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Abstract. We present the kernel language approach, a new way to
teach programming that situates most of the widely-known programming
paradigms (including imperative, object-oriented, concurrent, logic, and
functional) in a uniform setting that shows their deep relationships and
how to use them together. Widely-different practical languages (exem-
plified by Java, Haskell, Prolog, and Erlang) with their rich panoplies
of abstractions and syntax are explained by straightforward translations
into closely-related kernel languages, simple languages that consist of
small numbers of programmer-significant concepts. Kernel languages are
easy to understand and have a simple formal semantics that can be used
by practicing programmers to reason about correctness and complexity.
We have taught the approach at three universities in courses ranging from
second-year undergraduate courses to graduate courses. We are complet-
ing a textbook with accompanying materials. As part of a curriculum, the
approach naturally complements courses on algorithms & data structures
and program design & software engineering. The approach is the fruit of
ten years of research by an international team, the Mozart Consortium.

1 Existing Approaches

For the purposes of this paper, let us consider a broad definition of computer
programming as bridging the gap between specification and running program.
This consists in designing the architecture and abstractions of an application
and coding them in a programming language. The discipline of programming has
two essential parts: a technology and its scientific foundation. The technology
consists of tools, techniques, and standards, allowing to do programming. The
science consists of a broad and deep theory with predictive power, allowing to
understand programming. The science should be practical, that is, able to explain
the technology, making it useful for a practicing programmer.

Teaching programming means to teach both the science and the technology.
Surprisingly, we find that programming is almost never taught in this way. Sur-
veying existing textbooks, we find that programming is taught in three different
ways.



1.1 As a Craft

The most popular approach is to teach programming as a craft in the context of
a single programming paradigm, embodied in a single language. The science is
limited to the chosen paradigm or language. Some popular paradigms are object-
oriented programming [23, 26,27, 16], imperative programming [24], functional
programming [11,19, 7,14, 25], logic programming [33, 8], and concurrent imper-
ative programming [4,5]. Only the textbooks on functional programming and
concurrent imperative programming give a formal semantics. Some languages
are Java [23, 26, 22, 6], C++ [34], Eiffel [27], Prolog [33, 8], Erlang [5], Objective
Caml [10], and Leda [9]. Leda is presented as a multiparadigm language but it
contains only a few paradigms and these are presented in isolation.

Teaching programming in terms of a single paradigm or language has a detri-
mental effect on programmer competence and thus on program quality. A con-
crete example illustrating this is concurrent programming in Java. Concurrency
with shared state and monitors, as used in many languages including Java, is so
complicated that it is taught only in advanced courses [22]. Furthermore, the im-
plementation of concurrency in current versions of Java is expensive. Java-taught
programmers reach the conclusion that concurrency is always complicated and
expensive. They write programs to avoid concurrency, often in a contorted way.
But these limitations are not fundamental at all: there are useful forms of concur-
rency, such as dataflow concurrency (e.g., streams in Unix) and active objects,
which are almost as easy to use as sequential programming. Furthermore, it is
possible to implement threads almost as cheaply as procedure calls. Teaching
concurrency in a broader way would allow programmers to design and program
with concurrency in systems without these limitations, including improved im-
plementations of Java.

1.2 As a Branch of Mathematics

The second approach is to teach programming as a branch of mathematics. In
this approach, the science is either limited to a restricted language, as in [13],
or too fundamental to be of practical use, as in [37, 20, 29].

The approach given by Dijkstra in [13] is practical but it only treats a re-
stricted set of concepts. A promising continuation of [13] would be to extend it
to more concepts. This is part of our approach, which is explained in Section 2.

1.3 In Terms of Concepts

The third approach is to teach programming in terms of the underlying concepts.
The concepts are elaborated starting from simple ones and gradually introducing
more sophisticated ones. This gives students a good understanding of practical
programming. For example, object-oriented programming is explained in terms
of functional programming by adding explicit state. Textbooks that use this ap-
proach are Abelson et al and its successors [1,2, 15, 17]. However, these textbooks
lack formal semantics and they leave out many important concepts.
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Fig. 1. Some important steps in the kernel language approach.

