any interpretation of a store σ is either true or false

l A binding x=f(x1 … xn) is true if the value returned by f(x1 … xn) is equal
to x; otherwise it is false

l A store σ = (x=f(x1 … xn) ∧ … ∧ z=f(z1 … zn)) is true if all bindings are
true, otherwise it is false

l Second step: A model of a store σ (is always true)
l A model of σ is an interpretation in which σ is true

248

l248

125

III: Definition of
declarative

programming

249

l249

Definition of
declarative programming
l Now we can define precisely what declarative programming means

l A program is declarative if for all possible inputs:
l All executions for those inputs either:

l do not terminate, or
l all reach partial termination and give logically equivalent stores

l Remarks:
l “All executions” means all possible choices of the scheduler
l We say that a declarative program has “no observable nondeterminism”
l All five functional paradigms are declarative

250

l250

126

IV: Failure
confinement

251

l251

Fixing a buggy application
l Declarativeness is an extremely powerful property

l How do we write applications to be as declarative as possible?
l This is a major theme of the course! “All programs should be

declarative except where they interact with the real world.”
l How do we fix an application that becomes nondeclarative?

l We can do failure confinement

l Nondeclarative behavior
l We will see later in the course that applications that interact with

the real world can be nondeclarative
l That kind of nondeclarativeness is unavoidable but can be minimized

l Right now, let us see what happens when an application has a
bug that makes it nondeclarative

252

l252

127

Bugs are unavoidable
l “It is a truth universally acknowledged, that a program of a

certain size must have bugs”
l With apologies to Jane Austen 😀

l Assume we have the following (simplified!) buggy program:
thread X=1 end
thread Y=2 end
thread X=Y end

l This program will always raise an exception
l Three stores are possible depending on the scheduler choices:

σ1={x=1,y=2}, σ2={x=1,y=1}, σ3={x=2,y=2}
l This is an observable nondeterminism, so it is nondeclarative

l We can fix this by doing failure confinement
l We will hide the nondeterminism from the rest of the program
l That way the program becomes declarative again

253

l253

Failure confinement
l The program has three parts that can become

inconsistent if there is a bug
l We use exceptions to protect these parts

thread try X1=1 S1=ok catch _ then S1=error end end
thread try Y1=2 S2=ok catch _ then S2=error end end
thread try X1=Y1 S3=ok catch _ then S3=error end end
if S1==error orelse S2==error orelse S3==error then
 X=1 Y=1 /* default result when there is an error */
else
 X=X1 Y=Y1 /* correct result when there is no error */
end

254

l254

128

Table of
declarative paradigms

255

l255

Declarative paradigms
according to the textbook

256

l256

129

Conclusions

257

l257

Conclusions
l Lazy evaluation

l Functions are evaluated only if their results are needed
l This extends dataflow (Wait & Bind) with the WaitNeeded operation
l Programs can use infinite lists and be made more incremental
l Lazy evaluation can be combined with concurrency

l Declarative programming
l “An application should be declarative except for real-world interaction”
l We define precisely what is declarative programming

l We give a precise definition of declarative programming using the concepts of
confluence, partial termination, and logical equivalence

l Declarativeness is an observational concept: a program can behave
declaratively even if it is written in a nondeclarative paradigm

l Next lecture: Advanced declarative algorithm design
l Declarative algorithms can be as efficient as nondeclarative algorithms

258

l258

130

LINFO1131: Lecture 4
Advanced declarative

algorithm design

259

l259

Overview
l Motivation

l Writing efficient algorithms in
declarative paradigms

l Concepts used
l Single assignment and lazy

evaluation
l Amortized and worst-case
l Ephemeral and persistent

l Summary of the algorithms
l Difference list

l A list representation with
efficient ephemeral operations

l Naïve queue
l Amortized constant-time

ephemeral queue
l Worst-case constant-time

ephemeral queue
l A short step to logic

programming
l Amortized constant-time

persistent queue
l Worst-case constant-time

persistent queue
l Conclusions

260

l260

131

Motivation
l Writing declarative applications

l We would like to write as much of the program as
possible in a declarative paradigm

l Writing algorithms in a declarative paradigm
l An important question: is it possible to make efficient

algorithms in declarative paradigms?
l Is mutable state really needed for efficiency? Not always!

