
1

April 2006 P. Van Roy, FLOPS 2006 1

Convergence in Language Design:
A Case of Lightning Striking

Four Times in the Same Place
April 25, 2006

FLOPS 2006

Peter Van Roy

Université catholique de Louvain

Louvain-la-Neuve, Belgium

April 2006 P. Van Roy, FLOPS 2006 2

Language convergence

 This talk will present four case studies of big research projects
that tackled important problems in computer science
 The four projects all considered language design to be part of their

solution

 The surprise is that the four projects came up with language
structures that have much in common
 We will speculate on what this means in terms of one possible

definitive programming language: a language that provides “good
enough” solutions so that computer scientists can move on

 We believe that some day, a small set of definitive languages will
exist

 This talk is intended to provoke discussion!

2

April 2006 P. Van Roy, FLOPS 2006 3

The four projects

 Programming highly available systems for telecommunications
 By Joe Armstrong and his colleagues at the Ericsson Computer Science Laboratory

 Designed the Erlang language and system, which was used to build significant
products (e.g., AXD 301 ATM switch, Bluetail Mail Robustifier, Alteon SSL Accelerator)

 Programming secure distributed systems with multiple users and multiple
security domains
 By Doug Barnes, Mark S. Miller, and the E community

 Designed the E language and system; ideas originate in the Actor model

 Making network-transparent distribution practical
 By Seif Haridi, Peter Van Roy, Per Brand, Gert Smolka, and their colleagues

 Designed the Distributed Oz language and system

 Teaching programming as a unified discipline covering all popular
programming paradigms
 By Peter Van Roy and Seif Haridi, aided by their colleagues

 “Reconstructed” Oz and wrote a textbook organized according to programming
concepts

April 2006 P. Van Roy, FLOPS 2006 4

Our bias

 Both the network transparency project and the teaching
programming project involved some of the same people

 Both projects were undertaken because we believed that the
factored design of Oz would be an adequate starting point
 Concurrent constraints at the core, with orthogonal extensions

 In the final analysis, both projects give good reasons why their
solutions are appropriate
 We will let you judge!

 (In fact, it was thinking about these projects that led us to see
the coincidences that this talk presents)

3

April 2006 P. Van Roy, FLOPS 2006 5

Common language structure
 Each language has a layered structure with 3 or 4 layers
 The inner layers are used most but the outer layers cannot be missed
 Let us give some of the basic insights of each solution

Erlang

Strict
functional

Deterministic
concurrency

Message-passing
concurrency

Shared-state
concurrency

Lightweight process
defined by function,
hot code updating

Fault tolerance through
isolation; linking and
supervisors to handle
failures

Database (Mnesia)
for fault tolerance

E

Objects are recursive
functions with local state

“Event loop” concurrency
inside a vat (OS process):
all objects share one
thread (no interleaving)

Messages between
objects in different vats,
security through isolation

Oz (distribution)

Functions, classes, and
components are values with
efficient distributed protocols

Dataflow concurrency
with efficient distributed
unification protocol

Asynchronous messages
to hide latency between
processes; no global state

State with global coherence
for sharing and collaboration;
transactions for latency and
fault tolerance

Oz (teaching)

Lexically scoped
closure: central concept
in programming

A form of concurrency that
preserves functional
properties if there are no
sources of nondeterminism

Multiagent systems are
easy to program and reason
about and widely applicable

Mutable state
for modularity

April 2006 P. Van Roy, FLOPS 2006 6

Fault-tolerant
programming

4

April 2006 P. Van Roy, FLOPS 2006 7

Concurrency in Erlang

 Erlang is a dynamically typed language with
processes and functions

 An Erlang program consists of a possibly
very large number of processes, which each
executes in its own address space

 Processes send messages asynchronously
and receive them through mailboxes
(message queues with extraction through
pattern matching and optional time-out)

 The behavior of a process is defined by a
transition function f:M×S→S where M is the
set of messages and S is the set of states

 Process identities and functions are values
that can be put inside data structures