Our approach is also based on concepts. We extend Abelson et al by treating
more concepts, by putting the treatment of concepts on a better methodological
foundation, and by adding a formal semantics.

2 The Kernel Language Approach

How can we teach programming as a unified discipline? There are simply too
many programming languages to teach them all. Teaching a few carefully-
selected languages, say one per paradigm (for example Java, Prolog, and
Haskell), is a stopgap solution. It multiplies the intellectual effort of the stu-
dent and instructor (since each language has its own syntax and semantics) but
does not show the deep connections between the paradigms.

A better approach would not be based on a single language (or a few lan-
guages), but on the underlying concepts. This is the approach taken by Abelson



et al [1] and its successors, which we mentioned in the previous section. We
have extended this approach to be both broader and deeper than has been done
before. We organize the concepts into simple languages called kernel languages.
Practical languages in all their richness are translated into the kernel languages
in a straightforward manner. This approach is truly language-independent: a
wide variety of languages and programming paradigms can be modeled by a
small set of closely-related kernel languages.

The kernel languages are easy to understand and have a simple formal se-
mantics that allows practicing programmers to reason about correctness and
complexity at a high level of abstraction. We give an operational semantics for
all kernel languages and axiomatic and logical semantics for those kernel lan-
guages for which it is appropriate. This is in contrast to [1,2,15], which define
languages in terms of interpreters. Compared to giving a simple operational
semantics, we find that using interpreters is obscure (since language features
interact in nonobvious ways) and makes it harder to reason abstractly about
program correctness and complexity. Our operational semantics is carefully fac-
tored by concept. This makes the semantics easy to understand and makes it
easy to define a single operational semantics that can be subsetted for many
different kernel languages.

In the kernel language approach, programming paradigms and their requisite
languages are emergent phenomena, depending on which concepts one uses. The
advantages and limitations of each paradigm show up clearly. This gives the
student a deep and broad insight into programming concepts and how to use
them to design abstractions. For example, many of our students who were already
proficient Java programmers have told us that they first understood what Java
objects really were after following our course.

2.1 The Kernel Languages

Figure 1 briefly summarizes how we organize programming according to this
approach. Each box corresponds to a kernel language. The first box contains
a simple functional language and successive boxes add concepts incrementally.
The figure is incomplete; our textbook distinguishes more than 20 paradigms,
each with its kernel language. Here are some important steps:

— The most basic kernel language does strict functional programming. This can
already express most of the programming techniques of the later kernel lan-
guages. [t can express data and control abstraction, genericity, instantiation,
and components.

— The second kernel language adds dataflow variables, which are a kind of
single-assignment variable, i.e., a weak form of state. (State is such a strong
addition that it is useful to have a weaker form of it.) This has two important
consequences. It is a prerequisite for declarative concurrency. It also means
that the second language is a deterministic logic programming language.

— We add nondeterministic choice to the second language. This gives relational
programming and nondeterministic logic programming.



— We add concurrency to the second language. This gives a form of dataflow
programming that is both purely functional and concurrent. We call it declar-
ative concurrency. It is as easy to reason in as sequential functional pro-
gramming. Eager and lazy execution are the two complementary ways to
use declarative concurrency.

— We add explicit state to the second language. State is essential for modu-
larity, because it allows changing a component’s behavior over time without
changing its interface. Object-oriented programming can be seen as a rich set
of programming techniques with state, centered around encapsulation (pro-
grams as collections of abstract data types) and subtyping (the incremental
definition of abstract data types). It emphasizes structuring techniques such
as inheritance, delegation, and forwarding.

— Using both concurrency and state together gives a language that is very
expressive but also hard to program and reason in. There are two main
approaches to master its complexity [21]. One approach is to use atomic
actions on shared state, such as monitors in Java [22]. Another approach is
to use message passing between active objects, as in Erlang [5].