l Declarative algorithms can often be efficient
l We give many techniques for doing this
l We use the declarative paradigms we saw before

261

l261

Recommended book
l Many of the examples in this lecture are taken

from the book
l Chris Okasaki. Purely Functional Data Structures.

l This book shows how to use lazy evaluation to
define many efficient declarative algorithms
l The book uses the Standard ML language with an

explicit lazy evaluation operation

262

l262

132

Concepts used

263

l263

Concepts used
l Today’s lecture is based on the following concepts

l Language concepts
l Single-assignment variables
l Lazy evaluation

l Complexity concepts
l Amortized upper bound
l Worst-case upper bound

l Algorithm concepts
l Ephemeral data structure
l Persistent data structure

We saw these in the previous lecture

264

l264

133

Amortized and worst-case
l Amortized complexity

l If n operations have a combined complexity of O(f(n)) then we
say each operation has an amortized complexity of O(f(n)/n)

l This is important when individual operations are sometimes
expensive but operations are cheap on average

l For example, individual operations on a queue can have
complexity O(n), but with n operations it is possible for individual
operations to have amortized complexity of O(1)

l Worst-case complexity
l This is the big-O notation that you have seen before

l A good worst-case upper bound is best, but if this is not
possible, an amortized bound may be good enough

265

l265

Ephemeral and persistent
l An ephemeral data structure can have only one version

exist at the same time
l Given queue Q1, then doing Q2={Insert Q1 a} creates a new

queue Q2 and Q1 can no longer be used
l Stateful data structures (like in Java) are always ephemeral: when

you change the attributes of an object, the old values are forgotten
l A persistent data structure can have many versions exist

at the same time
l Given queue Q1, then doing Q2={Insert Q1 a} creates a new

queue Q2 and Q1 can still be used. Doing Q3={Insert Q1 b} will
create another version, and all versions Q1, Q2, Q3 are still usable

l What are persistent data structures good for?

266

l266

134

The use of persistence
l Persistent data structures are used for collaborative work

l Two people edit the same text and create their own versions
l Software repositories like github support multiple versions
l Some databases support multiple versions

l In systems with mutable state (like Java), multiple versions can be
simulated by doing explicit “copy” operations, but this is clumsy
l In our declarative code, the versions are handled automatically

l “Merge” operation
l Persistent data structures often have a “merge” operation that allows to

combine two versions
l The merge takes care of possible conflicts between versions

267

l267

Summary of the
queues

268

l268

135

Summary of the queues
l We show five ways to implement a queue abstraction

l We first give a naïve algorithm; the others have better properties!
l We use three declarative paradigms for these implementations

l Sequential functional programming
l Naïve queue, insert is O(1) and delete is O(n)
l Amortized ephemeral queue, insert and delete O(1)

l Sequential functional programming with single assignment
l Worst-case ephemeral queue, insert and delete O(1)

l Lazy evaluation
l Amortized persistent queue, insert and delete O(1)
l Worst-case persistent queue, insert and delete O(1)

269

l269

Summary of the queues

Queue

Ephemeral

Amortized

Persistent

Worst-caseAmortizedWorst-case

Sequential FP Lazy evaluation
Sequential FP

with single assignment

270

l270

136

Difference list

271

l271

Difference list
l A difference list is a representation of a list as a pair

of two lists (S,E) such that E is a suffix of S
l The difference list (S,E) represents the list S–E where

we take S and remove the suffix E
l The list 1|2|3|nil can be represented as a difference list:

l As the pair (1|2|3|X,X) where X is an unbound variable
l As the pair (1|2|3|4|Y,4|Y) where Y is an unbound variable
l As the pair (1|2|3|4|5|nil,4|5|nil)
l And so forth, there are an infinite number of possibilities

l What is the advantage of this representation?
l A difference list has efficient ephemeral operations!

272

l272

137

Adding an element
l Add an element to the start or the end in constant time

l Given the difference list (S,E) where E is an unbound variable
l Adding X to the start gives (S1,E) with the binding S1=X|S
l Adding X to the end gives (S,E1) with the binding E=X|E1

l For example, take the difference list (1|2|3|X,X)
l Adding 4 to the start gives (4|1|2|3|X,X)
l Adding 4 to the end gives (1|2|3|4|Y,Y)

l Bind X=4|Y, then take the first element of the original difference list
together with Y, which gives (1|2|3|4|Y,Y)

l For a standard list, like 1|2|3|nil, it is not possible to add
an element at the end in constant time!