 A process can replace its defining function
during execution (“hot update”)

P4

P3

P1
P2

process

message

April 2006 P. Van Roy, FLOPS 2006 8

Fault tolerance in Erlang
 Erlang is designed to write programs

that survive both software and
hardware faults
 Software faults are considered to be the

most important to correct

 Two processes can be linked; if one
fails then both are terminated
 Programming methodology encourages

to let processes fail if anything goes
wrong: “let it fail” philosophy

 If a linked process has its supervisor bit
set, then the process is sent a message
instead of failing

 This basic mechanism is used to notify
programs for recovery
 Recovery using supervisor trees

 Erlang has a database, Mnesia, that
supplements the supervisor tree
abstraction (maintain invariants)

Link

Link

Supervisors=1

s=0 s=0

Supervised processes

5

April 2006 P. Van Roy, FLOPS 2006 9

Secure distributed
programming

April 2006 P. Van Roy, FLOPS 2006 10

Security with E and POLA
 An E program consists of objects (functions

encapsulating a state) hosted in secure
processes called vats that communicate
through a secure message-passing protocol
based on encryption

 All language references (including object
references) are capabilities: they are
unforgeable and unbreakably combine
designation with authority

 E programs support the Principle of Least
Authority: the only way to get a capability is if
you are passed it by a capability that you
already have (no “ambient authority”)

 E researchers have built a capability-aware
desktop, CapDesk, and applications on top of it
to show that capability security can be done
from the user interface down to single object
references without compromising
programmability and usability

 What is programming in E like? It is like OOP
but (1) without cheating and (2) with both
asynchronous and synchronous calls.

Vat (OS
process)

Vat (OS
process)

object

single
message
queue

Secure
communication

link

6

April 2006 P. Van Roy, FLOPS 2006 11

Concurrency in E

 Within each vat there is a single
thread with its message queue; all
asynchronous object invocations in
the vat pass through that queue
 Deterministic concurrency for objects

in the same vat
 Synchronous object invocations

behave like sequential procedure calls

 Vats are concurrent; an object in a
vat can send an asynchronous
message to an object in another vat;
the message is added to the queue
 Message-passing concurrency for

objects in different vats

 Vats communicate through a secure
protocol called Pluribus

Vat (OS
process)

Vat (OS
process)

object

single
message
queue

Secure
communication

link

April 2006 P. Van Roy, FLOPS 2006 12

Lessons from E

 Security in depth: even if one level of security is breached,
there is still much protection
 Completely different from the usual approach, in which breaking

through one level (“getting in”) gives you all the rights of a
legitimate user

 The E thesis: if operating systems and languages were built in
this way, the virus problem would largely go away

 The E problem: since this is impractical, how can we add POLA
to existing systems?

 POLA in the GUI: modify user interface so that GUI selection
= giving authority, then this level of security is gained without
reducing usability
 Requires application written in CapDesk (e.g., CapEdit)

 Polaris project (HP Labs): add POLA to existing applications

7

April 2006 P. Van Roy, FLOPS 2006 13

Example: POLA in the GUI

 Does more security
have to mean less
usability?
 Not necessarily!

 In CapEdit, clicking
on a file both
designates the file
and gives the editor
the right to change it

 The editor only has
the rights you give it,
no more

April 2006 P. Van Roy, FLOPS 2006 14

Example: Polaris project
 Redesigning existing systems for POLA is

impractical
 The Polaris project gets part of the way

 On a standard OS (e.g., Windows or Unix), it
encapsulates an application and manages the
authority given to the application
 It launches the application in a restricted user

account
 It replaces dialog boxes by capability-enabled

dialog boxes
 Files are kept synchronized between the

standard user account and restricted account
 Authority is transferred through the

synchronizer, which is a reference monitor
 Works with standard, unaltered applications

 If the application (e.g., Explorer or Excel) gets
a virus, it can only do restricted damage

 Alpha version available

Standard OS
(Windows, Unix)