Within these languages and others we discuss different forms of abstraction, non-
determinism, encapsulation, compositionality, capability-based programming,
and other important concepts.

2.2 The Creative Extension Principle

We organize the kernel languages in a layered fashion, starting from a simple
base language and successively adding new concepts. How do we decide which
concepts to add? Whenever programming in a kernel language becomes complex
for technical reasons independent of the program, this is a signal that there is a
new concept waiting in the wings. If the concept is chosen well, then adding it to
the language satisfies two properties: programs remain simple and the language
semantics also remains simple. Here are some examples:

— In the first kernel language, programming independent activities requires
programming a scheduler and explicit context switches. Adding concurrency
to the language avoids this complexity. Each activity can be programmed as
if it was the sole activity, and it needs to know about other activities only
when interacting with them.

— In the first kernel language, a procedure cannot change its behavior over
time without affecting its interface. Adding explicit state to the language
avoids this complexity.

— All the other concepts are added by following the same approach. For exam-
ple, we add dataflow, exception handling, lazy execution, capabilities, and
nondeterministic choice. In each case, encoding the concept without changing
the language increases the complexity of the program. In each case, adding
the concept to the kernel language keeps both the program and the language
semantics simple.



This approach has a strong element of creativity. Each concept brings some-
thing novel that was not there before. We therefore call it the creative extension
principle. It is the foundation of how we organize the kernel languages. The or-
ganization we propose is not the only possible one, however. By following the
same approach, you may find a different organization. We would be interested
to exchange ideas with anyone who has done this.

3 Teaching Experience

We first explain how we have realized the kernel language approach for educa-
tional purposes and our teaching experience with it. Based on this experience, we
give recommendations on how to use the approach in an informatics curriculum.

3.1 Textbook and Software

We have realized the kernel language approach in the textbook Concepts, Tech-
niques, and Models of Computer Programming, which is currently being com-
pleted. The latest draft is always available at the URL cited in the bibliography
[35]. This draft is updated frequently and currently has more than 800 pages of
material. It is intended for different levels of sophistication, ranging from second-
year undergraduate courses to graduate courses. It assumes a previous exposure
to programming and basic knowledge of simple mathematical concepts such as
sequences, graphs, and functions. We have also prepared slides and lab sessions,
which we offer to interested parties on request.

The textbook does not target first-year students, although the approach could
probably be adapted for such a purpose. We would be interested in contacting
anyone attempting such an adaptation.

The textbook is supported by the Mozart Programming System, a full-
featured open-source development platform that can run all program fragments
in the book [28]. Full information including downloadable sources and binaries
is available at the Mozart Web site. Mozart was originally developed as a vehicle
for research in language design and implementation.

We chose Mozart for the textbook because it implements the Oz language,
which supports the kernel language approach perfectly well. Other reasons for
picking Mozart are its implementation quality and its support for both Unix and
Windows platforms. Of course, the kernel language approach could be supported
by other languages and software platforms. We encourage efforts in this direction
and we would be happy to exchange ideas with anyone undertaking such an effort.

The textbook mentions many languages and gives an in-depth treatment
of four languages that are representative of widely-different paradigms, namely
Erlang, Haskell, Java, and Prolog. In a few pages it gives the essentials of each
with respect to the kernel language approach and it gives the formal semantics
of particularly interesting features.



3.2 Courses Taught

The book draft and accompanying materials have so far been used at four uni-
versities for the following courses:

— Datalogill 2G1512 (Computer science II, Fall 2001 and Fall 2002, 90 students
in Fall 2001, instructors Seif Haridi and Christian Schulte). Royal Institute
of Technology (KTH), Kista, Sweden. For second-year students including
both CS majors and non CS majors.

— INGI2650 (Structure of algorithmic programming languages, Fall 2001, 55
students, instructor Peter Van Roy). Université catholique de Louvain
(UCL), Louvain-la-Neuve, Belgium. For third-year CS students.