273

l273

Constant-time append
l We append two difference lists in constant time

l Given (S1,E1) and (S2,E2), then the append is given
by (S1,E2) with the binding E1=S2

l For example, we append (a|b|X,X) and (1|2|Y,Y) by
binding X=1|2|Y and taking the start of the first with
the end of the second (a|b|1|2|Y,Y)

l This can only be done once (it is ephemeral)!
l In many cases, that is all we need
l Let us show an example how it can be used

274

l274

138

Naïve flatten
l Append function

fun {Append L1 L2}
 case L1 of nil then L2
 [] H|T then
 H|{Append T L2}
 end
end

l Append is a tail-recursive
function whose execution time
is proportional to |L1|, i.e., the
length of L1

l Naïve flatten function
fun {Flatten Xs}
 case Xs of nil then nil
 [] X|Xr andthen
 {IsList X} then
 {Append {Flatten X}
 {Flatten Xr}}
 [] X|Xr then
 X|{Flatten Xr}
 end
end

l {Flatten [[1 2] [3 4] 5]} gives
[1 2 3 4 5]

275

l275

Flatten with a difference list
l We replace the list result by a difference list

l We add two arguments S and E
l We define it as a procedure to show the arguments
proc {DFlatten Xs S E}
 case Xs of nil then
 S=E
 [] X|Xr andthen {IsList X} then M in
 {DFlatten X S M}
 {DFlatten Xr M E}
 [] X|Xr then M in
 S=X|M
 {DFlatten Xr M E}
 end
end

(S,E) is the append
of (S,M) and (M,E)

This is much more efficient
than the naïve Flatten!

276

l276

139

Difference lists
versus linked lists
l These two data structures seem quite similar

l Difference list (functional)
l Linked list (stateful, for example in Java)

l What’s the difference?
l Both allow efficiently building chains of elements
l The difference is that difference lists cannot be

broken: they have functional semantics
l Linked lists can always be broken: the chains can

always be modified by assignment

277

l277

Naïve queue

278

l278

140

Queue abstraction

l A queue is a sequence that allows insert on one end and
delete on the other end
l Insert 1, 2, …, 8
l First-in first-out (FIFO): delete 1, 2, …, 8

l We first give a naïve queue implementation in sequential
functional programming

l8 l7 l6 l5 l4 l3 l2 l1
insert delete

279

l279

Naïve queue
l We define a simple queue

abstraction
l Not a true abstraction since the

representation is not protected
l What is its complexity?

l Helper function:
fun {ButLast L X}
 case L
 of [Y] then X=Y nil
 [] Y|L1 then
 Y|{ButLast L1 X}
 end
end

l Queue operations:
fun {NewQueue} nil end
fun {Insert Q X} X|Q end
fun {Delete Q X}
 {ButLast Q X}
end

l Example execution:
declare Q Q1 1 X1 in
Q={Insert {Insert {Insert
 {NewQueue} 1} 2} 3}
{Browse Q}
Q1={Delete Q X1}
{Browse X1}

280

l280

141

Amortized
constant-time

ephemeral queue

281

l281

Amortized ephemeral queue
l We define an amortized

constant-time ephemeral queue
in functional programming

l The queue is represented as a
tuple q(F R)
l Content is {Append F {Reverse R}}
l Insert is done by updating R
l Delete is done by updating F
l If F is empty, then {Reverse R} is

done to move elements from R to F

fun {NewQueue} q(nil nil) end
fun {Check Q}
 case Q of q(nil R) then
 q({Reverse R} nil) else Q end
end
fun {Insert Q X}
 case Q of q(F R) then
 {Check q(F X|R)} end
end
fun {Delete Q X}
 case Q of q(F R) then F1 in
 F=X|F1 {Check q(F1 R)} end
end

282

l282

142

Discussion
l Example execution: (exactly as before!)