Polaris encapsulation layer
(restricted user account,

synchronizer)

Application
(e.g., Explorer, Excel)

8

April 2006 P. Van Roy, FLOPS 2006 15

Network-transparent
distributed programming

April 2006 P. Van Roy, FLOPS 2006 16

Network-transparent
distributed programming

 Network transparency is impossible or undesirable, right?
 (Waldo et al, 1994) give four critiques: pointer arithmetic, partial

failure, latency, and concurrency

 Right, if you want to hide the network completely
 Wrong, if your goal is to simplify distributed programming

 The goal is to separate the functionality of a program from its
network behavior (performance, partial failure). Even if only
partly realized, it is a gain.

 “Network transparency with network awareness” (Cardelli, 1995)

 Given proper language design, Waldo’s critiques no longer
hold and distributed programming is indeed simplified
 Distributed execution model for Oz, implemented in Mozart

system (since 1995)

9

April 2006 P. Van Roy, FLOPS 2006 17

Basic principles
 Refine language semantics with a distributed semantics

 Separates functionality from distribution structure (network
behavior, resource localization, fault behavior)

 Three properties are crucial:
 Transparency

 Language semantics identical independent of distributed setting
 Controversial, but let’s see how far we can push it, if we can also

think about language issues

 Awareness
 Well-defined distribution behavior for each language entity:

simple and predictable

 Control
 Choose different distribution behaviors for each language entity
 Example: objects can be stationary, cached (mobile),

asynchronous, or invalidation-based, with same language
semantics

April 2006 P. Van Roy, FLOPS 2006 18

Layered language design

 Oz language has a layered structure with three layers:
 Strict functional core (stateless): exploit the power of lexically scoped

closures
 Single-assignment extension (dataflow variables + concurrency +

laziness): provides a simple but powerful model for concurrent
programming (“declarative concurrency”)

 State extension (mutable pointers / communication channels): provides
the advantages of state for modularity (object-oriented programming,
many-to-one communication and active objects, transactions)

 Layered structure is well-adapted for distributed programming
 Distributed implementation is more efficient for the inner layers
 Layered structure is not new: see, e.g., pH (Haskell + I-structures + M-

structures), Smalltalk (blocks are closures), even Java (support for
immutable objects, concurrency layer)

 Dataflow extension is well-integrated with state: to a first
approximation, it can be ignored by the programmer (it is not
observable whether a thread temporarily blocks while waiting for a
variable’s value to arrive)

10

April 2006 P. Van Roy, FLOPS 2006 19

Distributed implementation
 Use different distributed algorithms according to layer

 Stateless (records, classes, procedures, software components)
 Coherence assured by copying (eager immediate, eager, lazy algorithms)

 Single-assignment (dataflow variables)
 Allows to decouple communications from object invocations
 To first approximation: can be completely ignored by the programmer
 Uses distributed unification algorithm (in between stateless and stateful!)

 Stateful (objects, communication channels, component instances)
 Synchronous: stationary, cached (mobile state), invalidation protocols
 Asynchronous FIFO: channels, asynchronous object calls
 Transaction protocols

 Each language entity is implemented with one or more distributed
algorithms
 Choice of distributed algorithm allows tuning of network performance

 Does it give a warm, fuzzy feeling?
 Well, yes (I can give a demo)

April 2006 P. Van Roy, FLOPS 2006 20

Distributed objects

 Each object is implemented with a distributed algorithm
 Performance and fault behavior depend on the algorithm

 The programmer has just one new operation, passing a language reference
from one process (called “site”) to another. This means that all processes
conceptually form one store.
 We provide an ASCII representation of language references (called “ticket”),

which allows passing references through any medium that accepts ASCII (Web,
email, files, phone conversations, …)

 How do we do fault tolerance? By reflecting the faults in the language.