— LINF1251 (Introduction to programming, part 2, Spring 2002, 27 students,
instructor Peter Van Roy). UCL. For second-year CS students. This follows
a first-year introductory course based on a subset of Java.

— INGI2655 (Syntax and semantics of programming languages, Spring 2002,
44 students, instructor Peter Van Roy). UCL. For fourth-year CS students.
The book’s operational semantics was used as a realistic example.

— 2G1915 (Concurrent programming, Spring 2002, 70 students, instructor
Vladimir Vlassov). KTH. For fourth-year CS students. The chapter on con-
currency and state was used.

— EFE 490/590 (Electrical and Computer Engineering Special Topics course,
instructor Juris Reinfelds). New Mexico State University, Las Cruces, New
Mexico. Two graduate courses: Distributed computing (Fall 2001, 4 students)
and A programmer’s theory of programming (Spring 2002, 5 students). These
courses and their motivation are covered in [32].

— (8487 (Distributed systems, Spring 2001, 45 students, instructor Reem Bah-
gat). Cairo University, Cairo, Egypt. For fourth-year CS students.

— (8532 (Declarative programming systems, Fall 2001, 16 students, instructor
Reem Bahgat). Cairo University. For master’s students in CS (fifth year).

Feedback from these courses was used to improve the book’s content and or-
ganization. Datalogill and INGI2650 in Fall 2001 were the first major uses of
the book for teaching. LINF1251 was the second major use. Just for informa-
tion, 64% passed the first instance of Datalogill,® 85% passed INGI2650, and
96% passed LINF1251. Datalogill tried to teach too much material and the stu-
dents (non CS majors) were less motivated. LINF1251 was more pedagogical: we
adjusted the pace and all lectures were accompanied with live demonstrations.

3.3 Curriculum Recommendations

We have discussed the effects of the kernel language approach on the informatics
curriculum with our colleagues at UCL, at workshops and conferences where we
presented the approach, notably WCCE 2001 [3], MPOOL 2001 [12], WFPL 2001
[18], and ICTEM 2002 [36], and with other universities (notably the Katholieke

3 This percentage does not count students who will retake the exam in the future.



Universiteit Leuven in Louvain, Belgium). Based on these discussions, we pro-
pose the following natural division of the discipline of programming into three
core topics:

1. Concepts and techniques.
2. Algorithms and data structures.
3. Program design and software engineering.

These topics are focused on the discipline of programming, independent of any
other domain in informatics. Our textbook gives a thorough treatment of topic
(1) and an introduction to (2) and (3). Parnas presents an approach that focuses
on topic (3) [30]. After discussion with Parnas, we agree that a good approach
is to teach (1) and (3) concurrently, introducing both concepts and design prin-
ciples gradually [31]. In the informatics curriculum at UCL, we attribute eight
semester-hours to each topic. This includes both lectures and lab sessions. To-
gether the three topics comprise one sixth of the undergraduate informatics
curriculum at UCL.

4 Conclusions and Further Reading

We have given a brief overview and motivation of the kernel language approach to
teaching programming. The approach focuses on programming concepts and the
techniques to use them, not on programming languages or paradigms. Practical
languages are translated into closely-related kernel languages, simple languages
that present the essential concepts in an intuitive and precise way. This gives
students a view that is both broad and deep. The approach covers many program-
ming paradigms and shows the deep relationships between them. It has a simple
formal semantics that is usable by practicing programmers. It extends similar ap-
proaches, e.g., by Abelson et al [2], with more concepts, a better methodological
foundation, and formal semantics.

For further reading we recommend the overview talk, which introduces the
kernel languages and their semantics and gives two highlights, in concurrent
programming and graphic user interface programming [36]. We also recommend
reading the Preface and Appendix E (General Computation Model) of the draft
textbook. Appendix E is especially relevant: it explains the creative extension
principle, which is the foundation we use to determine which concepts to put in
the kernel languages and how to classify the kernel languages.
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