Q={Insert {Insert {Insert {NewQueue} 1} 2} 3}
{Browse Q}
Q1={Delete Q X1}
{Browse X1}

l Questions
l If this queue is used in a persistent manner (with multiple versions)

then the results will be correct. Why?
l However, when used in persistent manner, this queue is no longer

amortized constant-time. Why?
l Hint: find a sequence of n operations that has worse complexity than O(n)

283

l283

Comparing naïve queue
with amortized queue

ins
1

ins
1

ins
1

ins
1

del
n

del
n-1

del del
1n-2

Naïve queue (single list L)

ins
1

ins
1

ins
1

ins
1

del
n

del

1
del del

11

Amortized constant-time ephemeral queue (two lists F and R)

n n + (n-1) + (n-2) + … + 1 =
n (n+1)

2

n n + (n-1) = 2n - 1

Worst-case O(n)
Amortized O(n)

Worst-case O(n)
Amortized O(1)

284

l284

143

Worst-case
constant-time

ephemeral queue

285

l285

Worst-case ephemeral queue
l It is not possible to write a

queue with constant-time insert
and delete in standard
functional programming
l Amortized constant-time is the

best we can do
l But adding single assignment

makes it possible!
l The queue is represented as

the tuple q(S E) where (S,E) is
a difference list with the
content

l Both insert and delete are
always constant-time!

fun {NewQueue} X in q(X X) end
fun {Insert Q X}
 case Q of q(S E) then E1 in
 E=X|E1 q(S E1)
 end
end
fun {Delete Q X}
 case Q of q(S E) then S1 in
 S=X|S1 q(S1 E)
 end
end

286

l286

144

Knowing how many elements
l The previous definition does

not let us know when the
queue is empty

l To know the number of
elements, we add the queue
size to the representation
l The queue is represented as

q(N S E) where N is the
number of elements and (S,E)
is the same as before

l Test if empty:
fun {IsEmpty Q) Q.1==0 end

l Both insert and delete are still
constant-time!

fun {NewQueue} X in q(0 X X) end
fun {Insert Q X}
 case Q of q(N S E) then E1 in
 E=X|E1 q(N+1 S E1)
 end
end
fun {Delete Q X}
 case Q of q(N S E) then S1 in
 S=X|S1 q(N-1 S1 E)
 end
end

287

l287

A short step to
logic programming

288

l288

145

Doing delete before insert
l Try the following execution:

declare Q1 Q2 Q3 X in
Q1={NewQueue}
Q2={Delete Q1 X} % Delete from an empty queue
{Browse X}
Q3={Insert Q2 foo} % Insert an element

l This first displays an unbound variable X
l When foo is inserted, the display is updated to foo
l The delete creates an empty slot that is filled later by insert
l How can this work?

289

l289

Special power of this queue
l This queue definition has a special power that follows

from the logical equivalence property of stores
l The queue can have a negative number of elements!
l An element can be deleted before it is inserted

l The queue definition guarantees that deleted elements
are equal to inserted elements
l It is because binding done in any order gives the same results

l Binding is a symmetric operation; the general binding operation is
called unification and it follows from the logical equivalence of stores

l We can delete an unbound variable first and insert a value later
l We are doing more than just functional programming

l We are doing logic programming, similar to what Prolog does
290

l290

146

Delete before insert explained

l We start with an empty queue (S,S)
l Let’s do delete Y and insert X on the empty queue

l This gives two bindings, S=Y|S1 and S=X|E1
l What happens in the store?

l We have the logical formula (s=y|s1 ∧ s=x|e1)
l Simplifying shows us that y=x and s1=e1

(S,S)

S=Y|S1 S=X|E1

Insert X:
add X to the end

Delete Y:
remove Y from the front

Empty queue

291

l291

Shoutout to Prolog
l The queue is doing logic programming

l Both insert and delete do unification with the same variable
l Because of logical equivalence, this imposes logical equality
l Remember the last lecture’s introduction to first-order logic!

l Logic programming is another declarative paradigm
l Logic programming is more general than functional programming
l Data structures are truths: they can have unbound variables and binding

is bidirectional (both inputs and outputs can be bound)
l Computation is deduction: a running program deduces new truths

l A Prolog program is actually a theorem prover

l If you are curious, check out Prolog and constraint programming
l See programming paradigms and constraint programming courses