Object

Cached (mobile) object

Stationary object

Invalidation-based object

11

April 2006 P. Van Roy, FLOPS 2006 21

Distributed object example (1)

 Define a simple random
number class, Coder

 Create one instance, C

 Create a ticket for the
instance, T

 The ticket is an ASCII
representation of the
object reference

class Coder
 attr seed
 meth init(S) seed:=S end
 meth get(X)
 X=@seed
 seed:=(@seed*23+49) mod 1001
 end
end

% Create a new object C
C={New Coder init(100)}

% Create a ticket for C
T={Connection.offer C}

April 2006 P. Van Roy, FLOPS 2006 22

Distributed object example (2)

 Let us use the object C on
a second site

 The second site gets the
value of the ticket T
(through the Web or a file,
etc.)

 We convert T back to an
object reference, C2

 C2 and C are references to
the same object

% Use T to get a reference to C
C2={Connection.take T}

local X in
 % invoke the object
 {C2 get(X)}
 % Do calculation with X
 ...
end

What distributed algorithm is used to implement the object?

12

April 2006 P. Van Roy, FLOPS 2006 23

Distributed object example (3)

 For the programmer, C and C2 are the same object: the distributed
algorithm guarantees coherence

 Many distributed algorithms are possible, as long as the language
semantics are respected

 By default, we use a mobile state algorithm: the object state moves
synchronously to the invoking site using a distributed token passing
protocol. This makes the semantics easy, since all object execution is local
(e.g., exceptions are raised in local threads).

 Other possibilities are a stationary object (behaves like a server, similar to
RMI), an invalidation-based object, etc.

Process 1 Process 2

C C2

April 2006 P. Van Roy, FLOPS 2006 24

Mobile state algorithm

 Distributed token passing
algorithm implements state
updates for the object state
(Van Roy et al 1997)

 Formalize the distributed
algorithm as message passing
between active entities

 One “proxy” per site

 “Manager” serializes state

requests

 The object state is mobile; to be
precise, the right to update the
object state is mobile, moving
synchronously to the invoking
site

 All object execution is local

Proxy
Proxy

Object state

Manager

1. request

2. forward

3. transfer

13

April 2006 P. Van Roy, FLOPS 2006 25

Asynchronous objects (1)

 Objects with mobile state still have the synchronous behavior of
centralized objects (they keep the same semantics)
 This means that a round trip delay is needed for the first invocation

 In a distributed system, asynchronous communication is more natural
 To achieve it, we use dataflow variables: single-assignment variables that

can be in one of two states, unbound (the initial state) or bound

 The use of a dataflow variable is transparent: it can be used as if it were
the value
 If the value is not yet available when it is needed, then the thread that needs

it will simply suspend until the value arrives
 Example:

thread X=100 end Y=X+100
(binds X) (uses X)

 A distributed rational tree unification algorithm is used to implement this
behavior: the key ideas are an arbitration (first binding wins) and a
broadcast of the binding

April 2006 P. Van Roy, FLOPS 2006 26

Asynchronous objects (2)

 Used just like normal objects

 Return values are passed with
dataflow variables:

C={NewAsync Coder Init}
(create on site 1)

{C get(X1)} % Asynchronous calls
{C get(X2)}
{C get(X3)}
X=X1+X2+X3 % Synch happens here
(calls on site 2)

 Can synchronize on error
 Exception raised by object:

{C get(X1) E}
(synchronize on E)

 Error due to system fault
(crash or network problem):
 Attempt to use return variable

(X1 or E) will signal error (lazy
detection)

 Eager detection also possible

14

April 2006 P. Van Roy, FLOPS 2006 27

Asynchronous objects (3)

Need values

Use values

Need values

Use values

Use values

Need values

Call synchronously
when needed (RMI)

Call asynchronously
when needed

Call asynchronously
before needed

Improve network performance without changing the program!

Site 1 Site 2

April 2006 P. Van Roy, FLOPS 2006 28

Distributed unification
algorithm

 Distributed rational tree
unification implements each
dataflow variable (Haridi et
al 1999)

 It is a remarkable fact that
this algorithm requires only
one distributed operation: a
distributed bind
 Request binding to manager,

which arbitrates (first
request wins)

 Manager broadcasts binding

 All other unification
operations are local

 Laziness is supported by a
“need” message to the
manager

Proxy
Proxy

Proxy

Manager

X=100

Y=X+100
(suspends)

1. Request binding

2. Broadcast binding

15

April 2006 P. Van Roy, FLOPS 2006 29

Fault tolerance
 Reflective failure detection

 Reflected into the language, at the level of single language entities

 We have looked at two kinds: permanent process failure and temporary
network failure

 Both synchronous and asynchronous detection

 Synchronous: exception when attempting language operation

 Asynchronous: language operation blocks; user-defined operation
started in new thread

 Our experience: asynchronous is better for building abstractions

 Building fault-tolerant abstractions
 Using reflective failure detection we can build abstractions in Oz

 Example: transactional store

 Set of objects, replicated and accessed by transactions

 Provides both fault tolerance and latency tolerance

 Lightweight: no persistence, no dependence on file system

 Example: structured overlay network (peer-to-peer)

April 2006 P. Van Roy, FLOPS 2006 30

Beyond network transparency

 Network transparency is only the first step
 It works well for small numbers of nodes
 But it doesn’t handle larger systems because the programming

abstractions of centralized computing are not enough
 Abstractions for large systems: start with structured overlay networks

 Provide decentralized communications and storage services in a
scalable and robust manner

 An outgrowth of peer-to-peer that adds guarantees and efficiency

 Next step: self-managing systems
 When “abnormal” behavior becomes frequent, the system architecture

must handle self-{configuration, healing, protection, tuning} at all levels
 Our vision (SELFMAN project starting in 2006): Combine structured

overlay networks with an advanced component model; build monitoring
services using techniques from physics (e.g., belief propagation) and
structure systems according to general system theory (cybernetics!)

16

April 2006 P. Van Roy, FLOPS 2006 31

Teaching programming
as a unified discipline

April 2006 P. Van Roy, FLOPS 2006 32

Teaching programming (1)

 What is programming?
 We define it broadly as “extending or changing a computer

system’s functionality” or “the activity that starts from a specification
and leads to a running system over its lifetime”

 How can we teach programming without being affected by
historical accidents of current languages and systems?

 We can teach programming by starting with a simple language
and adding features (Holt 1977)

 A more principled approach is to add programming concepts,
not language features, e.g., Abelson & Sussman (1985, 1996)
add mutable state to a functional language, leading to object-
oriented programming

17

April 2006 P. Van Roy, FLOPS 2006 33

Teaching programming (2)

 In 1999, Seif Haridi and I realized that we could apply this approach in
a very broad way by using Oz
 The Oz language was explicitly designed to contain many concepts in a

factored way (long-term design effort by Gert Smolka and many others)
 We realized that a good second concept is concurrency (Kahn 1974).

This lets us keep the good properties of functional programming in a
concurrent setting. It works well when there are no external sources of
nondeterminism.

 We wrote a textbook that reconstructs Oz in a layered way according
to a general principle that indicates when to add a concept and what
concepts to add
 Our reconstruction can be seen as a partially ordered set of process

calculi based on programmer-significant concepts: they avoid the
clutter of the encodings needed by compilers (to map to physical
architectures) and by other process calculi (to map program abstractions)

 Textbook: “Concepts, Techniques, and Models of Computer Programming”,
MIT Press, 2004, 929 pages

April 2006 P. Van Roy, FLOPS 2006 34

The second model:
declarative concurrency

 Eager producer/consumer example with dataflow synchronization

fun {Ints N Max}
 if N<Max then
 {Delay 1000}
 N|{Ints N+1 Max}
 else nil end
end

fun {Sum A Xs}
 case Xs of X|Xr then
 A|{Sum A+X Xr}
 [] nil then nil end
end

local Xs Ys in
 thread Xs={Ints 1 1000} end
 thread Ys={Sum 0 Xs} end
end

 Ints and Sum threads share the dataflow
variable Xs, which is a list with unbound tail
(stream)