292

l292

147

Amortized
constant-time

persistent queue

293

l293

Making it persistent
l Persistence is a strong property that is hard to get

l As your program updates its data structures, many versions are
created that exist simultaneously

l Stateful programming, like in Java and Python, is ephemeral by
default. All algorithms using mutable state are ephemeral by
default!
l Stateful algorithms can be made persistent by making explicit

copies, but this is hard because it is managed by the
programmer

l Declarative algorithms can be made persistent by using
lazy evaluation
l This is another amazing property of lazy evaluation

294

l294

148

Helper function: lazy append
l We define a lazy append like we did before with

quicksort
fun lazy {LAppend Xs Ys}
 case Xs of X|Xr then X|{LAppend Xr Ys}
 [] nil then Ys end
end

l Example execution:
declare L in
L={LAppend [1 2 3] [4 5 6]}
{Browse L}

l Run this and ask for elements of L, to understand it!
l It gives 1, 2, 3, and then [4 5 6] all at once

295

l295

Persistent algorithm idea
l We define the queue again, but with yet another representation

l We use a tuple q(LenF F LenR R) where LenF and LenR are
integers giving the length of F and R
l As before, we move elements from R to F when F becomes empty
l But now we do the move with a lazy suspension

l How we get amortized constant-time
l The move does a {Reverse R} which cannot be made incremental
l To make it amortized, we pay for the lazy suspension in advance
l We use the “banker’s method”: we do n operations in advance before

creating the lazy suspension
l It is like saving money: save bit by bit and buy when you have enough

296

l296

149

Persistent algorithm code
fun {NewQueue} q(0 nil 0 nil) end
fun {Check Q}
 case Q of q(LenF F LenR R) then
 if LenF<LenR then
 q(LenF+LenR {LAppend F {fun lazy {$} {Reverse R} end}} 0 nil)
 else Q end
 end
end
fun {Insert Q X}
 case Q of q(LenF F LenR R) then {Check q(LenF F LenR+1 X|R} end
end
fun {Delete Q X}
 case Q of q(LenF F LenR R) then F1 in F=X|F1 {Check q(LenF-1 F1 LenR R)} end
end

Move R to F (lazily)

Increase R

Decrease F

297

l297

How it works
(example on next slide)
l The trick is to make sure the algorithm creates

a lazy suspension at the right time
l It has to be done when the {Reverse R} is paid for

l Banker’s method: save operations in the bank!
l Assume we are inserting elements

l This causes R to increase
l When R is larger than F, create the lazy suspension
l Activating the lazy suspension makes F bigger and R empty

l Assume we are deleting elements
l We activate a lazy suspension to get an element, and this

triggers the {Reverse R}, but it’s ok since it’s paid for
298

l298

150

Example
execution

F R
0 0

1 0

1 1

3 0

3 1

3 2

3 3

7 0

7 1

7 2

Ins a

Ins b

Ins c

Ins d

Ins e

Ins f

Ins g

Ins h

Ins i

6 2
Del X

5 2
Del Y

F=nil+rev([a])

Create lazy suspension
(0 1) immediately becomes (1 0)

F=(nil+rev([a]))+rev([c b])

Create lazy suspension
(1 2) immediately becomes (3 0)

Create lazy suspension
(3 4) immediately becomes (7 0)

F=((nil+rev([a]))+rev([c b]))+rev([g f e d])

Lazy
reverse

Lazy
append

Activate lazy suspension

Activate lazy suspension
X=a

Y=b

Pays for append and
reverse (amortized)

Pays for append and
reverse (amortized)

When activated later by a Delete,
F is bound to the result and every
Delete after that will see F! So it is
only executed once. This is why it
is persistent.

6 2
Del A

5 2
Del B

A=a

B=b

Only one of Del A and Del X will
execute the lazy function (the one
that runs first). The other will just
use the result.