 Monotonic dataflow behavior of case
statement (synchronize on data availability)
gives stream communication

 No race conditions

Ints Sum
Xs Ys

18

April 2006 P. Van Roy, FLOPS 2006 35

Declarative concurrent model

skip
<s>1 <s>2

proc {<x> <x>1 … <x>n} <s> end
{<x> <x>1 … <x>n}

thread <s> end

local <x> in <s> end
<x>=<value>
if <x> then <s>1 else <s>2 end
case <x> of <p> then <s>1 else <s>2 end

{WaitNeeded <x>}

<s> ::=
Empty statement
Sequential composition
Procedure creation
Procedure invocation

Thread creation

Variable creation
Variable binding
Conditional (synchronizes on bind)
Pattern matching (synchronizes on bind)

By-need synchronization

 Declarative concurrency adds threads and single-assignment variables
with dataflow synchronization to a simple functional language
 The above example is a process calculus that is a subset of Oz
 Declarative concurrency adds “slack” between producer and consumer

 Lazy evaluation adds by-need synchronization
 Lazy evaluation does coroutining between producer and consumer

April 2006 P. Van Roy, FLOPS 2006 36

Why is declarative
concurrency important?

 A typical programming style consists of concurrent entities that
read input streams and write output streams
 A stream is an incrementally constructed value with a single writer

and multiple readers

 However, this model has a strong limitation: it cannot express
nondeterminism
 It cannot be used for programs that have to handle nondeterminism,

e.g., that have multiple independent inputs from the external world

 So why is it useful?
 It is a form of functional programming
 “Partial termination”: for a given momentary configuration of input

streams, the output streams eventually reach a stable configuration
that is a function of the input streams (a.k.a. “resting point”)

 In most cases the nondeterminism can be isolated to a small part of
the program

19

April 2006 P. Van Roy, FLOPS 2006 37

Creative extension principle

 A general principle to design a language in layered fashion by
overcoming limitations in expressiveness

 With a given language, when programs start getting complicated for
technical reasons unrelated to the problem being solved (non-local
changes are needed), then there is a new programming concept
waiting to be discovered
 Adding this concept to the language recovers simplicity (local changes)

 A typical example is exceptions
 If the language does not have them, all routines on the call path need to

check and return error codes (non-local changes)
 With exceptions, only the ends need to be changed (local changes)

 We rediscovered this principle when writing our textbook
 Originally defined by (Felleisen 1990)

 This principle applies to all the programming concepts we cover

April 2006 P. Van Roy, FLOPS 2006 38

Example of
creative extension principle

proc {P1 … E1}
 {P2 … E2}
 if E2 then … end
 E1=…
end

proc {P2 … E2}
 {P3 … E3}
 if E3 then … end
 E2=…
end

proc {P3 … E3}
 {P4 … E4}
 if E4 then … end
 E3=…
end

proc {P4 … E4}
 if (error) then E4=true
 else E4=false end
end

proc {P1 …}
 try
 {P2 …}
 catch E then … end
end

proc {P2 …}
 {P3 …}
end

proc {P3 …}
 {P4 …}
end

proc {P4 …}
 if (error) then
 raise myError end
 end
end

Language
without exceptions

Language
with exceptions

Error occurs here

Error treated here

All procedures on
path are modified

Only procedures at
ends are modified

Error occurs here

Error treated here

Unchanged

20

April 2006 P. Van Roy, FLOPS 2006 39

Complete set of concepts (so far)

skip
<x>1=<x>2
<x>=<record> | <number> | <procedure>
<s>1 <s>2

local <x> in <s> end

if <x> then <s>1 else <s>2 end
case <x> of <p> then <s>1 else <s>2 end
{<x> <x>1 … <x>n}
thread <s> end
{WaitNeeded <x>}

{NewName <x>}
<x>1= !!<x>2

try <s>1 catch <x> then <s>2 end
raise <x> end
{NewPort <x>1 <x>2}
{Send <x>1 <x>2}

<space>

<s> ::=
Empty statement
Variable binding
Value creation
Sequential composition
Variable creation

Conditional
Pattern matching
Procedure invocation
Thread creation
By-need synchronization

Name creation
Read-only view
Exception context
Raise exception
Port creation
Port send

Encapsulated search

Descriptive
declarative

Declarative

Less and less
declarative

April 2006 P. Van Roy, FLOPS 2006 40

Complete set of concepts (so far)

skip
<x>1=<x>2
<x>=<record> | <number> | <procedure>
<s>1 <s>2

local <x> in <s> end

if <x> then <s>1 else <s>2 end
case <x> of <p> then <s>1 else <s>2 end
{<x> <x>1 … <x>n}
thread <s> end
{WaitNeeded <x>}

{NewName <x>}
<x>1= !!<x>2

try <s>1 catch <x> then <s>2 end
raise <x> end
{NewCell <x>1 <x>2}
{Exchange <x>1 <x>2 <x>3}

<space>

<s> ::=
Empty statement
Variable binding
Value creation
Sequential composition
Variable creation

Conditional
Pattern matching
Procedure invocation
Thread creation
By-need synchronization

Name creation
Read-only view
Exception context
Raise exception
Cell creation
Cell exchange

Encapsulated search

Alternative

21

April 2006 P. Van Roy, FLOPS 2006 41

Taxonomy of paradigms
Declarative programming
Strict functional programming, Scheme, ML
Deterministic logic programming, Prolog

 + concurrency
 + by-need synchronization
 Declarative (dataflow) concurrency
 Lazy functional programming, Haskell

 + nondeterministic choice
 Concurrent logic programming, FCP
 Functional reactive programming

 + exceptions
 + explicit state
 Object-oriented programming, Java, C++, C#

 + search
 Nondeterministic logic prog., Prolog

Concurrent OOP
(message passing, Erlang, E)
(shared state, Java, C#)

+ computation spaces
Constraint programming

 This diagram shows some of
the important paradigms and
how they relate according to
the creative extension principle

 Each paradigm has its pluses
and minuses and areas in
which it is best

April 2006 P. Van Roy, FLOPS 2006 42

History of Oz

 The design of Oz distills the results of a long-term research collaboration
that started in the early 1990s, based on concurrent constraint
programming (Saraswat, Maher, Ueda)
 ACCLAIM project 1991-94: SICS, Saarland University, Digital PRL, …

 AKL (SICS): unifies the concurrent and constraint strains of logic
programming, thus realizing one vision of the Japanese FGCS

 LIFE (Digital PRL): unifies logic and functional programming using logical
entailment as a delaying operation (logic as a control flow mechanism)

 Oz (Saarland U): breaks with Horn clause tradition, is higher-order,
factorizes and simplifies previous designs

 After ACCLAIM, several partners decided to continue with Oz
 Mozart Consortium since 1996: SICS, Saarland University, UCL

 The current language is Oz 3
 Both simpler and more expressive than previous designs
 Distribution support (transparency), constraint support (computation spaces),

component-based programming
 High-quality open source implementation: Mozart Programming System,

http://www.mozart-oz.org

22

April 2006 P. Van Roy, FLOPS 2006 43

Conclusions

April 2006 P. Van Roy, FLOPS 2006 44

Conclusions
 We have presented four substantial research projects that did

language design as part of their solution
 Because they did language design, they give deeper insights than

projects that use a fixed language
 Doing language design is difficult and risky, not a light undertaking

 The four languages have a common, layered structure: a
functional core, then deterministic concurrency, then message-
passing concurrency, then shared-state concurrency
 Deterministic concurrency keeps the good properties of functional

programming, but can’t handle external sources of nondeterminism
 Message passing generalizes this to handle nondeterminism
 State adds an important modularity property but is hard to program

when combined with concurrency (transactions are one solution)

 Does this tell us something about what a definitive language
might look like?
 Determinism (functional) < monotonicity < isolation < modularity?