Two versions
of the queue

299

l299

Why {Reverse R} is monolithic
l The {Reverse R} function cannot be made incremental

by lazy evaluation
l We say that it is monolithic

l It is because we cannot know the first element of the
reversed list without traversing the whole list
l Any function where we need to see the whole data structure in

order to create a single output cannot be made incremental by
lazy evaluation (another example: Partition in lazy quicksort)

l We show the code…
l If you try to execute Reverse lazily you will see why this happens:

the recursive calls of Reverse don’t create any results until the
recursion stops at the end

300

l300

151

Execution of lazy reverse
l Reverse function:

fun lazy {Reverse L A}
 case L of X|L2 then
 {Reverse L2 X|A}
 [] nil then A
 end
end

l Traverse list L and build
reverse in accumulator A

l Sample call:
R={Reverse [1 2 3] nil}

l What happens when we ask
for the first element?
{Browse R.1}

l R is needed so the lazy
suspension is activated and
executes the body. This calls:
{Reverse [2 3] 1|A}

l This creates another lazy
suspension that is immediately
activated because it is needed!
l To get the first element, we

keep traversing L to the end
301

l301

Worst-case
constant-time

persistent queue

302

l302

152

Achieving worst-case
constant-time
l The reason why the previous example was amortized

constant-time was because of the {Reverse R} call
l Reverse is monolithic: it is executed all at once

l To fix this, we need to execute the reverse step by step
l The old code is {LAppend F {fun lazy {$} {Reverse R} end}}

l This code does both LAppend and Reverse
l The trick is to merge them into a new function AppRev

l Each time LAppend does one iteration, we do one step of Reverse
l The execution of Reverse is “spread out” over n operations

l We show how to merge Append and Reverse
303

l303

“Spreading out” the Reverse
l Old code: {LAppend F {fun lazy {$} {Reverse R} end}}

l This code will first get elements lazily from F
l When F is completely used up, then it executes {Reverse R}
l It calculates all elements of {Reverse R} in one operation

l New code: {LAppRev F R nil}
l The function LAppRev is like LAppend, but whenever it does

one iteration of Append, it also does one iteration of Reverse
l When the LAppRev is done (because F is completely used up),

then the Reverse is completely executed!

304

l304

153

Defining LAppRev
l We explain how we combine

Append and Reverse
l Here is the code for Append

and Reverse:
fun lazy {LAppend F B}
 case F of X|F2 then
 X|{LAppend F2 B}
 [] nil then B end
end
fun {Reverse R B}
 case R of Y|R2 then
 {Reverse R2 Y|B}
 [] nil then B end
end

l Here is the code for LAppRev
that does both Append and
Reverse:
fun lazy {LAppRev F R B}
 case pair(F R)
 of pair(X|F2 Y|R2) then
 X|{LAppRev F2 R2 Y|B}
 [] pair(nil [Y]) then Y|B
 end
end

l Notes:
l Green arguments come from

LAppend, red ones from Reverse
l When F is empty, then R has one

element left (due to F<R condition:
R has grown bigger than F) 305

l305

Persistent algorithm code
(new version)
fun {NewQueue} q(0 nil 0 nil) end
fun {Check Q}
 case Q of q(LenF F LenR R) then
 if LenF<LenR then
 q(LenF+LenR {LAppRev F R nil} 0 nil)
 else Q end
 end
end
fun {Insert Q X}
 case Q of q(LenF F LenR R) then {Check q(LenF F LenR+1 X|R} end
end
fun {Delete Q X}
 case Q of q(LenF F LenR R) then F1 in F=X|F1 {Check q(LenF-1 F1 LenR R)} end
end

Move R to F (lazily)

Increase R

Decrease F

New code replaces old code

306

l306

154

Conclusions

307

l307

Conclusions
l We define important algorithm concepts

l Amortized complexity: single operations may be expensive but on
average they are efficient

l Persistence: multiple versions of data structures can be used
l We write efficient algorithms in declarative paradigms

l We take a simple algorithm, a queue, and show four ways how it can be
implemented efficiently

l We use both lazy evaluation and single assignment
l As a bonus, we make a step toward logic programming

l Because of logical equivalence of stores, variable binding is actually a
symmetric operation called unification

l Logic programming is the most powerful form of declarative
programming – check out Prolog and constraint programming

308

l308

155

Take-away intuitions
l Concepts for efficient declarative algorithms

l Single assignment for fast ephemeral algorithms
l Lazy evaluation for fast persistent algorithms

l Why it works
l Single assignment is a weak form of mutable state that is still

declarative but is strong enough for ephemeral algorithms
because they only do assignment once

l Lazy evaluation lets expensive operations be done in advance
(which improves behavior for multiple versions) and be
decomposed into small steps (which improves behavior for worst-
case)

309

l309

310

l310

156

LINFO1131: Lecture 5
Limitations of

declarative programming

311

l311

Overview

l Limitations of declarative programming
l Declarative paradigms are based on lambda calculus: they are confluent

but they do not interact with the real world during their execution
l We explain how to extend declarative paradigms to interact with the real

world, by adding imperative concepts such as mutable state or
communication channels

l Cells
l A form of mutable state that allows to overcome the limitations of

declarative programming
l This leads to shared-state concurrency

l Ports
l A communication channel that allows to overcome the limitations of

declarative programming
l This leads to message-passing concurrency (multi-agent programming)312

l312

157

Limitations of
declarative programming

(part 2)

313

l313

Beyond declarative programming?
l Up to now we have seen only declarative paradigms

l Sequential functional programming
l Functional dataflow and lazy functional dataflow
l Efficient declarative algorithms
l These are powerful and useful paradigms!

l Ideally, your program should be completely declarative!
l Correctness, testing, and maintenance are much simplified!
l But unfortunately this is impossible
l Why is it impossible? Let us see by looking at lambda calculus!
l Luckily most programs only need a few nondeclarative bits, so

most of the program can still be declarative
314

l314

158

Declarative execution =
lambda execution
l Declarative execution is equivalent to lambda execution:

 e0 → e1 → e2 → … → en-1 → en

l Execution starts with initial expression e0 and reduces it
in steps, ending with final expression en
l Lambda calculus is Turing complete, it can do all computations
l The power is a consequence of the Church-Rosser theorem

(confluence): final result en is independent of the reduction order
l How does this execution interact with the real world?

l In declarative programming, it does not! All information is
already in the initial expression e0, nothing is added later.

315

l315

Interacting with the real world
is not declarative
l Practical programs take time to execute

l Each reduction step ei-1 → ei takes time because execution
happens on a computer, a physical artifact in the real world

l Some reduction steps interact with the real world
l They accept inputs (like s0) or they generate outputs (like s1)

 s0 s1
 ↓ ↑
e0 → e1 → e2 → e3 → e4 → … → en-1 → en

l This is not a lambda execution any more!
l Because input s0 affects the value of e2, and because output s1

comes from e4 so it is not a lambda final expression
316

l316

159

Lambda calculus: confluent
but no real-world interaction
l Confluent reduction of an initial expression to a final result

This has very strong mathematical properties that we can use
l For reasoning, debugging, testing, optimization, and maintenance
l For concurrency, parallelism, and distribution
l There is no efficiency penalty compared to other paradigms!

l But it can’t interact with the real world! Let’s see why:
l During the execution, we would like to accept inputs coming from the

real world and outputs going back to it
l Declarative programming can’t interact with the real world because its

execution is a step-by-step reduction of an initial expression to a final result.
Reduction steps take time, and the inputs will arrive during this time. The
reduction can’t use them unless we could put them in the initial expression.
But we can’t do this, because the inputs are not known in advance.

317

l317

Imperative programming
l To interact with the real world, we need to add

something to the declarative paradigms
l A way to receive inputs and send outputs during execution
l This is usually called imperative programming

l This lets us interact with the real world, but we also have
to give up the goodness of declarative programming

l Can we have our cake and eat it too? Both the good
properties of declarative programming and interaction
with the real world?
l No we can’t! So what can we do…?

318

l318

160

The right way
to design programs
l Write most of the program in a declarative paradigm

l And add small pieces of imperative programming only in
those places that interact with the real world

l Usually there are only a very few such places, so we keep
most of the advantages of declarative programming

l We can use this to improve existing systems too…
l Existing systems are often not designed like this! They do

too much imperative programming. Older systems like
Java are especially bad.

l This gives us a measure to judge how well existing
systems are designed (and a way to improve them: make
them more declarative)

319

l319

Kinds of interactions
l There are many ways that a program can

interact with the real world
l Here are three typical possibilities:

l Hardware clock: Input sk gives the clock time
l Mutable state: output sa writes to a register, later input

sb (with b>a) reads from the register
l Communication channel: output sb sends to a

channel, later input sc receives from the channel
l Executions give different results depending on

the exact timing and order of the reductions
320

l320

161

Hardware clock
l Here is an example of a hardware clock:

 t0 t1 t2
 ↓read ↓read ↓read
e0 → e1 → e2 → e3 → e4 → e5 → … → en-1 → en

l A read returns the current time from the clock
l Reduction e0→e1 reads time t0
l Reduction e2→e3 reads time t1
l Reduction e4→e5 reads time t2

l Exact time values depend on reduction timing and order
l This is not lambda reduction, since for a lambda reduction the

result is independent of reduction timing and order (confluence)
321

l321

Mutable state
l Here is an example of a mutable variable:

 x y y
 ↑write ↑write ↓read
e0 → e1 → e2 → e3 → e4 → e5 → … → en-1 → en

l A read returns the value of the most recent write
l Reduction e0→e1 writes x in the register
l Reduction e2→e3 writes y in the register
l Reduction e4→e5 reads y from the register (not x!)

l Result of reads depends on reduction order
l This is not lambda reduction, since for a lambda reduction the

result is independent of the reduction order (confluence)
322

l322

162

Communication channel
l Here is an example of a FIFO channel:

 x y x y
 ↑send ↑send ↓receive ↓receive

e0 → e1 → e2 → e3 → e4 → e5 → e6 → … → en-1 → en

l The write happens before the read in the reduction order
l Reduction e0→e1 sends x on the channel
l Reduction e2→e3 sends y on the channel
l Reduction e4→e5 receives x from the channel
l Reduction e5→e6 receives y from the channel

l Order of received values depends on reduction order
l Sending of x and y might be reversed if they are concurrent!

Nondeterministic!

323

l323

Client/server application
l Let’s use the communication channel

to build a client/server application
l To satisfy client liveness, the server

must accept each incoming client
request in a reasonable time that
depends only on the travel time from the
client to the server

l However, the order of the requests
cannot be determined in advance
because it depends on precise client
timing (different timings give different
reduction orders)
l This means that the communication

channel is nondeterministic

l The whole client/server application is
therefore nondeterministic, even if all
the other code is purely declarative

Server

Client 1

Client 2
Receive from
the channel

324

Send to the
channel

Send to the
channel

l324

163

The two most important
nondeclarative operations
l Two most important nondeclarative operations

are mutable state and communication channels
l In the course we will show how to use both of them

l Mutable state: called cells
l Leads to shared-state concurrency (Java)
l Locks, monitors, transactions

l Communication channels: called ports
l Leads to message-passing concurrency (Erlang)
l Multi-agent programming

325

l325

Two definitions of
declarative programming

326

l326

164

Two definitions
l You will notice that we have made two

definitions of declarative programming
l “A program is declarative if for all possible inputs, all

executions either do not terminate or they terminate
and give logically equivalent results” (lecture 3)
l This is an observational definition: we observe a program from

the outside, we don’t care how the program is implemented
l “A program is declarative if it is equivalent to an

execution of a program in lambda calculus” (lecture 5)
l This is a structural definition: it is based on how the

program is implemented

327

l327

Comparing the definitions
l Observational is strictly more general than structural

l All lambda executions are declarative when observed from the outside
l An observational declarative program can be implemented using mutable

state, as long as the state has no observable effect (it is hidden)

l The observational definition is best for designing programs
l It captures the idea that the program must be deterministic even if it is

concurrent, just as with lambda calculus (Church-Rosser theorem)
l We can use mutable state in the implementation, as long as it is hidden

l This is important because mutable state is a fundamental part of today’s
processors, so the low-level parts of the implementation must use it!

l The structural definition gives the theoretical basis
l It shows that declarative programming is possible and practical

l The Church-Rosser theorem is an important and nonobvious result!
328

l328

165

Conclusions

329

l329

Conclusions
l Declarative paradigms are the best but they cannot always be used

l We investigate their limitations and how to overcome them

l Declarative paradigms are based on lambda calculus, which makes
them confluent but they cannot interact with the real world

l To interact with the real world, we extend declarative paradigms with
imperative concepts, like mutable state or communication channels
l Mutable state (cells) leads to shared-state concurrency (Java)
l Communication channels (ports) lead to message-passing concurrency (Erlang)

l Programs should use declarative paradigms as much as possible
with as few imperative concepts as possible
l The extensions should only be used in special cases, namely where interaction

with the real world is needed

330

l330

